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We extend the work of Robinson and Turner to use hypothesis testing with
persistent homology to test for measurable differences in shape between the
spaces of three or more groups. We conduct a large-scale simulation study to
validate our proposed extension, considering various combinations of groups,
sample sizes and measurement errors. For each such combination, the percentage
of p-values below an α-level of 0.05 is provided. Additionally, we apply our
method to a cardiotocography data set and find statistically significant evidence
of measurable differences in shape between the spaces corresponding to normal,
suspect and pathologic health status groups.

1. Introduction

Consider a data set, obtained via random sampling, where each data point is a
vector of m quantitative variables and one categorical variable with s levels. Ideally,
several of the quantitative variables are real-valued. According to the levels of the
categorical variable, we will group the data points into s not necessarily distinct
collections of points in Rm, referred to as point clouds. For each group, we can view
the corresponding point cloud as a representative subset of a space which consists
of all such points in Rm with the respective level of the categorical variable. Of
interest is whether or not these s spaces have measurably different shapes? But
what does shape even mean if m is large?

Topology, in particular algebraic topology, is an area of mathematics that can be
used to qualitatively measure the shape of a point cloud. For a given point cloud,
we construct an infinite family of simplicial complexes that vary according to a real-
valued distance parameter. Each complex in the family is an object that inherits a
shape from the point cloud and the topological tool known as homology can be used
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to detect this shape. Since any single complex within the infinite family corresponds
to a choice of parameter value, we might ask which parameter value “best” captures
the shape of the point cloud? Persistent homology is a study of the homological
features that persist over long intervals of the distance parameter, thus sidestepping
the search for a best choice parameter value. Hence, persistent homology can be used
to determine if point clouds have different shape. While persistent homology allows
comparisons of shapes across point clouds obtained from a sample of data points,
can any resulting differences then be generalized to the corresponding spaces at
large? The answer is yes, but as random sampling unavoidably introduces variability,
a method is needed which can distinguish true differences in shape between the
spaces from artificial differences in shape between the point clouds obtained via
random sampling of data points. Statistical hypothesis testing is an inferential
method often implemented to assess whether or not randomly sampled data provide
sufficient evidence of a difference, with respect to some characteristic, between
two or more populations (or, as we have been calling them, spaces). K. Turner
and A. Robinson [2013] conducted such an assessment on s = 2 spaces using a
specific type of hypothesis testing procedure known as a permutation test, where
the characteristic of interest is shape, as measured via persistent homology. As this
procedure requires multiple point clouds from both spaces, in practice the two point
clouds obtained from the random sample of data points are further partitioned, via
subsampling, into multiple “smaller”, or less dense, point clouds. The assessment
is then conducted using the persistent homology of these subsampled point clouds
within the procedure. We extend this procedure to three or more spaces, s ≥ 3.

The remainder of the paper is organized as follows. In Section 2 we provide defi-
nitions of the Vietoris–Rips complex of a point cloud, homology groups, persistent
homology and persistence diagrams. In Section 3 we describe the permutation test
of Robinson and Turner. In Section 4 we propose an extension of the permutation
test for three or more spaces. In Section 5 we present the results of a large-scale
simulation study, incorporating various measurement errors and sample sizes, that
validate our proposed extension. Finally, in Section 6 we apply our extension to
a cardiotocography data set and find significant evidence of differences in shape,
as measured by persistent homology, between the spaces corresponding to normal,
suspect and pathologic health groups.1

2. Persistent homology

Before defining the persistent homology of a point cloud, we associate to the point
cloud a nested family of abstract simplicial complexes. A thorough explanation of

1 Throughout we use “difference in shape” to mean shape as measured by persistent homology in
a specified dimension.
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simplicial complexes and abstract simplicial complexes is given in [Edelsbrunner
and Harer 2010; Munkres 1984]. Here we motivate the definition of an abstract
simplicial complex with a brief geometric introduction to simplicial complexes,
followed by the definition of the Vietoris–Rips complex, which is the abstract
simplicial complex used herein.

Geometrically, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex
is a triangular subset of a plane, a 3-simplex is a solid tetrahedron, and an n-simplex
is the n-dimensional analogue of these convex sets. Observe that the boundary
of an n-simplex, σ , is a collection of (n−1)-simplices; these boundary simplices
are called faces of σ . A simplicial complex is a collection of simplices in Rd that
satisfy certain subset and intersection properties specifying how simplices can be
put together to create a larger structure. More precisely, a simplicial complex is a
finite collection of simplices, K, such that (1) if σ ∈ K and ρ is a face of σ then
ρ ∈ K, and (2) given any two simplices σ1, σ2 ∈ K, either σ1 ∩ σ2 is the empty set
or a face of both σ1 and σ2. More generally, and without relying on geometry, an
abstract simplicial complex is a finite collection of sets, A, such that if α ∈ A and
β ⊆ α, then β ∈ A. It is well known that a finite abstract simplicial complex can be
geometrically realized as a simplicial complex in RN for N sufficiently large.

2.1. The Vietoris–Rips complex. The Vietoris–Rips complex, denoted VR(D, r),
is an abstract simplicial complex associated to a point cloud D for a fixed radius
value r > 0. The elements of D form the 0-simplices or vertex set of VR(D, r). A
simplex of VR(D, r) is a finite subset α of D such that the diameter of α is less
than r . A simplex α ⊆ D with k-elements is called a (k−1)-simplex of D. Thus, a
1-simplex corresponds to a two element set (viewed geometrically as the endpoints
of a line segment), a 2-simplex corresponds to a three element set (viewed as the
vertices of a triangle), and so on. Observe that if α is a k-simplex, then every
subset of α is a simplex of D as the diameter of a subset of α can be no larger than
the diameter of α. Hence the Vietoris–Rips complex satisfies the definition of an
abstract simplicial complex. For readers that are new to topological data analysis,
an example Vietoris–Rips complex is given in the Appendix.

We note that Vietoris–Rips complexes for increasing radius values are always
a nested family of simplicial complexes associated to D; that is, the complexes
satisfy

VR(D, r1)⊆ VR(D, r2) whenever r1 ≤ r2.

This nested feature of the complexes along with the functorial nature of homology
are what give rise the concept of persistence to be defined below.

Although the Vietoris–Rips complex is relatively straightforward to define and
calculate, it can be computationally expensive when used with large point clouds.
There are economical alternatives to the Vietoris–Rips complex, such as the lazy
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witness complex introduced in [de Silva and Carlsson 2004]. Persistent homology
can be applied using any nested family of complexes indexed by some parameter.

2.2. Homology. The homology of a simplicial complex K is an algebraic measure-
ment of how the n-simplices are attached to the (n−1)-simplices within K. Below
we define some technical machinery (chains, boundary maps, and cycles) used to
define homology groups.

The p-chains of a simplicial complex K, denoted Cp(K ), is the group of formal
linear combinations of the p-simplices of K with coefficients from Z2. (More
general definitions of homology with ring coefficients can be found in the standard
algebraic topology texts [Edelsbrunner and Harer 2010; Hatcher 2002].) Since Z2

is a field, the p-chains of K are Z2-vector spaces with basis the p-simplices of K.
The boundary map, denoted δp, identifies each p-chain with its boundary, a

(p−1)-chain. Each boundary map, δp :C p→C p−1, is a homomorphism and in the
case of Z2 coefficients, as considered here, these maps are linear transformations.

Notice that δp ◦ δp+1 is the zero map as the boundary of a boundary is empty.
This fundamental property of chain complexes ensures that the image of δp+1 is a
normal subgroup of the kernel of δp. The collective sequence of boundary maps
and chains, as shown below, is called a chain complex:

· · ·
δn
−→Cn(K )

δn−1
−−→· · ·

δ2
−→C1(K )

δ1
−→C0(K )

δ0
−→ 0.

Homology groups are defined using both the kernel and image of each boundary
map. The kernel of δp is the set of all p-chains whose boundary is empty. The
elements of the kernel of δp are called p-cycles of K. The image of δp+1 is the set
of p-chains that are boundaries of a (p+1)-chain. The p-th homology group of K ,
denoted Hp(K ;Z2), is defined as the quotient group ker(δp)/ im(δp+1).

As the parameter r > 0 increases, the Vietoris–Rips complex includes more
simplices, thus the homology of the complex changes. The functorial property of
homology and the inclusion map i : VR(D, r1)→ VR(D, r2) whenever r1 ≤ r2,
give rise to induced maps between the homology of the complexes

i∗ : H∗(VR(X, r1);Z2)→ H∗(VR(X, r2);Z2).

A nontrivial homology class α ∈ H∗(VR(X, r1);Z2) is said to be born at radius
rb if rb is the least radius value for which H∗(VR(X, rb);Z2) contains an element
mapping onto α under the map

H∗(VR(X, rb);Z2)→ H∗(VR(X, r1);Z2).

The homology class α is said to die at radius value rd provided that rd is the least
radius value for which the class α maps to zero in the mapping

H∗(VR(X, r1);Z2)→ H∗(VR(X, rd);Z2).



EXTENDING HYPOTHESIS TESTING WITH PERSISTENT HOMOLOGY 31

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

y

x

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

in
te

rv
al

en
d

interval start

H0

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

in
te

rv
al

en
d

interval start

H1

Figure 1. An example data set (top) and the corresponding persis-
tence diagrams for the homological dimensions 0 and 1.

The topological feature that α represents is then said to have a birth and death “time”
corresponding to the radius values rb and rd . We say that the class α persists over
the interval [rb, rd ]. Persistent homology of a data set D is a cataloguing of the
homological classes of the abstract simplicial complexes VR(D, r) that persist for
large intervals of radius values, r .

For a fixed k, the persistence diagram for Hk(VR(X, ∗);Z2) is a plot of points
(rb, rd) for each nonzero class α ∈ Hk(VR(X, ∗);Z2).

Figure 1 contains an example data set that includes several 1-dimensional ho-
mological features of varying size and the corresponding persistence diagrams in
dimensions 0 and 1.

Within the persistence diagram in Figure 1, we see two lone triangles at the
points p1= (0.35, 0.8) and p2= (0.3, 1.55). The point p2, with the early birth time,
is the 1-dimensional homology class representing the larger circular feature on the
right. The earlier birth time is due to the closer scattering of the data points about
the larger circle. The point p1, with the earlier death time, is the 1-dimensional
homology class representing circle of smaller radius on the left. The early death
time is due to the smaller radius of this circular feature. The persistence diagram in
Figure 1 also contains several triangles near the diagonal which represent classes
that only persist for a short while, and it includes a triangle at the point (0.1, 0.15)
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Figure 2. On the left, two superimposed persistence diagrams
of the same homological dimension. On the right, the points
{x1, . . . , x5}, {y1, . . . , y5} and line segments indicating the optimal
bijection. The diagram distance is the sum of the lengths of the
line segments x1 y3+ x2 y1+ x3 y5+ x5 y2. The segment x4 y4 is not
included as it is a segment between diagonal points.

representing the 1-dimensional homology class resulting from the tiny circle of
points at the top of the larger circle. Notice that the 0-dimensional homology
classes, which are plotted as small circles in the persistence diagram, all have birth
time r = 0 as a result of each data point representing a unique 0-dimensional class
at r = 0. As r increases, the complex consists of fewer connected components
until it is one connected component. The 0-dimensional persistence class plotted at
the point (0, 0.35) represents the joining of the last two components into a single
component. In other words, for r ≥ 0.35 the simplicial complex VR(X, r) is one
connected component. The 0-dimensional class plotted at (0, 2) is merely the result
of using a maximum radius value of r = 2 in the persistent homology calculation.
This class indicates that the complex VR(X, 2) is one connected component.

The discussion above defines a persistence diagram for a data set using the
Vietoris–Rips complex. There are, however, several other routes that lead to the
creation of a persistence diagram. The omnibus test described below can be applied
to a collection of persistence diagrams obtained by any means.

2.3. A metric on persistence diagrams. We follow Robinson and Turner in select-
ing the metric on persistence diagrams that is analogous to the L2 norm in the
space of functions on a discrete space. Given two persistence diagrams X and Y, let
x1, x2, . . . , xn ∈ X be a listing of the off-diagonal points of X and y1, y2, . . . , ym ∈Y
be the off-diagonal points of Y. Select points xn+1, . . . , xn+m and ym+1, . . . , ym+n

along the diagonal so that xn+k is the point closest (in Euclidean distance) to yk

and vice versa. Let X ′ = {x1, . . . , xn+m} and Y ′ = {y1, . . . , yn+m}. We consider
the set of all bijections φ : X ′→ Y ′ such that (1) the off-diagonal point xk is paired
either with an off-diagonal point of Y or with ym+k and (2) the diagonal point xl
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is paired either with yl−n or with one of the diagonal points in Y ′. For a specific
bijection φ, if both xk and yj are diagonal points, the cost of assigning xk to yj ,
denoted C(xk, yj ), is 0, else the cost is the Euclidean distance between xk and yj .

Define d(X, Y ), the distance between the persistence diagrams X and Y, by

d(X, Y )=
(

inf
φ:X ′→Y ′

∑
x∈X ′

C(x, φ(x))
)1

2

.

A bijection between X and Y is called optimal if it achieves the infimum. The
Hungarian algorithm [Kuhn 1955; Munkres 1957], also known as Munkres’ assign-
ment algorithm, presents a method for obtaining an optimal bijection in polynomial
time. Figure 2 gives an example of two simple persistence diagrams and the bijection
exhibiting their diagram distance.

3. Hypothesis testing and topological data analysis

When persistent homology is applied to point clouds obtained from a random
sample of points from various spaces, an element of variability is unavoidably
introduced. Point clouds obtained from different samples of the same space, if
somewhat representative, are expected to have “small” differences in their respective
persistence diagrams, while point clouds obtained from samples of different spaces
are expected to have comparatively “large” differences in their persistence diagrams.
However, when the true shape-related features of two spaces are unknown, and all
that is available are the point clouds obtained from samples of each of these spaces,
what qualifies as a small or large difference is unclear. A tool is needed which
can determine whether or not the shapes of the underlying spaces are measurably
different. Statistical hypothesis testing is a method that can be implemented in
these situations to decide if there is sufficient evidence to classify the shapes of the
spaces as measurably different. A thorough development of statistical hypothesis
testing is available in many standard sources, including [Casella and Berger 2002;
DeGroot and Schervish 2012].

3.1. Hypothesis testing via the joint loss function. Consider two spaces in Rm,
arbitrarily labeled X1 and X2, suspected of having measurably different shapes.
Suppose n1 point clouds are available from X1 and n2 point clouds are available
from X2, with their corresponding persistence diagrams in a fixed dimension denoted
respectively by X1,1, X1,2, . . . , X1,n1 and X2,1, X2,2, . . . , X2,n2 . Further suppose
that each of these n1+n2 point clouds was obtained via random sampling from either
X1 or X2. Note that in practice, for each space, a single point cloud will usually
be obtained via a random sample of X i and then partitioned, via subsampling, into
ni smaller, or less dense, point clouds. Within the statistical hypothesis testing
paradigm, the null hypothesis asserts that the shapes of X1 and X2 are not measurably
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different, while the alternative hypothesis asserts the opposite. The corresponding
test statistic, proposed by Robinson and Turner [2013], is the joint loss function

σ 2
χ2
=

2∑
m=1

1
2nm(nm − 1)

nm∑
i=1

nm∑
j=1

d(Xm,i , Xm, j )
2,

where d( · , · ) is the persistence diagram distance metric described in Section 2.3.
The joint loss function is ultimately an aggregate measure of within-group

variation. More specifically, σ 2
χ2

adds the variation in the
(n1

2

)
persistence diagram

distances from X1 and the variation in the
(n2

2

)
persistence diagram distances

from X2. Unfortunately, the sampling distribution of σ 2
χ2

is nontrivial to determine
and is currently unknown, which renders the “standard” (i.e., distribution-based)
hypothesis testing paradigm impossible. To circumvent this, Robinson and Turner
propose implementing a permutation test, which in this context is free of any
distributional assumptions. A thorough development of permutation tests, and the
often corresponding approximate permutation test p-values, is available in [Higgins
2004; Ramsey and Schafer 2013].

To perform the permutation test, we assume that the null hypothesis is true, i.e.,
X1 and X2 are not measurably different in shape. Such an assumption effectively
means that the observed labeling of the point clouds to either space X1 or X2 is just
one of

(n1+n2
n1

)
possible assignments, all of which are arbitrary and equally likely. For

each of these possible assignments, the value of σ 2
χ2

is then computed. Collectively,
these values yield the permutation distribution for σ 2

χ2
, which is analogous to a

sampling distribution in the standard hypothesis testing paradigm. Finally, analogous
to a standard hypothesis testing p-value, the permutation test p-value is obtained
by calculating the proportion of values in the permutation distribution which are
less than or equal to the observed value of the joint loss function. In practice, the
number of possible assignments may be unreasonably large, in which case the above
procedure is subtly altered to produce an approximate permutation test p-value. In
particular, rather than using the

(n1+n2
n1

)
possible assignments of the n1+ n2 point

clouds to the two spaces, numerous (e.g., 1000) randomly selected permutations
(i.e., “shuffles”) of the n1+n2 point clouds are instead used where after each shuffle
the first n1 point clouds are labeled as “belonging” to space X1 and the remaining
n2 point clouds are labeled as “belonging” to space X2.

If the null hypothesis of the permutation test is actually false, then we would
expect the permutation test p-value to be small since the observed labeling of point
clouds would be the only assignment that did not mix point clouds from both spaces.
When a permutation test p-value is less than the α-level, an a priori established
threshold (e.g., 0.05), the observed value of σ 2

χ2
is considered smaller than what

can reasonably be explained by chance assignment of the point clouds to spaces X1
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and X2. The null hypothesis would then be rejected and X1 and X2 classified as
having measurably different shape.

It is important to note that if the point clouds were not obtained via random
sampling of X1 and X2, then a permutation test only allows us to draw conclusions
with respect to the point clouds. For instance, if the permutation test p-value is less
than our threshold, then we can conclude that the shapes of the point clouds from X1

and X2 are measurably different; however, this conclusion cannot be generalized to
X1 and X2 at large. As limited as such a conclusion may be, it is still informative to
know that such differences exist among the point clouds, particularly when m > 3
and the corresponding point clouds cannot be visualized.

4. Extending hypothesis testing to three or more groups

While the methods of Section 3 are useful for determining whether or not two spaces
are measurably different in a particular homological dimension, many practical
applications involve more than two spaces. The cardiotocography data set considered
in Section 6 is one such example. Given s ≥ 3 spaces, suppose we have n1 point
clouds, obtained via random sampling, from space X1, n2 point clouds from
space X2, . . . , and ns point clouds from space Xs . Analogous to before, note that
in practice, for each space, a single point cloud will usually be obtained via a
random sample of X i and then partitioned, via subsampling, into ni smaller, or
less dense, point clouds. In this section we extend the methods of Section 3 to
obtain a hypothesis testing procedure which can determine whether or not sufficient
evidence of measurable differences in shape exists between the s spaces.

4.1. Hypotheses and justification. To conduct such an inquiry, we follow through
with the suggestion of Robinson and Turner and use an approach analogous to a
standard one-way ANOVA procedure in which there are potentially two stages of
hypothesis testing. An omnibus (i.e., “global”) test is conducted at the first stage
and if this test produces significant results, a number of post hoc (i.e., “local”) tests
are performed at the second stage to identify the source(s) of the global significance.
A thorough development of the one-way ANOVA procedure is available in [Casella
and Berger 2002; DeGroot and Schervish 2012; Ramsey and Schafer 2013]. As with
the joint loss function in Section 3, the sampling distribution of the test statistic cor-
responding to the omnibus test, which is presented below in Section 4.2, is nontrivial
to determine and currently unknown. Hence, we again use a permutation test to carry
out the omnibus test, which we will henceforth refer to as the omnibus permutation
test. The logic behind and mechanics of this test are developed below in Section 4.2.

The null hypothesis for the omnibus permutation test asserts that the shapes
of X1, X2, . . ., Xs are not measurably different, while the alternative hypothesis
asserts that the shapes of at least two of the s spaces are measurably different. If
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we fail to reject the null hypothesis of this omnibus permutation test, then we are
done. However, if we reject the null hypothesis, then we know that at least two of
the s spaces have shapes that are measurably different, though we do not yet know
which spaces. Hence, up to

(s
2

)
post hoc tests are performed, one for each possible

pairing of two of the s spaces. For each post hoc test, the null hypothesis asserts
that the shapes of the two spaces are not measurably different, while the alternative
hypothesis asserts that the shapes are measurably different. Thus, each post hoc
test can be conducted via the methods described in Section 3.

Before describing the test statistic and corresponding details for the omnibus
permutation test, note that the primary purpose of the test pertains to management
of the familywise type I error rate. A type I error is the general term used to identify
a hypothesis test decision in which the null hypothesis is incorrectly rejected. For
any single hypothesis test, the pre-established α-level is the probability of making
a type I error. When multiple post hoc tests are performed, the familywise type
I error rate refers to the probability of incorrectly rejecting at least one of the
corresponding null hypotheses. Many methods exist for bounding the familywise
type I error rate associated with multiple pairwise post hoc tests (e.g., Bonferroni),
but such methods invariably require different and smaller α-levels for each individual
post hoc test. Hence, an insignificant omnibus permutation test result prevents the
analyst from unnecessarily performing post hoc tests and needlessly managing
the familywise type I error rate. Stated another way, if the null hypothesis of the
omnibus permutation test is true, then all of the null hypotheses of the various
post hoc tests are also true, and thus do not need to be performed, which eliminates
any need to manage the familywise type I error rate. However, if an omnibus
permutation test in which the null hypothesis is ultimately true is not performed,
then

(s
2

)
post hoc tests are unnecessarily performed and the familywise type I error

rate must needlessly be managed.

4.2. Omnibus permutation test specifics. Suppose, possibly after subsampling,
that n1 point clouds are available from X1, n2 point clouds from X2, . . ., and ns

point clouds from Xs , with their corresponding persistence diagrams in a fixed di-
mension denoted respectively by X1,1, X1,2, . . . , X1,n1 , X2,1, X2,2, . . . , X2,n2 , and
Xs,1, Xs,2, . . . , Xs,ns . Analogous to the test statistic for the two-space permutation
test presented in Section 3, the test statistic for the omnibus permutation test, for
three or more spaces, is a function of the diagram distances for all

(n1
2

)
pairings of

persistence diagrams from X1, all
(n2

2

)
pairings of persistence diagrams from X2, . . . ,

and all
(ns

2

)
pairings of persistence diagrams from Xs . In particular, the omnibus

joint loss function is defined as

σ 2
χs
=

s∑
m=1

1
2nm(nm − 1)

nm∑
i=1

nm∑
j=1

d(Xm,i , Xm, j )
2,
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where d( · , · ) is the persistence diagram distance metric described in Section 2.3.
Analogous to σ 2

χ2
, the function σ 2

χs
is ultimately an aggregate measure of variability

since the omnibus joint loss function adds the within-group variation of persistence
diagram distances from each of the s spaces. As previously mentioned, the sampling
distribution of σ 2

χs
is nontrivial to determine and currently unknown; hence, we turn

to the omnibus permutation test.
The logic behind and the mechanics of this omnibus permutation test are anal-

ogous to the two-space permutation test described in Section 3. We assume that the
null hypothesis is true, which effectively means that the observed assignment of the
point clouds to the s spaces is just one of

∏s−1
i=1

(∑s
j=i n j
ni

)
possible assignments, all of

which are arbitrary and equally likely. For each of these possible assignments, the
value of σ 2

χs
is then computed. Collectively, these values yield the permutation distri-

bution for σ 2
χs

. Finally, the permutation test p-value is then obtained by calculating
the proportion of values in the permutation distribution which are less than or equal
to the observed value of σ 2

χs
. As in the two-space scenario of Section 3, in practice

the number of possible assignments may be unreasonably large, in which case the
above procedure is analogously altered to produce an approximate permutation test
p-value. In particular, rather than using the

∏s−1
i=1

(∑s
j=i n j
ni

)
possible assignments of

the n1+n2+· · ·+ns point clouds to the s spaces, numerous (e.g., 1000) randomly
selected permutations (i.e., “shuffles”) of the n1+ n2+· · ·+ ns point clouds are in-
stead used where after each shuffle the first n1 point clouds are labeled as “belonging”
to space X1, the next n2 point clouds are labeled as “belonging” to space X2, . . . ,
and the remaining ns point clouds are labeled as “belonging” to space Xs .

Analogous to the two-space scenario of Section 3, if the null hypothesis of this
omnibus permutation test is actually false, then we would expect the permutation
test p-value to be small since the observed labeling of point clouds would be the only
assignment that did not mix point clouds across the s spaces. The permutation test
p-value is then compared to the α-level (e.g., 0.05). If the permutation test p-value is
smaller than this threshold, then the observed value of σ 2

χs
is considered smaller than

what can reasonably be explained by chance assignment of the point clouds to the s
spaces. The null hypothesis would then be rejected and at least two of the s spaces are
declared as having measurably different shape. To then identify the source(s) of this
difference, i.e., to determine which spaces have measurably different shape, a requi-
site number of post hoc tests are conducted via the two-space methods of Section 3.

5. Simulation study

To confirm the two-space permutation test introduced by Robinson and Turner
[2013] and to validate our proposed generalization for three or more spaces, we
conducted a large-scale simulation study. Throughout the study, shape was measured
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via 1-dimensional persistent homology. Three different scenarios were considered
and all three consisted of three spaces (s = 3). For each scenario, a trial con-
sisted of obtaining 20 point clouds, via random sampling of points, from each of
the three spaces and then calculating the approximate omnibus permutation test
p-value. While the 20 point clouds from a particular space were ultimately drawn
independently, they can be viewed as 20 disjoint subsamples of one larger, i.e.,
more dense, point cloud obtained via random sampling of points of the space. All
approximate omnibus permutation test p-values were based on 100,000 randomly
selected permutations of the 60 collective point clouds. In particular, for each
permutation, the 60 point clouds were shuffled and then labeled such that the first
20 were in the first space, the next 20 were in the second space, and the final 20
were in the third space. In the third and final scenario, each of the three possible
post hoc tests were additionally performed using the two-space permutation test
described in Section 3. The corresponding approximate two-space permutation test
p-values were based on 100,000 randomly selected permutations of the 40 collective
point clouds. In particular, for each permutation, the 40 point clouds were shuffled
and then labeled such that the first 20 were in the first space and the final 20 were
in the second space. A total of 100 trials were performed for each scenario and
the percentage of these 100 trials that produced approximate (omnibus/two-space)
permutation test p-values less than or equal to 0.05 was calculated.

5.1. Unbalanced unit circles. For the first scenario, each of the three spaces was
the unit circle; hence, the omnibus permutation test null hypothesis that there is
no measurable difference in shape between the three spaces is ultimately true. The
number of sampled points making up a point cloud from each space, however, was
not the same (i.e., the sample sizes are unbalanced). Each point cloud in the first
space consisted of a random sample of size 18, whereas each point cloud in the
second space consisted of a random sample of size 36 and each point cloud in the
third space consisted of a random sample of size 54. For all three spaces, samples
were obtained without allowing for measurement error; i.e., all sampled points were
on their respective unit circle. Counterintuitively, 100% of the 100 trials performed
produced approximate omnibus permutation test p-values less than or equal to 0.05.
In fact, 100% of the trials produced approximate omnibus permutation test p-values
less than 0.01. Thus, in every trial the null hypothesis would be rejected at the 5%
level and we would conclude that the shapes of at least two of the three spaces are
measurably different.

While such results may appear to suggest that the omnibus permutation test
is ineffective, ultimately these results are an expected consequence of allowing
different (i.e., unbalanced) sample sizes across point clouds. Relative to a point
cloud obtained from a random sample of size 18 from the unit circle, a point cloud
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obtained from a random sample of size 54 is likely to produce a persistence diagram
(corresponding to homology dimension 1) containing a point that is measurably
further from the diagonal. This point in the persistence diagram is expected as the
circular feature within the point cloud will be born sooner and thus persist for a
longer time interval. Hence, in order for the hypothesis testing methods described in
Sections 3 and 4 to detect truly measurable differences in shape between the various
spaces, every point cloud, both within a space and across spaces, must consist of
the same number of randomly sampled data points. We will henceforth refer to
this procedural necessity as balanced sampling. In practice, balanced sampling will
usually be implemented at the subsampling level when the sampled data points
of a space are partitioned, via subsampling, into multiple point clouds; this is
demonstrated using the cardiotocography data set considered in Section 6.

5.2. Balanced samples from circles with varying radius. For the second scenario,
the three spaces were circles with radii of 1, 1

2 and 1
3 units. Notice that these three

spaces are topologically equivalent, though geometrically different, and there is
in fact a measurable difference in shape among the three spaces as measured by
persistent homology in dimension 1. Hence, the null hypothesis for the correspond-
ing omnibus permutation test is ultimately false. Point clouds for each of the three
circles consisted of random samples of size 24. As in the unbalanced unit circles
scenario, all samples were obtained without allowing for measurement error; i.e.,
all sampled points were on their respective circle. Of the 100 trials performed,
100% of them produced approximate omnibus permutation test p-values less than or
equal to 0.05. In fact, as in the unbalanced unit circles scenario, 100% of the trials
produced approximate omnibus permutation test p-values less than 0.01. Hence,
in every trial the null hypothesis would be rejected at the 5% level and we would
conclude that the shapes of at least two of the three spaces are measurably different.

As the three spaces of this second scenario are all topologically equivalent, these
results suggest that the omnibus permutation test is capable of recognizing when
purely geometrical differences exist between the spaces. Stated another way, this
second scenario suggests that the hypothesis testing methods described in Sections 3
and 4 are not scale invariant. This is not a surprising result. More specifically, as seen
in the example data of Figure 1, a point cloud obtained from a sample of points from
the circle with radius 1

3 will result in birth and death times for comparatively smaller
radii values than a point cloud obtained from a sample of points from the unit circle.
This is an artifact of the distances between neighboring points in the point cloud from
the circle with radius 1

3 typically being smaller than those from the unit circle. While
in practice it will usually be difficult to determine whether a significant hypothesis
test is a result of topological or geometrical differences between the various spaces,
it is informative nonetheless to find evidence of any measurable difference in shape.
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Figure 3. The three spaces of the first case of the balanced wedges
simulation scenario. On the left is the unit circle, in the middle
is the wedge of two unit circles, and on the right is the wedge of
three unit circles.

Figure 4. The three spaces of the second case of the balanced
wedges simulation scenario. On the left is the unit circle, in the
middle is the wedge of two circles of radius 1

2 , and on the right is
the wedge of three circles of radius 1

3 .

5.3. Balanced wedges. The third and final scenario consisted of three distinct, but
related cases in which only balanced sample sizes were considered. In the first case,
the three spaces were the unit circle, the 2-wedge consisting of two unit circles, and
the 3-wedge consisting of three unit circles. Hence, in this first case, the radius of
every component circle is 1. An image of these three spaces is given in Figure 3.
In the second case, the three spaces were the unit circle consisting of one circle
of radius 1, the 2-wedge consisting of two circles of radius 1

2 , and the 3-wedge
consisting of three circles of radius 1

3 . Hence, in this second case, the radii of the
component circles within a space sum to 1. An image of these three spaces is given
in Figure 4. In the third and final case, the three spaces were the unit circle, the unit
circle with a single chord traversing the interior of the circle, and the unit circle with
two nonintersecting chords traversing the interior of the circle. Hence, in this third
case, the area of each of the three spaces is π units. An image of these three spaces
is given in Figure 5. Observe that across these three scenarios the representations
of the three spaces are topologically equivalent, but geometrically different. We
consider all three scenarios since persistence diagrams are unavoidably influenced
by such differences.

Within each of the three cases, the null hypothesis of the omnibus permutation
test is ultimately false. In other words, there are measurable differences in shape
between the three spaces. The point clouds for each of the three spaces, in all
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Figure 5. The three spaces of the third case of the balanced wedges
simulation scenario. On the left is the unit circle, in the middle
is the unit circle with a single chord, and on the right is the unit
circle with two nonintersecting chords.

three cases, were obtained from random samples of the same size (i.e., balanced
samples). Ten different sample sizes were considered: 6, 12, 18, 24, 30, 36, 42,
48, 54, and 60. Figure 6 provides examples of point clouds obtained from random
samples of sizes 12 and 60, respectively, from each of the three spaces for the
second case.

For each of these ten sample sizes, three distinct measurement errors were
considered: 0 (i.e., no error), 1

3 , and 2
3 units. For example, in the 2-wedge of

the first case, measurement error was incorporated in the following manner. A
random sample of points was obtained separately from each of the two unit circles
of the 2-wedge. Each point on the circles was obtained by randomly selecting
the angle of the point from a uniform distribution U (0, 2π). Each point was then
assigned a radius value of 1 and converted to Cartesian coordinates. Finally, for

Figure 6. Point clouds obtained from random samples of each
of the three spaces of the second case of the balanced wedges
simulation scenario. The first row contains point clouds obtained
from random samples of size 12. The second row contains point
clouds obtained from random samples of size 60.
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no error error of 1
3 error of 2

3

Figure 7. Point clouds obtained from random samples of size 60,
under various measurement errors, from the 2-wedge of the first
case of the balanced wedges simulation scenario.

each point, two errors were randomly sampled from a normal distribution N (0, σ ),
where σ is the specified measurement error

(
e.g., 1

3

)
, and respectively added to

the Cartesian coordinates of the point. For each of the three measurement errors,
Figure 7 exemplifies a point cloud obtained from a sample of size 60 from the
2-wedge. From these images it is clear that as the measurement error increases,
the extent to which the point cloud resembles the 2-wedge dramatically decreases.
Measurement errors for the other spaces of the second case, as well as for the other
cases of the third scenario, was analogously incorporated.

For each of the 30 combinations of sample size and measurement error, the
percentage of the 100 trials producing an approximate omnibus permutation test
p-value less than or equal to 0.05 for case one is given in Table 1. Two trends
are readily apparent from these results. First, as sample size increases for a fixed
measurement error, the percentage of significant omnibus permutation test results
almost uniformly increases. This is intuitive and desirable since we would expect
measurable differences in shape between the three spaces to become more easily
identifiable as sample size increases. Second, as measurement error increases for a
fixed sample size, the percentage of significant omnibus permutation test results
almost uniformly decreases. This too is intuitive and desirable since we would
expect measurable differences in shape between the three spaces to become less
easily identifiable as measurement error increases. Given these trends and the fact
that there are so many entries in the table at or near 100%, these results suggest
that the proposed omnibus permutation test successfully identified measurable
differences in shape between at least two of these three spaces. The results for the
second and third cases, depicted in Figures 4 and 5, are analogous to those above
for the first case and, therefore, are omitted.

As the omnibus permutation test successfully identified measurable differences
in shape between at least two of the three spaces, in all three cases, each of the
three possible post hoc tests were then conducted. For each such post hoc test,
the null hypothesis asserts that there is no measurable difference in shape between
the two spaces, while the alternative hypothesis asserts the opposite. Hence, in all
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sample noise
size 0 1

3
2
3

6 6% 9% 1%
12 95% 57% 18%
18 100% 65% 41%
24 100% 96% 41%
30 100% 100% 85%
36 100% 100% 98%
42 100% 100% 100%
48 100% 100% 100%
54 100% 100% 100%
60 100% 100% 100%

Table 1. Balanced unit wedges — results of omnibus permutation
tests. For each combination of sample size and measurement error,
the percentage of approximate omnibus permutation test p-values
(out of 100) yielding a value less than or equal to 0.05 is given.
The three spaces are the unit circle, the 2-wedge and the 3-wedge.

three tests, for all three cases, the null hypothesis is ultimately false. As the results
across the three cases were ultimately analogous, only the results for the first case
are discussed below. In particular, for each of the 30 combinations of sample size
and measurement error, the percentage of the 100 trials producing an approximate
post hoc test p-value less than or equal to 0.05 is given in Table 2 for the circle
versus the 2-wedge, in Table 3 for the circle versus the 3-wedge, and in Table 4 for
the 2-wedge versus the 3-wedge.

The two trends that were apparent in the corresponding omnibus permutation
tests for this simulation scenario are also readily apparent in all three of these
post hoc tests. Specifically, as sample size increases for a fixed measurement
error, the percentage of significant post hoc tests tends to increase. Similarly, as
measurement error increases for a fixed sample size, the percentage of significant
post hoc tests tends to decrease. A cell-by-cell comparison of the percentages
among the three post hoc tests, however, reveals an additional interesting trend. The
percentages for the post hoc test between the circle and the 3-wedge are almost
uniformly larger than or equal to the corresponding percentages between the circle
and the 2-wedge, which are in turn almost uniformly larger than or equal to the
corresponding percentages between the 2-wedge and the 3-wedge. This too is
mostly intuitive and desirable since, among the three spaces, the unit circle and
the three wedge are the most different with respect to shape. We are uncertain
why the post hoc test appears more adept at recognizing measurable differences



44 C. CERICOLA, I. JOHNSON, J. KIERS, M. KROCK, J. PURDY AND J. TORRENCE

sample noise
size 0 1

3
2
3

6 2% 5% 2%
12 90% 29% 13%
18 99% 40% 15%
24 100% 83% 28%
30 100% 97% 49%
36 100% 100% 64%
42 100% 100% 80%
48 100% 100% 82%
54 100% 100% 92%
60 100% 100% 97%

Table 2. Balanced wedges, first case — results of unit circle vs.
2-wedge post hoc tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

sample noise
size 0 1

3
2
3

6 2% 5% 1%
12 97% 65% 30%
18 100% 85% 40%
24 100% 100% 53%
30 100% 100% 95%
36 100% 100% 100%
42 100% 100% 100%
48 100% 100% 100%
54 100% 100% 100%
60 100% 100% 100%

Table 3. Balanced wedges, first case — results of unit circle vs.
3-wedge post hoc tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

in shape between the circle and the 2-wedge rather than between the 2-wedge and
the 3-wedge. Regardless, all three of these trends, when coupled with the volume
of entries in all three tables which are at or near 100%, indicate that the proposed
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sample noise
size 0 1

3
2
3

6 0% 1% 1%
12 4% 17% 13%
18 62% 16% 18%
24 86% 33% 14%
30 93% 42% 20%
36 87% 66% 26%
42 95% 67% 43%
48 99% 87% 65%
54 100% 93% 66%
60 100% 98% 84%

Table 4. Balanced wedges, first case — results of 2-wedge vs.
3-wedge post hoc tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

post hoc tests successfully identified measurable differences in shape between each
of the three possible pairings of these three spaces. Such findings additionally
corroborate the legitimacy of the two-space permutation test.

5.4. Summary of findings. In summary, the major findings of the simulation study
are three-fold. First and foremost, these simulations demonstrate that the proposed
omnibus permutation testing procedure successfully identified measurable differ-
ences in shape between at least two of the three spaces. Second, these simulations
confirm that the post hoc testing component successfully identified measurable dif-
ferences in shape between any two spaces; such findings corroborate the legitimacy
of the two-space permutation testing procedure. Third and finally, these simulations
reveal that, for any number of spaces, balanced sampling is required in obtaining
the point clouds utilized in the testing procedure.

6. Applications to real data sets

We apply our methods to the cardiotocography (CTG) data set that is freely avail-
able from the University of California at Irvine Machine Learning Repository at
https://archive.ics.uci.edu/ml/datasets/cardiotocography. The CTG data set includes
23 variables for each of 2126 subjects. We apply our methods on a focused subset
of four quantitative variables, including fetal heart rate baseline in beats per minute,
number of accelerations per second, number of uterine contractions per second,

https://archive.ics.uci.edu/ml/datasets/cardiotocography
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and number of light decelerations per second. These four quantitative variables
are chosen because they are seemingly independent, and we want to consider no
more than four such variables. The categorical variable of interest is health status,
which has three levels: normal, suspect, and pathologic. The question of interest
is whether or not the 4-dimensional space created by the quantitative variables
has a measurably different shape across the three health status groups. To answer
this question, we use the omnibus permutation testing procedure developed in
Section 4.1, measuring shape via 1-dimensional persistent homology. Before this
procedure can be performed, however, multiple point clouds from the three health
status groups must be obtained via balanced subsampling of the subjects.

Of the 2126 sampled subjects, 1655 are of normal health status, 295 are of
suspect health status, and 176 are of pathologic health status. Hence, from the
sampled data points we obtain three 4-dimensional point clouds, one consisting
of 1655 subjects from the normal health status group, another consisting of 295
subjects from the suspect health status group, and one other consisting of 176
subjects from the pathologic health status group. As our methods require balanced
sampling across multiple point clouds from each of the groups, we partitioned,
via subsampling, each given point cloud into smaller 4-dimensional point clouds
consisting of 44 subjects each. Consequently, we obtained 37 points clouds from
the normal health status group, 6 point clouds from the suspect health status group,
and 4 point clouds from the pathologic health status group. As neither 1655 nor
295 are divisible by 44, we simply discarded the leftover 27 normal health status
subjects and the 31 suspect health status subjects.

The omnibus permutation test was then performed using the persistence diagrams
corresponding to the 47 subsampled point clouds. The null hypothesis asserted that
there were no measurable differences in shape between the three spaces correspond-
ing to the three health status groups. The resulting approximate permutation test
p-value of 0.00005 was based on 100,000 randomly sampled permutations of the 47
point clouds. In particular, for each permutation, the 47 point clouds were shuffled
and then labeled such that the first 37 were in the normal health status group, the
next 6 were in the suspect health status group, and the last 4 were in the pathologic
health status group. Given that the p-value is so small, we reject the null hypothesis
and conclude that there are measurable differences in shape between at least two of
the three spaces.

To determine the source(s) of the difference, we ultimately performed three
post hoc tests, one for each possible pairing of the three health status groups. For
each such test, the null hypothesis asserted that there were no measurable differences
in shape between the two spaces of the respective health status groups. For the
normal and suspect health status groups, the approximate permutation test p-value
of 0.00009 was based on 100,000 randomly sampled permutations of the 43 point
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clouds. In particular, for each permutation, the 43 point clouds were shuffled and
then labeled such that the first 37 were in the normal health status group and the
final 6 were in the suspect health status group. For the normal and pathologic health
status groups, the approximate permutation test p-value of 0.0060 was based on
100,000 randomly sampled permutations of the 41 point clouds. In particular, for
each permutation, the 41 point clouds were shuffled and then labeled such that the
first 37 were in the normal health status group and the final 4 were in the pathologic
health status group. Finally, for the suspect and pathologic health status groups, the
approximate permutation test p-value of 0.3012 was based on 100,000 randomly
sampled permutations of the 10 point clouds. In particular, for each permutation,
the 10 point clouds were shuffled and then labeled such that the first 6 were in the
suspect health status group and the final 4 were in the pathologic health status group.
Note that while (exact) permutation test p-values could have straightforwardly
been obtained for the post hoc tests involving normal versus pathologic (101,270
possible assignments) and suspect versus pathologic (210 possible assignments),
such p-values could not have reasonably been obtained for the post hoc test involving
normal versus suspect (6,096,454 possible assignments) or for the omnibus test
(1.087394× 1012 possible assignments); therefore, for the sake of consistency,
approximate permutation test p-values were obtained in all instances. Based on these
results, there is significant evidence of measurable differences in shape between the
spaces corresponding to the normal and suspect health status groups, and between
the normal and pathologic health status groups, but insignificant evidence of such
differences between the suspect and pathologic health status groups.

7. Conclusion

For multiple point clouds obtained from (sub)sampled points of three or more spaces,
we propose using an omnibus permutation test on the corresponding persistence
diagrams to determine whether statistically significant evidence exists of measurable
differences in shape between any of the respective spaces. If such differences do
exist, we then propose using a number of post hoc (i.e., two-space) permutation tests
to identify the specific pairwise differences. To validate this proposed procedure,
we conducted a large-scale simulation study using point clouds obtained from
samples of points from three spaces. Various combinations of spaces, sample sizes
and measurement errors were considered in the simulation study and for each
combination the percentage of p-values below an α-level of 0.05 was provided.
The results of the simulation study clearly suggest that the procedure works, but
additionally reveal that the method is neither scale invariant nor insensitive to
imbalanced sample sizes across point clouds. Finally, we applied our omnibus
testing procedure to a cardiotocography data set and found statistically significant
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evidence of measurable differences in shape between the spaces corresponding to
normal, suspect and pathologic health status groups.

While the proposed omnibus testing procedure is applicable in any homological
dimension, the simulation study and CTG application presented in this paper focus
exclusively on homological dimension 1. Hence, to validate the effectiveness of
the method in other homological dimensions, and to assess the consistency of the
method across various dimensions, additional simulation studies can be performed.

Appendix

For readers that are less familiar with simplicial complexes, homology, and persis-
tence diagrams, we include here examples of each for a small accessible example.
Consider the set, D, of five points in the plane as pictured in Figures 8 and 9. Each
point in D is a 0-simplex, each line segment drawn between points is a 1-simplex,
and each shaded triangle a 2-simplex. As the parameter r increases beyond r = 4 the
Vietoris–Rips complex will contain additional 2-simplices, a 3-simplex at r = 4.9,
and eventually a 4-simplex when 2r is equal to the diameter of D. Note that
the abstract simplicial complex VR(D, 4.9) in Figure 9 cannot be geometrically
realized in R2 since it contains pairs of 2-simplices whose intersection is not a face
of either simplex.

The complex VR(D, 4), on the left in Figure 9, is labeled with an ordering
assigned to its 0, 1, and 2-simplices: the five 0-simplices, v1, v2, v3, v4, v5; six
1-simplices e1, e2, e3, e4, e5, e6; and one 2-simplex f1.

With respect to this notation, the boundary of a chain is relatively easy to calculate.
For example, δ1(e6+ e1+ e2)= v5+ v3 and δ2( f1)= e2+ e3+ e4. More precisely,
the chain complex of VR(D, 4) is

0−→ Z2
δ2
−→ (Z2)

6 δ1
−→ (Z2)

5 δ0
−→ 0,

−1

0

1

2

3

4

0 1 2 3 4

y

x

Figure 8. Five data points in the plane.
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v1

v2

v3

v4

v5

e1

e2e3

e4

e5

f1

Figure 9. Representations of the abstract simplicial complexes
VR(D, 4) and VR(D, 4.9) for the five point data set D.

with boundary maps given in matrix form by

δ2 =



0
1
1
1
0
0


, δ1 =


1 0 0 0 0 1
1 1 0 1 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 0 1 1

, and δ0 =
[
0 0 0 0 0

]
.

Intuitively, the p-th homology group measures equivalence classes of p-cycles
of K that are not “filled” by (p+1)-chains. In homological dimension p= 1 for the
complex VR(D, 4), an example of a 1-cycle that is not the boundary of a 2-cycle
is e1 + e2 + e3 + e5 + e6. Hence this 1-cycle is in a nonzero equivalence class
of H1(VR(D, 4);Z2). The 1-cycle e2+ e3+ e4, however, is the boundary of the
2-cycle f1 (this 1-cycle is “filled” by f1), so this 1-cycle is equivalent to zero in
the homology group. Hence, in dimension p = 1, the homology of VR(D, 4) is
measuring the circular hole that is seen in the complex.

To complete the homology calculation for the simplicial complex VR(D, 4), we
see that the kernel of δ0 is (Z2)

5 and the rank of δ1 is 4. Thus H0(VR(D, 4);Z2)∼=Z2.
Similarly, the nullity of δ1 is 2 and the image of δ2 is 1-dimensional. This implies
that H1(VR(D, 4);Z2) ∼= Z2. We have H2(VR(D, 4);Z2) ∼= 0, since the kernel
of δ2 is 0. Because the complex contains no simplices in higher dimensions,
Hp(VR(D, 4);Z2)= 0 for all p > 2.

The calculation H0(VR(D, 4);Z2)= Z2 measures that VR(D, 4) is a connected
complex. The nontrivial group H1(VR(D, 4);Z2)= Z2 measures the existence of
a 1-dimensional cycle that is not the boundary of a 2-simplex, namely e1+ e2+

e3+ e5+ e6.
For the complex VR(D, 4.9), on the right in Figure 9, the homology groups are

H0(VR(D, 4.9))= Z2 and Hp(VR(D, 4.9))= 0 for all p ≥ 1. In this example, the
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Figure 10. The persistence diagrams corresponding to the five-
point data set in Figure 8 in the homological dimensions 0 and 1.

first homology group disappeared, or died, as r increases from 4 to 4.9 as a result
of the additional 2-simplicies that span the 1-cycle e1+ e2+ e3+ e5+ e6.

The persistence diagrams in Figure 10 display the H0 and H1 persistence diagrams
for the five-point data set D first seen in Figure 8. Note that all points in a persistence
diagram are plotted above the line y = x , as a persistent homology class must be
born before it can die.

In homological dimension 1 (the H1 diagram), the small triangle plotted at
the point (4, 4.9) indicates that the five-point data set contains a 1-dimensional
homology class that is born at radius 4 and dies at radius 4.9. In homological
dimension 0 (the H0 diagram), the circles plotted at the points (0, 2.236) and
(0, 3.54) represent the connection of data points by 1-simplices at r = 2.236 and at
r = 3.54 resulting in the death of a connected component when it is joined with
another connected component by a 1-simplex. For r > 3.54 the five points are
path connected via 1-simplices; thus this connected complex gives rise to a single
0-dimensional persistent homology class. This single class is plotted at (0, 6) as a
result of considering only r -values in the range 0≤ r ≤ 6.
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