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Peg solitaire has recently been generalized to graphs. Here, pegs start on all but
one of the vertices in a graph. A move takes pegs on adjacent vertices x and y,
with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg on
y to z, removing the peg on y. The goal of the game is to reduce the number of
pegs to one.

We introduce the game merging peg solitaire on graphs, where a move takes
pegs on vertices x and z (with a hole on y) and merges them to a single peg on y.
When can a configuration on a graph, consisting of pegs on all vertices but one, be
reduced to a configuration with only a single peg? We give results for a number
of graph classes, including stars, paths, cycles, complete bipartite graphs, and
some caterpillars.

1. Introduction

Peg solitaire on graphs has recently been introduced as a generalization of peg
solitaire on geometric boards [Avis and Deza 2001; Beeler and Hoilman 2011].
Peg solitaire on graphs is played on a simple connected graph G and begins with
a starting configuration consisting of pegs in all vertices but one; the remaining
vertex is said to have a hole. A move involves finding vertices x, y, and z with x
and y adjacent and y and z adjacent with pegs on x and y only, and jumping the
peg from x over y and into z (while removing the peg at y); see Figure 1.

If there is some starting configuration of pegs and some combination of moves
that reduces the number of pegs to one, we say the graph is solvable; if the graph is
solvable for every starting configuration then we say the graph is freely solvable.

Recently, several variations on peg solitaire were introduced. One variant, called
fool’s solitaire [Beeler and Rodriguez 2012] tries to maximize the number of pegs
left in the game when no more moves can be made. A second variant, called
reversible peg solitaire [Engbers and Stocker 2015], asks which graphs are solvable
if both moves and reverse moves are allowed.
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Figure 1. A move in peg solitaire on graphs.
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Figure 2. A move in merging peg solitaire on graphs.

In this paper, we introduce a new variation on peg solitaire, called merging peg
solitaire on graphs, by using a different move. We again consider vertices x, y, and
z with x and y adjacent and y and z adjacent. However, now we start with pegs
on vertices x and z only, and the new move merges those two pegs to a single peg
on y; see Figure 2.

For a fixed simple connected graph G and some initial configuration of pegs —
occupying all but a single vertex — the goal of the game is to use this move to reduce
the number of pegs to one. If this is possible for some initial configuration, we
again say that the graph is solvable, and if it is possible for any initial configuration
we say that the graph is freely solvable. The main question that we ask is the
following. Given a fixed simple connected graph G, is G solvable, and if so, is G
freely solvable?

Notice that the merging move is the only other symmetric way of reducing exactly
two pegs in a path on 3 vertices, P3, to exactly one peg where each vertex must
change from peg to hole or vice versa. In this way, this new game may be viewed
as a restricted version of Lights Out on graphs, a game where the entire closed
neighborhood of a vertex flips all states (here pegs/holes). In this formulation, we
are allowed to flip the states of all vertices in a P3 subgraph if the endpoints of
the P; have pegs and the center has a hole. For a survey of Lights Out, see, e.g.,
[Fleischer and Yu 2013].

The game is also similar to graph rubbling (see, e.g., [Belford and Sieben 2009]
for an introduction to graph rubbling) in that the moves allowed are nearly identical,
but the end goal of the game is quite different. Indeed, in graph rubbling, a number
of pebbles (pegs) are placed on some vertices, and the allowable move removes two
pebbles at vertices v and w adjacent to a vertex u while an extra pebble is added
at u. The goal of graph rubbling is to use the least number of pebbles m so that any
vertex is reachable from any pebble distribution of the m pebbles. In addition to
the goal of merging peg solitaire on graphs being different, our game also does not
allow for multiple pebbles on the vertices (and so, in particular, forces v # w).
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2. Preliminary results

In this section we describe some preliminary results for various classes of graphs.
As usual, we let P, and C,, denote the path and cycle on n vertices, respectively.
The complete bipartite graph with V. = X UY, where |X| =m and |Y| =n, is
denoted K,, ,; when m = 1 we refer to the complete bipartite graph as a star. A
vertex of degree one is a pendant vertex. We begin with several useful lemmas.

Lemma 2.1. Let G be a graph and suppose that the only holes on the vertices of G
are on pendant vertices. Then there are no available moves.

Proof. Any move requires two pegs on distinct vertices, both adjacent to the vertex
with a hole. ]

The next results follow from Lemma 2.1.

Lemma 2.2. Let G be a graph. If G has any pendant vertices, then G is not freely
solvable.

Corollary 2.3. Let T be a tree. Then T is not freely solvable.
Next, we show that a star on at least 4 vertices is not solvable.
Theorem 2.4. Fixn > 2. The star K, , is not solvable.

Proof. Let G = K ,. If the hole starts on a pendant vertex, then there are no
available moves by Lemma 2.1. If the hole starts on the center, then a single move
will leave exactly two holes on two pendant vertices. Again, by Lemma 2.1, there
are no more available moves. Since n > 2, there are at least two pegs remaining. [J

We already know that trees are not freely solvable. For the games of peg solitaire
on graphs and reversible peg solitaire on graphs, not all paths are solvable [Beeler
and Hoilman 2011; Engbers and Stocker 2015]; in particular, Ps is not solvable in
either of those two games. In contrast, for merging peg solitaire on graphs all paths
are solvable.

Theorem 2.5. If n > 2, the path P, is solvable, and furthermore if an initial
configuration can be reduced to a single vertex, then the initial hole must start on a
vertex adjacent to a pendant vertex.

Proof. We induct on n, with the base case n = 2 clear. Let the vertices of the path
be labeled 1, ..., n. By Lemma 2.1, the hole cannot start on vertex 1 or on vertex n.
If the hole starts on vertex 2, then one move creates holes on vertices 1 and 3 only.
By considering the vertices 2, ..., n we have a path on n — 1 vertices with a hole
second from one end. Therefore we are done by induction.

Suppose the hole is on vertex i with 2 <i <n — 1. After the first move, there are
holes on vertices i — 1 and i + 1. Suppose next that the pegs on vertices i and i —2
merge to a peg on i — 1, leaving a configuration with holes on vertices i —2, i, and
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Figure 3. The configuration after the first two moves.

i + 1; see Figure 3. The only move available is to merge pegs into i — 2 and iterate
this process, producing a graph with pegs on vertex 2 and on vertices i + 1, ..., n.
By the assumption on i, at least two pegs remain.

The other possible second move produces a similar result, and so no set of moves
can reduce the path to a configuration with a single peg unless the hole starts on a
vertex adjacent to a pendant vertex. ]

Part of the proof of Theorem 2.5 will be useful later, but in the following (slightly)
generalized form. We start with a definition.

Definition 2.6. In a configuration of pegs on a graph G, an empty bridge is a pair
of adjacent degree 2 vertices, joined by a cut-edge, both of which have holes.

Lemma 2.7. Suppose that G is a graph and some configuration of pegs and holes
on the graph has an empty bridge and a nonzero number of pegs on either side of
the empty bridge. Then G is not solvable from that configuration.

Proof. Suppose that the empty bridge consists of vertices # and v. To solve the
graph from this configuration, a peg must be moved to either vertex u or vertex v,
since there are a nonzero number of pegs on either side of the empty bridge. But
any move that puts a peg on u requires a prior peg on v, and any move that puts a
peg on v requires a prior peg on u. ([

Since any graph containing a spanning solvable subgraph must also be solvable,
we have the following result.
Theorem 2.8. Let n > 2. The n-cycle C,, is freely solvable.

The cycle is freely solvable since given a hole on any vertex of the cycle we can
choose a spanning path so that the hole is adjacent to a pendant vertex of the path.

Corollary 2.9. If G is Hamiltonian, then G is freely solvable.

Let us consider other graph classes. By Corollary 2.9, complete graphs are freely
solvable. The behavior of nonstar complete bipartite graphs is more interesting.

Theorem 2.10. Let m,n > 2 be integers. If m — n is divisible by 3, then K, ,, is
freely solvable. If m — n is not divisible by 3, then K,, , is solvable but not freely
solvable.

Proof. Notice that any move results in two pegs becoming holes on one partition
class of the graph and a single hole becomes a peg on the other partition class.
Therefore if there are p pegs in the partition class of size m and g pegs in the
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partition class of size n, then the quantity f(p, g) := (p —¢g) mod 3 is preserved
by a move. Notice that a configuration with only a single peg has f(p,q) =1 or
f(p.q)=2.

This immediately implies several facts. If f(m,n) = 1, then a configuration
with the hole on a vertex in the partition class of size m cannot be reduced to a
configuration with a single peg, and if f(m, n) = 2 then a configuration with the
hole starting on a vertex in the partition class of size n cannot be reduced to a
configuration with a single peg.

Next, notice that given any m, n > 2 either f(m—1, n) or f(m, n—1) is nonzero.
So suppose that m, n > 2 and either f(m,n) =0, f(m,n) =1 and the hole starts
on a vertex in the partition class of size n, or f(m, n) =2 and the hole starts on a
vertex in the partition class of size m. We describe a collection of moves that, when
iterated, produces a configuration with a single peg. A partition move is a sequence
of moves that merges pegs from one partition class into the opposite partition class
until either all of the holes on the latter partition class have been filled with pegs
or the vertices on the former partition class are all holes (with possibly a single
peg left, depending on parity). Each partition move decreases the total number
of pegs on the vertices. Note that the iteration requires m, n > 2 so that partition
moves can be made back and forth. This process will terminate when there is a
single peg remaining (the terminating state can’t have a single peg in each partition
class by the assumptions on m and n). If the initial configuration of pegs satisfies
f(p,q)=1(f(p, q) =2, resp.), then the final peg will be in the partition class of
size m (n, resp.). O

We also investigate what happens when an edge is added to a star and, more
generally, when a matching is added to a star. These graphs were analyzed for peg
solitaire on graphs in [Beeler and Hoilman 2012].

Definition 2.11. Given fixed nonnegative integers B and P, the windmill variant
graph, denoted W (P, B), is the graph on P +2B 41 vertices obtained by taking a
star K1, p42op and adding a matching of size B on the pendant vertices of the star.
We will label the pendant vertices of W (P, B) by p1, ..., pp and the pendant
vertices of K| piop involved in the matching by by, by, ..., byp so that by;_1by; is
an edge of W(P, B) fori =1,..., B.

See Figure 4 for an example of a windmill variant graph. Note that if B =0,
then W(P,0) = K1 p and if P =0 then W (0, B) is the windmill graph. The vertex
corresponding to the center of K piop is called the universal vertex u which is
adjacent to B blades consisting of two vertices each. We now show that W (P, B)
is solvable unless B = 0, and W (0, B) is freely solvable. We note that this differs
from the results for peg solitaire, where W (P, B) is solvable if and only if P <2B
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Figure 4. The windmill variant W (4, 2).

and freely solvable if and only if P < 2B — 1 and (P, B) # (0, 2) [Beeler and
Hoilman 2012, Theorem 2.2].

Theorem 2.12. Let P and B be nonnegative integers and let W (P, B) be a windmill
variant graph on at least 2 vertices. If P =0, then W(0, B) is freely solvable. If
P #£0and B > 1, then W(P, B) is solvable but not freely solvable.

Proof. Suppose first that P = 0 and the hole starts on the center u. If B =1, then
the result follows. For B > 1, we iteratively eliminate the pegs on distinct blades.
We first merge the pegs on brp and b; to a peg on u, and then merge the pegs on u
and byp_; to a peg on brp. If B =2, we merge the pegs on byp and b, to u and
we’re finished. If B > 2, we have B — 2 full blades and pegs on b, and byp. We
merge b, and b4 into u, and then u and b3 to by. Doing this last step B — 2 times
leaves two pegs on distinct blades; we then merge them to u.

If P =0 and the hole starts on a blade, say b;, then we merge the pegs on u and
b1 to apeg on by. If B =1 we’re done, so suppose B > 1. Now ignoring the blade
b1by, we have a graph with B — 1 blades with the hole on u#, which we can solve
by the previous paragraph and end with the peg on u. We then merge the pegs on u
and b, to a peg on b;.

Now suppose that P > 1. By Lemma 2.1, in this case W (P, B) is not freely
solvable. We show that if B =1 and P > 1, then W(P, 1) is solvable. Since for
B>1land P =P +2(B—1), W(P’, 1) is a spanning subgraph of W (P, B), this
proves the result.

Start with the hole on b,, and merge the pegs on u and b, to a peg on b;. Then
merge the pegs on two pendant vertices to a peg on u, and subsequently merge
the pegs on u and b; to a peg on b,. Iteratively merge the pegs on two pendant
vertices to a peg on u then merge the peg on u# with the peg on the blade to the hole
on the blade. This process stops when there are 0 pegs or 1 peg remaining on the
pendant vertices. If there are O pegs remaining, then we are done. If there is 1 peg
remaining, then merge with the peg on the blade to a peg on u. U
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3. Double stars and caterpillars

Knowing whether or not a given tree is solvable would be extremely helpful in
determining whether or not a connected graph is solvable or not; in particular, any
connected graph with a solvable spanning tree would necessarily be solvable. Since
stars are not solvable but paths are solvable, a natural first step in classifying the
solvable trees is to describe when a caterpillar is solvable.

Definition 3.1. Let n > 1 be given, and let py, ..., p, be nonnegative integers. A
caterpillar on n+ p; + - - - + p,, vertices consists of a path on n vertices so that the
i-th vertex on the path has p; pendant vertices attached to it. We will denote this
caterpillar by P,(py, ..., pn)-

See Figure 5 for an example of a caterpillar. Note also that P;(n) is isomorphic
to the star K, and P, (0, ..., 0) is isomorphic to the path P,.

We will prove that a large family of caterpillars are solvable and also fully
classify the solvability of some special types of caterpillars. To do so, we start with
a special type of caterpillar. A double star is a caterpillar of the form Py(m, n) —
see Figure 6 —and the two vertices from the path are its centers.

Theorem 3.2. Let m,n > 1. If |m — n| < 1, then the double star P,(m,n) is
solvable. If \|m — n| > 1 then the double star P,(m, n) is not solvable.
Also, if m = n and the hole starts on center vertex u, then the final peg is on v.

We note that in peg solitaire P, (m, n) (with m > n) is solvable if and only if
m <n-+1and n # 1 and freely solvable if and only if m =n and n # 1 [Beeler
and Hoilman 2012, Theorem 3.1].

Proof. We must start with the hole on one of the two center vertices u or v; without
loss of generality assume the hole starts on u#, where u has m pendant vertices. If

) )
/

Figure 5. The caterpillar P4(2,0, 1, 3).

o oLe
o

Figure 6. The graph P;(3, 3).
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the pegs on two pendant vertices are merged to a peg on u, then by Lemma 2.1
no more moves are possible, and since there is a peg on v this move will never
produce a graph with a single peg remaining. Therefore the only move that allows
for future moves is to merge the peg on v and the peg on a pendant vertex of u to a
peg on u. We then repeat by merging the peg on u and the peg on a pendant vertex
of v to a peg on v. Continuing in this way, we remove the same number of pegs
from the pendant vertices of u and v, so if m = n this process terminates with a
peg only on v.

If m + 1 = n, then after the first move we have the same number of pegs on the
pendant vertices of u# and v with the hole on v, and so the double star is solvable
by the previous argument. If m = n + 1, then we start with the hole on v and the
previous argument shows that the graph is solvable.

Now suppose that |m — n| > 2. Notice that each move that allows for future
move alternates reducing the number of pegs on pendant vertices of u# by 1 and the
number of pegs on pendant vertices of v by 1; without loss of generality assume
the hole starts on u. If m < n, then removing the last peg on a pendant vertex of
u leaves pegs on u and n —m + 1 pendant vertices of v. Then the final remaining
move merges two of these pegs to a peg on v, and no further moves are possible.
If m > n and the hole starts on u, then removing the last peg on a pendant vertex
of v leaves pegs on v and n — m pendant vertices of u. Merging two of these pegs
leaves n — m pegs remaining with no further moves available. ([

Next, we see what happens to solvability when we subdivide the edge between
the center vertices of a double star.

Definition 3.3. Fix an integer k > 3 and positive integers m and n. A path-k double
star is the graph Py(m, 0, ..., 0, n).

See Figure 7 for an example of a path-3 double star. Recall that by Corollary 2.3
no tree is freely solvable. In what follows, we fully classify the solvability of path-k
double stars. We are unaware of any results in peg solitaire for path-k double stars
when k > 2.

Theorem 3.4. Fix nonnegative integers m and n and let P3(m, 0, n) be a path-3
double star. Then P3(m, 0, n) is solvable if I_%(m —1)] <n <2m+2andis not
solvable otherwise.

Proof. As before we cannot start with a hole on a pendant vertex; assume that the
graph has nonpendant vertices u, w, and v with u having m pendants attached to it
and v having n pendants attached to it.

Suppose first that the hole starts on u. Merging two pendant pegs results in no
further moves, so the only move is to merge pegs on a pendant vertex and w to a
peg on u, leaving one fewer peg on the pendants of # and a hole on w. The initial
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Figure 7. The graph P3(3, 0, 3).

move when the hole starts on v is similar. It remains to analyze the situation where
a hole starts on w only, and we note that if Ps(a, 0, b) is solvable with initial hole
on w, then P3(a + 1,0, b) is solvable with initial hole on v and P3(a, 0, b+ 1) is
solvable with initial hole on w.

Now, with a hole on w, the only available move is to merge the pegs on u# and v
to a peg on w, creating holes on u and v. Focusing on the hole at u, either two pegs
on pendant vertices of # can merge to a peg on u# or a peg on a pendant vertex of u
and the peg on w can merge to a peg on u. Two similar moves are possible at v,
but these moves cannot be made independently. If two pendant pegs merge to u
and two pendant pegs merge to v, then no further moves can be made. So suppose
that w and a pendant peg merge to u. Then the only available move merges two
pegs on pendants of v to a peg on v. A similar result follows from merging w and
a pendant peg to v.

This shows that if the holes are on w and pendant vertices only, then the only sets
of moves that allow for future moves result in the removal of two pegs on pendant
vertices from u (v, resp.), the removal of one peg on a pendant vertex from v (u,
resp.), and a configuration where the only holes are on w and pendant vertices again.

Next, it is useful to see which graphs Ps3(m, 0, n) are solvable with initial hole on
w for small values of m and n. Since we can effectively reduce one of m and n by
2 and the other by 1 (by viewing holes on pendant vertices as deleted vertices), we
only need to check the solvability of P3(m, 0,0), P3(0, 0, n), and P5(1,0, 1) with
initial hole on w. The only graphs that are solvable are P3(0, 0, 0), Pz(1,0,0), and
P5(0,0, 1), as P3(1,0, 1) is not solvable by Theorem 2.5 and P5(m, 0, 0) for m > 1
is, after one move, essentially a star with m + 1 pendants and so is not solvable by
Theorem 2.4.

Suppose that we:

(1) complete x sets of moves that remove 2 pegs on pendant vertices of u and 1
peg on a pendant vertex of v;

(2) complete y sets of moves that remove 1 peg on a pendant vertex of u and 2
pegs on pendant vertices of v; and

(3) end with P3(0, 0,0), P3(1,0,0), or P3(0,0, 1) and a hole on w.
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If the initial hole started on w, then 2x 4 y pegs were removed from the pendant
vertices of u and x + 2y pegs were removed from the pendant vertices of v. If the
initial hole started on u (v, resp.) then 2x +y+1 (2x +y, resp.) pegs were removed
from the pendant vertices of u and x + 2y (x 4+ 2y + 1, resp.) pegs were removed
from the pendant vertices of v. We analyze the possible values of m and n that are
solvable by considering both where the hole starts and also which of P5(0, 0, 0),
P3(1,0,0), or P3(0,0, 1) remains.

For these fixed values of x and y, if P3(0, 0, 0) remains, then we have (m, n) =
2x+y,x+2y), Cx+y+1,x4+2y),0or Cx+y,x+2y+1). If P3(0, 0, 1) remains,
then (m,n) = 2x+y, x+2y+1), Cx+y+1,x4+2y+1),0or Cx+y,x+2y+2).
If P3(1,0,0) remains, then (m,n) = 2x+y+1,x+2y), Cx+y+2,x+2y),
or 2x +y+1,x+4+2y+1). By the above arguments, these are the only solvable
values for m and n.

Now, suppose m > 0 is fixed. What values of # (as a function of m) are solvable?
For n to be maximized, we take m =2x +y and n = x 4+ 2y + 2 where x =0
and y = m. Then we have n = 2m + 2; therefore n < 2m + 2. Symmetrically we
have m <2n+2, so L%(m —1)] < n. To show that all values of » in that range
are possible, note that for a given m there are values of x and y with 2x + y = m.
But for each x and y pair, we have, as possible values for n, x +2y, x +2y+1,
and x + 2y + 2. This shows that all values L%(m +1)] <n <2m+ 2 are possible.
But we can have n = I_%(m—l)J by takingm =2x+y+2orm=2x+y+1
(depending on parity) and n = x + 2y where x = L%(m —1)] and y =0. O

Theorem 3.5. Fix nonnegative integers m and n. Then the graph Py(m, 0, 0, n) is
solvable if :

(1) m=n, or
Q) misevenandn=m+1,m+2,m-+3,orm+4,or

B)nisevenandm=n+1,n+2,n+3, orn—+4,
and is not solvable otherwise.

Proof. As before we cannot start with a hole on a pendant vertex; assume that the
graph has nonpendant vertices u, wi, w, and v with m pendant vertices on u, n
pendant vertices on v, and u adjacent to wy; see Figure 8.

Suppose first that the hole starts on u. Merging two pegs on pendant vertices
results in no further possible moves, so the only move is to merge a peg on a pendant
vertex and the peg on w; to a peg on u, leaving one fewer peg on the pendants of u
and a hole on w;. When the hole starts on v the analysis is similar. So we again
consider the initial hole starting on w; (with a similar analysis of the hole at w,
following immediately), and have that if P4(a, 0, 0, b) is solvable with initial hole
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Figure 8. The graph P4(5,0, 0, 4).

on wy (wy, resp.), then Py(a+1,0,0, b) (Ps(a, 0,0, b+ 1), resp.) is solvable with
initial hole on u (v, resp.).

Suppose then that the only hole on a nonpendant vertex is on wi. The available
move is to merge pegs on w, and u to a peg on w;. If we then merge pegs on a
pendant of # and w; to a peg on u, we create an empty bridge which is not solvable
by Lemma 2.7.

If we first merge the pegs on w; and v to a peg on wy, then we have holes on u,
wi, and v. To avoid creating an empty bridge, we must merge two pegs on pendant
vertices of u to a peg on u and merge two pegs on pendant vertices of v to a peg
on v. This produces a hole on w; and removes two pegs on the pendant vertices of
u and two pegs from the pendant vertices of v.

Note that if we instead first merge two pegs on pendant vertices of u to a peg on u,
a similar analysis produces the same loss of two pegs from both sets of pendant
vertices with a hole on wj.

Again, we now analyze the small cases of m and n; we see that P4(0, 0, 0, 0) is
solvable with the hole on w; or wy; P4(1, 0, 0, 0), P4(0, 0,0, 2), and P(0, 0,0, 3)
are solvable with the hole on w,, and P4(0, 0,0, 1), P4(2,0, 0, 0), and P4(3, 0, 0, 0)
are solvable with the hole on w;, and by inspection no other graph P4(m, 0, 0, n)
is solvable when one of m or n is O or 1 and the hole is on w; or wj.

We now put all of this together. The graphs that are solvable with initial
hole on w; are P4(2x,0,0,2x), P4(2x,0,0,2x + 1), P4(2x +2,0,0,2x) and
P4(2x+3, 0, 0, 2x); the solvable graphs with initial hole on w, are P4(2x, 0, 0, 2x),
Py(2x+1,0,0,2x), P4(2x,0,0, 2x +2) and P4(2x, 0, 0, 2x + 3). This then shows
that the graphs that are solvable with initial hole on u are P4(2x + 1,0, 0, 2x),
Py(2x+1,0,0,2x+1), P1(2x+3,0, 0, 2x), and P4(2x+4, 0, 0, 2x); the graphs that
are solvable with initial hole on v are P4(2x,0,0,2x+1), P42x+1,0,0,2x + 1),
Py(2x,0,0,2x +3) and P4(2x,0, 0, 2x +4). This gives the result. O

We next show that the remaining nontrivial path-k double stars are not solvable
for positive integers m and n.
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Theorem 3.6. Fix positive integers m, n (where both m and n are not 1) and fix an
integer k > 5. Then the graph P,(m,0, ..., 0, n) is not solvable.

Proof. Label the vertices of the path (in order) u = wq, wy, wy, ..., wg—2, and
v = wi_1. Assume that u has m pendants and v has n pendants.

If the hole starts on w; for some i € {2, ...,k — 3}, then any two possible
consecutive moves produces an empty bridge and thus a configuration that is not
solvable by Lemma 2.7.

If the hole starts on w, then the first move produces holes on u# and w,. If the
next move merges two pegs on pendant vertices of u to a peg on u, then we have a
configuration with holes only on pendant vertices of # and on w,, which as above
is not solvable. If the next move instead merges a peg on a pendant of u with the
peg on wi, then we have a configuration with an empty bridge on vertices w; and
w7 and so the graph again is not solvable.

Lastly, suppose that the hole starts on u. Then the only move that allows for
future moves merges the pegs on a pendant vertex of u and w; to a peg on u. But
the next move must merge the pegs on # and w; to a peg on w;j.

From this configuration, if we merge two pegs on pendants of u to u, then we
are left with a configuration with holes only on pendant vertices of # and w,, which
as above is not solvable. So we must merge the pegs on w; and w3 to a peg on wy.

If we then merge two pegs from the pendants of u to u, then any subsequent move
produces a configuration with an empty bridge and so the graph is not solvable. So
the only other possible move is to merge the pegs on w, and w4 to a peg on ws.
Now, if m > 1 we have a configuration with an empty bridge on vertices w; and
w7 and so is not solvable. If m = 1, then we can iterate this move through the path
until finally we merge pegs on wy_3 and wy_ to a peg on wy_», which leaves pegs
on wi—_j and the n (where n > 1 as m = 1) pendant vertices of v = wy_. But the
only possible move now merges two pegs from the neighbors of v to v; since there
are at least n + 2 pegs on the neighbors of v, this leaves at least two pegs remaining
and no further moves. (]

We now provide a large class of caterpillars that are solvable by combining the
double star and the path. We are unaware of any results in peg solitaire for this
class of caterpillars.

Theorem 3.7. Lett), 1, ..., t,—1 be nonnegative integers where p1 =t|, p,=t,—1,
and p; = t; + t;i_1 for 2 <i < n — 1. Then the caterpillar P,(p1, p2,..., Pn) IS
solvable.

We'll first provide the proof, and then give two specific examples of caterpillars
that satisfy the conditions for p; in Theorem 3.7. We note that this theorem can also
incorporate solvable path-k double stars, but for reading ease we state this theorem
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Figure 9. The solvable caterpillar P4(1,3,3,1). Here #; = 1,
th=2,and t3 = 1.

and proof without adding path-3 double stars or path-4 double stars as intermediate
steps. We leave the details of these changes to the reader.

Proof. Letty,...,t,—1 be any nonnegative integers, p; = t1, p, = t,—1, and for
2<i<n-—1let p; =t +1t_1. We need to show that P,(py, ..., p,) is solvable.

Start with the hole on vertex 2 of the path, i.e., the vertex with p, pendant vertices.
Then focus on the double star that has as its two centers the first two vertices of the
path. By Theorem 3.2 we can eliminate pegs on #; pendant vertices from vertex 1 and
vertex 2 in the path, leaving the hole on vertex 2. Then we merge pegs from vertex 1
and 3 (in the path) to vertex 2. We then focus on the double star that has as its two
centers vertex 2 and vertex 3 in the path, noting that vertex 2 has a peg and vertex 3
has a hole. Again, by Theorem 3.2 we eliminate #, pendant vertices from each, leav-
ing a peg on vertex 2 and a hole on vertex 3. Then we merge the pegs from vertex 2
and vertex 4 to vertex 3. We iteratively continue until we reach vertex n — 1 and
vertex n; eliminating #,_; vertices from each leaves a peg on vertex n — 1 and a hole
on vertex n. By construction, all pendant vertices have holes, and there is only one
peg left on the path. This means that the caterpillar P,(p1, ..., p,) is solvable. [J

Notice that by solving for each #; we can find equivalent conditions on the
values p;: for each i € [1,n — 1], Z;:l(—l)i_jpj is nonnegative, and also

— Sl qyi=j
pn=2is1 (=D pj.

Several interesting sequences that satisfy this condition include setting p; = ('ll)
(see, e.g., Figure 9) and, for n even, letting p; = ¢ for some nonnegative integer c.

4. Related questions and future work

We end our discussion by giving several open problems that can serve as a basis for
future investigations. The main open question is to classify all simple connected
graphs according to whether they are freely solvable, solvable, or not solvable. A
helpful step would be to classify all trees according to whether they are solvable
or not. While this might prove difficult, even determining a nice characterization
of solvable caterpillars would be interesting. Another possible direction toward
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the main open question would be to determine which trees of a fixed diameter are
solvable (see, e.g., [Walvoort 2013] for results related to peg solitaire on graphs
with fixed diameter).

Another interesting question is the following. Let G, x denote the set of all
simple connected graphs on n vertices with k£ edges. Note that the only graph
in G n(n—1)/2 18 solvable, while the star shows that not every graph in G, is
solvable. For fixed n, what is the minimum value of k so that every graph in G, x
is solvable?

Suppose that we wanted to leave the maximum number of pegs left so that no
further moves can be made; i.e., we wanted to play merging fool’s solitaire on
graphs (for results for fool’s solitaire on graphs, see, e.g., [Beeler and Rodriguez
2012; Loeb and Wise 2015]). For a given graph G, determine the maximum number
of pegs that can be left when playing merging fool’s solitaire on graphs.
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