Vol. 11, No. 1, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
Merging peg solitaire on graphs

John Engbers and Ryan Weber

Vol. 11 (2018), No. 1, 53–66
DOI: 10.2140/involve.2018.11.53
Abstract

Peg solitaire has recently been generalized to graphs. Here, pegs start on all but one of the vertices in a graph. A move takes pegs on adjacent vertices x and y, with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg on y to z, removing the peg on y. The goal of the game is to reduce the number of pegs to one.

We introduce the game merging peg solitaire on graphs, where a move takes pegs on vertices x and z (with a hole on y) and merges them to a single peg on y. When can a configuration on a graph, consisting of pegs on all vertices but one, be reduced to a configuration with only a single peg? We give results for a number of graph classes, including stars, paths, cycles, complete bipartite graphs, and some caterpillars.

PDF Access Denied

However, your active subscription may be available on Project Euclid at
https://projecteuclid.org/involve

We have not been able to recognize your IP address 34.232.51.240 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 30.00:

Keywords
peg solitaire, games on graphs, graph theory
Mathematical Subject Classification 2010
Primary: 05C57
Milestones
Received: 14 February 2016
Revised: 5 August 2016
Accepted: 7 August 2016
Published: 17 July 2017

Communicated by Anant Godbole
Authors
John Engbers
Department of Mathematics, Statistics and Computer Science
Marquette University
Milwaukee, WI 53201
United States
Ryan Weber
Department of Mathematics, Statistics and Computer Science
Marquette University
Milwaukee, WI 53201
United States