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An L(2,1)-labeling of a graph is an assignment of nonnegative integers to its
vertices such that adjacent vertices are assigned labels at least two apart, and
vertices at distance two are assigned labels at least one apart. The λ-number of a
graph is the minimum span of labels over all its L(2,1)-labelings. A generalized
Petersen graph (GPG) of order n consists of two disjoint cycles on n vertices,
called the inner and outer cycles, respectively, together with a perfect matching in
which each matching edge connects a vertex in the inner cycle to a vertex in the
outer cycle. A prism of order n ≥ 3 is a GPG that is isomorphic to the Cartesian
product of a path on two vertices and a cycle on n vertices. A crossed prism
is a GPG obtained from a prism by crossing two of its matching edges; that is,
swapping the two inner cycle vertices on these edges. We show that the λ-number
of a crossed prism is 5, 6, or 7 and provide complete characterizations of crossed
prisms attaining each one of these λ-numbers.

1. Introduction

The labelings of graphs with a condition at distance two, also known as L(2,1)-
labelings, have provided a fertile area of research for about a quarter of a century
since their introduction in [Griggs and Yeh 1992]. These labelings were first used
to model simplified instances of the channel assignment problem [Hale 1980]
where geographically close transmitters in a communications network must receive
frequency channels that are sufficiently far apart to avoid signal interference. The
scholarly works on L(2,1)-labelings and their variations are numerous and touch
upon a wide range of applied as well as purely theoretical aspects of such labelings.
Notably, optimization questions concerning the minimum span of labels required
by different types of graphs have consistently attracted a great deal of interest.
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An L(2,1)-labeling of a graph G, or k-labeling for short, is a function f :V(G)→
{0, 1, . . . , k} such that | f (u) − f (v)| ≥ 2 if u and v are adjacent vertices, and
| f (u)− f (v)| ≥ 1 if u and v are at distance 2. The minimum k so that G has a
k-labeling is called the λ-number of G and is denoted by λ(G). Arguably, the appeal
of this number has its roots in the long-standing conjecture stating that λ(G) ≤
12(G) for 1(G)≥ 2, where 1(G) denotes the maximum degree of G [Griggs and
Yeh 1992]. This conjecture, which is sometimes referred to as the 12-conjecture,
holds for very large graphs (with 1(G) larger than approximately 1069 [Havet
et al. 2012]), for sufficiently small graphs (with at most (b1(G)/2c+ 1)(12(G)−
1(G)+ 1)− 1 vertices [Franks 2015]), and for several particular classes of graphs.
In addition, it has been possible to determine tighter bounds and even exact λ-
numbers within some of these classes through interesting, nontrivial techniques,
contributing to the incremental progress toward settling the 12-conjecture. An
extensive annotated bibliography of related articles can be found in [Calamoneri
2011] and in its 2014 updated online version.

Determining exact λ-numbers can be a complex task even when considering
seemingly basic graphs, such as the following generalizations of the classic Petersen
graph (shown on the right of Figure 1 together with a 9-labeling).

Definition 1.1. A generalized Petersen graph (GPG) of order n ≥ 3 consists of two
disjoint cycles, called outer and inner cycles, so that each vertex on the outer (resp.,
inner) cycle is adjacent to exactly one vertex on the inner (resp., outer) cycle. More
formally, a GPG has vertices {v0, v1, . . . , vn−1} ∪ {w0, w1, . . . , wn−1} with edges
{vi , vi+1} and {wi , wi+1} for all i = 0, 1, . . . , n − 1, where subscript addition is
taken modulo n, and each vi (resp., wi ), i = 0, 1, . . . , n− 1 is adjacent to exactly
one w j (resp., v j ) for some 0≤ j ≤ n−1. The cycle on vertices {v0, v1, . . . , vn−1}

(resp., {w0, w1, . . . , wn−1}) is the outer (resp., inner) cycle.

Observe that if G is a GPG of order n ≥ 3, then G is 3-regular, so the 12-
conjecture states that λ(G) ≤ 9. This upper bound is tight if G is the Petersen
graph since it has diameter 2 and a 9-labeling [Griggs and Yeh 1992]. In contrast,
if G is anything other than the Petersen graph, then λ(G)≥ 5, λ(G)≤ 7 if n ≤ 6,
and λ(G) ≤ 8 if n ≥ 7 [Georges and Mauro 2002]. Therefore, the GPGs satisfy
the 12-conjecture. As no GPG with λ-number exactly 8 is known, it has been
conjectured that if G is a GPG of order n ≥ 7, then λ(G)≤ 7. This GPG conjecture
has remained open since 2002 but has been verified for all GPGs of orders between 7
and 12 for which exact λ-numbers were completely determined [Adams et al. 2006;
2007; 2012; Huang et al. 2012]. In an attempt to expand the list of graphs satisfying
the GPG conjecture, some articles have focused on the exact λ-numbers of infinite
subclasses of GPGs that exhibit certain symmetric features. For instance, a prism
(resp., an n-star for odd n) is a GPG of order n ≥ 3 wherein the edges between
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Figure 1. The prism of order 5 and the 5-star (Petersen graph)
with respective L(2, 1)-labelings.

vertices on the outer and inner cycles are precisely {vi , wi }, i = 0, 1, . . . , n − 1
(resp., {v(n−1)i/2, wi } for i = 0, 1, . . . , n− 1 where subscripts are taken modulo n),
and the notation is as introduced in Definition 1.1. The prism of order 5 and the
5-star with respective L(2,1)-labelings are shown in Figure 1.

The λ-numbers of prisms have been completely determined in [Georges and
Mauro 2002; Jha et al. 2000; Klavžar and Vesel 2003; Kuo and Yan 2004], and of
n-stars in [Adams et al. 2007] using nontrivial techniques. Key to some of these
were ingenious connections between the regularity and symmetry of these graphs
used in [Georges and Mauro 2003; Adams et al. 2007] that would force impossible
configurations of labels within 5-labelings for certain values of n. We were curious
to see if the same strategies could be extended to other subclasses of GPGs where
this symmetry would be slightly disturbed. This motivated our focus on GPGs
obtained from prisms by “crossing” two edges connecting the outer cycle to the
inner cycle:

Definition 1.2. Let n and d be integers so that n ≥ 3 and 1≤ d ≤ n/2. The crossed
prism XPr(n, d) is a prism of order n where the edges {v0, w0} and {vd , wd} are
replaced by the crossed edges {v0, wd} and {vd , w0}, with the notation as introduced
in the definition of prisms. The cross X(d) is the graph isomorphic to the subgraph
of XPr(n, d) induced by the vertices {v0, v1, . . . , vd} ∪ {w0, w1, . . . , wd}.

Figure 2 shows the crossed prism XPr(5, i) with the cross X(i) within the dashed
oval for i = 1, 2, respectively.

It will be helpful to visualize the crossed prism XPr(n, d) as copies of the two
crosses X(d) and X(n− d) sharing the same crossed edges but otherwise disjoint.
To illustrate, Figure 3 shows a 3-dimensional cylindrical representation of XPr(9, 4)
on the left and the crosses X(4) and X(5) on the top and bottom right, respectively
(crossed edges in bold to facilitate their visualization within the graphs).

Let f be an L(2,1)-labeling of XPr(n, d). It will be often convenient to provide
f as a 2-by-n matrix A(n, d) where the entry on the i-th row, j-th column will be
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Figure 2. The crossed prism XPr(5, i) with the cross X (i) within
the dashed oval for i = 1, 2, respectively.

the label f (v j ) if i = 0, and f (w j ) if i = 1, for j = 0, 1, . . . , n− 1. Notice that
the matrix A(d) given by the first d + 1 columns of A(n, d) is an L(2,1)-labeling
of the cross X(d). Similarly, the matrix A(n− d) given by the last n− d columns
followed by the first column of A(n, d) is an L(2,1)-labeling of the cross X(n− d).
These conventions are illustrated in Figure 4 with 6-labelings of XPr(9, 4), X(4),
and X(5) of Figure 3 given by the matrices A(9, 4), A(4), and A(5), respectively.

The strategies used to find the λ-numbers of prisms leveraged the symmetries
of these graphs, and even the minor breaks in symmetry introduced in crossed
prisms prohibit the simple extension of these proof techniques into this new context.
Nevertheless, we were able to use certain properties of crosses to determine the
λ-numbers of all crossed prisms. In Section 2, we find the exact λ-number of

Figure 3. The crossed prism XPr(9, 4), left, and the crosses X (4),
top right, and X (5), bottom right.

3 6 0 3 6 2 0 4 1
0 4 2 5 0 4 6 2 5

A (4) = 3 6 0 3 6 6 2 0 4 1 3
0 4 2 5 0 0 4 6 2 5 0

A (5) = 

A (9, 4) = 

Figure 4. The 6-labelings A(9, 4), A(4), and A(5) of XPr(9, 4),
X(4), and X(5), respectively.
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X(d) for all d ≥ 1, as well as exhibit all possible 5-labelings when d ≥ 2 using
an auxiliary directed graph where the vertices are particular 2-by-2 matrices with
entries in {0, 1, . . . , 5}. These results allow us to raise the general lower bound for
the λ-number of a GPG from 5 to 6 if it contains a subgraph isomorphic to certain
crosses, ultimately enabling us to verify the following result in Section 3.

Theorem 1.3. Let n and d be integers so that n ≥ 3 and 1 ≤ d ≤ n/2. If G is the
crossed prism XPr(n, d), then λ(G)= 5 when

(a) d = 1 and n = 3; or

(b) d ≡ 0 (mod 3) and (n− d)≡ 0 (mod 3); or

(c) d ≡ 1 (mod 3) and (n− d)≡ 1 (mod 3) with d ≥ 7.

Furthermore, λ(G)= 7 when d = 1 and n = 4; otherwise λ(G)= 6.

2. The λ-number of crosses

Now, we will completely determine the λ-number of crosses X(d) with d ≥ 1
in Theorem 2.4, the main result in this section. The following definitions will
simplify the description of an auxiliary directed graph that will be helpful in the
preliminary discussion. A sequence of nonnegative integers x1, x2, . . . , xm induces
a k-labeling of the path Pm with vertices u1, u2, . . . , um and edges {ui , ui+1} for
i = 1, 2, . . . ,m − 1, if the assignment of xi to ui for i = 1, 2, . . . ,m produces a
k-labeling of Pm .

Let D be the directed graph with vertex set containing the 2-by-2 matrices M
with entries in {0, 1, . . . , 5} such that:

• the sequence M0,0,M0,1,M1,1,M1,0 induces a 5-labeling of P4, in which case
M is called a left-vertex; or

• the sequence M0,1,M0,0,M1,0,M1,1 induces a 5-labeling of P4, in which case
M is called a right-vertex.

Notice that a vertex can be both a left- and right-vertex. Given a left-vertex M and
a right-vertex N different from M , the directed edge set of D contains:

• the solid edge (M, N ), if Mi,1 = Ni,0 for i = 0, 1 (i.e., the last column of M
is equal to the first column of N ), M0,0 6= N0,1, and M1,0 6= N1,1; and

• the dashed edge (N ,M), if there exists a directed path of solid edges from
M to N of length at least 1 so that the two sequences (N0,0, N0,1,M1,0,M1,1)

and (N1,0, N1,1,M0,0,M0,1) each induces a 5-labeling of P4.

Observe that there is a natural one-to-one relationship between the set of 5-
labelings of crosses X(d) with d ≥ 2 and the set of the X-cycles defined as directed
cycles in D containing exactly one dashed edge. More specifically, for a 5-labeling
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0 2 5 0 2 4 1 5
0 4 1 3 5 0 3 5

0 2 2 5 5 0 0 2 2 4 4 1 1 5
0 4 4 1 1 3 3 5 5 0 0 3 3 5

A (7) =  

Figure 5. A 5-labeling A(7) of X(7) and corresponding X -cycle.

of the cross X(d) represented by a 2-by-(d + 1) matrix A(d), consider for each
i = 0, 1, . . . , d−1, the 2-by-2 submatrix M(i) with the i-th and (i+1)-th columns
of A(d). From the definition of D, it is straightforward to verify that the vertices
M(i) for i = 0, 1, . . . , d−1 induce an X -cycle and, moreover, this correspondence
is one-to-one. We illustrate this correspondence in Figure 5 with a 5-labeling
A(7) of X(7) and its associated X -cycle. In particular, solid and dashed edges are
represented by solid and dashed arrows, respectively. The start and end vertices
of the maximal directed path with solid edges within the X -cycle are left- and
right-vertices, respectively. For the sake of simplicity, we will sometimes abuse the
notation and use a 5-labeling in matrix form to refer to the corresponding X -cycle
and vice-versa.

We define three operations on subgraphs D∗ of D that will simplify the descrip-
tion of some of its properties:

• dual of D∗: replace entry j of every vertex of D∗ with its dual 5− j .

• flip of D∗: swap the two rows of every vertex of D∗.

• reverse of D∗: swap the two columns of every vertex of D∗, and reverse the
direction of every edge of D∗.

Notice that each of these operations coincides with its inverse and preserves the
structure of X -cycles.

To generate the directed graph D, a computer program classified each of the 64

matrices with entries in {0, 1, . . . , 5} as a left- and/or right-vertex of D if possible,
and discarded it otherwise. The algorithm then considered each pair of a left-
vertex M and right-vertex N different from M , and added a solid edge (M, N )
and/or dashed edge (N ,M) if the pair satisfied the associated definition stated above.
This algorithm relies on brute force — every vertex pair is considered individually —
and could certainly be improved by cleverly integrating results about duals, flips,
and reverses. Still, this algorithm is sound in the sense that every edge added
satisfies either the solid or dashed edge definition, and complete, in the sense that
every 2-by-2 matrix was considered from the outset and every pair of left- and right-
vertices was tested for both solid and dashed connections.
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A (7 + 3q ) = 0 2 5 0 2 4 0 2 4 1 5
0 4 1 3 5 1 3 5 0 3 5

 
A (3 + 3q ) = 2 4 0 2 4 0 2 4 0 2 4 0 2 4

5 1 3 5 1 3 5 1 3 5 1 3 5 1

            or 0 2 4 0 2 4 0
3 5 1 3 5 1 3

A (3) = 2 4 1 5 0 2 5 3
2 0 3 5 0 4 1 3

A (2) = 0 2 4 2 0 4 0 2 4
1 5 3 1 3 5 0 5 3

            or 2 0 5 2 4 1 0 5 2
1 3 5 3 0 5 4 1 3

or

or

or or

or or

Figure 6. X -cycles in component D1 as 5-labelings A(d) of
crosses X(d) with d ≥ 2 (respective flips are not shown).

Excluding isolated vertices, the directed graph D consists of four connected
components Di for i = 1, 2, 3, 4, and their respective duals, where D1, D2, and D3

are provided in the online supplement, and D4 is the flip of D3. The symmetry of
crosses implies the following relationships among these components that can be
verified by inspection:

(a) the flip of D1 is D1;

(b) the reverse of D1 is the dual of D1;

(c) the flip of D2 is the dual of D2;

(d) the reverse of D2 is D2;

(e) the reverse of D3 (resp., D4) is the dual of D4 (resp., D3).

In Lemmas 2.1 through 2.3, we exhibit all the X -cycles in components Di for i =
1, 2, 3, 4. These cycles together with their duals (which are the X -cycles in the dual
of Di for i = 1, 2, 3, 4) are all possible 5-labelings A(d) of crosses X(d) with d ≥ 2.

Lemma 2.1. The X-cycles in component D1 are given by the 5-labelings A(d) of
crosses X(d) with d ≥ 2 in Figure 6 and their respective flips (i.e., the flip of a
matrix with two rows is obtained by swapping its rows). Each shaded block of three
consecutive columns within a matrix can be replaced with q ≥ 0 copies of itself ,
arranged consecutively as needed to reach the desired value of d (this convention
will be used from this point forward).

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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2 4 0 2 0 5 2 0
5 3 0 5 3 5 1 3

2 4 4 0
5 1 1 3

0 2 0 4
1 5 0 2 3 5

3 5

2 4 5 0
5 0 1 3

4 1 3 5
0 2 4 1

4 1 2 5
0 3 4 1

2 4 2 4 1 5 0 2 5 3 5 2
3 0 2 0 3 5 0 4 1 3 1 3

4 1 0 5
0 5 4 1

Figure 7. The directed subgraph H of D1 and its X -cycles (circled).

Proof. Let H be the directed subgraph of D1 in the online supplement induced by
the two shaded vertices and all the vertices above them; H is shown in Figure 7. By
inspection, one can verify that the flip of H is exactly the directed subgraph of D1

induced by the two shaded vertices and all the vertices below them. Moreover, an
X -cycle in component D1 must be either completely within H or completely within
the flip of H . Therefore, the lemma follows by exhibiting all the X -cycles within H .
They are circled in Figure 7 and their corresponding 5-labelings of crosses are given
in Figure 6. �

Lemma 2.2. The X-cycles in component D2 are given by the 5-labelings A(2) of
crosses X(2) in Figure 8.

Proof. Since all solid edges in D2 in the online supplement are directed from
left to right and the only four dashed edges are directed from right to left, it
is straightforward to verify that there are only four X -cycles of length 2 with
corresponding 5-labelings given in Figure 8. �

Lemma 2.3. The only X-cycle in component D3 (resp., D4) is given by the 5-
labeling A(3) (resp., flip of A(3)) of cross X(3) in Figure 9.

A (2) = 3 1 5 1 5 2 2 5 1 5 1 3
2 4 0 4 0 3 3 0 4 0 4 2

or or or

Figure 8. X -cycles in component D2 as 5-labelings A(2) of
crosses X(2).

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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A (3) = 1 5 2 4
1 3 0 4

Figure 9. The only X -cycle in D3 as a 5-labeling A(3) of cross X(3).

A (4) = 3 6 0 3 6 A (5 + 3q ) = 3 1 6 4 0 6 4 2 6
0 4 2 5 0 0 5 3 1 5 3 1 5 0

Figure 10. 6-labelings of crosses X(d) for d = 4 and for [d ≡
2 (mod 3) and d ≥ 5], respectively.

Proof. It is straightforward to verify that there is only one X -cycle in D3 in the
online supplement with corresponding 5-labeling given in Figure 9. Since D4 is
the flip of D3, the flip of A(3) corresponds to the only X -cycle in D4. �

We can finally state the main result of this section.

Theorem 2.4. If G is the cross X(d) with d ≥ 1, then λ(G) = 4 when d = 1,
λ(G) = 6 when d = 4 or when [d ≡ 2 (mod 3) with d ≥ 5], otherwise λ(G) = 5.
In addition, the only possible 5-labelings of G when d ≥ 2 are the ones in Figure 6
and 9 with their respective flips, the ones in Figure 8, and all the respective duals
(i.e., the dual of a matrix is obtained by replacing each entry j with 5− j).

Proof. The cross X(1) is a cycle on four vertices which has λ-number 4 [Griggs
and Yeh 1992]. The second sentence in the theorem’s statement follows from the
construction of D and Lemmas 2.1 through 2.3. Hence, if G has a 5-labeling, then
d = 2, d ≡ 0 (mod 3), or [d ≡ 1 (mod 3) and d ≥ 7] (refer to Figures 6, 8, and 9),
thus λ(G)= 5 (recall from Section 1 that GPGs have λ-number at least 5). On the
other hand, if G does not have a 5-labeling, then λ(G)≥ 6 and either d= 4 or [d≡ 2
(mod 3) and d≥5], thus λ(G)=6 follows from the 6-labelings of G in Figure 10. �

We close this section by mentioning that the directed subgraph of D induced by
its vertices that are simultaneously left- and right-vertices (vertices within double-
lined squares in the online supplement and their respective duals) was used in
[Klavžar and Vesel 2003] to exhibit 5-labelings of prisms.

3. The λ-number of crossed prisms

Let n and d be integers so that n≥ 3 and 1≤ d ≤ n/2. The main goal of this section
is to find the λ-number of the crossed prism XPr(n, d); that is, prove Theorem 1.3
of Section 1. In Lemma 3.1 we will discuss the case d ≥ 2, and the case d = 1 will
be examined in Lemma 3.2.

The following construction of k-labelings of XPr(n, d) for d≥2 using k-labelings
of the crosses X(d) and X(n−d) will be useful in the proof of Lemma 3.1. Consider
a k-labeling of the cross X(d) given as a 2-by-(d+1)matrix M . In addition, consider

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip


76 M. BEAUDOUIN-LAFON, S. CHEN, N. KARST, J. OEHRLEIN AND D. TROXELL

a k-labeling of the cross X(n− d) given as a 2-by-(n− d + 1) matrix N . We will
say that M and N mesh if the following two conditions are satisfied:

(i) Mi,d = Ni,0 for i = 0, 1 (i.e., the last column of M is equal to the first column
of N ), M0,d−1 6= N0,1, and M1,d−1 6= N1,1;

(ii) Ni,n−d =Mi,0 for i = 0, 1 (i.e., the last column of N is equal to the first column
of M), N0,n−d−1 6= M0,1, and N1,n−d−1 6= M1,1.

Observe that if M and N mesh, then the matrix mesh(M, N ) obtained by combining
the first d columns of M immediately followed by the first n− d columns of N
provides a k-labeling of the crossed prism XPr(n, d). For example, A(9, 4) =
mesh(A(4), A(5)) as seen in Figure 4 is a 6-labeling of XPr(9, 4).

Lemma 3.1. Let n and d be integers so that n ≥ 3 and 2 ≤ d ≤ n/2. If G is the
crossed prism XPr(n, d), then λ(G)= 5 when

(a) d ≡ 0 (mod 3) and (n− d)≡ 0 (mod 3); or

(b) d ≡ 1 (mod 3) and (n− d)≡ 1 (mod 3) with d ≥ 7.

Otherwise λ(G)= 6.

Proof. Suppose (a) holds. Select the first of the corresponding three choices for
A(3+ 3q) in Figure 6 (we could also select the second or the third choice instead).
Let q1 and q2 be integers so that d = 3+3q1 and n−d = 3+3q2. Hence A(3+3q1)

and A(3+ 3q2) are 5-labelings of the crosses X(d) and X(n− d), respectively, and
these matrices mesh. From the observation right before the lemma, the matrix
mesh(A(3+ 3q1), A(3+ 3q2)) is a 5-labeling of G, hence λ(G)≤ 5. Recall from
Section 1 that GPGs have λ-number at least 5, therefore λ(G)= 5.

Suppose (b) holds. Select the A(7+3q) in Figure 6. Let q1 and q2 be integers so
that d = 7+3q1 and n−d = 7+3q2 (note that n−d ≥ d ≥ 7). Hence A(7+3q1)and
the dual of A(7+3q2) are 5-labelings of the crosses X(d) and X(n−d), respectively,
and these matrices mesh. Similarly to the previous paragraph, we conclude that
λ(G)= 5.

Suppose for the remainder of the proof that neither (a) nor (b) is satisfied. We will
first show that λ(G)≥ 6. If d = 4 or [d ≡ 2 (mod 3) with d ≥ 5], then the λ-number
of X(d) is 6 by Theorem 2.4 and therefore λ(G)≥ 6 since X(d) is a subgraph of G.
Likewise, we can replace d with n− d in the previous sentence and reach the same
conclusion. To verify the remaining cases, we suppose for contradiction that G has
a 5-labeling given by a 2-by-n matrix A(n, d). The matrix M given by the first
d+ 1 columns of A(n, d) is a 5-labeling of the cross X(d), and the matrix N given
by the last n−d columns followed by the first column of A(n, d) is a 5-labeling of
the cross X(n− d). Thus M and N mesh and are instances of the set of matrices
described in Theorem 2.4. We will examine the following remaining cases and
reach a contradiction in all of them, which implies λ(G)≥ 6.
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Case 1: [d ≡ 0 (mod 3) and (n − d) ≡ 1 (mod 3) with n − d ≥ 7] or [(n − d) ≡
0 (mod 3) and d ≡ 1 (mod 3) with d ≥ 7]. Suppose [d ≡ 0 (mod 3) and (n−d)≡
1 (mod 3) with n−d ≥ 7]. Note that N or its dual must be an instance of A(7+3q)
in Figure 6 with their respective flips, so the first and last columns of N are different
and have entries in {0, 5}. Since M and N mesh, the first and last columns of M
must also be different and have entries in {0, 5}. Unfortunately, the same does not
hold for any instance of A(3+3q) and A(3) in Figure 6 and 9 with their respective
flips and all their respective duals, a contradiction. Similarly, we also reach a
contradiction in the case [(n− d)≡ 0 (mod 3) and d ≡ 1 (mod 3) with d ≥ 7] by
switching the roles of M and N in the discussion above.

Case 2: [d = 2 and (n− d)≡ 0 (mod 3)] or [d = 2 and (n− d)≡ 1 (mod 3) with
(n− d)≥ 7]. Note that each instance A(2) in Figure 6 with their respective flips,
or in Figure 8, and all their respective duals, uses at least three different labels
in the first and last columns combined. In contrast, each instance of A(7+ 3q),
A(3+ 3q), and A(3) in Figures 6 and 9 with their respective flips and all their
respective duals, uses only two different labels in the first and last columns. So M
and N cannot mesh, a contradiction.

Case 3: d = 2 and (n − d) = 2. We can verify by inspection that all pairs of
instances of A(2) in Figure 6 with their respective flips, or in Figure 8, and all their
respective duals do not mesh (note that no component has directed cycles of length 4
containing only solid edges). So M and N cannot mesh, a final contradiction.

Finally, to prove that λ(G)= 6, it suffices to show that λ(G)≤ 6. Observe that
{d, n − d} = {d1, d2} for a combination of values d1 and d2 described by one of
the rows of the table in the online supplement. This row exhibits two 6-labelings
of the crosses X(d1) and X(d2), respectively, as two matrices that mesh. From the
observation right before Lemma 3.1, we can conclude that λ(G)≤ 6. �

Lemma 3.2. If G is the crossed prism XPr(n, 1) with n ≥ 3, then λ(G) = 5 if
n = 3; λ(G)= 7 if n = 4; otherwise λ(G)= 6.

Proof. Recall from Section 1 that an L(2,1)-labeling f of XPr(n, d) is given by
a 2-by-n matrix A(n, d) where the entry on the i-th row, j-th column will be the
label f (v j ) if i = 0, and f (w j ) if i = 1, for j = 0, 1, . . . , n−1, and the notation is
as introduced in Definition 1.2 (the ends of crossed edges are in the 0-th and d-th
columns). If n = 3, then the 5-labeling A(3, 1) of G in Figure 11 implies λ(G)= 5
(recall from Section 1 that GPGs have λ-number at least 5). If n = 4, then G has
diameter 2 and therefore λ(G)≥ |V(G)| − 1= 2n− 1= 7 [Griggs and Yeh 1992];
the 7-labeling A(4, 1) of G in Figure 11 implies λ(G)= 7.

Assume n ≥ 5. We will show first that λ(G)≥ 6. Suppose for contradiction that
G has a 5-labeling given by a 2-by-n matrix A(n, 1). The matrix M given by the
first two columns of A(n, 1) is a 5-labeling of the cross X(1), and the matrix N given

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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A (3, 1) = 0 2 4 A (4, 1) = 0 2 5 3
5 3 1 4 6 1 7

Figure 11. A 5-labeling of XPr(3, 1) and a 7-labeling of XPr(4, 1), respectively.

A (5 + 3q, 1) = 0 4 6 1 3 6 1 3
1 5 2 4 0 2 4 6

A (6 + 3q, 1) = 0 4 6 3 1 6 1 5 2
1 5 2 4 0 2 4 0 6

A (7 + 3q, 1) = 0 4 6 3 1 6 0 2 4 6
1 5 2 0 5 2 4 6 0 3

Figure 12. The 6-labelings of XPr(n, 1) for n ≥ 5.

by the last n− 1 columns followed by the first column of A(n, 1) is a 5-labeling of
the cross X(n− 1). Since N has n ≥ 5 columns, the X -cycle corresponding to N
must be in component D1 or the dual of D1 of the directed graph D constructed in
Section 2. We may assume without loss of generality that this X -cycle is in D1. The
cross X(1) has diameter 2 so its four vertices must be assigned different labels, thus
the first and last columns of N must contain four different labels. Unfortunately,
this is not the case for A(7+3q) or A(3+3q) in Figure 6 and their respective flips,
implying that n < 5, a contradiction, and so λ(G)≥ 6 holds. The desired equality
follows from the 6-labelings of G provided in Figure 12. �

Finally, Theorem 1.3 in Section 1 is a straightforward consequence of Lemmas
3.1 and 3.2.

4. Closing remarks

In this work, we made progress towards closing the GPG conjecture by showing
that any crossed prism G satisfies λ(G)≤ 7 and that, in fact, all but one G satisfy
λ(G) ≤ 6. These crossed prisms were of particular interest, as they allowed
us to examine how the controlled introduction of asymmetries to prisms would
impact both the λ-number and overall proof strategies. The complications these
breaks in symmetry introduced were nontrivial, and we ultimately determined
λ(G) by constructing and inspecting an auxiliary directed graph motivated by
previous studies. We hope that these ideas help the community examine other
families of graphs — for instance, prisms with more than one pair of crossed
edges, perturbations of the n-stars — as we move closer to putting the general GPG
conjecture to rest.
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