\bullet

 invelve

 invelve}

a journal of mathematics

Continuous dependence and differentiating solutions of a second order boundary value problem with average value condition

Jeffrey W. Lyons, Samantha A. Major and Kaitlyn B. Seabrook

Continuous dependence and differentiating solutions of a second order boundary value problem with average value condition

Jeffrey W. Lyons, Samantha A. Major and Kaitlyn B. Seabrook
(Communicated by Martin J. Bohner)

Abstract

Using a few conditions, continuous dependence, and a result regarding smoothness of initial conditions, we show that derivatives of solutions to the second order boundary value problem $y^{\prime \prime}=f\left(x, y, y^{\prime}\right), a<x<b$, satisfying $y\left(x_{1}\right)=y_{1}$, $1 /(d-c) \int_{c}^{d} y(x) \mathrm{d} x=y_{2}$, where $a<x_{1}<c<d<b$ and $y_{1}, y_{2} \in \mathbb{R}$ with respect to each of the boundary data $x_{1}, y_{1}, y_{2}, c, d$ solve the associated variational equation with interesting boundary conditions. Of note is the second boundary condition, which is an average value condition.

1. Introduction

Our concern is characterizing derivatives of solutions to the second order boundary value problem

$$
\begin{equation*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b, \tag{1-1}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
y\left(x_{1}\right)=y_{1}, \quad \frac{1}{d-c} \int_{c}^{d} y(x) \mathrm{d} x=y_{2}, \tag{1-2}
\end{equation*}
$$

where $a<x_{1}<c<d<b$, and $y_{1}, y_{2} \in \mathbb{R}$ with respect to the boundary data. We make note of the average value condition.

The history and breadth of work on the subject of smoothness of conditions for various problems is quite rich and stretches back to the time of Peano as attributed by Hartman [1964]. Peano's result characterized the smoothness of initial conditions for initial value problems (IVPs). Subsequently, many researchers expanded the result to smoothness of boundary conditions for boundary value problems. The key to making the jump was utilizing a continuous dependence result for boundary

[^0]conditions. Once invoked, there were many articles published in the realm of boundary value problems for differential equations [Ehme 1993; Ehrke et al. 2007; Henderson 1987; Lyons 2011; Lyons and Miller 2015; Spencer 1975], difference equations [Benchohra et al. 2007; Datta 1998; Henderson and Jiang 2015; Hopkins et al. 2009; Lyons 2014a], and dynamic equations on time scales [Baxter et al. 2016; Lyons 2014b] with a host of interesting of boundary conditions.

Our main motivation for this paper is a recent result [Janson et al. 2014] in which the authors sought an analogue of Peano's theorem for a second order boundary value problem with an integral boundary condition. The novelty we contribute to the literature is employing an average value boundary condition, which, although similar, is very fascinating in its own right.

At first, the average value condition might seem unusual. However, the idea of an average value condition is quite useful when one is not concerned with what occurs at a specific point but instead the average over a range of points. For example, one may not need to specify the temperature at a certain time as long as the average temperature is fixed over a range of time. We point the reader to [Chua 2010] and the references therein for more discussion on average value conditions and more general functional conditions.

The remainder of the paper is organized as follows. In Section 2, we introduce the definition of a variational equation and place conditions upon the boundary value problem. Section 3 is comprised of interesting and crucial results for our research. We prove our main result and a corollary in Section 4.

2. Preliminaries

Throughout our work and previous research on the topic, a very important equation emerges which we now define.
Definition 2.1. Given a solution $y(x)$ of (1-1), we define the variational equation along $y(x)$ by

$$
\begin{equation*}
z^{\prime \prime}=\frac{\partial f}{\partial u_{1}}\left(x, y(x), y^{\prime}(x)\right) z+\frac{\partial f}{\partial u_{2}}\left(x, y(x), y^{\prime}(x)\right) z^{\prime} \tag{2-1}
\end{equation*}
$$

where u_{1} and u_{2} are the second and third components of f, respectively.
Next, we place five hypotheses upon the boundary value problem:
(i) $f\left(x, u_{1}, u_{2}\right):(a, b) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous.
(ii) For $i=1,2$, the map $\partial f / \partial u_{i}\left(x, u_{1}, u_{2}\right):(a, b) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous.
(iii) Solutions of IVPs for (1-1) extend to (a, b).
(iv) Given $a<x_{1}<c<d<b$, if $y\left(x_{1}\right)=z\left(x_{1}\right)$ and $1 /(d-c) \int_{c}^{d} y(x) \mathrm{d} x=$ $1 /(d-c) \int_{c}^{d} z(x) \mathrm{d} x$, where $y(x)$ and $z(x)$ are solutions of (1-1), then, on (a, b), we have $y(x) \equiv z(x)$.
(v) Given $a<x_{1}<c<d<b$ and a solution $y(x)$ of (1-1), if $u\left(x_{1}\right)=0$ and $1 /(d-c) \int_{c}^{d} u(x) \mathrm{d} x=0$, where $u(x)$ is a solution of (2-1) along $y(x)$, then, on (a, b), we have $u(x) \equiv 0$.
Note that even though (i) and (ii) may seem to be very strict conditions, we remind the reader that since our aim is to compute derivatives of solutions to (1-1) and (1-2), they are not unusual. Condition (iii) is not necessary but instead allows us to suppress verbiage of finding an interval inside (a, b) where the solution of the boundary value problem converges. Finally, conditions (iv) and (v) are required to ensure the uniqueness of the solution and variational equation.

3. Background theorems

We now introduce two theorems that play a key role in the proof of the main result. The first result is attributed to Peano and is in essence the type of result we seek for (1-1) and (1-2). We direct the reader to Hartman's book [1964] for more details.
Theorem 3.1 (Peano's theorem). Assume that, with respect to (1-1), conditions (i)-(iii) are satisfied. Let $x_{0} \in(a, b)$ and $y(x):=y\left(x, x_{0}, c_{1}, c_{2}\right)$ denote the solution of (1-1) satisfying the initial conditions $y\left(x_{0}\right)=c_{1}$ and $y^{\prime}\left(x_{0}\right)=c_{2}$. Then:
(a) For $i=1,2, \partial y / \partial c_{i}(x)$ exists on (a, b), and $\alpha_{i}(x):=\partial y / \partial c_{i}(x)$ is the solution of the variational equation (2-1) along $y(x)$ satisfying the respective initial conditions

$$
\alpha_{1}\left(x_{0}\right)=1, \quad \alpha_{1}^{\prime}\left(x_{0}\right)=0, \quad \alpha_{2}\left(x_{0}\right)=0, \quad \alpha_{2}^{\prime}\left(x_{0}\right)=1
$$

(b) $\partial y / \partial x_{0}(x)$ exists on (a, b), and $\beta(x):=\partial y / \partial x_{0}(x)$ is the solution of the variational equation (2-1) along $y(x)$ satisfying the initial conditions

$$
\beta\left(x_{0}\right)=-y^{\prime}\left(x_{0}\right), \quad \beta^{\prime}\left(x_{0}\right)=-y^{\prime \prime}\left(x_{0}\right) .
$$

(c) $\frac{\partial y}{\partial x_{0}}(x)=-y^{\prime}\left(x_{0}\right) \frac{\partial y}{\partial c_{1}}(x)-y^{\prime \prime}\left(x_{0}\right) \frac{\partial y}{\partial c_{2}}(x)$.

The next result permits the leap from IVPs to boundary value problems. The proof requires mapping initial data to boundary data and an application of the Brouwer invariance of domain theorem. For a typical proof, we refer the reader to [Henderson et al. 2005].

Theorem 3.2 (continuous dependence for boundary value problems). Assume (i)(iv) are satisfied with respect to (1-1). Let $y(x)$ be a solution of (1-1) on (a, b), and let $a<\alpha<x_{1}<c<d<\beta<b$ and $y_{1}, y_{2} \in \mathbb{R}$ be given. Then, there exists $a \delta>0$ such that, for $\left|x_{1}-t_{1}\right|<\delta,|c-\xi|<\delta,|d-\Delta|<\delta,\left|y\left(x_{1}\right)-y_{1}\right|<\delta$, and $\left|1 /(d-c) \int_{c}^{d} y(x) \mathrm{d} x-y_{2}\right|<\delta$, there exists a unique solution $y_{\delta}(x)$ of (1-1) such that $y_{\delta}\left(t_{1}\right)=y_{1}$ and $1 /(\Delta-\xi) \int_{\xi}^{\Delta} y_{\delta}(x) \mathrm{d} x=y_{2}$ and, for $i=1,2,\left\{y_{\delta}^{(i)}(x)\right\}$ converges uniformly to $y^{(i)}(x)$ as $\delta \rightarrow 0$ on $[\alpha, \beta]$.

4. Main result

In light of the information in the previous sections, we now present the main result. A reminder that the novel portion of our result is differentiation with respect to the terms in the average value condition, namely c and d. We will only show the proof of part (d) as (c) is similar. In fact, each part (a)-(d) employs the same idea for a proof.

Theorem 4.1. Assume conditions (i)-(v) are satisfied. Let $y(x)$ be a solution of (1-1) on (a, b). Let $a<x_{1}<c<d<b$ and $y_{1}, y_{2} \in \mathbb{R}$ be given so that $y(x)=y\left(x, x_{1}, y_{1}, y_{2}, c, d\right)$, where

$$
y\left(x_{1}\right)=y_{1}, \quad \frac{1}{d-c} \int_{c}^{d} y(x) \mathrm{d} x=y_{2} .
$$

Then:
(a) For $i=1,2, u_{i}(x):=\partial y / \partial y_{i}(x)$ exists on (a, b) and is the solution of the variational equation (2-1) along $y(x)$ satisfying the respective boundary conditions

$$
\begin{aligned}
& u_{1}\left(x_{1}\right)=1 \quad \text { and } \quad \frac{1}{d-c} \int_{c}^{d} u_{1}(x) \mathrm{d} x=0 \\
& u_{2}\left(x_{1}\right)=0 \quad \text { and } \quad \frac{1}{d-c} \int_{c}^{d} u_{2}(x) \mathrm{d} x=1
\end{aligned}
$$

(b) $z_{1}(x):=\partial y / \partial x_{1}(x)$ exists on (a, b) and is the solution of the variational equation (2-1) along $y(x)$ satisfying the respective boundary conditions

$$
z_{1}\left(x_{1}\right)=-y^{\prime}\left(x_{1}\right) \quad \text { and } \quad \frac{1}{d-c} \int_{c}^{d} z_{1}(x) \mathrm{d} x=0
$$

(c) $C(x):=\partial y / \partial c(x)$ exists on (a, b) and is the solution of the variational equation (2-1) along $y(x)$ satisfying the boundary conditions

$$
C\left(x_{1}\right)=0 \quad \text { and } \quad \frac{1}{d-c} \int_{c}^{d} C(x) \mathrm{d} x=\frac{y(c)-y_{2}}{d-c}
$$

(d) $D(x):=\partial y / \partial d(x)$ exists on (a, b) and is the solution of the variational equation (2-1) along $y(x)$ satisfying the boundary conditions

$$
D\left(x_{1}\right)=0 \quad \text { and } \quad \frac{1}{d-c} \int_{c}^{d} D(x) \mathrm{d} x=\frac{y_{2}-y(d)}{d-c}
$$

Proof. Since only x and d are not fixed, we denote $y\left(x, x_{1}, y_{1}, y_{2}, c, d\right)$ by $y(x, d)$.
Let $\delta>0$ be as in Theorem 3.2, $0<|h|<\delta$ be given, and define the difference quotient

$$
D_{h}(x)=\frac{1}{h}[y(x, d+h)-y(x, d)] .
$$

Our goal is to show that the limit of D_{h} exists, solves the variational equation, and satisfies the correct boundary conditions. First, we investigate the boundary conditions.

For every $h \neq 0$,

$$
D_{h}\left(x_{1}\right)=\frac{1}{h}\left[y\left(x_{1}, d+h\right)-y\left(x_{1}, d\right)\right]=\frac{1}{h}\left[y_{1}-y_{1}\right]=0,
$$

and by using the mean value theorem for integrals,

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} D_{h}(x) \mathrm{d} x & =\frac{1}{d-c} \int_{c}^{d} \frac{y(x, d+h)-y(x, d)}{h} \mathrm{~d} x \\
& =\frac{1}{d-c} \int_{c}^{d} \frac{y(x, d+h)}{h} \mathrm{~d} x-\frac{1}{d-c} \int_{c}^{d} \frac{y(x, d)}{h} \mathrm{~d} x \\
& =\frac{1}{d-c}\left[\int_{c}^{d+h} \frac{y(x, d+h)}{h} \mathrm{~d} x+\int_{d+h}^{d} \frac{y(x, d+h)}{h} \mathrm{~d} x\right]-\frac{y_{2}}{h} \\
& =\frac{1}{d-c} \frac{(d+h)-c}{(d+h)-c} \int_{c}^{d+h} \frac{y(x, d+h)}{h} \mathrm{~d} x+\frac{y(e)(d-(d+h))}{h(d-c)}-\frac{y_{2}}{h} \\
& =\frac{((d+h)-c) y_{2}}{h(d-c)}-\frac{y(e)}{d-c}-\frac{y_{2}(d-c)}{h(d-c)}=\frac{y_{2}-y(e)}{d-c}
\end{aligned}
$$

for some e between d and $d+h$.
Next, we view $y(x)$ in terms of the solution of an IVP at x_{1} so that we may employ Theorem 3.1.

To that end, let

$$
\mu=y^{\prime}\left(x_{1}, d\right) \quad \text { and } \quad v=v(h)=y^{\prime}\left(x_{1}, d+h\right)-\mu .
$$

Then, in terms of an IVP,

$$
y(x)=u\left(x, x_{1}, y_{1}, \mu\right)
$$

and we have

$$
D_{h}(x)=\frac{1}{h}\left[u\left(x, x_{1}, y_{1}, \mu+v\right)-u\left(x, x_{1}, y_{1}, \mu\right)\right] .
$$

By Theorem 3.1 and the mean value theorem, we obtain

$$
D_{h}(x)=\frac{1}{h}\left[\alpha_{2}\left(x, u\left(x, x_{1}, y_{1}, \mu+\bar{v}\right)\right)(\mu+v-\mu)\right]
$$

where $\alpha_{2}(x, u(\cdot))$ is the solution of (1-1) along $u(\cdot)$ satisfying

$$
\alpha_{2}\left(x_{1}\right)=0, \quad \alpha_{2}^{\prime}\left(x_{1}\right)=1
$$

Furthermore, $\mu+\bar{v}$ is between μ and $\mu+v$. Simplifying,

$$
D_{h}(x)=\frac{v}{h} \alpha_{2}\left(x, u\left(x, x_{1}, y_{1}, \mu+\bar{v}\right)\right)
$$

Thus, to show $\lim _{h \rightarrow 0} D_{h}(x)$ exists, it suffices to show $\lim _{h \rightarrow 0} v / h$ exists. By condition (v), the fact that $\alpha_{2}(x, u(\cdot))$ is a nontrivial solution of (2-1) along $u(\cdot)$ and $\alpha_{2}\left(x_{1}, u(\cdot)\right)=0$, we have

$$
\frac{1}{d-c} \int_{c}^{d} \alpha_{2}(x, u(\cdot)) \mathrm{d} x \neq 0 \Rightarrow \int_{c}^{d} \alpha_{2}(x, u(\cdot)) \mathrm{d} x \neq 0
$$

Recall,

$$
\frac{1}{d-c} \int_{c}^{d} D_{h}(x) \mathrm{d} x=\frac{y_{2}-y(e)}{d-c}
$$

and so,

$$
\frac{1}{d-c} \int_{c}^{d} \frac{v}{h} \alpha_{2}\left(x, u\left(x, x_{1}, y_{1}, \mu+\bar{v}\right)\right) \mathrm{d} x=\frac{y_{2}-y(e)}{d-c}
$$

Hence, we obtain

$$
\lim _{h \rightarrow 0} \frac{v}{h}=\frac{\left(y_{2}-y(e)\right)}{(d-c)} \frac{1}{1 /(d-c) \int_{c}^{d} \alpha_{2}(x, u(\cdot)) \mathrm{d} x}=\frac{y_{2}-y(e)}{\int_{c}^{d} \alpha_{2}(x, u(\cdot)) \mathrm{d} x}:=U .
$$

Now let

$$
D(x)=\lim _{h \rightarrow 0} D_{h}(x),
$$

and note by construction of $D_{h}(x)$,

$$
D(x)=\frac{\partial y}{\partial d}(x)
$$

Furthermore,

$$
D(x)=\lim _{h \rightarrow 0} D_{h}(x)=U \alpha_{2}(x, y(x)),
$$

which is a solution of the variational equation (2-1) along $y(x)$. In addition,

$$
D\left(x_{1}\right)=\lim _{h \rightarrow 0} D_{h}\left(x_{1}\right)=\lim _{h \rightarrow 0} 0=0
$$

and

$$
\frac{1}{d-c} \int_{c}^{d} D(x) \mathrm{d} x=\lim _{h \rightarrow 0}\left[\frac{1}{d-c} \int_{c}^{d} D_{h}(x) \mathrm{d} x\right]=\lim _{h \rightarrow 0} \frac{y_{2}-y(e)}{d-c}=\frac{y_{2}-y(d)}{d-c} .
$$

Finally, we present an analogue to (c) of Theorem 3.1 (Peano's theorem).
Corollary 4.2. Under the assumptions of the previous theorem, we have
(a) $z_{1}(x)=-y^{\prime}\left(x_{1}\right) u_{1}(x)$,
(b) $C(x)=-\frac{y_{2}-y(c)}{y_{2}-y(d)} D(x)$,
(c) $C(x)=\frac{y(c)-y_{2}}{d-c} u_{2}(x)$.

References

[Baxter et al. 2016] L. H. Baxter, J. W. Lyons, and J. T. Neugebauer, "Differentiating solutions of a boundary value problem on a time scale", Bull. Aust. Math. Soc. 94:1 (2016), 101-109. MR Zbl
[Benchohra et al. 2007] M. Benchohra, S. Hamani, J. Henderson, S. K. Ntouyas, and A. Ouahab, "Differentiation and differences for solutions of nonlocal boundary value problems for second order difference equations", Int. J. Difference Equ. 2:1 (2007), 37-47. MR Zbl
[Chua 2010] S.-K. Chua, "Average value problems in ordinary differential equations", J. Differential Equations 249:7 (2010), 1531-1548. MR Zbl
[Datta 1998] A. Datta, "Differences with respect to boundary points for right focal boundary conditions", J. Differ. Equations Appl. 4:6 (1998), 571-578. MR Zbl
[Ehme 1993] J. A. Ehme, "Differentiation of solutions of boundary value problems with respect to nonlinear boundary conditions", J. Differential Equations 101:1 (1993), 139-147. MR Zbl
[Ehrke et al. 2007] J. Ehrke, J. Henderson, C. Kunkel, and Q. Sheng, "Boundary data smoothness for solutions of nonlocal boundary value problems for second order differential equations", J. Math. Anal. Appl. 333:1 (2007), 191-203. MR Zbl
[Hartman 1964] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR Zbl
[Henderson 1987] J. Henderson, "Disconjugacy, disfocality, and differentiation with respect to boundary conditions", J. Math. Anal. Appl. 121:1 (1987), 1-9. MR Zbl
[Henderson and Jiang 2015] J. Henderson and X. Jiang, "Differentiation with respect to parameters of solutions of nonlocal boundary value problems for difference equations", Involve 8:4 (2015), 629-636. MR Zbl
[Henderson et al. 2005] J. Henderson, B. Karna, and C. C. Tisdell, "Existence of solutions for three-point boundary value problems for second order equations", Proc. Amer. Math. Soc. 133:5 (2005), 1365-1369. MR Zbl
[Hopkins et al. 2009] B. Hopkins, E. Kim, J. Lyons, and K. Speer, "Boundary data smoothness for solutions of nonlocal boundary value problems for second order difference equations", Comm. Appl. Nonlinear Anal. 16:2 (2009), 1-12. MR Zbl
[Janson et al. 2014] A. F. Janson, B. T. Juman, and J. W. Lyons, "The connection between variational equations and solutions of second order nonlocal integral boundary value problems", Dynam. Systems Appl. 23:2-3 (2014), 493-503. MR Zbl
[Lyons 2011] J. W. Lyons, "Differentiation of solutions of nonlocal boundary value problems with respect to boundary data", Electron. J. Qual. Theory Differ. Equ. (2011), art. id. 51, 11 pp. MR Zbl
[Lyons 2014a] J. W. Lyons, "Disconjugacy, differences and differentiation for solutions of non-local boundary value problems for nth order difference equations", J. Difference Equ. Appl. 20:2 (2014), 296-311. MR Zbl
[Lyons 2014b] J. W. Lyons, "On differentiation of solutions of boundary value problems for second order dynamic equations on a time scale", Commun. Appl. Anal. 18:1-2 (2014), 215-224. Zbl
[Lyons and Miller 2015] J. W. Lyons and J. K. Miller, "The derivative of a solution to a second order parameter dependent boundary value problem with a nonlocal integral boundary condition", J. Math. Stat. Sci. 1:2 (2015), 43-50.
[Spencer 1975] J. D. Spencer, "Relations between boundary value functions for a nonlinear differential equation and its variational equations", Canad. Math. Bull. 18:2 (1975), 269-276. MR Zbl

jlyons@nova.edu	Department of Mathematics, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, United States
sm2791@nova.edu	Department of Mathematics, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, United States
ks1679@nova.edu	$\left.\begin{array}{l}\text { Department of Mathematics, Nova Southeastern University, } \\ \\ \\ \end{array}\right\}$College Ave, Fort Lauderdale, FL 33314, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 / y e a r$ for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
-I mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

On halving-edges graphs
Tanya Khovanova and Dai Yang
Knot mosaic tabulation13

Hwa Jeong Lee, Lewis D. Ludwig, Joseph Paat and Amanda Peiffer

Extending hypothesis testing with persistent homology to three or more groups27

Christopher Cericola, Inga Johnson, Joshua Kiers, Mitchell Krock, Jordan Purdy and Johanna Torrence

Merging peg solitaire on graphs

 53John Engbers and Ryan Weber
Labeling crossed prisms with a condition at distance two 67

Matthew Beaudouin-Lafon, Serena Chen, Nathaniel Karst, Jessica Oehrlein and Denise Sakai Troxell
Normal forms of endomorphism-valued power series81

Christopher Keane and Szilárd Szabó
Continuous dependence and differentiating solutions of a second order boundary95
value problem with average value condition
Jeffrey W. Lyons, Samantha A. Major and Kaitlyn B. Seabrook
On uniform large-scale volume growth for the Carnot-Carathéodory metric on
unbounded model hypersurfaces in \mathbb{C}^{2}
Ethan Dlugie and Aaron Peterson
Variations of the Greenberg unrelated question binary model
David P. Suarez and Sat Gupta
Generalized exponential sums and the power of computers
Francis N. Castro, Oscar E. González and Luis A. Medina
Coincidences among skew stable and dual stable Grothendieck polynomials
Ethan Alwaise, Shuli Chen, Alexander Clifton, Rebecca Patrias, Rohil Prasad, Madeline Shinners and Albert Zheng
A probabilistic heuristic for counting components of functional graphs of 169 polynomials over finite fields

Elisa Bellah, Derek Garton, Erin Tannenbaum and
Noah Walton

[^0]: MSC2010: 34B10.
 Keywords: continuous dependence, boundary data smoothness, average value condition, Peano's theorem.

