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Using a few conditions, continuous dependence, and a result regarding smooth-
ness of initial conditions, we show that derivatives of solutions to the second
order boundary value problem y′′= f (x, y, y′), a< x < b, satisfying y(x1)= y1,
1/(d− c)

∫ d
c y(x) dx = y2, where a < x1 < c< d < b and y1, y2 ∈R with respect

to each of the boundary data x1, y1, y2, c, d solve the associated variational
equation with interesting boundary conditions. Of note is the second boundary
condition, which is an average value condition.

1. Introduction

Our concern is characterizing derivatives of solutions to the second order boundary
value problem

y′′ = f (x, y, y′), a < x < b, (1-1)
satisfying

y(x1)= y1,
1

d−c

∫ d

c
y(x) dx = y2, (1-2)

where a < x1 < c < d < b, and y1, y2 ∈ R with respect to the boundary data. We
make note of the average value condition.

The history and breadth of work on the subject of smoothness of conditions for
various problems is quite rich and stretches back to the time of Peano as attributed
by Hartman [1964]. Peano’s result characterized the smoothness of initial conditions
for initial value problems (IVPs). Subsequently, many researchers expanded the
result to smoothness of boundary conditions for boundary value problems. The
key to making the jump was utilizing a continuous dependence result for boundary
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conditions. Once invoked, there were many articles published in the realm of
boundary value problems for differential equations [Ehme 1993; Ehrke et al. 2007;
Henderson 1987; Lyons 2011; Lyons and Miller 2015; Spencer 1975], difference
equations [Benchohra et al. 2007; Datta 1998; Henderson and Jiang 2015; Hopkins
et al. 2009; Lyons 2014a], and dynamic equations on time scales [Baxter et al. 2016;
Lyons 2014b] with a host of interesting of boundary conditions.

Our main motivation for this paper is a recent result [Janson et al. 2014] in which
the authors sought an analogue of Peano’s theorem for a second order boundary
value problem with an integral boundary condition. The novelty we contribute to
the literature is employing an average value boundary condition, which, although
similar, is very fascinating in its own right.

At first, the average value condition might seem unusual. However, the idea of an
average value condition is quite useful when one is not concerned with what occurs
at a specific point but instead the average over a range of points. For example, one
may not need to specify the temperature at a certain time as long as the average
temperature is fixed over a range of time. We point the reader to [Chua 2010] and
the references therein for more discussion on average value conditions and more
general functional conditions.

The remainder of the paper is organized as follows. In Section 2, we introduce
the definition of a variational equation and place conditions upon the boundary
value problem. Section 3 is comprised of interesting and crucial results for our
research. We prove our main result and a corollary in Section 4.

2. Preliminaries

Throughout our work and previous research on the topic, a very important equation
emerges which we now define.

Definition 2.1. Given a solution y(x) of (1-1), we define the variational equation
along y(x) by

z′′ =
∂ f
∂u1

(x, y(x), y′(x))z+
∂ f
∂u2

(x, y(x), y′(x))z′, (2-1)

where u1 and u2 are the second and third components of f, respectively.

Next, we place five hypotheses upon the boundary value problem:

(i) f (x, u1, u2) : (a, b)×R2
→ R is continuous.

(ii) For i = 1, 2, the map ∂ f/∂ui (x, u1, u2) : (a, b)×R2
→ R is continuous.

(iii) Solutions of IVPs for (1-1) extend to (a, b).

(iv) Given a < x1 < c < d < b, if y(x1) = z(x1) and 1/(d − c)
∫ d

c y(x) dx =
1/(d − c)

∫ d
c z(x) dx , where y(x) and z(x) are solutions of (1-1), then, on

(a, b), we have y(x)≡ z(x).
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(v) Given a < x1 < c < d < b and a solution y(x) of (1-1), if u(x1) = 0 and
1/(d − c)

∫ d
c u(x) dx = 0, where u(x) is a solution of (2-1) along y(x), then,

on (a, b), we have u(x)≡ 0.

Note that even though (i) and (ii) may seem to be very strict conditions, we
remind the reader that since our aim is to compute derivatives of solutions to (1-1)
and (1-2), they are not unusual. Condition (iii) is not necessary but instead allows
us to suppress verbiage of finding an interval inside (a, b) where the solution of
the boundary value problem converges. Finally, conditions (iv) and (v) are required
to ensure the uniqueness of the solution and variational equation.

3. Background theorems

We now introduce two theorems that play a key role in the proof of the main result.
The first result is attributed to Peano and is in essence the type of result we seek for
(1-1) and (1-2). We direct the reader to Hartman’s book [1964] for more details.

Theorem 3.1 (Peano’s theorem). Assume that, with respect to (1-1), conditions
(i)–(iii) are satisfied. Let x0 ∈ (a, b) and y(x) := y(x, x0, c1, c2) denote the solution
of (1-1) satisfying the initial conditions y(x0)= c1 and y′(x0)= c2. Then:

(a) For i = 1, 2, ∂y/∂ci (x) exists on (a, b), and αi (x) := ∂y/∂ci (x) is the solution
of the variational equation (2-1) along y(x) satisfying the respective initial
conditions

α1(x0)= 1, α′1(x0)= 0, α2(x0)= 0, α′2(x0)= 1.

(b) ∂y/∂x0(x) exists on (a, b), and β(x) := ∂y/∂x0(x) is the solution of the
variational equation (2-1) along y(x) satisfying the initial conditions

β(x0)=−y′(x0), β ′(x0)=−y′′(x0).

(c) ∂y
∂x0

(x)=−y′(x0)
∂y
∂c1

(x)− y′′(x0)
∂y
∂c2

(x).

The next result permits the leap from IVPs to boundary value problems. The
proof requires mapping initial data to boundary data and an application of the
Brouwer invariance of domain theorem. For a typical proof, we refer the reader to
[Henderson et al. 2005].

Theorem 3.2 (continuous dependence for boundary value problems). Assume (i)–
(iv) are satisfied with respect to (1-1). Let y(x) be a solution of (1-1) on (a, b),
and let a < α < x1 < c < d < β < b and y1, y2 ∈ R be given. Then, there exists
a δ > 0 such that, for |x1 − t1| < δ, |c− ξ | < δ, |d −1| < δ, |y(x1)− y1| < δ,
and

∣∣1/(d − c)
∫ d

c y(x) dx − y2
∣∣< δ, there exists a unique solution yδ(x) of (1-1)

such that yδ(t1)= y1 and 1/(1− ξ)
∫ 1
ξ

yδ(x) dx = y2 and, for i = 1, 2, {y(i)δ (x)}
converges uniformly to y(i)(x) as δ→ 0 on [α, β].
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4. Main result

In light of the information in the previous sections, we now present the main result.
A reminder that the novel portion of our result is differentiation with respect to the
terms in the average value condition, namely c and d . We will only show the proof of
part (d) as (c) is similar. In fact, each part (a)–(d) employs the same idea for a proof.

Theorem 4.1. Assume conditions (i)–(v) are satisfied. Let y(x) be a solution
of (1-1) on (a, b). Let a < x1 < c < d < b and y1, y2 ∈ R be given so that
y(x)= y(x, x1, y1, y2, c, d), where

y(x1)= y1,
1

d−c

∫ d

c
y(x) dx = y2.

Then:

(a) For i = 1, 2, ui (x) := ∂y/∂yi (x) exists on (a, b) and is the solution of the
variational equation (2-1) along y(x) satisfying the respective boundary con-
ditions

u1(x1)= 1 and 1
d−c

∫ d

c
u1(x) dx = 0,

u2(x1)= 0 and 1
d−c

∫ d

c
u2(x) dx = 1.

(b) z1(x) := ∂y/∂x1(x) exists on (a, b) and is the solution of the variational
equation (2-1) along y(x) satisfying the respective boundary conditions

z1(x1)=−y′(x1) and 1
d−c

∫ d

c
z1(x) dx = 0.

(c) C(x) := ∂y/∂c(x) exists on (a, b) and is the solution of the variational equa-
tion (2-1) along y(x) satisfying the boundary conditions

C(x1)= 0 and 1
d−c

∫ d

c
C(x) dx =

y(c)− y2

d − c
.

(d) D(x) := ∂y/∂d(x) exists on (a, b) and is the solution of the variational equa-
tion (2-1) along y(x) satisfying the boundary conditions

D(x1)= 0 and 1
d−c

∫ d

c
D(x) dx =

y2− y(d)
d − c

.

Proof. Since only x and d are not fixed, we denote y(x, x1, y1, y2, c, d) by y(x, d).
Let δ > 0 be as in Theorem 3.2, 0< |h|< δ be given, and define the difference

quotient

Dh(x)=
1
h
[y(x, d + h)− y(x, d)].
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Our goal is to show that the limit of Dh exists, solves the variational equation,
and satisfies the correct boundary conditions. First, we investigate the boundary
conditions.

For every h 6= 0,

Dh(x1)=
1
h
[y(x1, d + h)− y(x1, d)] = 1

h
[y1− y1] = 0,

and by using the mean value theorem for integrals,

1
d−c

∫ d

c
Dh(x)dx =

1
d−c

∫ d

c

y(x,d+h)−y(x,d)
h

dx

=
1

d−c

∫ d

c

y(x,d+h)
h

dx−
1

d−c

∫ d

c

y(x,d)
h

dx

=
1

d−c

[∫ d+h

c

y(x,d+h)
h

dx+
∫ d

d+h

y(x,d+h)
h

dx
]
−

y2

h

=
1

d−c
(d+h)−c
(d+h)−c

∫ d+h

c

y(x,d+h)
h

dx+
y(e)(d−(d+h))

h(d−c)
−

y2

h

=
((d+h)−c)y2

h(d−c)
−

y(e)
d−c
−

y2(d−c)
h(d−c)

=
y2−y(e)

d−c

for some e between d and d + h.
Next, we view y(x) in terms of the solution of an IVP at x1 so that we may

employ Theorem 3.1.
To that end, let

µ= y′(x1, d) and ν = ν(h)= y′(x1, d + h)−µ.

Then, in terms of an IVP,

y(x)= u(x, x1, y1, µ),

and we have

Dh(x)=
1
h
[u(x, x1, y1, µ+ ν)− u(x, x1, y1, µ)].

By Theorem 3.1 and the mean value theorem, we obtain

Dh(x)=
1
h
[α2(x, u(x, x1, y1, µ+ ν̄))(µ+ ν−µ)],

where α2(x, u( · )) is the solution of (1-1) along u( · ) satisfying

α2(x1)= 0, α′2(x1)= 1.

Furthermore, µ+ ν̄ is between µ and µ+ ν. Simplifying,

Dh(x)=
ν

h
α2(x, u(x, x1, y1, µ+ ν̄)).
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Thus, to show limh→0 Dh(x) exists, it suffices to show limh→0 ν/h exists. By
condition (v), the fact that α2(x, u( · )) is a nontrivial solution of (2-1) along u( · )
and α2(x1, u( · ))= 0, we have

1
d−c

∫ d

c
α2(x, u( · )) dx 6= 0 =⇒

∫ d

c
α2(x, u( · )) dx 6= 0.

Recall,
1

d−c

∫ d

c
Dh(x) dx =

y2− y(e)
d − c

,

and so,
1

d−c

∫ d

c

ν

h
α2(x, u(x, x1, y1, µ+ ν̄)) dx =

y2− y(e)
d − c

.

Hence, we obtain

lim
h→0

ν

h
=
(y2− y(e))
(d − c)

1

1/(d − c)
∫ d

c α2(x, u( · )) dx
=

y2− y(e)∫ d
c α2(x, u( · )) dx

:=U.

Now let
D(x)= lim

h→0
Dh(x),

and note by construction of Dh(x),

D(x)=
∂y
∂d
(x).

Furthermore,
D(x)= lim

h→0
Dh(x)=Uα2(x, y(x)),

which is a solution of the variational equation (2-1) along y(x). In addition,

D(x1)= lim
h→0

Dh(x1)= lim
h→0

0= 0,

and

1
d−c

∫ d

c
D(x) dx= lim

h→0

[
1

d − c

∫ d

c
Dh(x) dx

]
= lim

h→0

y2− y(e)
d − c

=
y2− y(d)

d − c
. �

Finally, we present an analogue to (c) of Theorem 3.1 (Peano’s theorem).

Corollary 4.2. Under the assumptions of the previous theorem, we have

(a) z1(x)=−y′(x1)u1(x),

(b) C(x)=−
y2− y(c)
y2− y(d)

D(x),

(c) C(x)=
y(c)− y2

d − c
u2(x).
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