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We explore different variations of the Greenberg unrelated question RRT model
for a binary response. In one of the variations, we allow multiple independent
responses from each respondent. In another variation, we use inverse sampling. It
turns out that both of these variations produce more efficient models, a fact validated
by both theoretical comparisons as well as extensive computer simulations.

1. Introduction

Social desirability response bias (SDB) is a major concern in surveys involving
sensitive topics. One method that could help circumvent SDB is the randomized
response technique, introduced originally by Warner [1965] and then generalized
by other researchers such as Greenberg et al. [1969; 1971], Warner [1971], Klein
and Spady [1993], Gupta et al. [2002; 2013].

RRT models have been used extensively in field surveys. Abernathy et al. [1970]
used RRT models to obtain estimates of induced abortion rates in urban North
Carolina. From the open survey, it was noticed that female respondents would
have hesitated to respond truthfully to the sensitive question of induced abortions.
Striegel et al. [2006] used indirect questioning techniques to measure the prevalence
of doping among elite athletes. In order to study the effect of higher education in
favourable attitudes towards foreigners in Germany, Ostapczuck et al. [2009] used
two survey methods: direct questioning and RRT. The results obtained by these
two survey methods demonstrated great variation. Based upon the respondents
who used RRT, the results obtained showed a sharp decline in the estimates for
the proportion of xenophiles among both the less educated and highly educated.
Gill et al. [2013] conducted a survey which used an RRT model to estimate the risky
sexual behaviors among students at the University of North Carolina at Greensboro.
The binary question of interest was “Have you been told by a healthcare professional
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that you have a sexually transmitted disease?”, whereas the quantitative question
of interest was “How many sexual partners have you had in the last 12 months?”
The survey was conducted using three methods: RRT method, direct face-to-face
interviewing and anonymous check-box survey method. It was observed that the
optional unrelated question RRT method’s estimates were closer to the check-box
survey method’s estimates, and the lowest point estimate was obtained by face-
to-face interview method, which is expected as it provided the lowest anonymity.
More recently, Chhabra et al. [2016] used these models to estimate the prevalence
of sexual abuse of female college students by either a friend or an acquaintance.

In this paper, we discuss some variations of the Greenberg et al. (1969) unrelated
question RRT model. In one of the variations, we allow a respondent to provide
multiple independent responses. In another variation, we use the inverse sampling
technique.

2. Proposed models

2.1. Using multiple independent responses in the Greenberg model. Let us first
recall the Greenberg et al. (1969) unrelated question RRT model, which we will
henceforth refer to as the Greenberg model. Let πx be the unknown prevalence
of a sensitive attribute X in the population and πy be the known prevalence of
a nonsensitive attribute Y. A randomization device offers respondents a choice
between two questions, a sensitive question and an unrelated question with respective
probabilities p and 1− p. Let py be the probability of a “yes” response. Then

py = πx p+πy(1− p), (1)

which leads to the estimator

π̂G =
p̂y −πy(1− p)

p
, (2)

where p̂y is the sample proportion of “yes” responses.
The mean of the estimator in (2) is given by

E(π̂G)= πx ,

which signifies that π̂G is an unbiased estimator of πx .
The variance of the estimator in (2) is given by

Var(π̂G)=
py(1− py)

np2 . (3)

Now suppose we allow m independent responses from each respondent in a
sample of size n. Let Ti be the number of “yes” responses provided by the i-th
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respondent. Then

Ti ∼ Binomial(m, py) and E(Ti )= mpy .

If T =
(∑

Ti
)
/n, then we know that E(T )= mpy .

Estimating mpy by T, the estimator for πx in (2) can be refined to

π̂G M =
T /m− (1− p)πy

p
. (4)

Note that

E(π̂G M)=
E(T )/m− (1− p)πy

p
= πx . (5)

The variance of the estimator π̂G M is given by

Var(π̂G M)=
1

m2 p2 Var(T )=
1

m2 p2

mpy(1− py)

n
=

py(1− py)

nmp2 . (6)

2.2. Inverse sampling: waiting for the first “yes” response. Let each respondent
continue to use the Greenberg model repeatedly until a “yes” response is recorded.
Let Si be the total number of trials needed by the i-th respondent to get to the first
“yes” response. Then,

Si ∼ Geometric(py),

with E(Si )= 1/py and Var(Si )= (1− py)/p2
y , where py is defined in (1).

Also, let there be a sample of n respondents and S be the sample mean of the Si ’s.
Then 1/py can be estimated by S leading to p̂y = 1/S as an estimator of py . Using
first-order Taylor’s approximation of 1/S, we can write

1

S
≈

1
E(S)

+ (S− E(S))
(
−1

(E(S))2

)
, (7)

where E(S)= 1/py .
With this approximation,

E
(

1

S

)
≈

1
E(S)

= py . (8)

Then, using 1/S as an estimator of py , the estimator in (2) becomes

π̂G I =
1/S− (1− p)πy

p
. (9)

Note that

E(π̂G I )=
E(1/S)− (1− p)πy

p
≈

py − (1− p)πy

p
= πx

since E(1/S)≈ py , as argued in (8).
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Thus, we see that π̂G I is an unbiased estimator of πx , up to first order of
approximation.

From (9),

Var(π̂G I )=
1
p2 Var

(
1

S

)
. (10)

But

Var
(

1

S

)
≈ Var

(
1

E(S)
+ (S− E(S))

(
−

1

(E(S))2

))
= Var(−S p2

y)

= p4
y Var(S)= p4

y
Var(S)

n
= p4

y

(
1− py

np2
y

)
=

p2
y(1− py)

n
. (11)

Thus, we have

Var(π̂G I )≈
1
p2

( p2
y(1− py)

n

)
=

p2
y(1− py)

np2 . (12)

2.3. Inverse sampling: waiting for k “yes” responses. Let Si be the total num-
ber of trials needed to reach the k-th “yes” response. Then, we see that Si ∼

Negative Binomial(py, k) with

E(Si )=
k
py

(13)

and

Var(Si )=
k(1− py)

p2
y

. (14)

Also, let there be a sample of n respondents and S be the sample mean of the
n responses. Then

E(S)= E(Si )=
k
py
. (15)

Therefore, k/py can be estimated by S and p̂y = k/S can be used as an estimator
of py . Using first-order Taylor’s approximation,

1

S
=

1
E(S)

+ (S− E(S))
(
−

1
(E(S))2

)
, (16)

where E(S)= k/py .
Thus, our estimator for πx in (2) becomes

π̂G Ik =
k/S−πy(1− p)

p
. (17)
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From (17), we get the following for the mean of π̂x :

E(π̂G Ik )=
k E(1/S)−πy(1− p)

p

≈
k(py/k)−πy(1− p)

p
=

py −πy(1− p)
p

= πx . (18)

Thus, π̂G Ik is an unbiased estimator of πx , up to first order of approximation.
From (17), we also get,

Var(π̂G Ik )=
k2

p2 Var
(

1

S

)
. (19)

But,

Var
(

1

S

)
≈ Var

(
1

E(S)
+ (S− E(S))

(
−

1

(E(S))2

))
=

p4
y

k4 Var(S)

≈
p4

y

k4

(k(1− py)/p2
y

n

)
=

p4
y

k4

(
k(1− py)

p2
yn

)
=

p2
y(1− py)

k3n
. (20)

Thus, we have

Var(π̂G Ik )≈
k2

p2

( p2
y(1− py)

k3n

)
=

p2
y(1− py)

knp2 . (21)

3. Efficiency comparisons

In this section, we compare the efficiencies of the following Greenberg estimators:

π̂G = standard estimator,

π̂G M = estimator using m independent responses,

π̂G I = estimator using inverse sampling, waiting for the first “yes” response,

π̂G Ik = estimator using inverse sampling, waiting for the k-th “yes” response.

Since

Var(π̂G M)=
py(1− py)

nmp2 =
1
m

(
py(1− py)

np2

)
=

1
m

Var(π̂G), (22)

we have Var(π̂G M) < Var(π̂G) for m > 1. Thus, the Greenberg multiple response
model is more efficient than the single response model.

Since

Var(π̂G I )=
p2

y(1− py)

np2 = py

(
py(1− py)

np2

)
= py Var(π̂G), (23)
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we have Var(π̂G I ) <Var(π̂G) for py < 1. Thus, the inverse sampling model is more
efficient than the Greenberg model.

Since

Var(π̂G I )=
p2

y(1− py)

np2 = py

(
py(1− py)

np2

)
= mpy

(
py(1− py)

nmp2

)
= mpy Var(π̂G M), (24)

we have Var(π̂G I ) < Var(π̂G M) for mpy < 1. Thus, the inverse sampling model is
more efficient than the Greenberg multiple response model when m < 1/py .

Since

Var(π̂G I k )=
p2

y(1− py)

nkp2 =
1
k

( p2
y(1− py)

np2

)
=

1
k

Var(π̂G I ), (25)

we have Var(π̂G I k ) < Var(π̂G I ) for k > 1. Thus, the inverse sampling model that
waits for k “yes” responses is more efficient than the inverse sampling model that
waits for the first “yes” response.

We can summarize the above observations as follows:

Var(π̂G Ik ) <


Var(π̂G I ) if k > 1,
Var(π̂G M) if mpy < 1,
Var(π̂G) if m > 1.

(26)

4. Simulation results

All of the preceding theoretical formulas were tested empirically through computer
simulations. Table 1 below presents simulation results that were obtained using
SAS for a total of 10000 simulations with a sample size of 500, πx = 0.30, πy = 0.7
and p = 0.85. Note that the simulation results support the formulas for the means
and variances of various estimators, even when first-order approximation is used.

5. Conclusion

Based on Table 1, we can see that the regular Greenberg model has higher vari-
ance (theoretical and empirical) than the modified Greenberg model with multiple
responses as well as the models based on inverse sampling. Hence, the proposed
variants of the Greenberg model are more efficient; although greater effort is needed
in using these newer models. Given that the gain in efficiency with newer models
is quite substantial, the newer models are worth trying. However, in practice, we
need to keep m and k small, such as m ≤ 3 and k ≤ 3.
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π̂G V̂ar(π̂G) Var(π̂G)

0.3001781 0.000638371 0.000637785

m π̂G M V̂ar(π̂G M) Var(π̂G M)

1 0.3001781 0.000638371 0.000637785
2 0.3002513 0.000318622 0.000318893
3 0.3000282 0.000214628 0.000212595
4 0.3000342 0.000156454 0.000159446
5 0.3000586 0.000126368 0.000127557

π̂G I V̂ar(π̂G I ) Var(π̂G I )

0.3004394 0.000229236 0.000229603

k π̂G Ik V̂ar(π̂G I k ) Var(π̂G I k )

1 0.3004394 0.000229236 0.000229603
2 0.3002714 0.000112837 0.000114801
3 0.3000640 0.000076382 0.000076534
4 0.3000161 0.000058789 0.000057401
5 0.3002176 0.000046028 0.000045921

Table 1. Estimators of πx with corresponding empirical and theo-
retical variances.
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