0

 involve

 involve} a journal of mathematics

Variations of the Greenberg unrelated question binary model
David P. Suarez and Sat Gupta

Variations of the Greenberg unrelated question binary model

David P. Suarez and Sat Gupta
(Communicated by Kenneth S. Berenhaut)

Abstract

We explore different variations of the Greenberg unrelated question RRT model for a binary response. In one of the variations, we allow multiple independent responses from each respondent. In another variation, we use inverse sampling. It turns out that both of these variations produce more efficient models, a fact validated by both theoretical comparisons as well as extensive computer simulations.

1. Introduction

Social desirability response bias (SDB) is a major concern in surveys involving sensitive topics. One method that could help circumvent SDB is the randomized response technique, introduced originally by Warner [1965] and then generalized by other researchers such as Greenberg et al. [1969; 1971], Warner [1971], Klein and Spady [1993], Gupta et al. [2002; 2013].

RRT models have been used extensively in field surveys. Abernathy et al. [1970] used RRT models to obtain estimates of induced abortion rates in urban North Carolina. From the open survey, it was noticed that female respondents would have hesitated to respond truthfully to the sensitive question of induced abortions. Striegel et al. [2006] used indirect questioning techniques to measure the prevalence of doping among elite athletes. In order to study the effect of higher education in favourable attitudes towards foreigners in Germany, Ostapczuck et al. [2009] used two survey methods: direct questioning and RRT. The results obtained by these two survey methods demonstrated great variation. Based upon the respondents who used RRT, the results obtained showed a sharp decline in the estimates for the proportion of xenophiles among both the less educated and highly educated. Gill et al. [2013] conducted a survey which used an RRT model to estimate the risky sexual behaviors among students at the University of North Carolina at Greensboro. The binary question of interest was "Have you been told by a healthcare professional

Keywords: efficiency, inverse sampling, RRT models, simulations.
that you have a sexually transmitted disease?", whereas the quantitative question of interest was "How many sexual partners have you had in the last 12 months?" The survey was conducted using three methods: RRT method, direct face-to-face interviewing and anonymous check-box survey method. It was observed that the optional unrelated question RRT method's estimates were closer to the check-box survey method's estimates, and the lowest point estimate was obtained by face-to-face interview method, which is expected as it provided the lowest anonymity. More recently, Chhabra et al. [2016] used these models to estimate the prevalence of sexual abuse of female college students by either a friend or an acquaintance.

In this paper, we discuss some variations of the Greenberg et al. (1969) unrelated question RRT model. In one of the variations, we allow a respondent to provide multiple independent responses. In another variation, we use the inverse sampling technique.

2. Proposed models

2.1. Using multiple independent responses in the Greenberg model. Let us first recall the Greenberg et al. (1969) unrelated question RRT model, which we will henceforth refer to as the Greenberg model. Let π_{x} be the unknown prevalence of a sensitive attribute X in the population and π_{y} be the known prevalence of a nonsensitive attribute Y. A randomization device offers respondents a choice between two questions, a sensitive question and an unrelated question with respective probabilities p and $1-p$. Let p_{y} be the probability of a "yes" response. Then

$$
\begin{equation*}
p_{y}=\pi_{x} p+\pi_{y}(1-p) \tag{1}
\end{equation*}
$$

which leads to the estimator

$$
\begin{equation*}
\hat{\pi}_{G}=\frac{\hat{p}_{y}-\pi_{y}(1-p)}{p} \tag{2}
\end{equation*}
$$

where \hat{p}_{y} is the sample proportion of "yes" responses.
The mean of the estimator in (2) is given by

$$
E\left(\hat{\pi}_{G}\right)=\pi_{x},
$$

which signifies that $\hat{\pi}_{G}$ is an unbiased estimator of π_{x}.
The variance of the estimator in (2) is given by

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G}\right)=\frac{p_{y}\left(1-p_{y}\right)}{n p^{2}} \tag{3}
\end{equation*}
$$

Now suppose we allow m independent responses from each respondent in a sample of size n. Let T_{i} be the number of "yes" responses provided by the i-th
respondent. Then

$$
T_{i} \sim \operatorname{Binomial}\left(m, p_{y}\right) \quad \text { and } \quad E\left(T_{i}\right)=m p_{y}
$$

If $\bar{T}=\left(\sum T_{i}\right) / n$, then we know that $E(\bar{T})=m p_{y}$.
Estimating $m p_{y}$ by \bar{T}, the estimator for π_{x} in (2) can be refined to

$$
\begin{equation*}
\hat{\pi}_{G M}=\frac{\bar{T} / m-(1-p) \pi_{y}}{p} \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
E\left(\hat{\pi}_{G M}\right)=\frac{E(\bar{T}) / m-(1-p) \pi_{y}}{p}=\pi_{x} \tag{5}
\end{equation*}
$$

The variance of the estimator $\hat{\pi}_{G M}$ is given by

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G M}\right)=\frac{1}{m^{2} p^{2}} \operatorname{Var}(\bar{T})=\frac{1}{m^{2} p^{2}} \frac{m p_{y}\left(1-p_{y}\right)}{n}=\frac{p_{y}\left(1-p_{y}\right)}{n m p^{2}} \tag{6}
\end{equation*}
$$

2.2. Inverse sampling: waiting for the first "yes" response. Let each respondent continue to use the Greenberg model repeatedly until a "yes" response is recorded. Let S_{i} be the total number of trials needed by the i-th respondent to get to the first "yes" response. Then,

$$
S_{i} \sim \operatorname{Geometric}\left(p_{y}\right)
$$

with $E\left(S_{i}\right)=1 / p_{y}$ and $\operatorname{Var}\left(S_{i}\right)=\left(1-p_{y}\right) / p_{y}^{2}$, where p_{y} is defined in (1).
Also, let there be a sample of n respondents and \bar{S} be the sample mean of the S_{i} 's. Then $1 / p_{y}$ can be estimated by \bar{S} leading to $\hat{p}_{y}=1 / \bar{S}$ as an estimator of p_{y}. Using first-order Taylor's approximation of $1 / S$, we can write

$$
\begin{equation*}
\frac{1}{\bar{S}} \approx \frac{1}{E(S)}+(\bar{S}-E(S))\left(\frac{-1}{(E(S))^{2}}\right) \tag{7}
\end{equation*}
$$

where $E(S)=1 / p_{y}$.
With this approximation,

$$
\begin{equation*}
E\left(\frac{1}{\bar{S}}\right) \approx \frac{1}{E(S)}=p_{y} \tag{8}
\end{equation*}
$$

Then, using $1 / \bar{S}$ as an estimator of p_{y}, the estimator in (2) becomes

$$
\begin{equation*}
\hat{\pi}_{G I}=\frac{1 / \bar{S}-(1-p) \pi_{y}}{p} \tag{9}
\end{equation*}
$$

Note that

$$
E\left(\hat{\pi}_{G I}\right)=\frac{E(1 / \bar{S})-(1-p) \pi_{y}}{p} \approx \frac{p_{y}-(1-p) \pi_{y}}{p}=\pi_{x}
$$

since $E(1 / \bar{S}) \approx p_{y}$, as argued in (8).

Thus, we see that $\hat{\pi}_{G I}$ is an unbiased estimator of π_{x}, up to first order of approximation.

From (9),

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G I}\right)=\frac{1}{p^{2}} \operatorname{Var}\left(\frac{1}{\bar{S}}\right) \tag{10}
\end{equation*}
$$

But

$$
\begin{align*}
\operatorname{Var}\left(\frac{1}{\bar{S}}\right) & \approx \operatorname{Var}\left(\frac{1}{E(\bar{S})}+(\bar{S}-E(\bar{S}))\left(-\frac{1}{(E(\bar{S}))^{2}}\right)\right)=\operatorname{Var}\left(-\bar{S} p_{y}^{2}\right) \\
& =p_{y}^{4} \operatorname{Var}(\bar{S})=p_{y}^{4} \frac{\operatorname{Var}(S)}{n}=p_{y}^{4}\left(\frac{1-p_{y}}{n p_{y}^{2}}\right)=\frac{p_{y}^{2}\left(1-p_{y}\right)}{n} \tag{11}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G I}\right) \approx \frac{1}{p^{2}}\left(\frac{p_{y}^{2}\left(1-p_{y}\right)}{n}\right)=\frac{p_{y}^{2}\left(1-p_{y}\right)}{n p^{2}} \tag{12}
\end{equation*}
$$

2.3. Inverse sampling: waiting for \boldsymbol{k} "yes" responses. Let S_{i} be the total number of trials needed to reach the k-th "yes" response. Then, we see that $S_{i} \sim$ Negative $\operatorname{Binomial}\left(p_{y}, k\right)$ with

$$
\begin{equation*}
E\left(S_{i}\right)=\frac{k}{p_{y}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(S_{i}\right)=\frac{k\left(1-p_{y}\right)}{p_{y}^{2}} \tag{14}
\end{equation*}
$$

Also, let there be a sample of n respondents and \bar{S} be the sample mean of the n responses. Then

$$
\begin{equation*}
E(\bar{S})=E\left(S_{i}\right)=\frac{k}{p_{y}} \tag{15}
\end{equation*}
$$

Therefore, k / p_{y} can be estimated by \bar{S} and $\hat{p}_{y}=k / \bar{S}$ can be used as an estimator of p_{y}. Using first-order Taylor's approximation,

$$
\begin{equation*}
\frac{1}{\bar{S}}=\frac{1}{E(S)}+(\bar{S}-E(S))\left(-\frac{1}{(E(S))^{2}}\right) \tag{16}
\end{equation*}
$$

where $E(S)=k / p_{y}$.
Thus, our estimator for π_{x} in (2) becomes

$$
\begin{equation*}
\hat{\pi}_{G I_{k}}=\frac{k / \bar{S}-\pi_{y}(1-p)}{p} \tag{17}
\end{equation*}
$$

From (17), we get the following for the mean of $\hat{\pi}_{x}$:

$$
\begin{align*}
E\left(\hat{\pi}_{G I_{k}}\right) & =\frac{k E(1 / \bar{S})-\pi_{y}(1-p)}{p} \\
& \approx \frac{k\left(p_{y} / k\right)-\pi_{y}(1-p)}{p}=\frac{p_{y}-\pi_{y}(1-p)}{p}=\pi_{x} \tag{18}
\end{align*}
$$

Thus, $\hat{\pi}_{G I_{k}}$ is an unbiased estimator of π_{x}, up to first order of approximation.
From (17), we also get,

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G I_{k}}\right)=\frac{k^{2}}{p^{2}} \operatorname{Var}\left(\frac{1}{\bar{S}}\right) \tag{19}
\end{equation*}
$$

But,

$$
\begin{align*}
\operatorname{Var}\left(\frac{1}{\bar{S}}\right) & \approx \operatorname{Var}\left(\frac{1}{E(\bar{S})}+(\bar{S}-E(\bar{S}))\left(-\frac{1}{(E(\bar{S}))^{2}}\right)\right)=\frac{p_{y}^{4}}{k^{4}} \operatorname{Var}(\bar{S}) \\
& \approx \frac{p_{y}^{4}}{k^{4}}\left(\frac{k\left(1-p_{y}\right) / p_{y}^{2}}{n}\right)=\frac{p_{y}^{4}}{k^{4}}\left(\frac{k\left(1-p_{y}\right)}{p_{y}^{2} n}\right)=\frac{p_{y}^{2}\left(1-p_{y}\right)}{k^{3} n} . \tag{20}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G I_{k}}\right) \approx \frac{k^{2}}{p^{2}}\left(\frac{p_{y}^{2}\left(1-p_{y}\right)}{k^{3} n}\right)=\frac{p_{y}^{2}\left(1-p_{y}\right)}{k n p^{2}} \tag{21}
\end{equation*}
$$

3. Efficiency comparisons

In this section, we compare the efficiencies of the following Greenberg estimators:
$\hat{\pi}_{G}=$ standard estimator,
$\hat{\pi}_{G M}=$ estimator using m independent responses,
$\hat{\pi}_{G I}=$ estimator using inverse sampling, waiting for the first "yes" response,
$\hat{\pi}_{G I_{k}}=$ estimator using inverse sampling, waiting for the k-th "yes" response.
Since

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G M}\right)=\frac{p_{y}\left(1-p_{y}\right)}{n m p^{2}}=\frac{1}{m}\left(\frac{p_{y}\left(1-p_{y}\right)}{n p^{2}}\right)=\frac{1}{m} \operatorname{Var}\left(\hat{\pi}_{G}\right) \tag{22}
\end{equation*}
$$

we have $\operatorname{Var}\left(\hat{\pi}_{G M}\right)<\operatorname{Var}\left(\hat{\pi}_{G}\right)$ for $m>1$. Thus, the Greenberg multiple response model is more efficient than the single response model.

Since

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G I}\right)=\frac{p_{y}^{2}\left(1-p_{y}\right)}{n p^{2}}=p_{y}\left(\frac{p_{y}\left(1-p_{y}\right)}{n p^{2}}\right)=p_{y} \operatorname{Var}\left(\hat{\pi}_{G}\right) \tag{23}
\end{equation*}
$$

we have $\operatorname{Var}\left(\hat{\pi}_{G I}\right)<\operatorname{Var}\left(\hat{\pi}_{G}\right)$ for $p_{y}<1$. Thus, the inverse sampling model is more efficient than the Greenberg model.

Since

$$
\begin{align*}
\operatorname{Var}\left(\hat{\pi}_{G I}\right) & =\frac{p_{y}^{2}\left(1-p_{y}\right)}{n p^{2}}=p_{y}\left(\frac{p_{y}\left(1-p_{y}\right)}{n p^{2}}\right)=m p_{y}\left(\frac{p_{y}\left(1-p_{y}\right)}{n m p^{2}}\right) \\
& =m p_{y} \operatorname{Var}\left(\hat{\pi}_{G M}\right) \tag{24}
\end{align*}
$$

we have $\operatorname{Var}\left(\hat{\pi}_{G I}\right)<\operatorname{Var}\left(\hat{\pi}_{G M}\right)$ for $m p_{y}<1$. Thus, the inverse sampling model is more efficient than the Greenberg multiple response model when $m<1 / p_{y}$.

Since

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\pi}_{G I_{k}}\right)=\frac{p_{y}^{2}\left(1-p_{y}\right)}{n k p^{2}}=\frac{1}{k}\left(\frac{p_{y}^{2}\left(1-p_{y}\right)}{n p^{2}}\right)=\frac{1}{k} \operatorname{Var}\left(\hat{\pi}_{G I}\right) \tag{25}
\end{equation*}
$$

we have $\operatorname{Var}\left(\hat{\pi}_{G I_{k}}\right)<\operatorname{Var}\left(\hat{\pi}_{G I}\right)$ for $k>1$. Thus, the inverse sampling model that waits for k "yes" responses is more efficient than the inverse sampling model that waits for the first "yes" response.

We can summarize the above observations as follows:

$$
\operatorname{Var}\left(\hat{\pi}_{G I_{k}}\right)< \begin{cases}\operatorname{Var}\left(\hat{\pi}_{G I}\right) & \text { if } k>1 \tag{26}\\ \operatorname{Var}\left(\hat{\pi}_{G M}\right) & \text { if } m p_{y}<1 \\ \operatorname{Var}\left(\hat{\pi}_{G}\right) & \text { if } m>1\end{cases}
$$

4. Simulation results

All of the preceding theoretical formulas were tested empirically through computer simulations. Table 1 below presents simulation results that were obtained using SAS for a total of 10000 simulations with a sample size of $500, \pi_{x}=0.30, \pi_{y}=0.7$ and $p=0.85$. Note that the simulation results support the formulas for the means and variances of various estimators, even when first-order approximation is used.

5. Conclusion

Based on Table 1, we can see that the regular Greenberg model has higher variance (theoretical and empirical) than the modified Greenberg model with multiple responses as well as the models based on inverse sampling. Hence, the proposed variants of the Greenberg model are more efficient; although greater effort is needed in using these newer models. Given that the gain in efficiency with newer models is quite substantial, the newer models are worth trying. However, in practice, we need to keep m and k small, such as $m \leq 3$ and $k \leq 3$.

	$\hat{\pi}_{G}$	$\widehat{\operatorname{Var}}\left(\hat{\pi}_{G}\right)$	$\operatorname{Var}\left(\hat{\pi}_{G}\right)$
	0.3001781	0.000638371	0.000637785
m	$\hat{\pi}_{G M}$	$\widehat{\operatorname{Var}}\left(\hat{\pi}_{G M}\right)$	$\operatorname{Var}\left(\hat{\pi}_{G M}\right)$
1	0.3001781	0.000638371	0.000637785
2	0.3002513	0.000318622	0.000318893
3	0.3000282	0.000214628	0.000212595
4	0.3000342	0.000156454	0.000159446
5	0.3000586	0.000126368	0.000127557
	$\hat{\pi}_{G I}$	$\widehat{\operatorname{Var}}\left(\hat{\pi}_{G I}\right)$	$\operatorname{Var}\left(\hat{\pi}_{G I}\right)$
	0.3004394	0.000229236	0.000229603
k	$\hat{\pi}_{G I_{k}}$	$\widehat{\operatorname{Var}}\left(\hat{\pi}_{G I_{k}}\right)$	$\operatorname{Var}\left(\hat{\pi}_{G I_{k}}\right)$
1	0.3004394	0.000229236	0.000229603
2	0.3002714	0.000112837	0.000114801
3	0.3000640	0.000076382	0.000076534
4	0.3000161	0.000058789	0.000057401
5	0.3002176	0.000046028	0.000045921

Table 1. Estimators of π_{x} with corresponding empirical and theoretical variances.

References

[Abernathy et al. 1970] J. R. Abernathy, B. G. Greenberg, and D. G. Horvitz, "Estimates of induced abortion in urban North Carolina", Demography 7:1 (1970), 19-29.
[Chhabra et al. 2016] A. Chhabra, B. K. Dass, and S. Gupta, "Estimating prevalence of sexual abuse by an acquaintance with an optional unrelated question RRT model", North Carolina J. Math. Stat. 2 (2016), 1-9.
[Gill et al. 2013] T. S. Gill, A. Tuck, S. Gupta, M. Crowe, and J. Figueroa, "A field test of optional unrelated question randomized response models: estimates of risky sexual behaviors", pp. 135-146 in Topics from the 8th annual UNCG regional mathematics and statistics conference, edited by J. Rychtář et al., Springer Proceedings in Mathematics and Statistics 64, Springer, New York, 2013.
[Greenberg et al. 1969] B. G. Greenberg, A.-L. A. Abul-Ela, W. R. Simmons, and D. G. Horvitz, "The unrelated question randomized response model: theoretical framework", J. Amer. Statist. Assoc. 64:326 (1969), 520-539. MR
[Greenberg et al. 1971] B. G. Greenberg, R. R. Kuebler, J. R. Abernathy, and D. G. Horvitz, "Application of the randomized response technique in obtaining quantitative data", J. Amer. Statist. Assoc. 66:334 (1971), 243-250.
[Gupta et al. 2002] S. Gupta, B. Gupta, and S. Singh, "Estimation of sensitivity level of personal interview survey questions", J. Statist. Plann. Inference 100:2 (2002), 239-247. MR Zbl
[Gupta et al. 2013] S. Gupta, A. Tuck, T. S. Gill, and M. Crowe, "Optional unrelated-question randomized response models", Involve 6:4 (2013), 483-492. MR Zbl
[Klein and Spady 1993] R. W. Klein and R. H. Spady, "An efficient semiparametric estimator for binary response models", Econometrica 61:2 (1993), 387-421. MR Zbl
[Ostapczuk et al. 2009] M. Ostapczuk, J. Musch, and M. Moshagen, "A randomized-response investigation of the education effect in attitudes towards foreigners", Eur. J. Soc. Psychol. 39:6 (2009), 920-931.
[Striegel et al. 2006] H. Striegel, P. Simon, J. Hansel, A. M. Niess, and R. Ulrich, "Doping and drug use in elite sports: an analysis using the randomized response technique", Med. Sci. Sports Exerc. 38:5 (2006), art. id. S247.
[Warner 1965] S. L. Warner, "Randomized response: a survey technique for eliminating evasive answer bias", J. Amer. Statist. Assoc. 60:309 (1965), 63-69. Zbl
[Warner 1971] S. L. Warner, "The linear randomized response model", J. Amer. Statist. Assoc. 66:336 (1971), 884-888.

Received: 2016-08-09 Accepted: 2016-09-27
d_suarez@uncg.edu Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, United States
sngupta@uncg.edu
Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 / y e a r$ for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
-I mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

On halving-edges graphs
Tanya Khovanova and Dai Yang
Knot mosaic tabulation13

Hwa Jeong Lee, Lewis D. Ludwig, Joseph Paat and Amanda Peiffer

Extending hypothesis testing with persistent homology to three or more groups27

Christopher Cericola, Inga Johnson, Joshua Kiers, Mitchell Krock, Jordan Purdy and Johanna Torrence

Merging peg solitaire on graphs

 53John Engbers and Ryan Weber
Labeling crossed prisms with a condition at distance two 67

Matthew Beaudouin-Lafon, Serena Chen, Nathaniel Karst, Jessica Oehrlein and Denise Sakai Troxell
Normal forms of endomorphism-valued power series81

Christopher Keane and Szilárd Szabó
Continuous dependence and differentiating solutions of a second order boundary95
value problem with average value condition
Jeffrey W. Lyons, Samantha A. Major and Kaitlyn B. Seabrook
On uniform large-scale volume growth for the Carnot-Carathéodory metric on
unbounded model hypersurfaces in \mathbb{C}^{2}
Ethan Dlugie and Aaron Peterson
Variations of the Greenberg unrelated question binary model
David P. Suarez and Sat Gupta
Generalized exponential sums and the power of computers
Francis N. Castro, Oscar E. González and Luis A. Medina
Coincidences among skew stable and dual stable Grothendieck polynomials
Ethan Alwaise, Shuli Chen, Alexander Clifton, Rebecca Patrias, Rohil Prasad, Madeline Shinners and Albert Zheng
A probabilistic heuristic for counting components of functional graphs of 169 polynomials over finite fields

Elisa Bellah, Derek Garton, Erin Tannenbaum and
Noah Walton

