
inv lve
a journal of mathematics

msp

Coincidences among skew stable and
dual stable Grothendieck polynomials

Ethan Alwaise, Shuli Chen, Alexander Clifton, Rebecca Patrias,
Rohil Prasad, Madeline Shinners and Albert Zheng

2018 vol. 11, no. 1





msp
INVOLVE 11:1 (2018)

dx.doi.org/10.2140/involve.2018.11.143

Coincidences among skew stable and
dual stable Grothendieck polynomials

Ethan Alwaise, Shuli Chen, Alexander Clifton, Rebecca Patrias,
Rohil Prasad, Madeline Shinners and Albert Zheng

(Communicated by Jim Haglund)

The question of when two skew Young diagrams produce the same skew Schur
function has been well studied. We investigate the same question in the case of
stable Grothendieck polynomials, which are the K -theoretic analogues of the
Schur functions. We prove a necessary condition for two skew shapes to give rise
to the same dual stable Grothendieck polynomial. We also provide a necessary
and sufficient condition in the case where the two skew shapes are ribbons.

1. Introduction

It is well known that the Schur functions indexed by the set of partitions {sλ}
form a linear basis for the ring of symmetric functions over Z. However, for
general skew shapes λ/µ, the corresponding Schur functions are no longer linearly
independent. In fact, two different skew shapes can give rise to the same Schur
function. Such skew shapes are called Schur equivalent. There are trivial examples
of such equivalences — for instance 〈2〉 is clearly Schur-equivalent to 〈4〉/〈2〉 as
they yield the same shape positioned differently in space — and there are also many
nontrivial examples (note that we use angled brackets here to denote a partition
instead of parentheses to avoid ambiguity with later notation). For example, the
shapes shown below are Schur equivalent [Reiner et al. 2007].

It is natural to ask when these coincidences occur. One application of this type
of result involves the representation theory of GLN (C). In this setting, equality
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among skew Schur functions corresponds to equivalence of certain GLN (C) mod-
ules [Reiner et al. 2007]. Coincidences among skew Schur functions have been
studied by Billera–Thomas–van Willigenburg [Billera et al. 2006], Reiner–Shaw–
van Willigenburg [Reiner et al. 2007], and McNamara–van Willigenburg [2009],
among others.

The stable and dual stable Grothendieck polynomials are natural (K -theoretic)
analogues of Schur functions obtained as weighted generating functions over set-
valued tableaux and reverse plane partitions, respectively [Buch 2002; Lam and
Pylyavskyy 2007]. Roughly speaking, while the Schur functions give information
about the cohomology of the Grassmannian, these analogues give information about
the K -theory of the Grassmannian, where K -theory is a generalized cohomology
theory. Our work concerns the combinatorics of these objects, so knowledge of
cohomology theories is not necessary.

The question of coincidences among stable and dual stable Grothendieck poly-
nomials of skew shapes was previously unstudied. After a brief background in
symmetric functions, we focus on dual stable Grothendieck polynomials of ribbon
shape gα , where a ribbon is a connected Young diagram containing no 2×2 square.
For a ribbon shape α, let α∗ denote the shape obtained by 180-degree rotation. We
prove the following theorem.

Theorem 3.4. For ribbons α and β, we have gα = gβ if and only if α = β or
α = β∗.

We next prove two necessary conditions for dual stable Grothendieck equivalence
involving bottleneck numbers of shape λ/µ, bλ/µi .

Theorem 3.9. Suppose gλ/µ = gγ /ν . Then

bλ/µi + bλ/µn−i+1 = bγ /νi + bγ /νn−i+1

for i = 1, 2, . . . , n, where n is the number of columns in λ/µ.

Corollary 3.15. Suppose gλ/µ = gγ /ν . Then

n∑
i=1

(bλ/µi )2 =

n∑
i=1

(bγ /νi )2.

In Section 4, we prove the following result for stable Grothendieck polynomials,
where At is the transpose or conjugate of skew shape A.

Theorem 4.2. If G A = G B for skew shapes A and B, then G At = G B t .

We end by giving examples that show that stable Grothendieck equivalence does
not imply dual stable Grothendieck equivalence and vice versa and by highlighting
areas for future research.
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2. Preliminaries

Partitions and tableaux. A partition λ = 〈λ1, λ2, . . . , λk〉 of a positive integer n
is a weakly decreasing sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk > 0 whose
sum is n. The integer λi is called the i-th part of λ. We call n the size of λ,
denoted by |λ| = n. Throughout this document λ will refer to a partition. We may
visualize a partition λ using a Young diagram: a collection of left-justified boxes
where the i-th row from the top has λi boxes. For example, the Young diagram of
λ= 〈5, 2, 1, 1〉 is shown below.

A skew shape λ/µ is a pair of partitions λ= 〈λ1, . . . , λm〉 and µ= 〈µ1, . . . , µk〉

such that k ≤ m and µi ≤ λi for all i . We form the Young diagram of a skew
shape λ/µ by superimposing the Young diagrams of λ and µ and removing the
boxes that are contained in both. If µ is empty, λ/µ= λ is called a straight shape.
Given a skew shape λ/µ, we define its antipodal rotation (λ/µ)∗ as the skew shape
obtained by rotating the Young diagram of λ/µ by 180 degrees. For example,
the Young diagrams of the skew shapes 〈6, 3, 1〉/〈3, 1〉 and (〈6, 3, 1〉/〈3, 1〉)∗ are
shown below.

〈6, 3, 1〉/〈3, 1〉 = (〈6, 3, 1〉/〈3, 1〉)∗ =

A semistandard Young tableau of shape λ/µ is a filling of the boxes of the Young
diagram of λ/µ with positive integers such that the entries weakly increase from
left to right across rows and strictly increase from top to bottom down columns.
Two semistandard Young tableaux are shown below.

1 1 4 7
2 6
9

1 3 3
1 4 6

1 4

A set-valued tableau of shape λ/µ is a filling of the boxes of the Young diagram
of λ/µ with finite, nonempty sets of positive integers such that the entries weakly
increase from left to right across rows and strictly increase from top to bottom
down columns. For two sets of positive integers A and B, we say that A ≤ B if
max A≤min B and A< B if max A<min B. For a set-valued tableau T, we define
|T |, the size of T, to be the sum of the sizes of the sets appearing as entries in T.
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For example,

1, 2 2, 3 6 9

3 5

6 6, 7

is a set-valued tableau of shape λ= 〈4, 2, 2〉 and size 11.
A reverse plane partition (RPP) of shape λ/µ is a filling of the boxes of the

Young diagram of λ/µ with positive integers such that the entries weakly increase
both from left to right across rows and from top to bottom down columns. For
example,

1 1 2 7

1 2 2 8

1 2 2 2

is a reverse plane partition of shape 〈5, 5, 4〉/〈1, 1〉.

Symmetric functions. To each of the above fillings of a Young diagram we may
associate a monomial as follows. First, let T be a semistandard or set-valued tableau.
We associate a monomial xT given by

xT
=

∏
i∈N

xmi
i ,

where mi is the number of times the integer i appears as an entry in T. For
example, the semistandard Young tableaux shown above correspond to monomials
x2

1 x2x4x6x7x9 and x3
1 x2

3 x2
4 x6, respectively, while the set-valued tableau corresponds

to monomial x1x2
2 x2

3 x5x3
6 x7x9.

Given a reverse plane partition P , the associated monomial x P is given by

x P
=

∏
i∈N

xmi
i ,

where mi is the number of columns of P that contain the integer i as an entry. The
reverse plane partition shown above has monomial x3

1 x3
2 x7x8.

We can now define the Schur functions, the stable Grothendieck polynomials, and
the dual stable Grothendieck polynomials, which are all indexed by skew shapes.

We define the Schur function sλ/µ by

sλ/µ =
∑

T

xT ,

where we sum over all semistandard Young tableaux of shape λ/µ. Note that entries
may be any positive integer, so sλ/µ will be an infinite sum where each term has
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degree |λ/µ| = |λ| − |µ|. For example,

s〈1〉 = x1+ x2+ x3+ x4+ · · · ,

and

s〈2,1〉 = x2
1 x2+ x2

1 x3+ x2
2 x3+ · · ·+ 2x1x2x3+ 2x1x2x4+ · · ·+ 2x4x8x101+ · · · .

Though is it not obvious from this combinatorial definition, the Schur functions
are symmetric functions. In other words, each sλ/µ is unchanged after permuting any
finite subset of the infinite variable set {x1, x2, . . .}. Moreover, the Schur functions
indexed by straight shapes {sλ} form a basis for the ring of symmetric functions
over Z. These functions arise naturally in areas like algebraic combinatorics,
representation theory, and Schubert calculus. We refer the interested reader to
[Stanley 1999] for further reading on Schur functions and symmetric functions.

We next define the stable Grothendieck polynomial, the first of two K -theoretic
analogues of the Schur functions. We direct the interested reader to [Buch 2002]
for more on this topic and for an explanation of the connection to K -theory. The
stable Grothendieck polynomial Gλ/µ is defined by

Gλ/µ =

∑
T

(−1)|T |−|λ|xT ,

where we sum over all set-valued tableaux of shape λ/µ.
Note that semistandard tableaux are set-valued tableaux where each subset has

size one. It follows that each Gλ/µ will be a sum of sλ/µ plus terms of degree
greater than |λ/µ|. While each term in a Schur function has the same degree, each
stable Grothendieck polynomial is an infinite sum where terms have arbitrarily large
degree. For example,

G〈1〉 = x1+ x2+ · · ·− x1x2− x2x3+ · · ·+ x1x2x4x5x9+ · · · ,

and

G〈2,2〉/〈1〉 = x2
1 x2+2x1x2x3+· · ·−3x2

1 x2x3−8x2x5x9x114−· · ·+2x2
1 x2

2 x3+· · · .

The other natural K -theoretic analogue of the Schur function is the dual stable
Grothendieck polynomial. It is dual to the stable Grothendieck polynomial under
the Hall inner product. We refer the reader to [Lam and Pylyavskyy 2007] for more
background. We define the dual stable Grothendieck polynomial gλ/µ by

gλ/µ =
∑

P

x P ,

where the sum is over all reverse plane partitions of shape λ/µ.
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Again, note that semistandard Young tableaux are examples of reverse plane
partitions where the columns are strictly increasing. As a result, each dual stable
Grothendieck polynomial gλ/µ is a sum of the Schur function indexed by the same
shape sλ/µ and terms of degree strictly less than |λ/µ|. They are again infinite sums,
but now each term has degree at most |λ/µ| and at least the number of columns in
shape λ/µ. For example,

g〈2,1〉 = x2
1 x2+ 2x1x2x3+ · · ·+ x1x2+ x1x3+ · · ·+ x2

1 + x2
2 + · · · .

Though it is again not obvious from the definitions, both the stable and dual stable
Grothendieck polynomials are symmetric functions. We use this fact throughout
this paper.

We say that two skew shapes D1 and D2 are G-equivalent or g-equivalent if
G D1 = G D2 or gD1 = gD2 , respectively. Since any G D contains sD as its lowest
degree terms, G D1 =G D2 implies sD1 = sD2 . Similarly, gD1 = gD2 implies sD1 = sD2 .
Furthermore, it is straightforward to check that two skew shapes that are equivalent
in any of the three aforementioned senses must have the same number of rows and
columns. We will implicitly use this fact throughout.

It is an easy consequence of symmetry that all three notions of skew equivalence
are preserved under antipodal rotation, ∗. We provide a proof for stable Grothendieck
polynomials below.

Proposition 2.1. For any skew shape λ/µ, Gλ/µ = G(λ/µ)∗ and gλ/µ = g(λ/µ)∗ .

Proof. We prove the result for stable Grothendieck polynomials; the argument
for dual stable Grothendieck polynomials is similar. Let x I = x p1

i1
x p2

i2
. . . x pk

ik
be a

monomial with i1 < i2 < · · ·< ik . It suffices to show that the x I -coefficient of each
of the two polynomials is equal. To do so, we construct a bijection between set-
valued tableaux of shape λ/µ with weight monomial x I and set-valued tableaux of
shape (λ/µ)∗ with weight monomial x I ′ = x p1

ik+1−i1
x p2

ik+1−i2
. . . x pk

1 . This bijection,
which is in fact an involution, maps a tableau T to the tableau T ′ given by rotating
T and then replacing every entry j with ik + 1− j . An example is given below,
where ik = 5.

T =

1 2, 3

2 4

1 3

−→

3 1

4 2

3, 2 1

−→

2 4

1 3

2, 3 4

= T ′

Thus, the x I ′-coefficient of G(λ/µ)∗ is equal to the x I -coefficient of Gλ/µ. By
symmetry, the x I ′-coefficient of G(λ/µ)∗ is equal to the x I -coefficient of G(λ/µ)∗ , so
the x I -coefficients of Gλ/µ and G(λ/µ)∗ are equal, as desired. �
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Ribbon shapes. We will be interested in a special class of skew shapes known as
ribbons. A skew shape α is called a ribbon if it is connected and contains no 2× 2
rectangles. Being connected means that if there is more than one box, then each
box must share an edge with another box. The shape shown below on the left is
a ribbon while the shape in the middle and on the right are not. The shape in the
middle contains a 2× 2 rectangle and the shape on the right is not connected.

A composition of a positive integer n is an ordered list of positive integers
that sum to n. We will write compositions inside of parentheses. For example,
(2, 7, 4, 9) is a composition of 22. It is easy to see that ribbons of size n are in
bijection with compositions of n: to obtain a composition from a ribbon shape,
simply read the row sizes from bottom to top. This is clearly a bijection. For
this reason, we will denote a ribbon shape by the associated composition α. For
example, the we denote the ribbon shown above by (6, 5, 3).

Note that one can also construct a bijection between compositions and ribbons
using the sizes of the columns of α read from left to right. We also describe ribbon
shapes this way, and we use square brackets in place of parentheses to denote
this column reading. For example, the ribbon shown above may be written as
[1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1].

Notice that the antipodal rotation α∗ of α = (α1, α2, . . . , αk) is the ribbon
(αk, αk−1, . . . , α1). We refer to α∗ as the reverse ribbon of α. For a ribbon shape α,
we denote the corresponding Schur function by sα and refer to it as the ribbon
Schur function.

We now define several binary operations on the set of ribbons as in [Reiner et al.
2007]. Here we let α = (α1, . . . , αk) and β = (β1, . . . , βm) be ribbons. We define
the concatenation operation

α ·β = (α1, · · · , αk, β1, · · · , βm)

and the near concatenation operation

α�β = (α1, . . . , αk−1, αk +β1, β2, . . . , βm).

We let
α�n
= α� · · ·�α︸ ︷︷ ︸

n

.

We can combine the two concatenation operations to yield a third operation ◦,
defined by

α ◦β = β�α1 ·β�α2 · · ·β�αk .
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Example 2.2. Consider ribbons α = (3, 2) and β = (1, 2) shown below.

α = β =

Then α ·β and α�β are as follows:

α ·β = α�β =

The operation α ◦β replaces each square of α with a copy of β. The copies of β
are near-concatenated if the corresponding blocks of α are horizontally adjacent
and concatenated if the corresponding blocks of α are vertically adjacent.

α ◦β =

If a ribbon α can be written in the form α=β1◦· · ·◦β`, we call this a factorization
of α. A factorization α=β◦γ is called trivial if any of the following conditions hold:

(1) One of β or γ consists of a single square.

(2) Both β and γ consist of a single row.

(3) Both β and γ consist of a single column.

A factorization α = β1 ◦ · · · ◦β` is called irreducible if none of the factorizations
βi ◦ βi+1 are trivial and each βi has no nontrivial factorization. In [Billera et al.
2006], the authors prove that every ribbon α has a unique irreducible factorization.
They then prove the following theorem.

Theorem 2.3 [Billera et al. 2006]. Two ribbons α and β satisfy sα = sβ if and only
if α and β have irreducible factorizations

α = α1 ◦ · · · ◦αk and β = β1 ◦ · · · ◦βk,

where each βi is equal to either αi or α∗i .

In the next section, we use the above theorem to prove a necessary and sufficient
condition for two ribbons to be g-equivalent. We also provide a necessary condition
for two skew shapes to be g-equivalent.

3. Coincidences of dual stable Grothendieck polynomials

Ribbons. The main result of this section is that for two ribbons α and β, we have
gα = gβ if and only if α = β or α = β∗. We will obtain restrictions on α and β by
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writing the dual stable Grothendieck polynomials in terms of ribbon Schur functions
and comparing the coefficients in the resulting expansions.

The next proposition requires the following ordering on ribbons. For ribbons
α = [α1, . . . , αn] and γ = [γ1, . . . , γn] with the same number of columns, we write
γ ≤ α if γi ≤ αi for each i = 1, . . . , n.

Proposition 3.1. Let α = [α1, . . . , αn] be a ribbon. The dual stable Grothendieck
polynomial gα can be decomposed into a sum of ribbon Schur functions as

gα =
∑
γ≤α

( n∏
i=1

(
αi−1
αi−γi

))
sγ .

Proof. We define a map from reverse plane partitions of ribbon shape α to the
set of semistandard Young tableaux of shape γ where γ ≤ α. Given a reverse
plane partition T of shape α, map T to a semistandard Young tableau of shape
γ = [γ1, . . . , γn], where γi is the number of distinct entries in column i in T. Fill
column i of γ with the distinct entries of column i in T in increasing order. This
gives a semistandard Young tableau because columns are clearly strictly increasing
and rows will remain weakly increasing.

This map preserves the monomial corresponding to the reverse plane partition.
The map is also surjective, since any semistandard Young tableau of shape γ where
γ ≤ α is mapped to by any reverse plane partition with the same entries in each
column but with some entries copied.

It remains to show each semistandard Young tableau is mapped to by exactly∏(
αi−1
αi−γi

)
reverse plane partitions. Fix some semistandard Young tableau of shape

γ ≤ α. We construct all possible reverse plane partitions of α mapping to this
semistandard Young tableau column by column. Given column i of α, consider the
αi − 1 pairs of adjacent squares in the column. Since there are γi distinct entries in
the column and the entries are written in weakly increasing order, αi − γi of these
pairs must match. A size (αi − γi ) subset of the αi − 1 pairs of adjacent squares
gives a unique filling, where the given subset is the set of adjacent squares that
match. Thus the number of possible fillings for each column is

(
αi−1
αi−γi

)
, giving the

desired formula. �

Lemma 3.2. Let α = [α1, . . . , αn] and β = [β1, . . . , βn] be ribbons such that
gα = gβ . Then for all i = 1, . . . , n, we have αi +αn−i+1 = βi +βn−i+1.

Proof. We use Proposition 3.1 to write gα and gβ as a sum of ribbon Schur functions.
Note that all terms of degree n+ 1 in both sums are of the form sγ , where γ is a
ribbon (i, n− i + 1). Let A denote the set of all compositions of n+ 1 with weakly
decreasing parts (i.e., the set of partitions of n+ 1). It is shown in [Billera et al.
2006, Proposition 2.2] that the set {sα}α∈A forms a basis for 3n+1, the degree n+1
elements of the ring of symmetric functions. Then since each ribbon (i, n− i + 1)
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is Schur equivalent to (n− i + 1, i), it follows that the set of Schur functions of
such ribbons is linearly independent. Comparing coefficients in the respective sums
gives the desired equality. �

Lemma 3.3. Suppose α and β are ribbons such that gα = gβ , α 6= β, and there
exist ribbons σ , τ , and µ such that α = σ ◦µ and β = τ ◦µ. Then µ= µ∗.

Proof. Let µ = [µ1, . . . , µt ], α = [α1, . . . , αn], and β = [β1, . . . , βn]. By hy-
pothesis, we have that α = µ �1 · · · �b µ and β = µ �1 · · · �s µ, where each
�i and �i is one of the operations · or �. Thus each αi and βi is equal to one
of µ1, . . . , µt or µ1 + µt . Since α 6= β, let r be the minimal index such that
αr 6= βr . We see that {αr , βr } = {µt , µ1 + µt } because the first index where α
and β disagree corresponds to the first index i where �i 6= �i . By Lemma 3.2
it follows that if αi = βi then αn−i+1 = βn−i+1. Hence n− r + 1 is the maximal
index where α and β disagree. Note that by the same argument we similarly have
{αn−r+1, βn−r+1} = {µ1, µ1+µt }.

We have αr +αn−r+1 = βr +βn−r+1 by Lemma 3.2. Substituting the possible
values of αr 6= βr and αn−r+1 6= βn−r+1, we find that this equation is either

µ1+µt = 2(µ1+µt)

or
2µ1+µt = µ1+ 2µt .

The first equation is a contradiction. Thus the second equation holds, implying that
µ1 = µt . We will show by induction that µi = µt−i+1, completing the proof. We
have just shown the base case. For the general case, we have by Lemma 3.2,

αr+i +αn−r−i+1 = βr+i +βn−r−i+1.

We may assume without loss of generality that αr = µt . Then we have αn−r+1 =

µ1+µt , βr = µ1+µt and βn−r+1 = µ1. Therefore

αr+i = µi , βr+i = µi+1,

αn−r−i+1 = µt−i , βn−r−i+1 = µt−i+1.
We thus have

µi +µt−i = µi+1+µt−i+1.

By the inductive hypothesis µi = µt−i+1, so µi+1 = µt−i , finishing the proof. �

We are now ready for the main result of this section.

Theorem 3.4. For ribbons α and β, we have gα = gβ if and only if α = β or
α = β∗.

Proof. Suppose gα = gβ . Then sα = sβ . By Theorem 2.3, we have irreducible
factorizations

α = αk ◦ · · · ◦α1, β = βk ◦ · · · ◦β1.
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Here we reverse the indices for ease of induction. We prove by induction on r that
for r = 1, . . . , k we have

αr ◦ · · · ◦α1 ∈ {βr ◦ · · · ◦β1, (βr ◦ · · · ◦β1)
∗
}.

By Theorem 2.3 we have α1 ∈ {β1, β
∗

1 }, so the base case is satisfied. Now suppose
r ≥ 2. By the inductive hypothesis we have

αr−1 ◦ · · · ◦α1 ∈ {βr−1 ◦ · · · ◦β1, (βr−1 ◦ · · · ◦β1)
∗
}.

If α=β we are done, so we may assume otherwise. Then by lettingµ=αr−1◦· · ·◦α1

and applying Lemma 3.3 to α and either β or β∗, we have

βr−1 ◦ · · · ◦β1 = (βr−1 ◦ · · · ◦β1)
∗.

Since we also have that αr ∈ {βr , β
∗
r } we are done. �

Necessary condition: bottlenecks. We now move to the case of determining equal-
ity of dual stable Grothendieck polynomials of general skew shape. We introduce
the “bottleneck numbers” of a skew diagram and use these to construct closed-form
expressions for certain coefficients of its dual Grothendieck polynomial. We then
obtain a necessary condition for g-equivalence that generalizes Lemma 3.2.

For the following definition, we define an interior horizontal edge to be a
horizontal edge of a box in a Young diagram that lies neither at the top boundary
nor the bottom boundary of the Young diagram.

Definition 3.5. A bottleneck edge in a skew shape λ/µ is an interior horizontal
edge touching both the left and right boundaries of the shape. For example, the red
edges in Figure 1 are bottleneck edges. We let bλ/µi denote the number of bottleneck
edges in column i .

If the shape λ/µ has n columns and m rows, then the number of bottleneck edges
in column i for i = 1, 2, . . . , n is equivalently

bλ/µi =
∣∣{1≤ j ≤ m− 1 | µ j = i − 1, λ j+1 = i}

∣∣.
When the skew shape in question is clear, we will often suppress the superscript.

Bottleneck edges are related to the row overlap compositions defined in [Reiner
et al. 2007], which we now review.

Definition 3.6 [Reiner et al. 2007]. The k-row overlap composition r (k) of a skew
diagram λ/µwith m rows is (r (k)1 , . . . , r (k)m−k+1), where r (k)i is the number of columns
containing squares in all the rows i, i + 1, . . . , i + k− 1.

In particular, r (2) = (λ2−µ1, λ3−µ2, . . . , λm −µm−1). Thus bottleneck edges
correspond to 1s in the 2-row overlap composition. When the 2, 3, . . . ,m row
overlap compositions are written, they form a triangular array of nonnegative
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1
1 1

1
1
1

Figure 1. The skew shape 〈5, 5, 4, 2, 2, 2〉/〈4, 2, 1, 1, 1〉 has three
bottleneck edges in column 2 and one bottleneck edge in column 5.

integers as shown in Example 3.7. A column having i bottleneck edges corresponds
in the array to an equilateral triangle of 1s with side length i . In [Reiner et al. 2007],
it is proven that the k-overlap compositions of two Schur equivalent shapes are
permutations of each other for each k.

Example 3.7. Let λ/µ=〈5, 5, 4, 2, 2, 2〉/〈4, 2, 1, 1, 1〉. Then the number of bottle-
neck edges in each column is shown below. Here, (b1, b2, b3, b4, b5)= (0, 3, 0, 0, 1).
The row overlap compositions r (2), . . . , r (6) are

r (6) 0
r (5) 0 0
r (4) 0 0 1
r (3) 0 0 1 1
r (2) 1 2 1 1 1

Definition 3.8. We define a 1,2-RPP to be a reverse plane partition involving only
1s and 2s. A mixed column of a 1,2-RPP contains both 1s and 2s while an i-pure
column contains only i’s.

Note the 1,2-RPPs of a given shape are in bijection with lattice paths from the
upper right vertex of the shape to the lower left vertex of the shape. The corre-
sponding 1,2-RPP can be generated from such a lattice path by filling the squares
below the path with 2s and the squares above the path with 1s. Conversely, the
corresponding lattice path can be recovered from a 1,2-RPP by drawing horizontal
segments below the last 1 (if there are any) in a column and above the first 2 (if
there are any) in a column. Vertical segments can then be drawn to connect these
horizontal segments into a lattice path. Observe that mixed columns in the 1,2-RPP
correspond to interior horizontal edges in the lattice path.

Theorem 3.9. Let λ/µ be a skew shape with n columns, and suppose gλ/µ = gγ /ν .
Then

bλ/µi + bλ/µn−i+1 = bγ /νi + bγ /νn−i+1

for i = 1, 2, . . . , n.
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2 2
1 1 2
1 1 2
1 2

Figure 2. Inside the skew shape, 1,2-RPPs correspond to lattice
paths. Note the red interior horizontal edge corresponds to the
boundary between the 1s and 2s in the mixed column.

Note that γ /ν must also have n columns.

Proof. Fix a shape λ/µ with m rows and n columns. We will compute the coeffi-
cients for terms of the form xr

1 xn−r+1
2 in gλ/µ. Since gλ/µ is symmetric, we may

assume without loss of generality that r ≤ n− r + 1.
By the bijection between 1,2-RPPs and lattice paths given above, we may compute

the coefficient of xr
1 xn−r+1

2 by counting the number of lattice paths corresponding
to this monomial. Note that any such lattice path must have exactly one interior
horizontal edge. For each interior horizontal edge, we will count the number of
lattice paths corresponding to the monomial xr

1 xn−r+1
2 using the given edge. There

are four cases: the interior horizontal edge either touches neither boundary, only
the left boundary, only the right boundary, or both the left and right boundary (i.e.,
the edge is a bottleneck edge).

Fix an interior horizontal edge and suppose it lies in column i . Consider first the
case where the interior horizontal edge touches neither boundary. Suppose a lattice
path uses the given edge as its only interior horizontal edge. Then, as depicted in
Figure 3, the lattice path must travel the top boundary until column i and then drop
to the horizontal edge. Then from the left endpoint of the given edge the path must
drop to the bottom boundary and travel along the bottom boundary until reaching
the bottom left. Hence there is a unique lattice path that uses the given edge as its
only interior horizontal edge. Note that the corresponding 1,2-RPP has i columns
with 1s and n− i + 1 columns with 2s. Thus the lattice path gives the monomial
xr

1 xn−r+1
2 exactly when the edge lies in column r .

Next suppose the edge touches only the right boundary. Then as depicted in
Figure 4, there may be multiple lattice paths using the edge: from the top right,
the path may travel along the top boundary and drop down at any column before
reaching column i . Note that the lattice path can correspond to a 1,2-RPP with
between i and n columns containing 1s, and that the number of columns containing
1s determines the path. Similarly, if the edge touches only the left boundary, then
after reaching the edge the path can drop down to the bottom boundary at any
column before i . Hence the lattice path can correspond to a 1,2-RPP with between 1
and i columns containing 1s.
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Figure 3. Given an interior horizontal edge touching neither bound-
ary, there is a unique lattice path with a single interior edge using
the edge. If the edge lies in column i , the path contains i columns
with 1s and hence corresponds to the monomial x i

1xn−i+1
2 .

1 1 1
1 1

1 1
1 1
1 1
1
1 1

1 1 1
1 1
1 1

1

1 1 1
1 1

1 1
1 1
1 1
1
1 1

1 1 1
1 1
1 1

1

Figure 4. When the edge touches only the right boundary, a lattice
path using this edge can now drop down from the top boundary
at any column after column i . However, there is a unique path
corresponding to the monomial xr

1 xn−r+1
2 if i ≤ r and no possible

paths if i > r .

Thus we have identified three cases where there is at least one lattice path
corresponding to xr

1 xn−r+1
2 : the interior horizontal edge lies in one of column

1, . . . , r and touches the right boundary, the edge lies in column r and touches
neither boundary, or the edges lies in one of column r, . . . , n and touches the left
boundary. We will consider the fourth case, where the interior edge is a bottleneck
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Figure 5. There are m − 1 possible edges that can be chosen as
the interior horizontal edge for a lattice path. Unless the edge is a
bottleneck edge, each such edge corresponds to a unique lattice path.

edge, in the next paragraph. Fix two adjacent rows, and consider the set of horizontal
edges between these two rows. The columns that these edges lie in are either all
to the left of column r , contain column r , or all to the right of column r . In any
of these three cases there is exactly one valid edge, as depicted in Figure 5. That
is, between any two adjacent rows there is exactly one edge that corresponds to
at least one lattice path. Since there are m rows, this gives m − 1 possible valid
interior horizontal edges. Unless the edges are bottleneck edges, each possible edge
corresponds to a single lattice path. It remains to count the additional lattice paths
given by bottleneck edges.

Now suppose the interior horizontal edge is a bottleneck edge lying in column i .
Then there is flexibility on both sides: there can be between 0 and (i − 1) 1-pure
columns to the left of column i and between 0 and (n− i) 2-pure columns to the
right of column i . If there are x 1-pure columns to the left of column i , x may be
between 0 and max(i − 1, r − 1). If x 1-pure columns lie to the left, the remaining
(r − x − 1) 1-pure columns can be chosen to be to the right of column i (because
we assumed that r ≤ n− r + 1). Hence there are max(i, r) possible lattice paths
using a given bottleneck edge in column i .

We can now give a formula for the coefficient of xr
1 xn−r+1

2 . Let k =
⌈ 1

2 n
⌉

and

fi = bi + bn−i+1 for i = 1, 2, . . . , k− 1.

If n is even, let fk = bk + bn−k+1 and if n is odd, let fk = bk . There are always at
least m− 1 valid lattice paths. Each bottleneck edge in column i also contributes
an additional max(i, r)− 1 lattice paths. Hence the coefficient is

(m− 1)+ f2+ 2 f3+ 3 f4+ · · ·+ (r − 1) fr + (r − 1) fr+1+ · · ·+ (r − 1) fk .
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Let tr denote the coefficient of xr
1 xn−r+1

2 . Note that for 2 ≤ r ≤ k− 1, we have
2tr − tr−1− tr+1 = fr . Since any two g-equivalent shapes λ/µ and γ /ν must have
the same coefficients tr , it follows that for 2≤ r ≤ k− 1 the sums fr = br +bn−r+1

are the same for the two shapes. Also, since

tk = (m− 1)+ f2+ 2 f3+ 3 f4+ · · ·+ (k− 1) fk

is invariant for the two shapes, it then follows that fk is invariant for the two shapes.
By [Reiner et al. 2007, Corollary 8.11], we also have that b1 + · · · + bn =

f1+ · · ·+ fk is invariant, since the total number of bottleneck edges is the number
of 1s in the 2-row overlap composition. Hence f1 is invariant as well. �

Remark 3.10. For a ribbon [α1, α2, . . . , αn], we have bi =αi−1 for i=1, 2, . . . , n.
Hence Theorem 3.9 generalizes Lemma 3.2 as noted at the beginning of the section.

Example 3.11. It is noted in [Reiner et al. 2007] that the shapes

are Schur equivalent. But since b2+ b5 = 2 for the first shape and b2+ b5 = 1 for
the second shape, it follows that the two shapes are not g-equivalent.

Example 3.12. Having the same bottleneck edge sequence is not sufficient for two
skew shapes to be g-equivalent. By [Reiner et al. 2007, Theorem 7.6], the shapes D1

and D2 below are equivalent and have the same bottleneck edge sequence. However,
upon computation it is found that they are not g-equivalent.

D1 = D2 =

Since the bottleneck condition followed as a result of comparing terms of g with
degree n + 1 in two variables, it is natural to compute coefficients for terms of
higher degree or more variables. The following result shows that terms of degree
n + 1 and more than two variables do not impose additional constraints for two
skew shapes to be g-equivalent.

Proposition 3.13. Suppose two skew shapes λ/µ and γ /ν have the same number
of rows and the polynomial gλ/µ and gγ /ν have same coefficient for every term of
degree n + 1 with two variables. Then in fact these polynomials have the same
coefficient for any term of degree n+ 1.
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1
1 1
1 1
1 1
1 1

1 1
1

Figure 6. The remaining shape shaded in gray is a skew shape
with n− i1 columns, denoted (λ/µ)i1 .

Proof. Fix positive integers i1, i2, . . . , ik , where k ≥ 2 is some positive integer,
and let n =

(∑k
j=1 i j

)
− 1. Given a skew diagram λ/µ with n columns, we claim

that the coefficient of x i1
1 x i2

2 . . . x
ik
k can be expressed as a Z-linear combination

c0+c2b2+ . . . cn−1bn−1 of the bottleneck numbers bi . Furthermore, the constant c0

is known to be (k−1)(m−1), where m is the number of rows in λ/µ. We proceed
by induction on k.

The base case k=2 is given in the proof of Theorem 3.9, so we may assume k≥3.
We count the number of reverse plane partitions giving the monomial x i1

1 . . . x
ik
k .

Suppose first that every column containing a 1 is in fact 1-pure. Then the first
i1 columns must be filled with 1s. Note the remaining squares form a skew shape
with n− i1 columns, as depicted in Figure 6. We henceforth use (λ/µ)i1 to denote
the skew shape given by removing the first i1 columns of λ/µ. Note (λ/µ)i1 must
be filled with a reverse plane partition giving the monomial x i2

2 · · · x
ik
k .

Let m′ be the number of rows in the shape obtained by removing the first i1

columns from λ/µ. Then by induction the number of ways to fill in this shape is

(k− 2)(m′− 1)+ c′i1+2bi1+2+ · · ·+ c′n−1bn−1

for some integers c′i1+2, . . . , c′n−1.
The remaining case is when the reverse plane partition has a mixed column

containing a 1. Given such a reverse plane partition, consider the 1,2-RPP obtained
by replacing every entry greater than or equal to 2 with 2. From this 1,2-RPP,
we obtain a lattice path via our previously described bijection between 1,2-RPPs
and lattice paths. Since the reverse plane partition has a mixed column containing
a 1 and the total degree of the monomial x i1

1 x i2
2 . . . x

ik
k is n + 1, this lattice path

must have a single interior horizontal edge. As noted in Figure 5, there are m− 1
possibilities for the unique interior horizontal edge.
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Figure 7. Case 1: the lattice path uses an edge in columns 1, . . . , i1

touching the bottom boundary. Then the remaining shape is the
union of (λ/µ)i1 and a single column.

Consider first the interior horizontal edges in columns 1, . . . , i1 touching the
bottom boundary of λ/µ. This case is depicted in Figure 7. Note that there are
m − m′ such edges, since in total there are m − 1 edges touching the bottom
boundary and exactly m′ − 1 of them lie in columns i1 + 1, . . . , n. For each of
these m−m′ edges, there is only one possible lattice path. The path starts at the
top right, travels along the top boundary until it reaches the boundary between
column i1 and column i1 + 1, drops down to the bottom boundary, and travels
along the bottom boundary until the horizontal edge, traverses the edge, and then
immediately drops back down to the bottom boundary and traverses it until reaching
the bottom left. This lattice path determines which squares are filled with 1s. The
remaining shape is a disconnected skew shape where one component is a single
column and the other component is (λ/µ)i1 . There are (k− 1) fillings using this
lattice path, since the column below the edge may be filled with any of 2, . . . , k
and the remaining columns must fill (λ/µ)i1 in increasing order. Note that unless
the edge is a bottleneck edge, this is the unique lattice path using this edge.

The remaining m′ − 1 edges are those in column i1 not touching the bottom
boundary and the edges in column ii + 1, . . . , n touching the top boundary. We
similarly describe a possible lattice path for each of these edges. Suppose the edge
lies in column i . The path starts at the top right, travels along the top boundary until
the boundary between column i and i + 1, drops down to the edge and traverses it,
traverses the top boundary until the boundary between column i1−1 and column i1,
and drops down to the bottom boundary and traverses it until reaching the bottom
left. This path determines which squares are filled with 1s. The remaining squares
form a (possibly disconnected) skew shape, which must be filled with no mixed
columns. Note the remaining skew shape is connected if and only if the horizontal
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Figure 8. The remaining shape will have 1 or 2 components. The
number of fillings is determined by i2, . . . , ik and the number of
columns in the components.

edge was not a bottleneck edge. If the shape is connected, then filling the columns
in increasing order is the only possible filling. Otherwise, this is one possible filling
but there may be more.

Thus far, this gives us

(k− 2)(m′− 1)+ c′i1+2bi1+2+ · · ·+ c′n−1bn−1+ (k− 1)(m−m′)+ (m′− 1)

= (k− 1)(m− 1)+ c′i1+2bi1+2+ · · ·+ c′n−1bn−1

fillings. It remains to show each bottleneck edge in column i contributes a fixed
number of additional fillings depending only on i .

As noted in the proof of Theorem 3.9, each bottleneck edge in column i has
min(i, n− i + 1, i1) possible lattice paths using that edge. Each lattice path deter-
mines which squares will be filled with 1s. Note the remaining squares will form a
possibly disconnected skew shape with n− i1+ 1 columns (depicted in Figure 8),
which must then be filled with no mixed columns. There are a fixed number of
ways to fill this shape, which depends only on i2, . . . , ik and the number of columns
in the two components. The possible number of columns in each component is
in turn determined by which column the bottleneck edge is in; see Figure 9. This
finishes the proof of the claim.

Thus we have that the coefficient of x i1
1 . . . x

ik
k for any shape with n=

(∑k
j1 i j

)
−1

columns is (k− 1)(m− 1)+ c2b1+ · · ·+ cn−1bn−1 for some integers c2, . . . , cn−1.
Recall that every shape is equivalent to its 180-degree rotation, and note that a 180-
degree rotation reverses the bottleneck sequence b1, . . . , bn . Since there are shapes
with arbitrary sequences of b1, . . . , bn (for example, the ribbon [b1+1, . . . , bn+1]),
it follows that ci = cn−i+1 for i = 2, . . . , n − 1. Recall also that the proof of
Theorem 3.9 shows each sum bi + bn−i+1 for i = 2, . . . , n− 1 must be the same
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Figure 9. The possible numbers of columns in the components of the
remaining shape are determined by which column the bottleneck edge
is in. In this example, since the bottleneck edge is in column 2, the
components have 1 and n− i1+1 columns or 2 and n− i1+2 columns.

for any two shapes such that the terms in g of degree n+ 1 with two variables are
the same. Since the number of rows m must be the same as well, it follows that the
sum (k− 1)(m− 1)+ c2b1+ · · ·+ cn−1bn−1 must also be the same. �

Proposition 3.14. The coefficient of x2
1 xn

2 in gλ/µ is

(m
2

)
−

n∑
i=1

(bi+1
2

)
.

Proof. A 1,2-RPP giving the monomial x2
1 xn

2 must have no 1-pure columns, (n−2)
2-pure columns, and two mixed columns. Hence the corresponding lattice paths
have two interior horizontal edges. Consider the heights of the interior horizontal
edges. By an interior horizontal edge at height i we mean the edge lies between
row i and row i + 1. Observe that given the height of the two interior horizontal
edges, there is at most one lattice path using the heights; since there are no 1-pure
columns, the lattice path is completely determined by the heights chosen.

There are
(m

2

)
ways to choose a pair of heights from 1, . . . ,m− 1 (with possible

repetition). Since each pair of heights contributes either 1 or 0 lattice paths, the
desired coefficient is thus

(m
2

)
minus the number of pairs not giving a lattice path.

These are exactly the pairs of heights where the only interior horizontal edges at
those heights lie in a single column. These are precisely the pairs of bottleneck
edges from the same column. For each column i there are

(bi+1
2

)
ways to choose

two of the bottlenecks in column i (with possible repetition), giving the desired
formula. �
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Figure 10. The heights determine the filling, since the column
containing 1s more to the left must touch the left boundary of the
shape, and the other column must touch the left boundary of the
remaining shape.

By [Reiner et al. 2007, Corollary 8.11], the number of rows m and the sum
b1+· · ·+ bn are invariant under g-equivalence. Hence we attain the following as a
direct consequence of Proposition 3.14.

Corollary 3.15. Suppose gλ/µ = gγ /ν . Then
n∑

i=1

(bλ/µi )2 =

n∑
i=1

(bγ /νi )2.

Equivalently, the sums of the areas of the equilateral triangles of 1s in the row
overlap compositions r (2), . . . , r (m) are the same.

Remark 3.16. One can also count various other coefficients in the dual stable
Grothendieck polynomial. For terms of degree greater than n+ 1, it is useful to
define a generalization of bottleneck edges. To that end, for i = 1, . . . , λ1−w+ 1,
the number of width w bottlenecks in position i is

b(w)i =
∣∣{1≤ j ≤ m− 1 | µ j = i − 1, λ j+1 = i +w− 1}

∣∣.
For example, let λ/µ = (5, 5, 4, 2, 2, 2)/(4, 2, 1, 1, 1, 0). Then the number of
bottleneck edges of each width is given below. Note b(1) is just the previously
defined bottleneck edges.

b(5) 0
b(4) 0 0
b(3) 0 0 0
b(2) 0 0 1 0
b(1) 0 3 0 0 1
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We state the following propositions with proofs omitted for brevity.

Proposition 3.17. The coefficient of x3
1 xn−1

2 in gλ/µ is((m
2

)
−

n∑
i=1

(b(1)i +1
2

))
+

n−2∑
i=2

(b(2)i +1
2

)
+ (m− 2)

n−1∑
i=2

b(1)i

−

(
b(1)2 (m−µ′1− 1)+ b(1)n−1(λ

′

n − 1)+
n−2∑
i=2

b(1)i b(1)i+1

)
.

Proposition 3.18. The coefficient of x3
1 xn

2 in gλ/µ is(m+1
3

)
−

n∑
i=1

(
(m− 1)

(b(1)i +1
2

)
− 2

(b(1)i
3

)
− b(1)i (b(1)i − 1)

)

−

n−1∑
i=1

((b(2)i +2
3

)
+ (b(1)i + b(1)i+1)

(
b(2)i + 1

2

)
+ b(1)i b(2)i b(1)i+1

)
.

4. Transposition and stable Grothendieck polynomials

Given a Young diagram λ=〈λ1, λ2, . . . , λk〉, we define its transpose Young diagram
to be λt

= 〈λ′1, . . . , λ
′
s〉, where λ′i is the number of boxes in column i of λ. This

operation extends to skew diagrams by setting (λ/µ)t = λt/µt . For example,
〈5, 5, 2〉t = 〈3, 3, 2, 2, 2〉 and (〈4, 3, 1〉/〈2〉)t = 〈4, 3, 1〉t/〈2〉t = 〈3, 2, 2, 1〉/〈1, 1〉.

For skew shapes A and B it follows immediately from the Jacobi–Trudi identity
that sA = sB implies sAt = sB t . There is not yet a Jacobi–Trudi identity for stable
and dual stable Grothendieck polynomials, so we must use other methods.

With the goal of proving this result for stable Grothendieck polynomials, we
introduce the following definitions. We first define the symmetric function K̃λ/µ,
which was first introduced by Lam and Pylyavskyy [2007], by

K̃λ/µ =

∑
T

xT ,

where we sum over all set-valued tableaux of shape λ/µ. It is easy to see that Kλ/µ

is related to Gλ/µ by K̃λ/µ = (−1)|λ/µ|Gλ/µ(−x1,−x2, . . .) and that G A = G B if
and only if K̃ A = K̃ B for any skew shapes A and B.

We also introduce the symmetric function Jλ/µ [Lam and Pylyavskyy 2007]
using the following definition.

Definition 4.1. A weak set-valued tableau T of shape λ/ν is a filling of the boxes
of the skew shape λ/ν with finite, nonempty multisets of positive integers so that

(1) the largest number in each box is strictly smaller than the smallest number in
the box directly to the right of it, and
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(2) the largest number in each box is less than or equal to the smallest number in
the box directly below it.

In other words, we fill the boxes with multisets so that rows are strictly increasing
and columns are weakly increasing. For example, the filling of shape (3, 2, 1) shown
below gives a weak set-valued tableau, T, of weight xT

= x1x3
2 x3

3 x2
4 x5x6x7.

1, 2 3, 3 4, 6

2, 2, 3 4

5, 7

Let Jλ/ν =
∑

T xT be the weight generating function of weak set-valued tableaux T
of shape λ/ν. From [Patrias and Pylyavskyy 2016, Theorem 5.11], we know that

Jλ/µ(x1, x2, . . .)= (−1)|λ/µ|G(λ/µ)t

(
−

x1

x − x1
,−

x2

1− x2
, . . .

)
.

It follows from this that G A = G B if and only if JAt = JB t . In addition, [Lam and
Pylyavskyy 2007, Proposition 9.22] says that

ω(K̃λ/µ)= Jλ/µ,

where ω is the fundamental involution of symmetric functions that sends sλ to sλt .

Theorem 4.2. If G A = G B for skew shapes A and B, then G At = G B t .

Proof. If G A = G B , then K̃ A = K̃ B , and thus JA = ω(K̃ A) = ω(K̃ B) = JB . It
follows that G At = G B t . �

It remains open to prove this for the dual stable Grothendieck polynomials.
If conjugation does preserve g-equivalence, then we immediately have another
necessary condition on g-equivalence by taking a transposed version of Theorem 3.9.

Question 4.3. Suppose gA = gB . Does it follow that gAT = gBT ?

5. Relation between g-equivalence and G-equivalence

It is natural to ask whether gA= gB for two skew shapes A and B implies G A=G B ,
and vice versa. The following examples show that in general, neither equality implies
the other.

Example 5.1. Based on computer computation, the shapes
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are g-equivalent but not G-equivalent. For example, the coefficients of x6
1 x6

2 x3
3 x4

in G are −353 and −354, respectively.

Example 5.2. The shapes

are G-equivalent but not g-equivalent. One can show G-equivalence through
computer computation using the reverse lattice word expansion of Gλ/µ into stable
Grothendieck polynomials indexed by straight shapes found in [Buch 2002]. To
see the shapes are not g-equivalent, we notice that b4+ b5 = 1 for the shape on the
left and b4+ b5 = 0 for the shape on the right.

6. Future explorations

Coincidences of ribbon stable Grothendieck polynomials. The combinatorics of
ribbon stable Grothendieck polynomials seem to be more difficult than their dual
stable Grothendieck and Schur counterparts. However, we still conjecture that
coincidences among ribbon Grothendieck polynomials arise in precisely the same
way as the dual case. While one direction of the following statement is immediate,
the other direction has proven to be much more difficult.

Conjecture 6.1. Let α and β be ribbons. Then Gα = Gβ if and only if β = α or
β = α∗.

Ribbon staircases. A class of nontrivial skew equivalences is described in [Reiner
et al. 2007, Theorem 7.30]. A nesting is a word consisting of the symbols left
parenthesis “(”, right parenthesis “)”, dot “.”, and vertical slash “|”, where the
parentheses must be properly matched. Given a skew shape that may be decomposed
into a ribbon α in a certain manner as described in [Reiner et al. 2007], one may
obtain a corresponding nesting. Theorem 7.30 in the previous work states that
shapes that may be decomposed with the same ribbon α such that the nestings are
reverses of each other are Schur equivalent.

It is interesting to consider whether these equivalences hold for g and G as well.
For example, [Reiner et al. 2007, Corollary 7.32] states that sδn/µ = s(δn/µ)T for any
diagramµ contained in the staircase partition δn=〈n−1, n−2, . . . , 1〉. Computation
strongly suggests the same holds true for the Grothendieck polynomials as well.

Conjecture 6.2. Let µ be a diagram contained in the staircase partition δn =

〈n− 1, n− 2, . . . , 1〉. Then gδn/µ = g(δn/µ)T and Gδn/µ = G(δn/µ)T .

However, not all equivalences described by [Reiner et al. 2007, Theorem 7.30]
hold for Grothendieck polynomials.
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Question 6.3. For which ribbons α and nestings N are the corresponding shapes
g-equivalent or G-equivalent?
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