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Flynn and Garton (2014) bounded the average number of components of the
functional graphs of polynomials of fixed degree over a finite field. When the
fixed degree was large (relative to the size of the finite field), their lower bound
matched Kruskal’s asymptotic for random functional graphs. However, when the
fixed degree was small, they were unable to match Kruskal’s bound, since they
could not (Lagrange) interpolate cycles in functional graphs of length greater
than the fixed degree. In our work, we introduce a heuristic for approximating the
average number of such cycles of any length. This heuristic is, roughly, that for
sets of edges in a functional graph, the quality of being a cycle and the quality of
being interpolable are “uncorrelated enough”. We prove that this heuristic implies
that the average number of components of the functional graphs of polynomials
of fixed degree over a finite field is within a bounded constant of Kruskal’s bound.
We also analyze some numerical data comparing implications of this heuristic to
some component counts of functional graphs of polynomials over finite fields.

1. Introduction

A (discrete) dynamical system is a pair (S, f ) consisting of a set S and a map
f : S→ S. Given such a system, an element s ∈ S is a periodic point of the system
if there exists some k ∈Z>0 such that ( f ◦· · ·◦ f )(s)= s, where f appears k times;
the smallest k ∈ Z>0 with this property is called the period of s. The functional
graph of such a system, which we denote by 0(S, f ), is the directed graph whose
vertex set is S and whose edges are given by the relation s→ t if and only if f (s)= t .
A component of such a graph is a component of the underlying undirected graph.
For any n ∈ Z>0, let K(n) denote the average number of components of a random
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functional graph on a set of size n; that is, choose any set S with |S| = n and let

K(n)= n−n
∑

f :S→S

|{components of 0(S, f )}|.

Kruskal [1954] proved that

K(n)= 1
2 log n+ 1

2(log 2+C)+ o(1),

where C = .5772 . . . is Euler’s constant.
Recently, researchers have begun studying the analogous situation for polynomi-

als (and rational maps) over finite fields. More precisely, if q is a prime power and
f ∈ Fq [x], define 0(q, f )= 0(Fq , f ) (if there is no ambiguity, we will frequently

write 0f for 0(q, f )). Then we can ask the question: for d ∈ Z>0, what is the
average number of components of 0f , for f ranging over all polynomials over Fq

of a fixed degree? In particular, if we define

P(q, d) :=
1

|{ f ∈ Fq [x] | deg f = d}|
·

∑
f ∈Fq [x]

deg f=d

|{components of 0f }|,

then we can ask:

Question 1.1. For a prime power q and d ∈ Z>0, how does P(q, d) compare to
K(q)?

In this paper, we recast these questions in probabilistic terms. Specifically, in
Section 2, we define two families of random variables whose interaction determines
the answer to Question 1.1. Briefly, both families of random variables have sample
space a certain collection of subsets of Fq × Fq — one random variable determines
if a collection is a cycle, and the other returns how many polynomials of a given
degree pass though every point in a collection.

Our main result, Theorem 3.3, states that if these two families of random variables
satisfy a certain “noncorrelation hypothesis”, then

P(q, d)= K(q)+ O(1);

see Heuristic 3.1 for an exact formulation of this hypothesis. In Section 2 we define
and study these random variables; in particular, we compute their expected values.
Next, in Section 3 we use the results from Section 2 to prove the aforementioned
Theorem 3.3. Then, in Section 4, we provide numerical evidence in support of
Heuristic 3.1. Finally, these results carry over easily to the analogous question for
rational functions; these results make up Section 5.

Previous work of Flynn and the second author (see [Flynn and Garton 2014])
provided a partial answer to the question under discussion. In particular, they proved
that if d ≥

√
q, then the average number of components of functional graphs of
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polynomials (or rational maps) of degree d over Fq is bounded below by [Flynn
and Garton 2014, Corollary 2.3 and Theorem 3.6]

1
2 log q − 4.

To describe their method, which is the starting point for this paper, we require a
definition and an observation. If a map f has a periodic point s of period k, with orbit

s = s1
f
−→ · · ·

f
−→ sk

f
−→ s1,

then we refer to its orbit as a cycle (cycles of length k are called k-cycles); see [Vasiga
and Shallit 2004] for more exposition and illustrations of the cycle structure of
functional graphs. This definition is especially useful since it allows for the following
observation.

Observation 1.2. Components of 0f are in one-to-one correspondence with the
cycles of f .

To obtain their results, Flynn and the second author used Lagrange interpolation
to interpolate all the cycles of length smaller than the degree of the maps in question.
Since they could not interpolate longer cycles,

• they obtained only a lower bound for P(q, d), and

• their result required that d be at least
√

q .

See Remark 2.5 for a discussion on the relationship between the results of this
paper and the results of [Flynn and Garton 2014]; for example, they proved that the
random variables mentioned above are indeed uncorrelated in certain cases.

The cycle structure of functional graphs of polynomials over finite fields has
been studied extensively in certain cases. Vasiga and Shallit [2004] studied the
cycle structure of 0f for the cases f = x2 and f = x2

− 2, as did Rogers [1996]
for f = x2. For any m ∈ Z>0, the squaring function is also defined over Z/mZ;
Carlip and Mincheva [2008] addressed this situation for certain m. Similarly,
Chou and Shparlinski [2004] studied the cycle structure of repeated exponentiation
over finite fields of prime size. In the context of Pollard’s rho algorithm for
factoring integers (see [Pollard 1975]), researchers have provided copious data and
heuristic arguments supporting the claim that quadratic polynomials produce as
many “collisions” as random functions, but very little has been proven (see [Pollard
1975; Bach 1991]). For many other aspects of functional graphs besides their cycle
structure, see [Flajolet and Odlyzko 1990] for a study of about twenty characteristic
parameters of random mappings in various settings.

More recently, Burnette and Schmutz [2017] used the probabilistic point of view
to study a similar question to the one we address here. If f is a polynomial (or
rational function) over Fq , define the ultimate period of f to be the least common
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multiple of the cycle lengths of 0f . They found a lower bound for the average
ultimate period of polynomials (and rational functions) of fixed degree, whenever
the degree of the maps in question, and the size of the finite field, were large enough.

2. Two families of random variables

In this section, we define two families of random variables and compute their
expected values. The interaction of these random variables determines the answer
to Question 1.1; see Remark 2.4 and the remarks that follow for details about this
interaction. For the remainder of the section, fix a prime power q and positive
integer d. Now, for any set S and C ⊆ S× S, we say that C is consistent if and
only if it has the following property: if (a, b), (a, c) ∈ C , then b = c. Next, for any
k ∈ Z≥0, define

C(q, k)= {C ⊆ Fq × Fq | C is consistent and |C | = k}.

Any element of C ∈ C(q, k) defines a directed graph with vertex set Fq and edge
set {s→ t | (s, t) ∈ C}; let Xq,k : C(q, k)→ {0, 1} be the binary random variable
that detects whether or not an element of C(q, k) defines a graph that happens to
be a k-cycle. If f ∈ Fq [x] and C ∈ C(q, k), we say that f satisfies C if f (a)= b
for all (a, b) ∈ C . Next, we let

Yq,d,k : C(q, k)→ Z≥0

be the random variable defined by

Yq,d,k(C)= |{ f ∈ Fq [x] | deg f = d and f satisfies C}|.

Before computing the expected values of Xq,k and Yq,d,k , we first mention the
size of their sample space.

Remark 2.1. If k ∈ Z>0, then

|C(q, k)| = qk
(q

k

)
.

Proof. Since the elements of C(q, k) are consistent, there are
(q

k

)
possible choices

for the sets of abscissas for any choice of ordinates. Since the ordinates of elements
of C(q, k) are unrestricted, we conclude that |C(q, k)| =

(q
k

)
qk. �

Remark 2.2. If k ∈ {1, . . . , q}, then

E[Xq,k] =
q(q − 1) · · · (q − (k− 1))

k|C(q, k)|
=

(k− 1)!

qk .

Proof. Since

E[Xq,k] =
|{C ∈ C(q, k) | C is a cycle}|

|C(q, k)|
,
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we only need to count the number of elements in C(q, k) that are cycles. Since
there are

q(q − 1) · · · (q − (k− 1))

k

cycles of length k, we conclude by Remark 2.1. �

Proposition 2.3. If k ∈ {1, . . . , q}, then E[Yq,d,k] = qd+1−k
− qd .

Proof. Since∑
C∈C(q,k)

Yq,d,k(C)=
∑

C∈C(q,k)

|{ f ∈ Fq [x] | deg f = d and f satisfies C}|

=

∑
f ∈Fq [x]

deg f=d

|{C ∈ C(q, k) | C is satisfied by f }|

=

∑
f ∈Fq [x]

deg f=d

(q
k

)
= (qd+1

− qd)
(q

k

)
,

we see by Remark 2.1 that

E[Yq,d,k] = |C(q, k)|−1
·

∑
C∈C(q,k)

Yq,d,k(C)

=
(qd+1

− qd)
(q

k

)
qk
(q

k

) = qd+1−k
− qd−k . �

Remark 2.4. If we assume that Xq,d , Yq,d,k are uncorrelated for all k ∈ {1, . . . , q},
then K(q)= P(q, d).

Proof. Note that for any k ∈ {1, . . . , q},∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }| =
∑

C∈C(q,k)

Xq,kYq,d,k(C)

= |C(q, k)| E[Xq,kYq,d,k]

= |C(q, k)| E[Xq,k] E[Yq,d,k] by assumption.

Now we can apply Remarks 2.1 and 2.2, along with Proposition 2.3, to see that

P(q, d)=
|C(q, k)|

qd+1− qd ·

q∑
k=1

E[Xq,k] E[Yq,d,k]

=

q∑
k=1

q(q − 1) · · · (q − (k− 1))

kqk

= K(q) by [Kruskal 1954, Equation 16]. �
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Remark 2.5. Unfortunately, we must face up to the fact that the random variables
Xq,d , Yq,d,k are not uncorrelated for all k ∈ {1, . . . , q}. Indeed, if they were, then
the computations from Remark 2.4 would show that∑

f ∈Fq [x]
deg f=2

|{q-cycles in 0f }| =
q! (q − 1)

qq−2 .

But, if q > 3, then the quantity on the left is an integer, and the quantity on the
right is not! In Section 3, we propose a heuristic that is more reasonable than that
these two random variables are uncorrelated.

On the other hand, we should note that the variables Xq,d , Yq,d,k are indeed
uncorrelated whenever k ∈ {1, . . . , d}; this is the content of [Flynn and Garton
2014, Lemma 2.1].

3. The heuristic assumption and its implications

As mentioned in Remark 2.5, the variables Xq,d , Yq,d,k are not uncorrelated for all
k ∈ {1, . . . , q}. In this section, we propose a weaker heuristic for these variables,
one which nevertheless implies P(q, d)= K(q)+ O(1).

Heuristic 3.1. For any k ∈ Z>0 and any d ∈ Z≥0,

E[Xq,kYq,d,k] = E[Xq,k] E[Yq,d,k] + O(qd−2k).

Here, the implied constant depends only on d .

In fact, Heuristic 3.1 implies more than P(q, d) = K(q)+ O(1); we state the
stronger implication here as a conjecture after one more definition. If k ∈ Z>0 and
any d ∈ Z≥0, let

P(q, d, k) :=
1∣∣{ f ∈ Fq [x] | deg f = d}

∣∣ · ∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }|.

Conjecture 3.2. For any k ∈ Z>0 and any d ∈ Z≥0,

P(q, d, k)=
q(q − 1) · · · (q − (k− 1))

kqk + O(1/q),

where the implied constant depends only on d . In particular, P(q, d)=K(q)+O(1).

Theorem 3.3. If Heuristic 3.1 is true, then Conjecture 3.2 is true.

Proof. As in the proof of Remark 2.4, Heuristic 3.1 immediately implies that∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }| = |C(q, k)|
(
E[Xq,k] E[Yq,d,k] + O(qd−2k)

)
.
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Next, we can apply Remarks 2.1 and 2.2, along with Proposition 2.3, to see that∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }|

=
q(q − 1) · · · (q − (k− 1))

kqk (qd+1
− qd)+

(q
k

)
qk
· O(qd−2k)

=
q(q − 1) · · · (q − (k− 1))

kqk (qd+1
− qd)+ O(qd).

To conclude, note that

P(q, d, k)=
1

qd+1− qd ·
∑

f ∈Fq [x]
deg f=d

|{k-cycles in 0f }|

=
q(q − 1) · · · (q − (k− 1))

kqk + O(1/q). �

Remark 3.4. The available numerical data suggests that the implied constants in
Heuristic 3.1 could be quite small. For example, the constant for d = 2 seems as if
it could be as small as 60 (see Section 4 for more details on the available data).

4. Numerical evidence

In constructing numerical evidence for Conjecture 3.2, we computed the number of
cycles of every length for all polynomials in Fq [x]

• of degree 2, up to q = 241, and

• of degree 3 up to q = 73.

For the remainder of the section, we will address only the quadratic case; a similar
analysis works for the cubic case.

Of course, if we let Q= {q ∈ Z | q is a prime power, and 2≤ q ≤ 241}, then for
any k ∈ {1, . . . , 241}, there is certainly a constant — let’s call it Ck — for which∣∣∣∣P(q, 2, k)−

q(q − 1) · · · (q − (k− 1))

kqk

∣∣∣∣≤ Ck · 1/q for all q ∈Q.

There are two obvious questions to ask about these constants, which we will address
in turn:

• For any particular k, how plausible is it that∣∣∣∣P(q, 2, k)−
q(q − 1) · · · (q − (k− 1))

kqk

∣∣∣∣≤ Ck · 1/q

for all prime powers q?
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• Even if

P(q, 2, k)=
q(q − 1) · · · (q − (k− 1))

kqk + O(1/q)

for all k ∈ Z>0, does it seem likely that the implied constants are bounded, as
asserted by Conjecture 3.2?

To answer the former question, we could plot, for various k,

P(q, 2, k) and
q(q − 1) · · · (q − (k− 1))

kqk ±Ck · 1/q.

But, as these numbers quickly become minuscule, it is convenient to let

P̂(q, d, k)=
∣∣{ f ∈ Fq [x] | deg f = d}

∣∣ ·P(q, d, k)= (qd+1
− qd) ·P(q, d, k);

that is, P̂(q, d, k) is the number of k-cycles appearing in functional graphs of
polynomials in Fq [x] of degree d . Conjecture 3.2 predicts that this quantity is about

(qd+1
− qd) ·

q(q − 1) · · · (q − (k− 1))

kqk ,

which we will denote by G(q, d, k). By the definition of Ck , we know that for all
q ∈Q and k ∈ 1, 2, . . . , 241,

|P̂(q, 2, k)−G(q, 2, k)| ≤ Ck(q2
− q).

As two examples of the data we have compiled, we include plots of P̂(q, 2, k) and
G(q, 2, k)±Ck(q2

− q) for k = 6, 10, where C6 = 59 and C10 = 14; see Figure 1.
These graphs are typical for k ∈ {1, . . . , 241}.

To address the second question mentioned above, we plot the various values of
Ck in the hopes that they appear to be bounded. This graph is shown in Figure 2.

We should point out that the small values of Ck in Figure 2 are a result of the
fact that in our data, we simply found no k-cycles at all for all k > 82. So from
k = 82 onward, the graph is simply plotting

241!
(241− k)! · k · 241k−1 .

This begs two questions:

• As cycles of larger length arise for larger values of q, will the size of Ck

increase?

• Conversely, if these cycles do not arise promptly, will this increase the size
of Ck?
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Figure 1. Plots of P̂(q, 2, k) and G(q, 2, k)±Ck(q2
−q) for k=6, 10.

Top: C6 ≈ 59.06; bottom: C10 ≈ 14.86.

Of course, we cannot answer these questions, but note that for the particular value
of k = 82, the quadratic polynomials we tested yielded exactly 27722 82-cycles
(all appearing when q = 167), whereas for k ∈ {70, . . . , 81}, they yielded exactly
zero. That is, this is an example of a cycle of larger length arising without affecting
the maximum of the Ck .

As for the second question, the lack of k-cycles will not cause Ck to rise above 60
as long as the first k-cycle appears in a graph for a finite field of size less than 60k.
For example, the smallest q for which 62-cycles appear is q = 128 (which is well
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k

10

20

30

40

50

60

Ck

Figure 2. Various values of Ck .
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under 60 ·62). The smallest cycle length that does not appear for q ∈Q is k = 43; if
a 43-cycle does not appear by the time q = 2579, then C43 will rise above 60. It is
unfortunately beyond our abilities to determine if a 43-cycle appears by this time.

5. Rational functions

In this section, we briefly mention the results for rational functions, which are
analogous to those for polynomials. For any prime power q and d ∈ Z≥0, let

R(q, d) :=
1

|{ f ∈ P1(Fq)[x] | deg ( f )= d}|
·

∑
f ∈P1(Fq )[x]
deg ( f )=d

|{cycles in 0(P1(Fq), f )}|.

If k ∈ Z>0, we can define R(q, d, k) in exactly the same way as P(q, d, k).
To define our new families of random variables, for any prime power q and

k ∈ Z>0, let

T(q, k)= {T ⊆ P1(Fq)×P1(Fq) | T is consistent and |T | = k},

and Vq,k : T(q, k)→ {0, 1} be the binary random variable that detects whether or
not an element of T(q, k) is a k-cycle. If d ∈ Z≥0, let

Wq,d,k : T(q, k)→ Z≥0

be the random variable defined by

Wq,d,k(T )= |{ f ∈ Fq(x) | deg f = d and f satisfies T }|.

The rational function analogs of Remark 2.1, Remark 2.2, Proposition 2.3 are
proved as above, leading to the following conjecture, which again follows from the
heuristic that the random variables Vq,k, Wq,d,k are “uncorrelated enough”.

Conjecture 5.1. For any k ∈ Z>0 and any d ∈ Z≥0,

R(q, d, k)=
(q + 1)q · · · (q − (k− 2))

k(q + 1)k + O(1/q),

where the implied constant depends only on d . In particular, R(q, d)=K(q+1)+

O(1).

Heuristic 5.2. If k ∈ {1, . . . , q}, and d ∈ Z≥0, then

E[Vq,k Wq,d,k] = E[Vq,k] E[Wq,d,k] + O(q2d−2k).

Here, the implied constant depends only on d .

Theorem 5.3. If Heuristic 5.2 is true, then Conjecture 5.1 is true.

Proof. Similar to the proof of Theorem 3.3. �
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