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Finding cycles in the k-th power digraphs
over the integers modulo a prime

Greg Dresden and Wenda Tu

(Communicated by Kenneth S. Berenhaut)

For p prime and k ≥ 2, let us define G(k)
p to be the digraph whose set of vertices is

{0, 1, 2, . . . , p−1} such that there is a directed edge from a vertex a to a vertex b
if ak
≡ b mod p. We find a new way to decide if there is a cycle of a given length

in a given graph G(k)
p .

Introduction

Let k ≥ 2 be an integer and let p be prime. Let us define G(k)
p to be the digraph

whose set of vertices is {0, 1, 2, . . . , p− 1} such that there is a directed edge from
a vertex a to a vertex b if ak

≡ b mod p.
This paper extends the results given in [Somer and Křížek 2004] (which provides

a way to determine whether there is a cycle of length t in a given graph G(2)
p ) and

[Wilson 1998] (which considers G(k)
p ; see also [Somer and Křížek 2009]). In this

paper, we provide our own way to determine the existence of a cycle of given length
in G(k)

p . First, we examine the existence of length-t cycles where t is prime. Later
on, we explore the case of cycles of length u where u is composite, and we conclude
with a study of digraphs that admit some cycle lengths but do not allow others.

Now, we will introduce one of the key theorems of this paper, mentioned in
[Niven, Zuckerman and Montgomery 1991]. Here, φ stands for the Euler totient
function.

Theorem 1. Suppose m = 1, 2, 4, pα or 2pα, where p is an odd prime and α
is a positive integer. If gcd(a,m) = 1 then the congruence xn

≡ a mod m has
gcd(n, φ(m)) solutions or no solution, according to whether

aφ(m)/ gcd(n,φ(m))
≡ 1 mod m

or not.

MSC2010: primary 05C20; secondary 11R04.
Keywords: digraphs, cycles, graph theory, number theory.
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On the existence of length-t cycles given t prime,
and length-u cycles given u ≥ 2

Based on the theorem in our Introduction, we have the following corollaries, which
are crucial in determining the existence of a length-t cycle for t prime.

Corollary 2. Let p be a prime. The congruence xn
≡ 1 mod p has gcd(n, p− 1)

solutions.

Corollary 3. Let p be a prime and let k ≥ 2. The subgraph G(k)
p \{0} has gcd(k−1,

p− 1) cycles of length 1.

Since we are curious about the existence of length-t cycles in G(k)
p given t prime,

we want to know if the following equations have any solutions:

xkt
≡ x mod p, xk

6≡ x mod p.

By our two corollaries, the above equations are equivalent to

gcd(kt
− 1, p− 1) > gcd(k− 1, p− 1).

Similarly, since we are also curious about the existence of length-u cycles in G(k)
p

given u composite, we want to know if the following equations have any solutions
(here, ui runs over the proper divisors of u):

xku
≡ x mod p, xku1

6≡ x mod p, xku2
6≡ x mod p, · · · .

Once again, our corollaries tell us that the above equations are equivalent to

gcd(ku
− 1, p− 1) > gcd(kui − 1, p− 1)

for ui running over all proper divisors of u. So, we have the following results:

Theorem 4. Given u ≥ 2, k ≥ 2, and p prime, there exists a length-u cycle in G(k)
p

if and only if gcd(ku
−1, p−1)> gcd(ku′

−1, p−1) for all proper divisors u′ of u.

Remark. Theorem 4 follows from Theorem 5.6 of [Somer and Křížek 2009], which
also gives formulas for how many cycles exist of a given length; if t is prime, for
example, then the number of length-t cycles is

gcd(kt
− 1, p− 1)− gcd(k− 1, p− 1)

t
.

The following theorem, which is a result of [Lucheta, Miller and Reiter 1996,
pp. 230–231], is also a special case of a more general result in [Wilson 1998,
pp. 232–233]. Another version with k = 2 appeared in [Somer and Křížek 2004,
Theorem 3.3].

Theorem 5 (Lucheta, Miller, Reiter). Let p be a prime. There exists a cycle
of length u in G(k)

p if and only if u = ordd k for some divisor d of p − 1 with
gcd(d, k)= 1, where ordd k denotes the multiplicative order of k modulo d.
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Here are four corollaries following from Theorems 4 and 5 that give us precise
information on what cycle lengths are possible (or impossible) in G(k)

p for various
primes p and powers k:

Corollary 6. Fix a prime t. Given any integer k ≥ 2, there are infinitely many
primes p such that G(k)

p has a length-t cycle. Moreover, G(k)
p contains a 1-cycle for

all primes p.

Corollary 7. Fix an integer u ≥ 2. Given any integer k ≥ 2, there are infinitely
many primes p such that G(k)

p does not have a length-u cycle.

Corollary 8. Fix an integer u ≥ 2. Let p= 22n
+1 be a Fermat prime, where n ≥ 0.

The possible cycle lengths in G(k)
p for p a Fermat prime are very limited:

(1) There are never any odd-length cycles (aside from the length-1 cycles).

(2) If k is even, there are no cycles at all (aside from the length-1 cycles) in G(k)
p .

(3) If k is odd and u is even, G(k)
p contains a length-u cycle if and only if

u | ordp−1 k. Moreover, ordp−1 k | 22n
−2 if n ≥ 2 and ordp−1 k | 22n

−1 if n =
0 or 1.

Corollary 9. Fix an integer u ≥ 2, and let p be prime. Then, there are infinitely
many integers k such that G(k)

p contains no length-u cycle.

Proof of Corollary 6. Since gcd
(
1,
∑t−1

i=0 ki
)
= 1, by Dirichlet’s theorem on the

infinitude of primes in arithmetic progressions we know that there are infinitely
many primes p such that p ≡ 1 mod

∑t−1
i=0 ki. Now given such a prime p, we have

gcd
(
(k− 1)

t−1∑
i=0

ki , p− 1
)
≥

t−1∑
i=0

ki or gcd(kt
− 1, p− 1)≥

t−1∑
i=0

ki.

On the other hand, gcd(k − 1, p − 1) ≤ k − 1. Since it is not hard to see that
k − 1 <

∑t−1
i=0 ki, we have gcd(kt

− 1, p − 1) > gcd(k − 1, p − 1). Thus, by
Theorem 4, we can conclude that there are infinitely many primes p such that G(k)

p

has a length-t cycle, as desired. Finally, the last assertion of our statement holds,
since both 0 and 1 are clearly vertices in 1-cycles. �

Proof of Corollary 7. Let q1, q2, . . . be the odd primes in order of size, and let qr

be the largest prime less than or equal to ku ; since both u and k are at least 2, then
qr is at least 3. By the Chinese remainder theorem and Dirichlet’s theorem, there
exist infinitely many primes p such that

p ≡ 3 mod 4, p ≡ 2 mod q1q2 · · · qr .

The first equivalence implies 2 | p− 1 but 4- p− 1, while the second implies p− 1
is relatively prime to q1q2 · · · qr . Now suppose G(k)

p actually does have a length-u
cycle for u ≥ 2. It follows from Theorem 5 that u = ordd k for some divisor d > 1
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of p− 1 (note that if d = 1 then this would imply u = 1, a contradiction), with d
relatively prime to k. Let us consider the options, keeping in mind what we just
wrote about p− 1. If k is odd, then either d = 2 or d ≥ qr+1. But if d = 2 then
u = ord2 k = 1, which is a contradiction. Hence, our only option is d ≥ qr+1. If
k is even, then d must be odd and so again our only option is d ≥ qr+1. But with
d ≥ qr+1, since 1 < ku < qr+1 we have u is not, in fact, the order of k mod d,
which contradicts our statement earlier that u = ordd k. Hence, G(k)

p does not have
a length-u cycle for u ≥ 2. �

Before we move on to the next proof, we need to establish this useful result.

Lemma 10. For k odd and a ≥ 2, the order ord2a+1 k is either equal to ord2a k or
to 2 ord2a k.

Proof of Lemma 10. If we let w = ord2a k, then we know that 2a
| kw− 1. Consider

k2w
−1= (kw−1)(kw+1). We know 2a divides kw−1 and since k is odd, 2 divides

kw+1, so we know 2a+1 divides k2w
−1. Hence, ord2a+1 k divides 2w, but ord2a+1 k

is at least w, and so we conclude that ord2a+1 k is either w or 2w, as desired. �

We are now ready for the following:

Proof of Corollary 8. Let p be the Fermat prime 22n
+1 where n≥ 0, so p−1= 22n

.
Now, suppose G(k)

p contains a cycle of length u≥ 2. Then by Theorem 5, u= ordd k
for some divisor d of p − 1 = 22n

. By Euler’s generalization of Fermat’s little
theorem, this implies u |φ(d), but d is a power of 2 and so (thanks to the well-
known formulas for Euler’s phi function) this implies u is as well. By Theorem 5,
we also have d and k are relatively prime; since u | d , we know u and k are relatively
prime as well. With this in mind, let us consider the possibilities for u and k. We
cannot have u ≥ 2 be an odd integer, as this contradicts u ≥ 2 being a power of 2;
hence, G(k)

p never contains a cycle of length u ≥ 2 for u odd. We also cannot have
u and k both be even integers, as this contradicts u and k being relatively prime;
hence, G(k)

p contains no cycles of length u for u and k both even.
The only option left is to have u ≥ 2 even and k ≥ 2 odd. Theorem 5 tells us

that we have a length-u cycle if and only if u = ordd k for some divisor d of p− 1;
let us establish that this is equivalent to u | ordp−1 k. For the first Fermat prime
p = 220

+ 1 = 3, it is easy to verify that there are no even-length cycles in G(k)
3

because this graph contains only the vertices {0, 1, 2}; likewise, ordp−1 k = 1 and
this admits no even divisors. For the next Fermat prime p = 221

+ 1= 5, similar
calculations reveal that we can have even length-u cycles only for k ≡ 3 mod 4
and for u = 2, in which case u is indeed an even divisor of 2= ordp−1 k (and vice
versa). For both of those two cases (namely, for p = 22n

+ 1 with n = 0 or 1), it is
easy to check that ordp−1 k | 22n

−1, as desired.
It remains to consider the other Fermat primes p= 22n

+1 for n≥ 2. If u= ordd k
for some divisor d of p− 1 = 22n

, then (recalling that u and d and p− 1 are all
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powers of 2) it is certainly true that u | ordp−1 k, as ordd k cannot be greater than
ordp−1 k and both are powers of 2. For the other direction, suppose u | ordp−1 k,
and let us show that u = ordd k for some divisor d of p− 1. Starting with 1 as the
order of k mod 2, we imagine finding the orders of k mod 22, mod 23, mod 24, and
so on, up to mod 22n

. Lemma 10 tells us that at each step, the order of k either stays
the same or doubles. At the last step in this sequence (modulo 22n

) the order of k is
a multiple of u. Hence, at some step along the way (say, when our modulus is 2b

for b ≤ 2n) we know that the order of k mod 2b is equal to u. Hence, we let d = 2b

and we have u = ordd k for d a divisor of p− 1, as desired.
Finally, we recall from [Gallian 2010, p. 160] that the multiplicative group of units

modulo 22n
, commonly written (Z22n )∗, is isomorphic to Z22n−2⊕Z2 for n≥2. Hence,

the order of any odd number k modulo p−1 will be a divisor of 22n
−2, as desired. �

Proof of Corollary 9. Note that if p is a Fermat prime, then by Corollary 8 we can
simply choose k to be any even number. Of course, for p = 2 the conclusion is
trivial. For the more general case, we choose k ≥ 2 to be an integer equivalent to
1 mod p− 1. There are clearly infinitely many such k. Note that gcd(k, p− 1)= 1
and also k ≡ 1 mod d for any divisor d of p−1. Thus, ordd k = 1 for any divisor d
of p− 1 and so by Theorem 5 we know G(k)

p has no u-cycles for any u ≥ 2. �

On the existence of cycles of different lengths in the same digraph

We now consider cycles of composite length, and we show that the existence of
certain cycles implies the existence of other, longer cycles.

Theorem 11. Let u = lcm(u1, u2), where u1 and u2 are positive integers. If G(k)
p

contains cycles of length u1 and length u2 respectively, then G(k)
p also contains a

cycle of length u.

Proof. Suppose in G(k)
p there exist cycles of lengths u1 and u2. By Theorem 5, we

know that there exist d1 and d2 such that d1 | (p−1), d2 | (p−1) and u1 = ordd1 k,
u2 = ordd2 k. Also, let d = lcm(d1, d2) and u = lcm(u1, u2). Since d1 | (ku1 − 1)
and u1 | u, we have d1 | (ku

− 1). By the same reasoning, d2 | (ku
− 1). Therefore,

d | (ku
− 1); that is, ku

≡ 1 mod d. So, gcd(d, k)= 1. Assume there exists u′ ≤ u
such that ku′

≡ 1 mod d. So, ku′
≡ 1 mod d1 and ku′

≡ 1 mod d2. Since u1 is the
order of k mod d1, we have u1 | u′. Likewise, u2 | u′. Therefore, lcm(u1, u2) | u′;
that is, u | u′. So u ≤ u′. By assumption we know u′ ≤ u; thus, u = u′. So, the
order of k mod d is u. Since d = lcm(d1, d2), we have d | (p− 1). Thus again by
Theorem 5, we know there is a length-u cycle in G(k)

p . �

Corollary 12. Let u = lcm(u1, u2, u3, . . . , un), where u1, u2, . . . , un are positive
integers. If G(k)

p contains a cycle of length ui for each i , then G(k)
p also contains a

cycle of length u.
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It turns out that for even k, the opposite direction is not always true. Later we
present a digraph G(k)

p that has a 12-cycle and a 1-cycle but no cycles of length 2,
3, 4, or 6. The following result indicates that this is hardly an isolated occurrence.

Theorem 13. Let u be a composite number and let k be even.

(1) If k 6= 2 or u 6= 6, then there exist infinitely many primes p such that in G(k)
p

there exists a length-u cycle but no length-u′ cycles in which u′≥ 2 is a positive
divisor of u.

(2) For the case k = 2 and u = 6, suppose for some prime p that G(2)
p has a cycle

of length 6. Then there must also exist a cycle of either length 2 or 3 in G(2)
p ;

furthermore, if G(2)
p has cycles of length 6 and 3 then it must also have a cycle

of length 2. The smallest prime p such that G(2)
p has both a length-6 and a

length-2 cycle is p = 19; in this case, though, G(2)
19 does not have a length-3

cycle. The smallest prime p such that G(2)
p has cycles of lengths 2, 3, and 6 is

p = 43.

Before we start our proof, we need to introduce a very useful lemma proved
independently by Bang [1886] and Zsigmondy [1892], as seen in a recent paper by
Roitman [1997]:

Lemma 14 (Bang and Zsigmondy). Let k and u be integers greater than 1. There
exists a prime divisor q of ku

− 1 such that q does not divide k j
− 1 for all j where

0< j < u, except exactly in the following cases:

(1) k = 2s
− 1, where s ≥ 2, and u = 2;

(2) k = 2 and u = 6.

Proof of Theorem 13. First, let us discuss the case where k = 2 and u = 6; that
is, we suppose there exists a length-6 cycle in G(2)

p . By Theorem 4, we must have
gcd(26

− 1, p− 1) > 1. Now since 26
− 1= 63, we know p− 1 must be divisible

by either 7 or 3. Since 23
− 1 is 7 and of course 22

− 1 is 3, we conclude that either
gcd(23

−1, p−1)> 1 or gcd(22
−1, p−1)> 1 and hence (again by Theorem 4) we

must have a cycle of length 3 or length 2. Now suppose (for the sake of argument)
that G(2)

p happens to have both a length-6 cycle and a length-3 cycle but no length-2
cycle. If we let Ai represent the number of cycles of length i in the graph of G(2)

p ,
then Theorem 5.6 of [Somer and Křížek 2009] tells us

A6 =
1
6

(
gcd(p− 1, 63)− A1− 2A2− 3A3

)
.

Clearly, A1 = 1 since the only nontrivial solution to x2
≡ x mod p is x = 1. We

are assuming that A2 = 0 and that A3 and A6 are both positive, and so the above
equation becomes

A6 =
1
6

(
gcd(p− 1, 63)− 1− 3A3

)
.
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Figure 1. The digraph G(2)
19 has a 6-cycle and 2-cycle but no 3-cycle.

Since A3 > 0, for A6 to be a nonzero integer we must have gcd(p−1, 63) be either
9, 21, or 63, which are all equivalent to 3 mod 6. But 1+ 3A3 will be equivalent to
1 or 4 mod 6, and the difference of these two expressions can never be 0 mod 6,
which contradicts A6 being an integer. Hence, the presence of a length-6 cycle and
a length-3 cycle really does force there to be a length-2 cycle.

By inspection, p = 19 is the smallest prime p such that G(2)
p has a 6-cycle and a

2-cycle; it is easily seen that it does not have a 3-cycle. Also by inspection, p = 43
is the smallest prime p such that G(2)

p has a 6-cycle, a 2-cycle, and a 3-cycle. See
Figure 1 for the graph of G(2)

19 .
Now if k 6= 2 or u 6= 6, then in order to prove the theorem it is sufficient to show

that there are infinitely many primes p such that for the graph G(k)
p the following

conditions hold: for u1, u2, . . . nontrivial proper divisors of u,

gcd(ku
−1, p−1)> 1, gcd(ku1−1, p−1)= 1, gcd(ku2−1, p−1)= 1, . . . .

(By Corollaries 2 and 3, these equations will also imply that the only cycles of
length 1 in G(k)

p will be the 1-cycle with vertex 0 and the 1-cycle with vertex 1.) By
Lemma 14, we know that there exists a prime divisor q | ku

− 1 such that q -k j
− 1

for 0< j < u. Now, consider the set of equivalence relations

p− 1≡ 0 mod q, (1)

p− 1≡ 1 mod s, (2)

where s = lcm(ku1 − 1, ku2 − 1, . . . ). Since q is prime, it is obvious that q -s and
therefore we can apply the Chinese reminder theorem to get

p− 1≡ q[q−1
]s mod qs,

where [q−1
]s is the unique positive integer less than s that is the inverse of q

modulo s.
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Figure 2. The digraph G(2)
11 has a 4-cycle but no 2-cycle.

Thus, p= (q[q−1
]s+1)+qs ·n, where n∈N. Since q[q−1

]s≡1 mod s, we know
q[q−1

]s+1≡ 2 mod s, so gcd(q[q−1
]s+1, s)≤ 2. Now k is even, so s is odd, and

we know gcd(q[q−1
]s+1, s)=1. On the other hand, it is obvious that q -q[q−1

]s+1;
therefore gcd(q[q−1

]s+1, qs)= 1. Thus, by Dirichlet’s theorem, there are infinitely
many primes p of the form p = (q[q−1

]s + 1)+ qs · n, as desired. �

Now, let us do some examples to illustrate the methods given above.

Example. For p a prime, p ≡ 11 mod 15, we know G(2)
p always has a 4-cycle but

never has a 2-cycle. This can be shown via the methods of the above proof with
k = 2, u = 4, and u1 = 2, so q = 5 and s = 3. The two smallest primes p of this
type are 11 and 41. The digraph for G(2)

11 is given in Figure 2.

Example. Likewise, using k = 2, u = 9, and u1 = 3, we can show that for p a
prime equivalent to 366 mod 511, the graph G(2)

p always has a 9-cycle but never
has a 3-cycle. The smallest prime equivalent to 366 mod 511 is 877, and a partial
digraph for G(2)

877 is given in Figure 3.

Example. Finally, using k=2, u=12, and {u1, u2, u3, u4} equal to {2, 3, 4, 6}, the
techniques of our proof of Theorem 13 show that for p a prime, p≡1262 mod 4095,
the graph G(2)

p always has a 12-cycle but never has cycles of lengths 2, 3, 4, or 6.
The smallest p in this equivalence class is 21737. (This is the smallest prime that
arises from the technique of Theorem 13, but it is not the smallest prime p such
that G(2)

p has a cycle of length 12 but none of lengths 2, 3, 4, or 6; experimentation
shows that the first such prime would be 53, not 21737. We will explain this further
in a moment.)

One problem with the above examples (all of which arise from the techniques
of Theorem 13) is that while they guarantee an infinite list of primes that satisfy
the given requirements, it is not necessarily a complete list. For example, suppose
we want to find all primes p such that for G(2)

p we have cycles of length 12, but
no cycles of lengths 2, 3, 4, or 6. By our first example, we know any prime of
the form p ≡ 1262 mod 4095 will certainly work (and the first prime in this list
is 21737). But as mentioned above, p = 53 works just fine as well. Let us see if
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Figure 3. The digraph G(2)
877 has eight components each of the forms

shown in the top row, and just one component each of the forms
shown in the bottom row. In particular, it has a 9-cycle but no 3-cycle.

we can demonstrate how to find all such primes p such that the digraphs G(2)
p will

have cycles of length 12 but not length 2, 3, 4, or 6.
In order to find such p’s, we need

gcd(212
−1, p−1) > 1, (3)

gcd(26
−1, p−1)= 1, (4)

gcd(24
−1, p−1)= 1, (5)

gcd(23
−1, p−1)= 1, (6)

gcd(22
−1, p−1)= 1, (7)

gcd(21
−1, p−1)= 1. (8)

By Lemma 14, we know there exists a prime divisor q such that q | 212
− 1 but

q - 2i
− 1, where i ∈ {2, 3, 4, 6}, and a brief calculation shows q = 13. Therefore,

we have 13 | gcd(212
−1, p−1) and so it follows that p−1= 13n, or p= 13n+1.

In order for (4)–(7) to hold, we must make sure that n does not contain any proper
divisor of (2i

− 1), where i ∈ {2, 3, 4, 6}; that is, 3, 5, and 7 must not divide n. So,
a complete list of primes p can be written as the set

{p is prime : p = 13n+ 1 where n ∈ N and 3, 5, 7 -n}.

The smallest p is indeed 53.
If we glance at (3)–(8), we might wonder if we can modify them to give us more

liberty in deciding what cycles we want to have and not have in our G(k)
p . Suppose

we want to change the above example to have a digraph with cycles of lengths 12
and 2, but no other cycles of lengths 3, 4, or 6. By Theorem 4, we need to start with

gcd(212
− 1, p− 1) > gcd(22

− 1, p− 1) > 1.
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Since 22
− 1 | 24

− 1 and 22
− 1 | 26

− 1, we know that gcd(24
− 1, p − 1)

and gcd(26
− 1, p − 1) will both be at least as large as gcd(22

− 1, p − 1), but
to prevent G(2)

p from having cycles of length 4 or length 6, we need them to be
no larger than gcd(22

− 1, p− 1). Finally, to avoid any 3-cycles, we would like
gcd(23

− 1, p − 1) = 1. We can satisfy all these requirements if we are able to
establish the six equations

gcd(212
− 1, p− 1)= q2q12, (9)

gcd(26
− 1, p− 1)= q2, (10)

gcd(24
− 1, p− 1)= q2, (11)

gcd(22
− 1, p− 1)= q2, (12)

gcd(23
− 1, p− 1)= 1, (13)

gcd(21
− 1, p− 1)= 1, (14)

where q2 and q12 are both primes. (Note the similarity between these six equations
and the ones given earlier in (3)–(8).)

Fortunately, this is indeed possible. Lemma 14 guarantees that we can find
appropriate primes q2 and q12; our choices here will be q2 = 3 and q12 = 13. We
also need to ensure that p− 1 does not contain any other primes that might also
appear in 2k

−1 as k runs over the divisors of 12. This can be satisfied by restricting
ourselves to the set

{p is prime : p = 39n+ 1 where n ∈ N and 3, 5, 7-n}.

It turns out the smallest such p is 79.
Naturally, we seek to generalize this technique, and the following theorem gives

the appropriate conditions in which this can be done.

Theorem 15. Let u ≥ 4 be any composite number, let k ≥ 2, and let u′ ≥ 2 be a
proper divisor of u. So long as we do not have either k = 2 and u′ = 6, or k = 2
and u = 6 and u′ = 3, then there exist infinitely many primes p such that G(k)

p has
both a u-cycle and a u′-cycle but has no w-cycle, where w is any other nontrivial
proper divisor of u.

Remark. The two restrictions in the above theorem are thanks to Theorem 13,
which tells us that every digraph G(2)

p which contains a 6-cycle will also contain
either a 2-cycle or 3-cycle, and that if it contains a 6-cycle and 3-cycle then it must
also have a 2-cycle.

Proof of Theorem 15. We begin by considering the case where k is even and different
from 2. This avoids the two exceptions to Lemma 14, and so we know there exist
two separate primes q and q ′ such that q | ku

− 1 but q -kw − 1 for all w < u, and
q ′ | ku′

− 1 but q ′ -kw − 1 for all w < u′. Since k is even, the primes q and q ′ are
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necessarily odd. We want to set up a system similar to the ones in (9)–(14); in this
context, our system will be

gcd(ku
− 1, p− 1)= qq ′, (15)

gcd(k y
− 1, p− 1)= q ′ if y < u and y divisible by u′, (16)

gcd(kz
− 1, p− 1)= 1 if z < u and z not divisible by u′. (17)

(Here, y and z run over the proper divisors of u.) These three conditions, along
with Theorem 4, would guarantee the existence of a cycle of length u and one of
length u′ and would prohibit any cycles of length w for w any other nontrivial
divisor of u. It remains to show there are infinitely many such primes p that satisfy
(15)–(17). Fortunately, this is not too hard. Let Q be the product of all the primes
other than q and q ′ that divide ku

− 1. Since neither q nor q ′ divide k1
− 1 and

since k > 2, there is at least one such prime, and since k is even, all such primes in
Q are odd primes. If we now require

p− 1≡ qq ′ mod (qq ′)2, (18)

p− 1≡ 1 mod Q, (19)

then we are guaranteed (15)–(17), as we now briefly demonstrate.

• To begin with, (18) tells us that qq ′ divides into p− 1, but no higher power of q
or q ′ does so. Also, (19) tells us that no other prime ρ that divides into Q will also
divide into p− 1. Hence, the gcd’s in (15)–(17) must be either 1, q , q ′, or qq ′.

• To establish (15), we note that by definition, both q and q ′ divide into ku
− 1.

• For (16), we note that q ′ divides into ku′
− 1, which divides into k y

− 1 for y
divisible by u′, and that q does not divide into any k y

− 1 for y < u.

• As for (17), note that kz
− 1 is not divisible by q for any z < u. If kz

− 1 was
divisible by q ′, then q ′ would divide the gcd of kz

− 1 and ku′
− 1. This gcd is

kd
−1 where d = gcd(z, u′) and since z is not divisible by u′ then we know d < u′,

but this contradicts our definition of q ′. Hence, kz
− 1 is not divisible by either q

or q ′ and so we have established (17).

We can now apply the Chinese remainder theorem to write (18) and (19) as
p− 1≡ A mod Q(qq ′)2 for some integer A, which implies

p ≡ 1+ A mod Q(qq ′)2

Are we now able to apply Dirichlet’s theorem to claim that there are infinitely many
primes that satisfy the above equivalence? Almost! We need only ensure that 1+ A
is relatively prime to Q(qq ′)2. Since (18) tells us that A ≡ 0 mod q , then A+ 1≡
1 mod q , and the same holds for q ′. Hence, A+ 1 is relatively prime to q and to q ′.
Now let ρ be one of the primes that divides Q. We know from (19) that A≡1 mod ρ,
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which means A+1≡ 2 mod ρ, but of course ρ is an odd prime, so A+1 is relatively
prime to ρ. We conclude that A+1 is relatively prime to Q(qq ′)2, and so we can ap-
ply Dirichlet’s theorem to complete the proof (for this case where k even and k > 2).

Next, we consider k = 2, u = 6, and u′ = 2. This is a very specific case, and if
we set p ≡ 19 mod 63 to be prime, it is easy to verify that all four of the equations

gcd(26
− 1, p− 1)= 9, (20)

gcd(22
− 1, p− 1)= 3, (21)

gcd(23
− 1, p− 1)= 1, (22)

gcd(21
− 1, p− 1)= 1. (23)

are satisfied. Naturally, there are infinitely such primes p (the first one is p=19) and
Theorem 4 tells us that G(2)

p will have a 6-cycle and a 2-cycle but never a 3-cycle.
Next, consider k = 2 with neither u nor u′ equal to 6. Since this avoids the

exceptions to Lemma 14, as before we can find the two separate primes q and q ′

such that q | ku
−1 but q -kw−1 for all w < u, and q ′ | ku′

−1 but q ′ -kw−1 for all
w< u′. We would like to define Q to be the product of all primes ρ different from q
and q ′ that divide 2u

−1, but it is possible that no such primes ρ exist (consider, for
example, q = 73 a factor of 29

− 1, and q ′ = 7 a factor of 23
− 1: there are no other

prime factors of 29
− 1). If this is the case, simply set Q = 1 and proceed as before.

Next, consider when k > 2 is odd and we do not have u′ = 2 and k = 2s
−1 with

s ≥ 2. Lemma 14 gives us the primes q and q ′ as before, and since q and q ′ do not
divide k1

− 1 (by definition), both q and q ′ are odd primes. However, in our earlier
work, (15)–(17) depended on some of the equations gcd(kz

− 1, p− 1) being equal
to 1, but now that kz

− 1 is even, this is no longer possible. Instead, we will ask
that p ≡ 3 mod 4 (which will mean that p− 1 is divisible by 2 and not 4), and we
seek to establish the system

gcd(ku
− 1, p− 1)= 2qq ′, (24)

gcd(k y
− 1, p− 1)= 2q ′ if y < u and y divisible by u′, (25)

gcd(kz
− 1, p− 1)= 2 if z < u and z not divisible by u′. (26)

By Theorem 4 this will be sufficient to create our desired digraph G(k)
p . But can

we find primes p that satisfy (24), (25), and (26)? Of course! Let Q be the product
of all the odd primes other than q and q ′ that divide ku

− 1, with the understanding
that if no such primes exist then Q = 1. If we now require

p− 1≡ qq ′ mod (qq ′)2, (27)

p− 1≡ 1 mod Q, (28)

p− 1≡ 2 mod 4, (29)
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then we are guaranteed (24)–(26), as we now briefly demonstrate:

• As seen earlier, (27) tells us that qq ′ divides into p− 1, but no higher power of
q or q ′ does so. Also, (28) tells us that no other prime ρ that divides into Q will
also divide into p− 1. And, (29) guarantees that 2 | (p− 1) but 4 does not. These
observations, along with k− 1 being even, tell us that the gcd’s in (24)–(26) must
be either 2, 2q , 2q ′, or 2qq ′.

• To establish (24), we note that both p− 1 and ku
− 1 are divisible by q and q ′.

• For (25), we note that q ′ divides into ku′
− 1, which divides into k y

− 1 for y
divisible by u′, and that q does not divide into any k y

−1 for y< u. This is identical
to our proof for (16).

• Likewise, (26) is proved the same way as (17).

As before, we can now use the Chinese remainder theorem to write p =
1+ A mod 4Q(qq ′)2 for some appropriate A, and it is easy to show that 1+ A
and 4Q(qq ′)2 are relatively prime, thus allowing us to finish the proof by using
Dirichlet’s theorem.

The very last case to consider is when k = 2s
− 1 for s ≥ 2, and u′ = 2. The

issue here is that k− 1 and ku′
− 1 will have exactly the same prime divisors (just

to different powers) so we cannot find an appropriate prime q ′ as we did earlier,
where q ′ was supposed to divide ku′

− 1 but not k− 1. Instead, we have to proceed
as follows. First, choose a prime q such that q | ku

− 1 but q -kw − 1 for all w < u.
Note that q is necessarily odd. We now seek to establish

gcd(ku
− 1, p− 1)= 4q, (30)

gcd(k y
− 1, p− 1)= 4 if y < u and y divisible by 2, (31)

gcd(kz
− 1, p− 1)= 2 if z < u and z not divisible by 2. (32)

To do this, we let Q be the (possibly empty) product of all the odd primes other
than q that divide into ku

− 1, and we require

p− 1≡ q mod q2, (33)

p− 1≡ 1 mod Q, (34)

p− 1≡ 4 mod 8. (35)

Once more, we can easily show that (33)–(35) imply (30)–(32):

• Equations (33)–(35) imply that p−1 is divisible by q but not q2, by 4 but not 8, and
by no other prime factor ρ of ku

−1. Keeping in mind that k is odd, we see that the
gcd’s in (31) and (32) must be either 2 or 4, and in (30) we must have either 2q or 4q .

• To establish that (30) is equal to 4q and not 2q, we note that ku
− 1 is divisible

by k2
− 1, which (since k = 2s

− 1) is divisible by 4.
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• For (31), we note again that ku
− 1 is divisible by 4.

• Finally, for z odd, kz
− 1 factors as (k − 1)(kz−1

+ kz−2
+ · · · + 1). The first

expression is k−1= 2s
−2, which is divisible by 2 but not 4. The second expression

is the sum of an odd number of odd terms, and hence odd. Thus, (32) is indeed
equal to 2 and not 4.

As before, we summarize (33)–(35) as a single expression p= 1+ A mod 8Qq2

for some appropriate A, and it is now fairly routine to finish the proof by using
Dirichlet’s theorem. �
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Enumerating spherical n-links
Madeleine Burkhart and Joel Foisy

(Communicated by Jim Hoste)

We investigate spherical links: that is, disjoint embeddings of 1-spheres and
0-spheres in the 2-sphere, where the notion of a split link is analogous to the
usual concept. In the quest to enumerate distinct nonsplit n-links for arbitrary n,
we must consider when it is possible for an embedding of circles and an even
number of points to form a nonsplit link. The main result is a set of necessary
and sufficient conditions for such an embedding. The final section includes tables
of the distinct embeddings that yield nonsplit n-links for 4≤ n ≤ 8.

1. Introduction

The enumeration of links in 3-space is well-studied [Hoste 2005]. However, there
has not been much study of a planar/spherical analog outside the confines of its
appearance in graphs [Archdeacon and Sagols 2002]. We aim to get the ball rolling
on spherical links.

An n-link L in the 2-sphere is a disjoint collection of q embedded 1-spheres
and n − q embedded 0-spheres. Two links are equivalent if there is a spherical
isotopy taking one to the other. Throughout this paper we use standard notation for
a k-sphere: Sk. When speaking of spherical links, it does not make topological sense
to call 0-spheres “components”, since an entire S0 is not connected. Henceforth
we will refer to an S1 or an S0 as a piece of an n-link. We will call a spherical
embedding of 1-spheres a nesting. Note that when we refer to nestings and nests
in this paper, we are working with entities distinct from those in [Archdeacon and
Sagols 2002].

We must now consider what constitutes a split spherical link. Note that the
following definition only makes sense after we have chosen which pairs of points
form 0-spheres: An n-link L is split if there exists an embedding φ of S1 in S2

−L
such that each component of S2

−φ(S1) contains at least one piece of L and each
piece of L is entirely contained in one such component. Otherwise, L is nonsplit.
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Figure 1. A nonsplit 2-link.

Figure 2. A 3-link with two circles and a 3-link with one circle.

Although there is only one type of nonsplit spherical 2-link, when we look
at n-linking for n > 2, we can have different numbers of disjoint 1-spheres and
0-spheres. For example, we could have the two types of nonsplit spherical 3-links
as in Figure 2.

We will find that the enumeration of n-link-types becomes more richly complex
as n increases. Before finding all n-links for n ≤ 8 in Section 3, we lay down
the necessary and sufficient conditions for any spherical embedding of q circles
and 2` points to form a nonsplit (q+`)-link (given appropriate S0 identifications).
When considering such links, it will be helpful not only to think about nestings
with points, but also to associate a weighted tree T . To construct T , first consider
the nesting N. If we identify a vertex on each circle, this embedding is a plane
graph of disjoint loops, so the dual graph will be a tree in which each vertex is an
open component of S2

−N. To account for embedded points, we give each vertex
a weight equal to the number of points in the corresponding region.

The weighted tree T corresponds to a nesting with unpaired points, but we want
to work with links; we will need to consider what happens to the tree after we make
S0 identifications. To make an identification, we will choose two vertices that each
have weight at least 1, add an edge between them, and reduce their weights each by
one (Figure 3).

3 1

1 0

1 2 3 0

1 0

0 2

Figure 3. A nesting with points and its corresponding tree as we
make an S0 identification.
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v

Figure 4. The vertex v corresponds with the region of the splitting circle.

If we do this until each vertex has weight 0, the resulting multigraph GT will
represent a link (unique if we distinguish the original tree edges from the S0

identification edges). How can we tell from the graph if the link is split? Certainly
a loop in the graph represents a split S0. Any other type of split link, in which both
components of S2

−φ(S1) (as in the split definition) have some positive number of
circles, occurs if and only if there is a cut vertex in the multigraph (Figure 4).

We have now built up enough background to state our main result in dual ways.

Theorem 1.1. Suppose we have a weighted tree T with q edges and total weight 2`.
In the corresponding embedding of q circles (with nesting N ) and 2` points, it is
possible to identify 0-spheres so that we have a nonsplit spherical (q+`)-link if and
only if all of the following conditions are satisfied:

(1) Each leaf has weight at least one. That is, we must embed at least one point in
each simply connected region of S2

−N.

(2) No vertex v is assigned a weight greater than `− deg(v)+ 1. That is, we
can embed no more than `− κ + 1 points in a region of S2

−N that has
fundamental group Z ∗ · · · ∗Z, where Z appears κ − 1 times.

(3) Given any vertex of degree κ , the other vertices have total weight summing to
at least 2(κ − 1). In other words, given a region as in (2), we must embed at
least 2(κ − 1) points in the remaining regions.

With this result, we can tell which embeddings of n (1 and 0)-spheres will form
a nonsplit n-link. However, enumeration will require distinguishing links from one
another on the sphere, which we only address for n ≤ 8 in this paper.

Future directions

All the enumeration in this paper was done by hand; code will probably be necessary
to enumerate spherical n-links for n ≥ 9. As there is a one-to-one correspondence
between nestings and unlabeled trees, much of the code will probably be similar
to what is used in the problem of enumerating unlabeled trees (see [Harary 1969;
Sloane 2006]).

While our results regard embeddings in S2, it would be interesting to see how
tabulations differ on different surfaces; for example, while a spherical embedding
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yields a correspondence between nestings and unlabeled trees, in the plane the
correspondence is between nestings and rooted trees.

Our necessary and sufficient conditions depend on “appropriate” S0 identifica-
tions. What happens if we make the worst possible S0 identifications; that is, given
a nesting with an even number of disjointly embedded points, what is the minimal
nonsplit n-link among all possible S0 pairings?

We could seek to generalize our result in a combinatorial manner; instead of
looking at 0-spheres (i.e., pairs of points), we could look at triples, quadruples, or
λ-tuples of points.

Because of the Jordan–Brouwer separation theorem [Guillemin and Pollack 1974],
our results generalize to higher dimensions. The same necessary and sufficient
conditions and link enumerations apply to embeddings of k-spheres and 0-spheres
in Sk+1, since the dual weighted tree construction will still be well-defined. Perhaps
this result has applications. It would also be interesting to investigate enumerating
other types of higher-dimensional linking with spheres of different dimensions.

2. Proof of Theorem 1.1

In the following lemmas, we will switch between thinking about nestings and
weighted trees. The following concepts will be useful when working with nestings.

Suppose we have a nesting N. If we single out an open region in S2
−N there

will be some number of embedded circles that form holes in the region. We will
call each such circle, along with all pieces in its interior, a nest (see Figure 5).

Suppose we have a nesting N and single out an open region R. Let each nest
relative to R have a corresponding vertex. We add an edge between vertices if there
is an S0 identification “connecting” the nests. We will denote any graph resulting
from this process as HR .

Lemma 2.1. The conditions of Theorem 1.1 are necessary for a (q+`)-link.

Proof. Condition (1) is obvious; if a leaf v has weight 0, no matter how we construct
GT from T , the vertex v will still have degree 1 and so the resulting graph cannot
be 2-connected. Now suppose we single out a region R. The number κ of nests
relative to R is equal to the number of vertices in HR . To ensure a nonsplit link,
we must make S0 identifications so that HR is connected; minimally, we will thus

R

Figure 5. There are three nests relative to the region R.
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Figure 6. A simple κ-nesting.

need (κ − 1) 0-spheres and thus 2(κ − 1) points in the non-R regions. This proves
the necessity of (3). Condition (2) follows: since we need 2(κ − 1) points among
the non-R regions to connect them and since we are avoiding split 0-spheres, R
cannot have over half of the remaining 2`− 2(κ − 1) points. �

We now prove sufficiency in a specific base case before proving it in general.
In this proof we will primarily refer to nestings rather than weighted trees. We
define a simple κ-nesting to be an embedding of q 1-spheres in S2 that can achieve
the arrangement of simple nests as in Figure 6 through spherical isotopy. The
corresponding tree is a (possibly topologically nonreduced) star.

Given a simple nesting N , we will call the κ simply connected regions of S2
−N

innermost (corresponding to leaves). We call the region with fundamental group
Z ∗ · · · ∗Z (where Z appears κ − 1 times) outermost. Any other region (though
there need not be any regions beyond the innermost and outermost ones) in a simple
κ-nesting is annular, with fundamental group Z. When we refer to nests in a simple
nesting, we will always work relative to the outermost region, denoting HR as just H .

Lemma 2.2. The conditions in Theorem 1.1 are sufficient for a nonsplit (q+`)-link
in a simple κ-nesting N.

Proof. We will first find a way to link the circles and then the 0-spheres. Given
that we use exactly 2(κ − 1) points in the former and that no innermost or annular
region has more than `− κ + 1 (i.e., more than half of the) unpaired points after
the process, the latter will follow easily. Because we want H to be connected
while only matching (κ − 1) 0-spheres, it is imperative to avoid cycles during the
construction. We now state our algorithm for linking all q circles and 2(κ − 1) of
the 2` points given an embedding that follows the conditions of Theorem 1.1:

(1) Pick a region R with the most unpaired points; in case of ties, let R be in
a nest NR with the most total unpaired points. Pair one point from R (the
selector) with a point (the selected) in another nest. If possible, let the selected
point come from as-yet unchosen innermost region, making sure such a pairing
does not induce a cycle in H . If our choice of R leads inevitably to either a
cycle or a pairing that does not include an as-yet unchosen innermost region
when such a thing exists, we adjust our choice of our selector region R1 to
be in a different nest-component (i.e., a collection of nests whose vertices in
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H are in a different component from the vertex corresponding to NR). Let
R1 have the most unpaired points of the regions in different nest-components
from NR , preferably in a nest with the most total points. Then pair a selector
point from R1 with a point in an as-yet unchosen innermost region.

(2) Mark off this S0 so the points are disregarded for the rest of the algorithm.

(3) Repeat steps 1–2 until (κ − 2) 0-spheres have been paired off.

(4) If each of the (κ−2) 0-spheres contains a point from an annular region, match
a point each from the two remaining innermost regions for the last S0. If not,
follow steps 1–2 for the last S0.

In this algorithm, we form exactly (κ − 1) 0-spheres, so it remains to prove:

(a) that we are indeed allowed to choose points in the first step without inducing
cycles given only the conditions in the theorem,

(b) that the algorithm results in a nonsplit (q+κ−1)-link, and

(c) that no innermost or annular region is left at the end of the construction with
more than `− κ + 1 unpaired points.

(a) At some point in the algorithm, let R0 be our initial choice for R in Step (1)
and let the vertex v represent R0’s nest in H . Suppose we have not yet had to
switch R. If an innermost region I in a nest whose vertex is disconnected from v

does not yet have a matched point, we can match a point from R0 with one from
I without inducing a cycle. Now suppose that every innermost region in N has
matched points. Because of the rules for choosing the initial R in each step, every
nest-component will have extra points; we can use one such point in a distinct
nest-component to pair with one of the R0’s without inducing a cycle.

Now suppose we are in the remaining situation: The nests with vertices in
components disconnected from v each have matched innermost regions, but at least
one nest (with corresponding vertex u) in v’s connected component C in H has
no matched points in its innermost region. Note that u and v are not necessarily
distinct, but we will not have to deal with this contingency until we prove (c).

Consider the nesting corresponding to C . Because we still have an unmatched
innermost region, all prior matchings had their selected points in distinct innermost
regions. Thus, since C is a tree (being connected with no cycles) and the nest
corresponding to u has an unmatched innermost region, the rest of the nests
corresponding to C’s non-u vertices must have matched innermost regions. In
fact, since we assumed all the non-C nests had matched innermost regions, the
u-nest is the only one without a match in all of N. Ergo when we switch R, we
will not have to do it again for the rest of the construction. Note also that when we
switch the selector region, we have only one choice for the region of the selected
point: it must be a point in the innermost region of the u-nest.
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ν-nest

u-nest

R0

Figure 7. A simplified diagram of the situation when we have to
switch R.

In addition, since the C-nesting has extra points and the nest-component contain-
ing R1, which may no longer have extra points after deposing R0, is now matched
with the C-nesting, we can proceed as usual: all the remaining nest-components
have extra points. Thus it is possible to follow our construction given the conditions
of Theorem 1.1.

(b) The somewhat strict stipulations in the algorithm have a great payoff: since H
has κ − 1 edges and no cycles, it is a tree, and thus connected. Since we also make
sure that every innermost region has a point matched with one in another nest, it
follows immediately that all the circles are linked nontrivially.

(c) We will consider four cases to prove that no innermost or annular region is left
with more than `− κ + 1 unpaired points. Before delving in, however, we make
note that since we have already paired 2(κ − 1) of the 2` points, we will be left
with 2`−2κ+2 unpaired points; a region is left with more than `−κ+1 unpaired
points after the algorithm if and only if it has two or more unpaired points than any
other region in N :

(i) Suppose we finish the algorithm with an innermost region I having more than
`− κ + 1 points left over and we never had to switch R. Since I ends with at least
two more points than any other region, since the algorithm only matches a point
at a time from any one region, and since I never had its “R” status revoked for
the “special case” stipulations in the construction, I must have been R at each step.
When we add in the κ− 1 points we matched in I , we find that I must have started
with more than ` points, a contradiction.

(ii) Suppose we finish the algorithm with an annular region A having more than
`−κ+1 points left over and we never had to switch R. This case and its correspond-
ing argument are an analog to those of (i) except for the stipulation in Step (4) of
the construction; no matter, for when we add the κ − 2 matched points to A’s total,
we find that A must have started with more than `−1 points, another contradiction.
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(iii) Now suppose we have to switch R at some point in the algorithm and, letting
R0, v, u, and C be as above, v is distinct from u. Let m be the number of unpaired
points in R0 at this step. Since the u-nest has an unmatched innermost region, by
the rules of the algorithm, it could never have been a selected nest. But since u is
connected to v, the u-nest must have had an annular selector region A that at some
prior step in the algorithm had a number of unpaired points greater than or equal
to R0’s then-number of unpaired points. It follows that R0 and A (and any other
appropriate regions) traded off being R according to the usual rules, implying that
m must be no more than one greater than the number of points in A.

When we apply the switch, the number of unmatched points in A and in R0

remains the same. If the construction is not yet finished, we can continue in the
usual way (the stipulation in Step (4) will not apply since we have already matched
all the innermost regions), with R0, A, and any other appropriate regions trading
off as R. However, no matter what, we will not have an end situation in which
a region has at least two more points than any other region. Thus, no annular or
innermost region is left with more than `− κ + 1 points.

(iv) Lastly, suppose we have to switch R at some point in the algorithm and v = u.
Let m be as in (iii). We can assume that m is strictly greater than the number
of points in any other region; if there were equality, we wouldn’t risk ending the
algorithm with m having two more points than any other region. Note that there is
at least one innermost region I in each nest-component (distinct from the C-nesting)
that trades off being R with R0 until the R switching step. Hence, m is exactly one
greater than the number of points in at least one other region at the R switching step.
We can narrow our focus to the case where there is only one component distinct
from C . If there were not, in the step after switching R, a point in R0 would pair with
a point in another component (which has a region with m−1 points), thus preventing
R0 from finishing the algorithm with two more points than any other region.

In the case of only two components, the R switching step is the last step of the
construction. Thus, we must show that m ≤ `− κ + 1. Consider the situation at
the beginning of the R switching step. Because the v-nest still has an unmatched
innermost region, it has strictly more than m points. Thus, by the rules of choosing
R in case of ties, the nest containing I must have some annular region with a
points, where a ≥ 1. Figure 8 illustrates the situation. At this stage we need at least
m+ (m− 1)+ a+ 1+ 2(κ − 2)= 2m+ a+ 2(κ − 2) of the 2` total points. Now
suppose that m≥ `−κ+2. Then we have at least 2(`−κ+2)+a+2(κ−2)= 2`+a
points. But since a ≥ 1, we have reached a contradiction. Thus no region in this
case is left with more than `− κ + 1 points after the construction.

It now only remains to show that we can pair up the unmatched points so that
there are no split 0-spheres. To do so, we use the following algorithm:
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m− 1 a ≥ 1 m

ν-nest

Figure 8. The situation before switching R when v = u.

(1) Pick two regions A and B, each having a number of points greater than or
equal to that of any other region in S2

−N.

(2) Form an S0 from a point in A and a point in B.

(3) If there are still unpaired points, return to the first step. If not, we are done.

Suppose that we have followed through with this algorithm but still have at least
one split S0 in some region R. Note that R is the only region left with unpaired
points; if there were others we could continue with the algorithm. In addition, if
we run the algorithm backwards, one of the two most recently matched points must
have come from R. In fact, this is true at each step: since R has at least two more
points than any other region at the end of each step, it must have been one of the
regions with the most points at the beginning of any step. Thus, if we run the
algorithm all the way back (`− κ + 1 steps), counting the number of points in R
along the way, we find that R must have started this second algorithm with at least
`− κ + 2 points, a contradiction.

Thus it is possible to find a nonsplit (`+q)-link in a simple κ-nesting given the
conditions of Theorem 1.1. �

We can now show sufficiency for any nesting with points.

Lemma 2.3. The conditions of Theorem 1.1 are sufficient for a (q+`)-link

Proof. We will use induction on the number of vertices in the weighted tree.
Lemma 2.2 covered the base case, so assume that the conditions of the theorem
are sufficient for a (q−1+`)-link (i.e., on any tree with q vertices). Let T0 be a
weighted tree with q + 1 vertices that follows the conditions of Theorem 1.1.

Let v0 be a leaf of T0 with weight µ1 and let u0 be the vertex adjacent to v0,
with weight µ2. Now suppose we delete v0 from T0 and absorb its weight into u0.
From this we get a new weighted tree T1, where u1 ∈ V (T1) used to be u0. Note
that deg(u1)= deg(u0)− 1. Obviously this move preserves the first condition of
Theorem 1.1 in T1. Suppose first that the move preserves the second condition: u1’s
weight, µ1+µ2, is less than or equal to `− deg(u1)+ 1= `− deg(u0)+ 2.

We first aim to show that T1 follows the third condition given that it follows the
second. Let µ3 = 2`− (µ1+µ2). We want to show that µ3 ≥ 2(deg(u1)− 1) =
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2(deg(u0)− 2). Because T0 follows the rules, we have

µ1+µ3 ≥ 2(deg(u0)− 1), (1)

and because of our assumption on T1,

µ1+µ2 ≤ `− deg(u0)+ 2. (2)

By the bound given by (2) and the definition of µ3, we have µ3 ≥ `+ deg(u0)− 2,
so if `≥ deg(u0)− 2, we’re in the clear. Henceforth assume that `≤ deg(u0)− 3.
From (1), we have µ3 ≥ 2(deg(u0)− 1)−µ1. Using the upper bound on µ1 from
(2) and the one on `, we obtain

µ3 ≥ 2(deg(u0)− 1)− (`− deg(u0)+ 2−µ2)

= 2(deg(u0)− 2)− `+ deg(u0)+µ2

≥ 2(deg(u0)− 2)− (deg(u0)− 3)+ deg(u0)+µ2

= 2(deg(u0)− 2)+ 3+µ2

> 2(deg(u0)− 2),

which we sought.
We have thus shown that if we choose a v0 to delete such that T1 follows the

second condition, it will follow all the conditions. Thus, we can use the inductive
assumption to add edges to T1 using the weights so that the resulting multigraph GT1

is 2-connected and contains no loops. When we add v0 back (along with edge v0u0),
we transfer µ1 of u1’s added edges to v0. This operation will certainly not create any
loops. We now show that it preserves 2-connectivity. Consider any vertex w that is
not v0 or u0: the operation preserves the two internally disjoint paths between any
two vertices that are not v0 or u0, so if we were to delete w, all the other non-(u0

or v0) vertices would remain connected. But u0 and v0 would also be connected
to the rest of the graph since they are connected to each other and at least one other
non-w vertex. Now suppose we delete u0 from T0. Again, all the non-v0 vertices
will still be connected. But v0 will also be connected to the rest of the graph since it
is adjacent to at least one non-u0 vertex. Lastly, suppose we delete v0: the rest of the
graph is still connected by the T1 edges. Thus, the multigraph GT0 induced by GT1

is 2-connected and without loops and thus determines a nonsplit planar (q+`)-link
It now only remains to show that we can pick a v0 to remove such that u1 has

weight less than or equal to `−deg(u1)+1. Suppose we cannot find such a v0. Let
λ be the number of leaves in T0 and let κ =max{deg(v) : v ∈ V (T0)}. Since we have
already shown the result for simple nestings in Lemma 2.2, we can assume κ ≤λ−1,
that λ≥ 4, and that there are at least two u0s we could have depending on our choice
of v0. Also, since any u0 has weight less than or equal to `− deg(u0)+ 1 and the
corresponding u1 has weight greater than or equal to `−deg(u0)+3, each leaf must
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have weight at least 2. Thus the total weight of T0 is at least 2(`−κ+3)+2(λ−2)≥
2`−2κ+6+2(κ−1)= 2`+4, a contradiction. Thus we are able to choose a “nice”
v0 such that the inductive hypothesis holds and is inherited by the larger tree. �

3. Enumeration

We mentioned in the Introduction that there is only one nonsplit spherical 2-link and
there are two types of nonsplit spherical 3-links. We have now proven which embed-
dings will form nonsplit links given appropriate S0 identifications. However, enumer-
ation encompasses even more complications: we must determine whether an embed-
ding is unique up to spherical isotopy. In addition, we have a couple different ways
to count links: we can simply count the allowable embeddings or we can count how
many ways we can identify 0-spheres appropriately within an embedding (Figure 9).
In the link diagrams found in the online supplement, if there is more than one allow-
able S0 identification for an embedding, we will write how many total identifications
there are next to its image. Note that there are four distinct nonsplit 4-links; 11 dis-
tinct embeddings and 12 distinct 5-links; 32 distinct embeddings and 39 total 6-links;
105 total embeddings and 158 total 7-links; and 354 embeddings and 723 8-links.

To show rigorously how many allowable S0 pairings there are in an embedding,
one fact is particularly helpful: The number of S0 identifications between two
regions R1 and R2 is greater than or equal to p(R1)+ p(R2)−m, where p(R) is
the number of unmatched points in R and m is half the number of unmatched points
left in a nesting. This fact is easily proven. Let r = p(R1)+ p(R2). If r ≤ m, the
claim is trivially true. Suppose r > m. Then there are not enough points in the
rest of the nesting to fully match with points in R1 and R2 without inducing split
0-spheres; we must match a point in R1 with one in R2. Now r has decreased by
two and m has decreased by one. If r − 2> m− 1, we again match a point from
R1 with one from R2. We must iterate k times, where r − 2(k− 1) > m− (k− 1)
and r − 2k ≤ m− k: that is when k = r −m, which we sought.

The above allows us to reduce larger cases to smaller cases. We also use common-
sense techniques, such as choosing a region that can be distinguished from others
(usually one with one point) to determine exhaustively the matching possibilities or
utilizing symmetry without loss of generality.

Figure 9. This is the same embedding, but there are three different
6-links here.

http://msp.org/involve/2018/11-2/involve-v11-n2-x02-LinkEmbeddings.pdf
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Double bubbles in hyperbolic surfaces
Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen

(Communicated by Michael Dorff)

We seek the least-perimeter way to enclose and separate two prescribed areas in
certain hyperbolic surfaces.

1. Introduction

The isoperimetric problem of enclosing a given area in a least-perimeter way
has been investigated in various surfaces. The classical isoperimetric theorem in
the plane asserts that the circle is the shortest curve to enclose a given area in
the plane. While this result is widely known, the solution of the isoperimetric
problem has proved to be elusive in surfaces aside from the plane. By 1999,
the problem had been solved for a handful of Riemannian surfaces, namely, the
Euclidean plane, a round sphere, a round projective plane, the hyperbolic plane,
a circular cone, a circular cylinder, a flat torus or Klein bottle, and a general
surface of revolution [Howards et al. 1999]. Adams and Morgan [1999] obtained
further results in hyperbolic surfaces. The related problem of discovering the least
perimeter needed to enclose and separate two given volumes has invited exploration
as well.

Particular interest has been garnered by the double bubble conjecture. The
double bubble conjecture states that three spherical caps meeting at 2�

3
angles (the

“standard double bubble”) is the least-perimeter way to enclose and separate two
given volumes. This has been believed to be true since the nineteenth century,
but it was first articulated as a conjecture by Joel Foisy [1991], an undergraduate
student at Williams College, in his senior thesis, and it was proved in the planar
case in [Foisy et al. 1993]. Joel Hass, Michael Hutchings, and Roger Schlafly [Hass
et al. 1995] attacked the conjecture in the R3 case using heavily computational
methods, successfully resolving the problem for the case where the two volumes
are equal. Finally, Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio
Ros [Hutchings et al. 2002] proved the double bubble conjecture for any ratio of
two volumes in R3. Moreover, Andrew Cotton and David Freeman [2002] have
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Keywords: hyperbolic, isoperimetric, bubbles, perimeter-minimizing.
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shown the conjecture to hold for the hyperbolic plane as well as the case of equal
volumes in hyperbolic 3-space. In certain hyperbolic surfaces however, the standard
double bubble is not perimeter-minimizing. We study this problem, following the
work on single bubbles by Adams and Morgan [1999].

Section 2 discusses the existence and regularity of perimeter-minimizing double
bubbles. Section 3 considers n-punctured spheres. Proposition 3.6 identifies small
perimeter-minimizing double bubbles as horocycles around cusps. Section 4 fo-
cuses on double bubbles on the thrice-punctured sphere. Conjecture 4.1 describes
perimeter-minimizing double bubbles as horocycles for small areas and �-curves
for large areas. Proposition 4.2 shows that, for equal areas, �-curves are shorter
than horocycles for a specific range of areas through direct computations. Proposi-
tions 4.7–4.9 show necessary conditions on the topology of perimeter-minimizing
double bubbles using inequalities obtained in Lemmas 4.3–4.5. Section 5 considers
the once-punctured torus. Proposition 5.1 proves that for relatively small areas two
horocycles around a cusp are shorter than a horocycle with a lens.

2. Existence and regularity

Definition 2.1. A double bubble on a surface consists of two disjoint open regions
with piecewise smooth boundaries. The perimeter refers to the union of the bound-
aries or its length. We do not assume that each region, or that the perimeter, or that
the entire bubble (the union of the regions and the perimeter) is connected. We
call the bubble perimeter-minimizing or sometimes just minimizing if it minimizes
perimeter for fixed area of each region.

Morgan [1994] examined existence and regularity for soap bubble clusters in R2

and on compact Riemannian surfaces, and his results and proofs apply to geometri-
cally finite hyperbolic surfaces.

Theorem 2.2 (existence and regularity). In a complete hyperbolic surface, there
exists a least-perimeter double bubble, enclosing and separating two regions of
prescribed areas. Its perimeter consists of curves of constant curvature meeting
in threes at angles of 2�

3
; all curves separating a specific pair of regions have the

same curvature.

Proof. We explain the extension of Morgan [1994] to the noncompact case. If in
a minimizing sequence a region goes out a cusp, its area goes to 0 and it may be
discarded. If it goes out a flared end, it can be translated back inside a compact
region. �

We are assuming that the sum of the two areas is less than the area of the surface;
the complement is a third region. It remains conjectural in general that each of the
three regions is connected.
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D

Figure 1. The thrice-punctured sphere can be obtained from the
Poincaré disc (D) model of the hyperbolic plan by identifying the
two ideal triangles as indicated: the purple side is already identified,
blue is glued to blue, and red to red, according to the orientation given.

3. n-punctured spheres

The hyperbolic surfaces we will primarily focus on throughout this paper are
n-punctured spheres, mainly because they are at once both simple (having cusps but
no handles) and interesting. Proposition 3.5 gives the total area of an n-punctured
sphere. Proposition 3.6 shows that for a certain range of areas, perimeter-minimizing
double bubbles on an n-punctured sphere have disconnected boundary, a deviation
from the topological properties of the standard double bubble.

Definition 3.1. An n-punctured sphere is constructed by doubling an ideal n-gon
in hyperbolic 2-space and identifying the boundary.

The n-punctured sphere admits a hyperbolic metric for n � 3, so we assume
henceforth that n� 3. Figure 1 gives an example of this construction in the case of
the thrice-punctured sphere.

We have the following helpful proposition on single bubbles on the n-punctured
sphere.

Proposition 3.2 [Adams and Morgan 1999, Theorem 2.2]. For single bubbles on a
punctured surface, least-perimeter P is less than or equal to area A with equality
precisely for horocycles about cusps. Moreover, if A<� , then a minimizer consists
of horocycles about an arbitrary collection of cusps.

Remark 3.3. Adams and Morgan [1999] further show that in the case of the thrice-
punctured sphere, the hypothesis of this proposition can be extended to A� � .

In the proofs of our results we will make use of the following well-known facts
in this area.

Remark 3.4. A horocycle about a cusp has constant curvature 1 and its length is
equal to the area of the cusp neighborhood.

Proposition 3.5. The total area of the n-punctured sphere is 2.n� 2/� .
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Proof. The area of an ideal triangle in hyperbolic 2-space is � . Since an ideal n-gon
can be triangulated into n�2 ideal triangles, the area of the ideal n-gon is .n�2/� .
The n-punctured sphere is composed of two ideal n-gons glued together and thus
has area 2.n� 2/� . �

Proposition 3.6. Given 0<A1 �A2 <��A1, the least-perimeter way to enclose
and separate areas A1;A2 on the n-punctured sphere is horocycles around cusps.

Proof. Assume to the contrary the perimeter is less than or equal to A1CA2 and the
regions have common boundary. Then the shared boundary can be eliminated with
the remaining boundary enclosing the single area A1CA2. By our assumption the
length of the remaining boundary is strictly less than A1CA2. Since A1CA2 <� ,
this is a contradiction of Proposition 3.2. �

4. The thrice-punctured sphere

The thrice-punctured sphere is equipped with unique hyperbolic structure with
area 2� and constant Gaussian curvature �1. These features make the thrice-
punctured sphere an ideal surface on which to explore the properties of double
bubbles. Conjecture 4.1 says that horocycles are perimeter-minimizing for small
areas and that a � -curve is perimeter-minimizing for large areas, with the transition
point for equal areas given by Proposition 4.2. Proposition 4.8 shows that for
double bubbles with connected perimeter, all three regions must contain a cusp.
Proposition 4.9 further restricts the topology.

Conjecture 4.1. Given two areas 0 < A1 � A2 � 2� � A1 � A2, a perimeter-
minimizing double bubble on the thrice-punctured sphere consists of

(1) horocycles around cusps if A1 is relatively small,

(2) a �-curve with each region containing one cusp (unique up to the three-fold
symmetry) if A1 is relatively large (see Figure 2).

Figure 2. � -curves as pictured are conjectured to minimize perimeter
for relatively large pairs of areas.
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Proposition 4.2. There exists a constant A0 � 1:7038 such that given 0 < A1 D

A2 �
2�
3

, the symmetric � -curve enclosing areas A1;A2 is shorter than horocycles
(of length A1CA2) if and only if A1 DA2 >A0.

Proof. Let H D fxC yi 2 C j y > 0g with the metric ds D
p

dx2
C dy2=y; this

is the upper half-plane model of hyperbolic space. The length of a parametrized
curve � W Œa; b�!H is given by

lengthD
Z b

a

j� 0.t/j

y.t/
dt:

The area of a region R is given by

areaD
“

R

1

y
dx dy:

We consider the following construction in H. The thrice-punctured sphere can
be considered as the quotient of two ideal triangles H (the edges of these triangles
are shown in blue in Figure 3 with the edges e and f being identified with e0 and
f 0 as shown). For computational ease we choose the radii of the semicircles f
and f 0 to be 1.

Given A1 D A2 D
2�
3

, consider the pink �-curve � of Figure 3, composed of
three geodesics which each contain a cusp and meet at angles of 2�

3
. In the upper

half-plane this curve consists of four circular arcs of radius 2 and angle �
6

and two
vertical segments. Each of the arcs is centered at a vertex of the ideal triangle and
runs from a vertical edge toward the center, while the two vertical segments run
from the intersections of the arcs to the edges f and f 0.

By symmetry this curve divides the thrice-punctured sphere into three equal parts
each having area 2�

3
. Due to symmetry the length of � is 6l , where l is the length

of just one of the vertical segments. Computing the length of the segment from
.1;
p

3/ to .1; 1/ using the formula given we obtain l D ln
p

3� ln 1D 1
2

ln 3. Thus
the length of � is 3 ln 3.

For A1 D A2 D
2�
3

, the �-curve has length 3 ln 3 < 4�
3
D A1CA2, while for

A1DA2 <� , the horocycles of length A1CA2 are minimizing by Proposition 3.6.
Moreover, as A1 D A2 decreases, the symmetric �-curve gets longer and the
horocycles get shorter. Therefore there is a constant � < A0 <

2�
3

such that the
� -curve is shorter if and only if A1 DA2 >A0.

Using Mathematica we were able to find an approximate value of A0. For
A1DA2<

2�
3

, we consider the same construction as for �, but shift it downwards a
euclidean distance of p to the red curve in Figure 3. This is the only possible � -curve
enclosing A1 and A2 which satisfies the regularity and constant curvature conditions
of a perimeter-minimizing double bubble. By symmetry, the length is given by
adding four times the length of one arc (we take the one centered at .0;p/) to two
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e e'
f f '

φ

β

α

1

0

0 1 2 3 4

2

Figure 3. A �-curve on a thrice-punctured sphere in the upper
half-plane allows us to parametrize the area and perimeter of the
� -curve for equal areas.

times the length of one vertical segment (we take the one starting at .1; 1/). Using the
standard parametrizations for these curves and the length formula given we obtain

Perimeter.p/D 4

Z �
2

�
3

1

sin x� p
2

dx� 2 ln.
p

3�p/:

The area enclosed by the red curve is given by taking four times area of the
region between the red arc and the first half of f . Applying the given formula for
computing area we have

Area.p/D4

Z 1

0

Z p4�x2�p

p
1�.x�1/2

1

y
dy dxD4

Z 1

0

�
1

p
4�x2�p

C
1

1� .x� 1/2
dx:

Given these parametrizations of area and perimeter, we can plot the perimeter
against the area as in Figure 4. Further computations via Mathematica show that a
� -curve is more efficient than horocycles for areas greater than about 3:4076=2. �

Lemma 4.3. In the hyperbolic plane, for a disc of area A and perimeter P the
following statements hold:

(1) If A� � , then P � 2:2A.

(2) If A� �
2

, then P � 3A.

(3) If A� 4�
9

, then P �
p

10.

(4) If A� 4�
15

, then P � 4A.

(5) If A< 8�=.9C 3
p

13/, then P > 4�
3

.
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2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

 

 

P

A

P� .A/

PH .A/

Figure 4. The �-curve is shorter than horocycles for equal areas
greater than about 1.7.

Proof. Set c D P=A. If we parametrize area and perimeter of such a disc using the
hyperbolic radius, s, then

c D
2� sinh s

4� sinh2 s
2

D coth s
2
:

Notice that coth s
2

is decreasing with s, whereas A D 4� sinh2 s
2

is increasing
with s. Therefore coth s

2
is bounded below by its value at the hyperbolic radius

corresponding to the largest A. Suppose A � � . We solve A � 4� sinh2 s
2

to
find s � cosh�1 3

2
. Hence c � coth

�
1
2

cosh�1
�

3
2

��
� 2:22. Thus P D cA � 2:2A.

Therefore, the first statement holds. Statements (2)–(4) are shown by the same
method.

To show (5), we suppose that A> 8�=.9C3
p

13/. Since P .A/D
p

A2C 4�A

is strictly increasing for all positive A, we have that for A> 8�=.9C 3
p

13/,

P >

s�
8�

9C 3
p

13

�2

C 4�
8�

9C 3
p

13
D

4�

3
: �

Remark 4.4. In Lemma 4.3(1)–(4) both inequalities of each statement may be
made strict and the statements will still hold. The method of proof is the same.

Lemma 4.5. For two regions on the thrice-punctured sphere with areas A1 and A2

such that A1;A2 �A3 D 2� �A1�A2, we have that A1;A2 � � .

Proof. If this was not true, the total area A1CA2CA3 would exceed 2� , which is
the area of the thrice-punctured sphere (Proposition 3.5). �

Lemma 4.6. Given a double bubble with regions of areas 0 < A1;A2 � 2� �

A1�A2 and perimeters Pi , the total perimeter P satisfies P �A1C
1
2
P2.
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Proof. Denote the area and perimeter of the complementary region by A3 and P3.
By Lemma 4.5, A1�� . Thus Proposition 3.2 implies that P1�A1. If A3<� , then

P3 �A3 D 2� �A1�A2 � .2A1CA2/�A1�A2 DA1:

If A3 > � , then

P3 � 2� �A3 D 2� � .2� �A1�A2/DA1CA2 �A1:

Therefore the total perimeter satisfies

P D 1
2
.P1CP2CP3/�

1
2
.2A1CP2/DA1C

1
2
P2: �

Proposition 4.7. On a thrice-punctured sphere, a curve enclosing and separating
regions Ri of perimeters Pi and areas A1, A2 � 2� �A1�A2 has total perimeter
P > A1CA2 if R1 or R2 is a union of topological discs. In particular, it is not
perimeter-minimizing.

Proof. Suppose R2 is the union of topological discs. Let Pi denote the perimeter
of Ri . Since the disc is isoperimetric in the hyperbolic plane, P2 is greater than or
equal to the perimeter of a hyperbolic disc of the same area. By Lemma 4.5, A2�� .
Thus, by Lemma 4.3(1), P2� 2:2A2. By Lemma 4.6, the total perimeter P satisfies

P �A1C
1
2
P2 >A1C

1
2
.2:2/A2 >A1CA2:

Therefore it cannot be perimeter-minimizing, because horocycles on two separate
cusps have perimeter A1CA2. �

Proposition 4.8. In a perimeter-minimizing double bubble with connected perime-
ter containing regions Ri of perimeters Pi and areas A1, A2�A3D 2��A1�A2,
all three regions contain a cusp.

Proof. Both regions must have a component which is not a topological disc;
otherwise horocycles enclosing the same area would be shorter than the perimeter
of our double bubble by Proposition 4.7, contradicting the fact that our bubble is
perimeter-minimizing. These components of regions which aren’t topological discs
must contain cusps (they can’t be annular regions since the perimeter is connected).

Suppose that R3 is the union of topological discs. Then P3 is greater than or
equal to the perimeter of the hyperbolic disc of area A3. Since dP=dA of the
hyperbolic disc is always positive and A3 �

2�
3

, P3 is greater than or equal to the
perimeter of the hyperbolic disc of area 2�

3
, which is 2

p
7�

3
. Therefore we have

P > P3 >
2
p

7�
3

> 4�
3
�A1CA2, a contradiction. �

Proposition 4.9. Consider a double bubble enclosing areas 0 < A1;A2 � 2� �

A1�A2, consisting of four region components Ci of areas A1�a1, a1, a2, A2�a2,
where a1�a2, and each Ci is adjacent only to Ci�1 and CiC1 for 1< i<4. Suppose



DOUBLE BUBBLES IN HYPERBOLIC SURFACES 215

C2
C1 C3

C4 C1 C3
C4

Figure 5. Lower bound on perimeter of four components of regions
with two cusps.

that C1 and C4 have no common boundary and are each connected and contain
cusps, and that the union of C2 and C3 (not necessarily connected) is the union of
topological discs. Then the total perimeter satisfies P >A1CA2, and the double
bubble is not perimeter-minimizing.

Proof. Suppose that
�p

10
2
� 1

�
a2 � a1 and 4�

15
� a2. Then

a1C a2 �

p
10

2
a2 �

p
10

2

4�

15
>

8�

3.3C
p

13/
:

Therefore a1 C a2 > 8�=.3.3 C
p

13//. We conclude that at least one of the
following conditions must be satisfied:

(1) 8�=.3.3C
p

13// < a1C a2.

(2) a1 �
�p

10
2
� 1

�
a2 and a2 <

4�
9

.

(3) a2 <
4�
15

.

Therefore it suffices to show P >A1CA2 for the three cases where at least one of
these conditions is satisfied.

Case 1: Since the union of C2 and C3 is the union of topological discs with boundary
and the disc is isoperimetric in the hyperbolic plane, the length of the boundary
of their union is greater than the perimeter of a hyperbolic disc of area a1C a2.
Therefore, by Lemma 4.3(5), P > 4�

3
>A1CA2.

To show the remaining cases, we remove the unshared perimeter of C2 (see
Figure 5) and consider the sum of P1 and the total perimeter of C3 and C4. Since
A1 � a1 � A1 � � (Lemma 4.5), by Proposition 3.2, P1 � A1 � a1. Since C3 is
the union of topological discs, the total perimeter of C3 and C4 is bounded below
by A2� a2C

1
2
P3, by Lemma 4.6. Thus P �A1� a1CA2� a2C

1
2
P3.

Case 2: Since a2 <
4�
9

, by Lemma 4.3(2) we have P3 >
p

10a2; thus

P �A1� a1CA2� a2C
1
2
P3 >A2� a2CA1� a1C

p
10
2

a2:
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Since a1 �
�p

10
2
� 1

�
a2, we have

P >A2� a2CA1� a1C
�p

10
2
� 1

�
a2C a2

�A2� a2CA1� a1C a1C a2 DA1CA2:

Case 3: By Lemma 4.3(3), we have P3 > 4a2; thus

P �A2� a2CA1� a1C
1
2
P3 >A2� a2CA1� a1C 2a2

�A2� a2CA1� a1C a2C a1 DA1CA2:

We conclude that P > A1 C A2. Hence it is not perimeter-minimizing, as
horocycles on separate cusps have perimeter A1CA2. �

5. Once-punctured surfaces

Some of the methods employed in Section 4, can be applied to other hyperbolic
surfaces of constant Gaussian curvature �1 that share some features of the thrice-
punctured sphere, such as having area of 2� and at least one cusp, but lack its fixed
hyperbolic structure. For example, a once punctured torus has many hyperbolic
structures, yet all have area 2� . Proposition 5.1 shows that for relatively small areas
on such a surface, two horocycles have less perimeter than one horocycle with a
lens.

Proposition 5.1. Given two areas 0 < A1;A2 �
4�
15

on a punctured surface of
area 2� , the union of two horocycles about the cusp enclosing and separating A1

and A2 is shorter than a horocycle with a lens.

Proof. Without loss of generality suppose that A1 is not on the cusp. Since A1 � �

(Lemma 4.5), by Proposition 3.2, our surface has the same isoperimetric profile
for single bubbles as the thrice-punctured sphere. Thus Lemma 4.6 holds, and the
total perimeter, P, of our enclosure satisfies the inequality P � A2 C

1
2
P1. By

Lemma 4.3(4), P1 � 4A1 for A1 �
4�
15

. Thus P �A2C 2A1. �
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What is odd about binary Parseval frames?
Zachery J. Baker, Bernhard G. Bodmann, Micah G. Bullock,

Samantha N. Branum and Jacob E. McLaney

(Communicated by David Royal Larson)

This paper examines the construction and properties of binary Parseval frames.
We address two questions: When does a binary Parseval frame have a comple-
mentary Parseval frame? Which binary symmetric idempotent matrices are Gram
matrices of binary Parseval frames? In contrast to the case of real or complex
Parseval frames, the answer to these questions is not always affirmative. The key
to our understanding comes from an algorithm that constructs binary orthonormal
sequences that span a given subspace, whenever possible. Special regard is given
to binary frames whose Gram matrices are circulants.

1. Introduction

Much of the literature on frames, from its beginnings in nonharmonic Fourier
analysis [Duffin and Schaeffer 1952] to comprehensive overviews of theory and
applications [Christensen 2003; Kovačević and Chebira 2007a; 2007b], assumes
an underlying structure of a real or complex Hilbert space to study approximate
expansions of vectors. Indeed, the correspondence between vectors in Hilbert
spaces and linear functionals given by the Riesz representation theorem provides a
convenient way to characterize Parseval frames, sequences of vectors that behave
in a way that is similar to orthonormal bases without requiring the vectors to be
linearly independent [Christensen 2003]. Incorporating linear dependence relations
is useful to permit more flexibility for expansions and to suppress errors that may
model faulty signal transmissions in applications [Marshall 1984; 1989; Rath and
Guillemot 2003; 2004; Holmes and Paulsen 2004; Puschel and Kovačević 2005;
Bodmann and Paulsen 2005].

The concept of frames has also been established even in vector spaces without a
positive definite inner product [Bodmann et al. 2009; Han et al. 2007]. In fact, the
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well-known theory of binary codes can be seen as a form of frame theory in which
linear dependence relations among binary vectors are examined [MacWilliams and
Sloane 1977; Haemers et al. 1999; Betten et al. 2006]. Here, binary vector spaces
are defined over the finite field with two elements; a frame for a finite-dimensional
binary vector space is simply a spanning sequence [Bodmann et al. 2009]. In a
preceding paper [Bodmann et al. 2014], the study of binary codes from a frame-
theoretic perspective has led to additional combinatorial insights in the design of
error-correcting codes.

The present paper is concerned with binary Parseval frames. These binary frames
provide explicit expansions of binary vectors using a bilinear form that resembles the
dot product in Euclidean spaces. In contrast to the inner product on real or complex
Hilbert spaces, there are many nonzero vectors whose dot product with themselves
vanishes. Such vectors have special significance in our results. Due to the number
of nonzero entries they contain, we call them even vectors, and if a vector is not
even, we call it odd. As a consequence of the degeneracy of the bilinear form, there
are some striking differences with frame theory over real or complex Hilbert spaces.
In this paper, we explore the construction and properties of binary Parseval frames,
and compare them with real and complex ones. Our main results are as follows.

In the real or complex case, it is known that each Parseval frame has a Naimark
complement [Christensen 2003; Han and Larson 2000]. The complementarity is
most easily formulated by stating that the Gram matrices of two complementary Par-
seval frames sum to the identity. We show that in the binary case, not every Parseval
frame has a Naimark complement. We also show that a necessary and sufficient
condition for its existence is that the Parseval frame contains at least one even vector.

Moreover, we study the structure of Gram matrices. The Gram matrices of real
or complex Parseval frames are characterized as symmetric or hermitian idempotent
matrices. The binary case requires the additional condition that at least one column
vector of the matrix is odd.

The general results we obtain are illustrated with examples. Special regard is
given to cyclic binary Parseval frames, whose Gram matrices are circulants.

2. Preliminaries

We define the notions of a binary frame and a binary Parseval frame as in a previous
paper [Bodmann et al. 2009]. The vector space that these sequences of vectors span
is the direct sum Zn

2 = Z2⊕· · ·⊕Z2 of n copies of Z2 for some n ∈N. Here, Z2 is
the field of binary numbers with the two elements 0 and 1, the neutral element with
respect to addition and the multiplicative identity, respectively.

Definition 2.1. A binary frame is a sequence F = { f1, . . . , fk} in a binary vector
space Zn

2 such that spanF = Zn
2 .
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A simple example of a frame is the canonical basis {e1, e2, . . . , en} for Zn
2 . The

i-th vector has components (ei )j = δi, j , j ∈ {1, 2, . . . , n}, and thus (ei )i = 1 is the
only nonzero entry for ei . Consequently, a vector x = (xi )

n
i=1 is expanded in terms

of the canonical basis as x =
∑n

i=1 xi ei .
Frames provide similar expansions of vectors in linear combinations of the frame

vectors. Parseval frames are especially convenient for this purpose because the
linear combination can be determined with little effort. In the real or complex case,
this only requires computing values of inner products between the vector to be
expanded and the frame vectors. Although we cannot introduce a nondegenerate
inner product in the binary case, we define Parseval frames using a bilinear form that
resembles the dot product on Rn. Other choices of bilinear forms and a more general
theory of binary frames have been investigated elsewhere; see [Hotovy et al. 2015].

Definition 2.2. The dot product on Zn
2 is the bilinear map ( · , · ) : Zn

2 ×Zn
2→ Z2

given by x1
...

xn

,
y1
...

yn

 := n∑
i=1

xi yi .

With the help of this dot product, we define a Parseval frame for Zn
2 .

Definition 2.3. A binary Parseval frame is a sequence of vectors F = { f1, . . . , fk}

in Zn
2 such that, for all x ∈ Zn

2 , the sequence satisfies the reconstruction identity

x =
k∑

j=1

(x, f j ) f j . (2-1)

To keep track of the specifics of such a Parseval frame, we then also say that F is a
binary (k, n)-frame.

In the following, we use matrix algebra whenever it is convenient for establishing
properties of frames. We write A ∈ Mm,n(Z2) when A is an m × n matrix with
entries in Z2 and identify A with the linear map from Zn

2 to Zm
2 induced by left

multiplication of any (column) vector x ∈Zn
2 with A. We let A∗ denote the adjoint of

A ∈Mm,n(Z2); that is, (Ax, y)= (x, A∗y) for all x ∈Zn
2 , y ∈Zm

2 and consequently,
A∗ is the transpose of A.

Definition 2.4. Each frame F = { f1, . . . , fk} is associated with its analysis matrix
2F , whose i-th row is given by the i-th frame vector for i ∈ {1, 2, . . . , k}. Its
transpose 2∗F is called the synthesis matrix.

With the help of matrix multiplication, the reconstruction formula (2-1) of a
binary (k, n)-frame F with analysis matrix 2F is simply expressed as

2∗F 2F = In, (2-2)
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where In is the n× n identity matrix. We also note that for any x, y ∈ Zn
2 , their dot

product is unchanged by applying 2F ,

(2F x,2F y)= (x, y),

which motivates speaking of 2F as an isometry, as in the case of real or complex
inner product spaces.

Another way to interpret identity (2-2) is in terms of the column vectors of 2F .
Again borrowing a concept from Euclidean spaces, we introduce orthonormality.

Definition 2.5. We say that a sequence of vectors {v1, v2, . . . , vr } in Zn
2 is orthonor-

mal if (vi , vj )= δi, j for i, j ∈ {1, 2, . . . , r}; that is, the dot product of the pair vi

and vj vanishes unless i = j , in which case it is equal to 1.

Inspecting the matrix identity (2-2), we see that a binary k× n matrix 2 is the
analysis matrix of a binary Parseval frame if and only if the columns of 2 form an
orthonormal sequence in Zk

2.
The orthogonality relations between the frame vectors are recorded in the Gram

matrix, whose entries consist of the dot products of all pairs of vectors.

Definition 2.6. The Gram matrix of a binary frame F = { f1, f2, . . . , fk} for Zn
2 is

the k× k matrix G with entries Gi, j = ( f j , fi ).

It is straightforward to verify that the Gram matrix of F is expressed as the
composition of the analysis and synthesis matrices,

G =2F 2
∗

F .

The identity (2-2) implies that the Gram matrix of a Parseval frame satisfies

G = G∗ = G2.

For frames over the real or complex numbers, these equations characterize the set of
all Gram matrices of Parseval frames as orthogonal projection matrices. However,
in the binary case, this is only a necessary condition, as shown in the following
proposition and the subsequent example.

Proposition 2.7. If M is binary matrix that satisfies M =M2
=M∗ and it has only

even column vectors, then M is not the Gram matrix of a binary Parseval frame.

Proof. If G is the Gram matrix of a Parseval frame with analysis operator 2, then
G2=22∗2=2, and thus for each column ω of 2, we obtain the eigenvector
equation Gω = ω. By the orthonormality of the columns of 2, each ω is odd.

On the other hand, if M has only even columns, then any eigenvector correspond-
ing to eigenvalue 1 is even, because it is a linear combination of the column vectors
of M. This means M cannot be the Gram matrix of a binary Parseval frame. �
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The following example shows that idempotent symmetric matrices that are not
Gram matrices of binary Parseval frames exist for any odd dimension k ≥ 3.

Example 2.8. Let k ≥ 3 be odd and let M be the k × k matrix whose entries
are all equal to 1 except for vanishing entries on the diagonal, Mi, j = 1− δi, j ,
i, j ∈ {1, 2, . . . , k}. This matrix satisfies M =M2

=M∗, but only has even columns,
and by the preceding proposition, it is not the Gram matrix of a binary Parseval
frame.

As shown in Section 4, having only even column vectors is the only way a
binary symmetric idempotent matrix can fail to be the Gram matrix of a Parseval
frame. The construction of Example 2.8 is intriguing because the alternative choice
where k is odd and all entries of M are equal to 1 is the Gram matrix of a binary
Parseval frame. The relation between these two alternatives can be interpreted as
complementarity, which will be explored in more detail in the next section.

3. Complementarity for binary Parseval frames

Over the real or complex numbers, each Parseval frame has a so-called Naimark
complement [Christensen 2003], also called a strong complement [Han and Larson
2000]; if G is the Gram matrix of a real or complex Parseval frame, then it is an
orthogonal projection matrix, and so is I −G, which makes it the Gram matrix of
a complementary Parseval frame.

We adopt the same definition for the binary case.

Definition 3.1. Two binary Parseval frames F and G having analysis operators
2F ∈ Mk,n(Z2) and 2G ∈ Mk,k−n(Z2) are complementary if

2F 2
∗

F +2G2
∗

G = Ik .

We also say that F and G are Naimark complements of each other.

There is an equivalent statement of complementarity in terms of the block
matrix U = (2F 2G), formed by adjoining2F and2G , being orthogonal, meaning
UU∗=U∗U = I , just as in the real case (or as U being unitary in the complex case).

Proposition 3.2. Two binary Parseval frames F and G having analysis operators
2F ∈ Mk,n(Z2) and 2G ∈ Mk,k−n(Z2) are complementary if and only if the block
matrix (2F 2G) is an orthogonal k× k matrix.

Proof. In terms of the block matrix (2F 2G), the complementarity is expressed as

(2F 2G)(2F 2G)
∗
= Ik .

Since U = (2F 2G) is a square matrix, UU∗ = I is equivalent to U∗ also being a
left inverse of U, meaning UU∗ =U∗U = Ik , and thus U is orthogonal. �
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In the binary case, not every Parseval frame has a Naimark complement. For
example, if k ≥ 3 is odd and n = 1, the frame consisting of k vectors {1, 1, . . . , 1}
in Z2 is Parseval, and the Gram matrix G is the k× k matrix whose entries are all
equal to 1. However, I −G ≡ I +G is the matrix M appearing in Example 2.8,
which is not the Gram matrix of a binary Parseval frame. This motivates the search
for a condition that characterizes the existence of complementary Parseval frames.

A simple condition for the existence of complementary Parseval frames. We ob-
serve that if F is a Parseval frame with analysis operator 2F that extends to
an orthogonal matrix, then the column vectors of 2F are a subset of a set of
n orthonormal vectors. This is true in the binary as well as the real or complex case.
Thus, one could try to relate the construction of a complementary Parseval frame to
a Gram–Schmidt orthogonalization strategy. Indeed, this idea allows us to formulate
a concrete condition that characterizes when F has a complementary Parseval frame.
We prepare this result with a lemma about extending orthonormal sequences.

Lemma 3.3. A binary orthonormal sequence Y = {v1, v2, . . . , vr } in Zk
2 with r ≤

k−1 extends to an orthonormal sequence {v1, v2, . . . , vk} if and only if
∑r

i=1 vi 6= ιk ,
where ιk is the vector in Zk

2 whose entries are all equal to 1.

Proof. If the sequence extends, then {v1, v2, . . . , vk} forms a Parseval frame for Zk
2,

and by the orthonormality,
∑k

i=1 vi =
∑k

i=1(ιk, vi )vi = ιk . On the other hand,
the orthonormality forces the set {v1, v2, . . . , vk} to be linearly independent, so ιk
cannot be expressed as a linear combination of a proper subset.

To show the converse, we use an inductive proof. Let V be the analysis operator
associated with an orthonormal sequence {v1, v2, . . . , vs}, r ≤ s ≤ k−1, satisfying∑s

i=1 vi 6= ιk . To extend the sequence by one vector, we need to find vs+1 with
(vs+1, vs+1)= (vs+1, ιk)= 1 and with (v j , vs+1)= 0 for all 1≤ j ≤ s. Using block
matrices this is summarized in the equation(

V
ι∗k

)
vs+1 =

(
0s

1

)
, (3-1)

where 0s is the zero vector in Zs
2.

In order to verify that this equation is consistent, we note that by the orthonormal-
ity of the sequence {v1, v2, . . . , vs}, the vector ιk is a linear combination if and only
if
∑s

i=1 vi = ιk . Thus, there exists vs+1 which extends the orthonormal sequence.
This is all that is needed if s = k− 1.

Next, we need to show that if s ≤ k− 2, then a solution vs+1 can be chosen so
that

∑s+1
i=1 vi 6= ιk , so that the iterative extension procedure can be continued. The

solution set of (3-1) forms an affine subspace of Zk
2 having dimension k− (s+ 1),

and thus contains 2k−s−1 elements. If s≤ k−2, there are at least two elements in this
affine subspace. Consequently, there is one choice of vs+1 such that

∑s+1
i=1 vi 6= ιk . �
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We are ready to characterize the complementarity property for binary Parseval
frames. The condition that determines the existence of a Naimark complement is
whether at least one frame vector is even, that is, its entries sum to zero.

Theorem 3.4. A binary (k, n)-frame F with n < k has a complementary Parseval
frame if and only if at least one frame vector is even.

Proof. The existence of a complementary Parseval frame is by Proposition 3.2
equivalent to the sequence of column vectors {ω1, ω2, . . . , ωn} of 2F having an
extension to an orthonormal sequence of k elements.

The condition that at least one frame vector is even can be stated as 2F ιn 6= ιk
or, expressed in terms of the column vectors, as

∑n
i=1 ωn 6= ιk .

The preceding lemma thus provides the existence of a complementary Parseval
frame via the extension of {ω1, ω2, . . . , ωn} if and only if

∑n
i=1 ωn 6= ιk . �

A catalog of binary Parseval frames with the complementarity property. A previ-
ous work contained a catalog of binary Parseval frames for Zn

2 when n was small
[Bodmann et al. 2009]. Here, we wish to compile a list of the binary Parseval
frames that have a complementary Parseval frame. For notational convenience, we
consider 2F instead of the sequence of frame vectors. By Proposition 3.2, every
such 2F is obtained by a selection of columns from a binary orthogonal matrix,
so we could simply list the set of all orthogonal matrices for small k. However,
such a list quickly becomes extensive as k increases. To reduce the number of
orthogonal matrices, we note that although the frame depends on the order in which
the columns are selected to form 2F , the Gram matrix does not. Identifying frames
whose Gram matrices coincide has already been used to avoid repeating information
when examining real or complex frames [Balan 1999] and binary frames [Bodmann
et al. 2009]. We consider an even coarser underlying equivalence relation [Goyal
et al. 2001; Holmes and Paulsen 2004; Bodmann and Paulsen 2005] that has also
appeared in the context of binary frames [Bodmann et al. 2009].

Definition 3.5. Two families F = { f1, f2, . . . , fk} and G = {g1, g2, . . . , gk} in Zn
2

are called switching equivalent if there is an orthogonal n × n matrix U and a
permutation π of the set {1, 2, . . . , k} such that

f j =Ugπ( j) for all j ∈ {1, 2, . . . }.

Representing the permutation π by the associated permutation matrix P with
entries Pi, j = δi,π( j) gives that if F and G are switching equivalent, then 2F =

P2GU, where U is an orthogonal n×n matrix and P is a k×k permutation matrix.
Alternatively, switching equivalence is stated in the form of an identity for the
corresponding Gram matrices.
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Theorem 3.6 [Bodmann et al. 2009]. Two binary (k, n)-frames F and G are switch-
ing equivalent if and only if their Gram matrices are related by conjugation with a
k× k permutation matrix P,

GF = PGG P∗.

We deduce a consequence for switching equivalence and Naimark complements,
which is inferred from the role of the Gram matrices in the definition of comple-
mentarity.

Corollary 3.7. If F and G are switching-equivalent binary (k, n)-frames, then F
has a Naimark complement if and only if G does.

Thus, to provide an exhaustive list, we only need to ensure that at least one
representative of each switching equivalence class appears as a selection of columns
in the orthogonal matrices we include. To reduce the number of representatives, we
identify matrices up to row and column permutations.

Definition 3.8. Two matrices A, B ∈ Mk,k(Z2) are called permutation equivalent
if there are two permutation matrices P1, P2 ∈ Mk,k(Z2) such that A = P1 B P∗2 .

Proposition 3.9. If U1 and U2 are permutation-equivalent binary orthogonal matri-
ces, then each (k, n)-frame F formed by a sequence of n columns of U1 is switching
equivalent to a (k, n)-frame G formed with columns of U2.

Proof. Without loss of generality, we can assume that the analysis matrix 2F is
formed by the first n columns of U1. By the equivalence of U1 and U2, we have
U1 P2 = P1U2 with permutation matrices P1 and P2. The right multiplication of
U1 with P2 gives a column permutation, which identifies a sequence of columns
in P1U2 that is identical to the first n columns of U1. If G is obtained with the
corresponding columns in U2, then the Gram matrices of F and G are related by
GF = P1GG P∗1 , which proves the switching equivalence. �

A list of permutation-inequivalent orthogonal k× k matrices allows us to obtain
the Gram matrix of each binary (k, n)-frame with a Naimark complement by
selecting an appropriate choice of n columns from an orthogonal k× k matrix to
form 2 and then by applying a permutation matrix P to obtain GF = P22∗P∗.

Each representative of an equivalence class of orthogonal matrices can be chosen
so that the columns are in lexicographical order. Table 1 contains a complete
list of representatives of binary orthogonal matrices for k ∈ {3, 4, 5, 6} from each
permutation equivalence class. Each column vector in our list is recorded by the
integer obtained from the binary expansion with the entries of the vector. For
example, if a frame vector in Z4

2 is f1 = (1, 0, 1, 1), then it is represented by the
integer 20

+ 22
+ 23
= 13. Accordingly, in Z4

2, the standard basis is recorded as the
sequence of numbers 1, 2, 4, 8.
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k
nonequivalent

k× k orthogonal matrices

3 (1, 2, 4)

4 (1, 2, 4, 8)
(7, 11, 13, 14)

5

(1, 2, 4, 8, 16)
(4, 11, 19, 25, 26)
(7, 8, 19, 21, 22)

(7, 11, 13, 14, 16)

6

(1, 2, 4, 8, 16, 32)
(4, 8, 19, 35, 49, 50)

(4, 11, 16, 35, 41, 42)
(4, 11, 19, 25, 26, 32)
(7, 8, 16, 35, 37, 38)
(7, 8, 19, 21, 22, 32)

(7, 11, 13, 14, 16, 32)
(13, 14, 28, 44, 55, 59)
(21, 22, 28, 47, 52, 59)
(25, 26, 28, 47, 55, 56)
(31, 37, 38, 44, 52, 59)
(31, 41, 42, 44, 55, 56)
(31, 47, 49, 50, 52, 56)
(31, 47, 55, 59, 61, 62)

Table 1. All permutation-inequivalent binary orthogonal k × k
matrices, 3 ≤ k ≤ 6. Up to switching equivalence, the Gram
matrix of each binary (k, n)-frame with a Naimark complement
is obtained by selecting appropriate columns in one of the listed
k× k orthogonal matrices.

4. Gram matrices of binary Parseval frames

The preceding section on complementarity hinged on the problem that even if G
is the Gram matrix of a binary Parseval frame, I −G may not be, even though it
is symmetric and idempotent. Again, there is a simple condition that needs to be
added; Gram matrices of binary Parseval frames are symmetric and idempotent and
have at least one odd column, that is, a column whose entries sum to 1. Because
of the identity G2

= G, having an odd column is equivalent to having a nonzero
diagonal entry. Indeed, it has been shown that for any binary symmetric matrix G
without vanishing diagonal, there is a factor 2 such that G =22∗ and the rank
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of 2 is equal to that of G [Lempel 1975]. The assumptions needed for our proof
are stronger, but our algorithm for producing 2 appears to be more straightforward
than the factorization procedure for general symmetric binary matrices.

Theorem 4.1. A binary symmetric idempotent matrix M is the Gram matrix of a
Parseval frame if and only if it has at least one odd column.

Proof. First, we re-express the condition on the columns of a symmetric k × k
matrix M in the equivalent form of the matrix Ik + M having at least one even
column or row. This, in turn, is equivalent to the inequality (Ik +M)ιk 6= ιk .

Next, we recall that both M and Ik + M are assumed to be idempotent. We
observe that any vector y ∈ Zk

2 is in the range of an idempotent P if and only if
Py = y if and only if y is in the kernel of Ik + P.

Assuming M is the Gram matrix of a Parseval frame, we have M=22∗ where2
has orthonormal columns and (Ik +M)2= 0. Combining the two properties gives(

Ik +M
ι∗k

)
2=

(
0k,n
ι∗n

)
.

This is inconsistent if and only if ιk is in the span of the columns of the idempotent
Ik +M , which is equivalent to (Ik +M)ιk = ιk .

Conversely, assuming that M is symmetric and idempotent and has at least one
odd column, we construct a matrix2with orthonormal columns such that M=22∗.

We follow an inductive strategy similar to an earlier proof and construct an
orthonormal sequence {ω1, . . . , ωn} as described in the following paragraph such
that n is the rank of M and Mωi = ωi for all i ∈ {1, 2, . . . , n}. In that case, the
range of M is the span of the sequence, and so is the range of M∗. Moreover, if
2 contains the column vectors {ω1, . . . , ωn}, then Mωi = ωi = 22

∗ωi implies
M =22∗ because the two matrices have rank at most n and provide the identity
map on the span of n linearly independent vectors.

To begin with the induction, if M has an odd column, then the fact that M is
idempotent gives that the equation (Ik +M)ω1 = 0 has this column vector as an
odd solution. If this solution is unique, then Ik +M has rank k− 1, M has rank 1
and {ω1} is the desired sequence. If the solution is not unique, then we can choose
ω1 6= ιk and proceed with the induction.

Next, we extend a given orthonormal sequence {ω1, . . . , ωs} in the kernel of
Ik+M with s ≤ n−2 by one vector. Let V be a matrix formed by a maximal set of
linearly independent rows in Ik+M. Then if M has rank n, the rank-nullity theorem
gives that V has k− n rows. Letting Y be the analysis matrix of the orthonormal
sequence {ω1, . . . , ωs}, extending it by one vector requires solving the equationV

Y
ι∗k

ωs+1 =

0k−n
0s
1

. (4-1)



WHAT IS ODD ABOUT BINARY PARSEVAL FRAMES? 229

In order to avoid producing an inconsistent equation during the induction process,
we strengthen the induction assumption by the requirement that ι∗k is not in the span
of the rows of the matrix formed by V and Y and conclude in each step that ι∗k is
not in the span of the rows of the matrix formed by V and Y and ω∗s+1. As before,
this is obtained by the fact that V Y ∗ = 0, so if ιk =

∑s+1
i=1 ciωi + v with v being in

the span of the columns of V ∗, then Yv = 0 and orthonormality forces ci = 1 for all
i ∈ {1, 2, . . . , s+ 1}. The solutions of (4-1) form an affine subspace of dimension
k− (k−n)− s−1= n− s−1, so if s ≤ n−2, then there are at least two solutions,
one of which does not satisfy the identity ιk =

∑s+1
i=1 ciωi + v.

Having constructed the sequence {ω1, . . . , ωn−1}, in the remaining step the
unique solution to (4-1) for s = n− 1 completes the orthonormal sequence. �

5. Binary cyclic frames and circulant Gram matrices

Next, we examine a special type of frame whose Gram matrices are circulants. We
recall that a cyclic subspace V of Zk

2 has the property that it is closed under cyclic
shifts; that is, the cyclic shift S, which is characterized by Sej = e j+1 (mod k), leaves
V invariant.

Definition 5.1. A frame F = { f1, f2, . . . , fk} for Zn
2 is called a binary cyclic frame

if the range of the analysis operator is invariant under the cyclic shift S. If F is also
Parseval, then we say that is a binary cyclic (k, n)-frame.

Since the range of the Gram matrix G belonging to a Parseval frame is iden-
tical to the set of eigenvectors corresponding to eigenvalue 1, we have a simple
characterization of Gram matrices of binary cyclic Parseval frames.

Theorem 5.2. A binary frame F = { f1, f2, . . . , fk} for Zn
2 is a cyclic Parseval

frame if and only if its Gram matrix GF is a symmetric idempotent circulant matrix
(that is, GF = G∗F = G2

F and SGF S∗ = GF ), with only odd column vectors.

Proof. If GF is the Gram matrix of a binary cyclic Parseval frame, then from
the Parseval property, we know that GF = G∗F = G2

F . Moreover, by the cyclicity
of the frame, the eigenspace corresponding to eigenvalue 1 of GF is invariant
under S, and thus if x = GF x , then Sx = SGF x = GF Sx . Using this identity
repeatedly and writing y = Sk−1x = S∗x gives y = SGF S∗y for all y in the range
of GF . By the symmetry of GF , the range of GF is identical to that of G∗F , so
〈GF x, y〉 = 〈SGF S∗x, y〉 for all x, y in the range of GF establishes the circulant
property GF = SGF S∗. If GF is a circulant, then each column vector generates all
the others by applying powers of the cyclic shift to it. Thus, if one column vector is
odd, so are all the other column vectors. Applying Theorem 4.1 then yields that the
Gram matrices of binary cyclic Parseval frames are symmetric idempotent circulant
matrices with only odd column vectors.
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k first row of matrix

3 100
111

4 1000

5 10000
11111

6 100000
101010

7 1000000
1111111

8 10000000

9 100000000
100100100
111011011
111111111

10 1000000000
1010101010

k first row of matrix

11 10000000000
11111111111

12 100000000000
100010001000

13 1000000000000
1111111111111

14 10000000000000
10101010101010

15 100000000000000
100001000010000
100100100100100
100101100110100
111010011001011
111011011011011
111110111101111
111111111111111

k first row of matrix

16 1000000000000000

17 10000000000000000
10010111001110100
11101000110001011
11111111111111111

18 100000000000000000
100000100000100000
101010001010001010
101010101010101010

19 1000000000000000000
1111111111111111111

20 10000000000000000000
10001000100010001000

Table 2. For k ranging from 3 to 20, the table gives the first row of
the circulant k× k Gram matrix of each binary cyclic (k, n)-frame.

1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1
1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0
0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1
1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1

Table 3. Circulant Gram matrix (left) and analysis matrix (right)
of the unique binary cyclic (9, 7)-frame with nonrepeating vectors.

Conversely, if G is a symmetric idempotent circulant and each column vector is
odd, then Theorem 4.1 again yields that it is the Gram matrix of a binary Parseval
frame F with G =2F2

∗
F. Moreover, the range of G is invariant under the cyclic

shift, because one column vector generates all the others by applying powers of the
cyclic shift to it. Since the range of G is identical to that of 2F , we have that F is
a cyclic binary Parseval frame. �
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n = 7
1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1
1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1
1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0
0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1
1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0
0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0
0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1
1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1
1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0
0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0
0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1
1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1
1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1

n = 13
1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1
1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0
0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1
1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1
1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0
0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1
1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1
1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

n = 9
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0
0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1
1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0
0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0
0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1
1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1
1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1
1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1

n = 11
1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1
1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Table 4. Circulant Gram matrix (first matrix of each pair) and
analysis matrix (second of pair) of binary cyclic (15, n)-frames,
n < k, whose vectors do not repeat.

Since adding the identity matrix changes odd columns of G to even columns,
we conclude that complementary Parseval frames do not exist for binary cyclic
Parseval frames.

Corollary 5.3. If F is a binary cyclic Parseval frame, then it has no complementary
Parseval frame.

In Table 2, we provide an exhaustive list of the Gram matrices of cyclic binary
Parseval frames with 3≤ k ≤ 20. Factoring these into the corresponding analysis
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and synthesis matrices shows that many of these examples contain repeated frame
vectors. In an earlier paper [Bodmann et al. 2009], such repeated vectors were
associated with a trivial form of redundancy incorporated in the analysis matrix 2F .
Tables 3 and 4 list the circulant Gram matrices of rank n < k ≤ 20, paired with
k× n analysis matrices, for which no repetition of frame vectors occurs.
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Numbers and the heights of their happiness
May Mei and Andrew Read-McFarland

(Communicated by Kenneth S. Berenhaut)

A generalized happy function, Se,b maps a positive integer to the sum of its base b
digits raised to the e-th power. We say that x is a base-b, e-power, height-h,
u-attracted number if h is the smallest positive integer such that Sh

e,b(x) = u.
Happy numbers are then base-10, 2-power, 1-attracted numbers of any height. Let
σh,e,b(u) denote the smallest height-h, u-attracted number for a fixed base b and
exponent e and let g(e) denote the smallest number such that every integer can
be written as xe

1+ xe
2+· · ·+ xe

g(e) for some nonnegative integers x1, x2, . . . , xg(e).
We prove that if pe,b is the smallest nonnegative integer such that bpe,b > g(e),

d =

⌈
g(e)+ 1

1−
( b−2

b−1

)e + e+ pe,b

⌉
,

and σh,e,b(u)≥ bd, then Se,b(σh+1,e,b(u))= σh,e,b(u).

1. Introduction

Let Se,b be the function that maps a positive base-b integer to the sum of its digits
raised to the e-th power, where e is a positive integer. That is, for x =

∑n−1
i=0 ai bi,

with 0≤ ai ≤ b− 1 for all i ,

Se,b

( n−1∑
i=0

ai bi
)
=

n−1∑
i=0

ae
i .

If Sh
e,b(x)= 1 for some integer h, then x is said to be an e-power, b-happy number.

Guy [2004] gave the smallest 2-power, 10-happy numbers of heights 0 through 6
and asked if 78999 is the smallest height-7 happy number. Grundman and Teeple
[2003] answered Guy, giving the smallest 2-power, 10-happy numbers of heights 0
through 10, and 3-power, 10-happy numbers of heights 0 through 8. From Grundman
and Teeple’s work, one can extract an algorithm for finding the smallest happy
number of height h+ 1 if the smallest happy number of height h is known. The
main results of this paper are Theorems 3.1 and 3.3, which jointly imply that once

MSC2010: 11A99, 11A63.
Keywords: happy numbers, integer sequences, iteration, integer functions.
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the smallest height-(h+1), u-attracted, base-b number is sufficiently large, applying
Se,b to that number will yield the smallest height-h, u-attracted, base-b number.
The results of this paper hold not only for happy numbers (i.e., 1-attracted), but
more generally for u-attracted numbers. Moreover, our results hold for all bases
and exponents.

Definition 1.1. For a fixed base b, exponent e, and positive integer u, we say that
a positive integer x is u-attracted if Sn

e,b(x) = u for some nonnegative integer n.
If h is the smallest nonnegative integer so that Sh

e,b(x) = u then x is a height-h,
u-attracted number. (As a convention, S0

e,b(x)= x .)

Definition 1.2. For a fixed base b, exponent e, positive integer u, and nonnegative
integer h, let σh,e,b(u) denote the smallest height-h, u-attracted number, that is, the
smallest positive integer k with the property that Sh

e,b(k)= u and Sn
e,b(k) 6= u for

n < h. Similarly, for positive h, let τh,e,b(u) denote the second smallest height-h,
u-attracted number, that is, Sh

e,b(l)= u, Sn
e,b(l) 6= u for n < h, and σh,e,b(u) < l.

Some of the following proofs rely upon knowing the smallest integer x such that
for a given e, every integer is expressible as the sum of at most x many integers
raised to the e-th power. We define g(e) for this purpose.

Definition 1.3. For a fixed positive integer e, let g(e) denote the smallest integer
such that every nonnegative integer is expressible as xe

1 + xe
2 + · · ·+ xe

g(e), where
x1, x2, . . . , xg(e) are all nonnegative integers.

This is the well-known Waring’s problem. Many surveys about the history of
this problem exist; see for instance [Vaughan and Wooley 2002].

For the entirety of this paper, we assume that the base b ≥ 2 is an integer, the
exponent e ≥ 1 is an integer, the height h is a nonnegative integer, the attractor u is
a positive integer, and that x denotes a positive integer. Additionally, when we say
dxe = y we mean that y is the smallest integer such that y ≥ x , and similarly, if
bxc = y, then y is the largest integer such that y ≤ x .

2. Mapping attracted numbers

In this section, we establish in Theorem 2.2 a criterion, depending on g(e) that
ensures that Se,b(σh+1,e,b(u))= σh,e,b(u) for a fixed base b, exponent e, height h,
and integer u.

Lemma 2.1. Fix a base b, exponent e, and attractor u. The smallest positive
integer x such that Se,b(x)= u has n digits, where

u
(b− 1)e

≤ n ≤
u

(b− 1)e
+ g(e).
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Proof. Since the maximum value of the image of each digit under Se,b is (b− 1)e,
u/(b− 1)e is a lower bound for the number of digits of x . Let q and r be the quotient
and remainder of u divided by (b− 1)e, respectively; that is, q is a nonnegative
integer, 0≤ r < (b− 1)e, and u = q(b− 1)e+ r . Let x1, . . . , xg(e) be integers such
that xe

1 + · · ·+ xe
g(e) = r . Since r < (b− 1)e, we have x1, . . . , xg(e) < b− 1 and so

they are valid digits in base b. Without loss of generality, x1 ≤ x2 ≤ · · · ≤ xg(e). Let
y be the positive integer formed by the digits x1, x2, . . . , xg(e) followed by q digits,
each of which is b− 1. Since x is minimal, it follows that x ≤ y. So n, the number
of digits of x , must be less than or equal to the number of digits of y, which is
bu/(b− 1)ec+ g(e). �

Theorem 2.2. Fix a base b, exponent e, positive height h, and attractor u. If

σh,e,b(u)
(b− 1)e

+ g(e)≤
τh,e,b(u)
(b− 1)e

, (1)

then Se,b(σh+1,e,b(u))= σh,e,b(u).

Proof. Let x be the smallest integer such that Se,b(x)=σh,e,b(u). Let z be a height-h,
u-attracted number that is greater than σh,e,b(u) (recall that τh,e,b is the smallest
such number) and y any integer such that Se,b(y)= z. That is, y is a height-(h+1),
u-attracted number whose image is not σh,e,b(u). Let n be the number of digits
of x and m be the number of digits of y. We will show that x < y. By Lemma 2.1,

n ≤
σh,e,b(u)
(b− 1)e

+ g(e) and
τh,e,b(u)
(b− 1)e

≤
z

(b− 1)e
≤ m.

By the hypothesis (1), this gives n ≤ m. If n < m, then x < y, so let us suppose
that n = m. It must then be the case that

σh,e,b(u)
(b− 1)e

+ g(e)=
z

(b− 1)e
.

Since Se,b(y)= z and y has m= z/(b− 1)e digits, y is the concatenation of m digits,
each of which is b− 1. Since x 6= y (as they have different images under Se,b) and
x and y have the same number of digits, at least one digit of x is not b− 1. Thus,
x < y. Hence x is less than every other height-(h+1), u-attracted number, and so
x=σh+1,e,b(u). Since Se,b(x)=σh,e,b(u), we have Se,b(σh+1,e,b(u))=σh,e,b(u). �

From [Grundman and Teeple 2003], it is known that σ7,2,10 = 78999 and
τ7,2,10(1)= 79899.

Question 2.3. Under what conditions is τh,e,b(u) a permutation of the digits of
σh,e,b(u)?
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3. Large u-attracted numbers

In this section, we prove Theorems 3.1 and 3.3, which imply that once σh,e,b(u) is
sufficiently large, Se,b(σh+1,e,b(u))= σh,e,b(u).

Theorem 3.1. Fix a base b, exponent e, positive height h, and attractor u. Let δ be
a positive integer, and let

d =
g(e)+ 1

1−
( b−2

b−1

)e + δ.

If σh,e,b(u) has at least d digits, then the base-b expansion of σh,e,b is of the form

σh,e,b(u)=
n−1∑
i=0

ai bi

with a0, . . . , aδ = b− 1. More informally, the rightmost δ+ 1 digits of σh,e,b(u)
are all b− 1.

Proof. In this proof, we will show that if σh,e,b has “too many” digits which are not
equal to b− 1, we can construct a smaller number with the same image as σh,e,b.
This contradicts the definition of σh,e,b.

One can verify σ1,e,b(1) = 10 (in base b) for all e, b and that this is the only
number of the form σh,e,b with a 0 digit. However, 10 is a two-digit number and
d > 2 for integers e > 1. Thus, using the base-b expansion from the statement of
the theorem, ai+1 ≤ ai for 0≤ i < n− 1 (its digits must appear in increasing order
from left to right) and none of its digits can be 0 since σh,e,b(u) is the least height-h,
u-attracted number.

In the case ai = b− 1 for all i , this theorem is trivially true. Otherwise, let us
construct z, the sum of the image of the digits which are not equal to b− 1. In
the case that some digits of σh,e,b,(u) are b− 1 and some are not, define an integer
parameter k ≥ 2 to be such that ak−1 < b− 1 and for all i < k − 1, ai = b− 1.
That is, the k-th place is the first (from the right) in which a digit that is not b− 1
appears. Hence,

σh,e,b(u)=
n−1∑

i=k−1

ai bi
+

k−2∑
i=0

(b− 1)bi.

Let y = Se,b(σh,e,b(u)) and let z = y− (k− 1)(b− 1)e, that is,

z =
n−1∑

i=k−1

ae
i .

In the case that no digits of σh,e,b are b − 1, set k = 1 and let z =
∑n−1

i=0 ae
i .

We proceed to show that if k ≤ δ + 1, we can construct a number smaller than
σh,e,b with the same image as σh,e,b, a contradiction. Let n′ = n − (k − 1) and
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let m = bz/(b− 1)ec. Since z is the sum of n′ many terms of the form ae
i , where

ai ≤ b− 2 for all i , we have n′ ≥ z/(b− 2)e. Thus,

(b− 2)e

(b− 1)e
n′ ≥

z
(b− 1)e

≥ m.

So, (
b− 2
b− 1

)e

n′+ g(e)+ 1≥ m+ g(e)+ 1.

By the definition of d ,

d − δ =
g(e)+ 1

1−
( b−2

b−1

)e ,

and since k ≤ δ+ 1,

d − (k− 1)≥
g(e)+ 1

1−
(b−2

b−1

)e .

Thus,

(d − (k− 1))
(

1−
(

b− 2
b− 1

)e)
≥ g(e)+ 1.

And since n′ ≥ d − (k− 1) and 1−
( b−2

b−1

)e
> 0, we have

n′
(

1−
(

b− 2
b− 1

)e)
≥ g(e)+ 1

and hence

n′ ≥ g(e)+ 1+ n′
(

b− 2
b− 1

)e

≥ m+ g(e)+ 1.

Therefore, n′ ≥ m+ g(e)+ 1.
Let r be the remainder of y divided by (b−1)e; that is, y = q(b−1)e+r , where

q ≥ 0 and (b−1)e > r ≥ 0. From the definition of m, we have q =m+ (k−1). Let
x1, x2, . . . , xg(e) be integers less than b− 1 so that xe

1+ xe
2+· · ·+ xe

g(e) = r . There
are such x j since g(e) is defined so that such integers exist, and all integers must be
less than b− 1 since r < (b− 1)e. Without loss of generality, x1 ≤ x2 ≤ · · · ≤ xg(e).
Let x be a base-b number with digits x1, . . . , xg(e) followed by m+ (k− 1) many
b− 1 digits.

Hence, Se,b(x) = y, and x has at most g(e)+m + (k − 1) digits. Since n′ =
n− (k− 1), we know n ≥ g(e)+ 1+m+ (k− 1). However, this means that x has
fewer digits than σh,e,b(u). This contradicts the fact that σh,e,b(u) is the smallest
height-h, u-attracted integer, and hence, k > δ+ 1. �

For ease of notation, we define a constant pe,b.

Definition 3.2. For a fixed exponent e and base b, let pe,b be the smallest integer
such that bpe,b > g(e).
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Theorem 3.3. Fix a base b, exponent e, positive height h, and attractor u. If
σh,e,b(u) =

∑n−1
i=0 ai bi, where a0, . . . , ae+pe,b = b − 1, then Se,b(σh+1,e,b(u)) =

σh,e,b(u).

Proof. Let σh,e,b(u) be such that a0, . . . , ak = b− 1, where k ≥ e+ pe,b. Define
cj =σh,e,b(u)+ j for 1≤ j < g(e)(b−1)e. We will show that c1 through cg(e)(b−1)e−1

are not height-h, u-attracted numbers.
If b > 2, using the definition of pe,b we get

j < g(e)(b− 1)e < bpe,b(b− 1)e < bpe,b be
= be+pe,b.

Since σh,e,b has at least e+ pe,b+1 trailing digits equal to b−1, we know c1 has at
least e+ pe,b+ 1 trailing zeros. Since j < be+pe,b , we know j has at most e+ pe,b

many digits. Hence cj has at least one digit which is zero for 1≤ j < g(e)(b− 1)e.
Let c′j be formed by removing the all zero digits of cj . We claim that c′j < σh,e,b(u).
Recall that n denotes the number of digits of σh,e,b(u). If ai 6= b−1 for some i , then
n≥e+pe,b+2 and cj has n digits for all j . Thus, c′j has at most n−1 digits and hence
c′j < σh,e,b. If ai = b− 1 for all i , then σh,e,b(u)= bn

− 1 and c1 = bn
= be+pe,b+1,

which means that cj <be+pe,b+1
+be+pe,b. Thus c′j has at most n digits, while the lead-

ing digit of σh,e,b is b−1, but the leading digit of c′j is 1, and since b 6= 2, c′j <σh,e,b.
This leaves only the case that b = 2. In this case,

j < g(e)(2− 1)e = g(e) < 2pe,2.

Since the only allowable digits are 0 and 1, and we argued in the proof of Theorem 3.1
that σh,e,b does not have any digits that are equal to zero, σh,e,2= 2n+1

−1 for some
n≥ e+ pe,2, so 2n+1

≤ cj < 2n+1
+2pe,2 for all j . Since n≥ e+ pe,2 and e is at least

1, cj has at least two digits that are equal to 0. Again, let c′j be formed by removing
the all zero digits of cj . Then c′j has fewer than n digits and hence c′j < σh,e,2.

So, if any cj are height-h, u-attracted numbers, then c′j is a smaller height-h,
u-attracted number than σh,e,b(u), contradicting the definition of σh,e,b(u). Hence,
τh,e,b(u)≥ g(e)(b− 1)e+ σh,e,b(u). Therefore, by Theorem 2.2, Se,b(σh+1,e,b)=

σh,e,b. �

Corollary 3.4. Fix a base b and exponent e. Let

d =

⌈
g(e)+ 1

1−
( b−2

b−1

)e + e+ pe,b

⌉
.

If σh,e,b(u)≥ bd, then Se,b(σh+1,e,b(u))= σh,e,b(u).

Proof. Since σh,e,b(u) ≥ bd, we know σh,e,b(u) must have at least d − 1 digits.
Hence, by Theorem 3.1, σh,e,b(u) =

∑n−1
i=0 ai bi , where for i ≤ e+ pe,b, we have

ai = b− 1. Therefore, by Theorem 3.3, Se,b(σh+1,e,b(u))= σh,e,b(u). �



NUMBERS AND THE HEIGHTS OF THEIR HAPPINESS 241

Corollary 3.4 gives a bound bd for σh,e,b(u) (in terms of e and b) so that if
σh,e,b(u)≥ bd, then Se,b(σh+1,e,b(u))= σh,e,b. This leads to the natural question:

Question 3.5. Is there a bound β for h (in terms of e and b) so that if h ≥ β,
Se,b(σh+1,e,b(u))= σh,e,b?
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The truncated and supplemented Pascal matrix
and applications

Michael Hua, Steven B. Damelin, Jeffrey Sun and Mingchao Yu

(Communicated by Jim Haglund)

In this paper, we introduce the k×n (with k ≤ n) truncated, supplemented Pascal
matrix, which has the property that any k columns form a linearly independent set.
This property is also present in Reed–Solomon codes; however, Reed–Solomon
codes are completely dense, whereas the truncated, supplemented Pascal matrix
has multiple zeros. If the maximum distance separable code conjecture is correct,
then our matrix has the maximal number of columns (with the aforementioned
property) that the conjecture allows. This matrix has applications in coding,
network coding, and matroid theory.

1. Introduction

Finite field linear algebra is an import branch of linear algebra. Instead of using the
infinite field R, it uses linearly independent vectors consisting of a finite number of
elements, which can be represented by a finite number of bits. It has thus motivated
many practical coding techniques, such as Reed–Solomon codes [1960] and linear
network coding [Li et al. 2003; Ho et al. 2006]. It is also closely related to structural
matroid theory through matroid representability [Oxley 2011; Oxley et al. 1996;
El Rouayheb et al. 2010; Yu et al. 2014].

One of the most important problems in finite field linear algebra is finding the
size of the largest set of vectors over a k-dimensional finite field such that every
subset of k vectors is linearly independent [Ball 2012; Ball and De Beule 2012].
From a matrix perspective, the problem is described as:

Problem 1.1. Consider a finite field Fq , where q = ph, for p a prime and h a
nonnegative integer. Given a positive integer k, what is the largest integer n such
that there exists a k × n matrix H over Fq , in which every set of k columns is
linearly independent?

MSC2010: primary 05B30, 05B35, 94B25; secondary 05B05, 05B15, 11K36, 11T71.
Keywords: matroid, Pascal, network, coding, code, MDS, maximum distance separable.
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Such a matrix, upon its existence, could be the generator matrix of an [n, k]
maximum distance separable (MDS) code [Lin and Costello 2004], which can
correct up to d = n − k bits of erasures or t = d/2 bits of errors. We will thus
refer to H as an MDS matrix. Its existence also determines the representability
of uniform matroids, which we will discuss in detail in Section 4C. The maximal
value of n, according to the MDS conjecture, is q + 1, unless q = 2h and k = 3
or k = q − 1, in which case n ≤ q + 2. This conjecture has been recently proved
for any q = p in [Ball 2012; Ball and De Beule 2012], but a complete proof of it
remains open.

Therefore, it is crucial to understand the construction of k×(q+1)MDS matrices.
In coding theory literature, many construction algorithms have been proposed to
meet certain coding requirements. However, their computational complexity is
not necessarily satisfactory. On one hand, multiplications and additions over large
finite fields are required in the matrix construction. On the other hand, the resultant
MDS matrix may have low sparsity (or high density), which is measured by the
number of zeros in the matrix. Low sparsity can be translated into higher encoding
and decoding complexity. It is an open question how these algorithms can be
generalized and provide new insights into related fields, such as network coding
theory and matroid theory.

In this paper, we investigate the above problems by first proposing in Section 2 a
new type of MDS matrix called a supplemented Pascal matrix. A supplemented
Pascal matrix can be generated by additions and, in particular, without multipli-
cations. It also has guaranteed number of zero entries for high sparsity. We will
prove that a supplemented Pascal matrix is an MDS matrix in Section 3. We will
then extend our results into a general code construction framework in Section 4A,
and then discuss its applications to network coding theory and matroid theory in
Sections 4B and 4C, respectively.

2. Definitions

For clarity we should first label the elements of a finite field. Henceforth, let p
be a prime and h be a nonnegative integer. A finite field Fq contains q = ph

elements, each represented by a polynomial g(x)=
∑h−1

i=0 βi x i, whose coefficients
are {βi }

h−1
i=0 ∈ [0, p − 1]. The elements g(x) take on distinct values between 0

and q − 1 at x = p, which can be used as an intuitive index of the elements.
Specifically, we define a index function σq(n):

Definition 2.1. For any integer n ∈ [0, q − 1], σq(n) is the element of Fq whose
polynomial coefficients satisfy

∑h−1
i=0 βi pi

= n.

For example, given q = 23, we have σq(0)= 0, σq(1)= 1, and σq(5)= x2
+ 1.
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Based on σq(n), we define a finite field binomial polynomial fm,q(n):

fm,q(n)=


1= [σq(n)]m, m = 0,
m∏

i=1

σq(n)− σq(i − 1)
σq(i)

, m > 0,
(1)

where {m, n} ∈ [0, q − 1] are nonnegative integers. Intuitively, fm,q(n) is a polyno-
mial in σq(n) of degree m.

Based on fm,q(n), we introduce the key matrix in this paper, called the Pascal
matrix:

Definition 2.2. Define the matrix Pq over Fq as the q × q matrix with elements
Pq(m, n)= fm,q(n):

Pq =


f0,q(0) f0,q(1) · · · f0,q(q − 1)
f1,q(0) f1,q(1) · · · f1,q(q − 1)
...

...
. . .

...

fq−1,q(0) fq−1,q(1) · · · fq−1,q(q − 1)

. (2)

Note that fm,q(n) = 0 for m > n and so Pq is an upper-triangular Pascal matrix.
For brevity, we simply call it the Pascal matrix.

Note that the matrix index starts from 0.

Example 2.3. When q = 22
= 4, we have

P4 =


1 1 1 1
0 1 x x+1
0 0 1 x+1
0 0 0 1

.
Our considered matrix Pq is named after Pascal because its entries are binomial

coefficients, which is the same as the traditional Pascal matrix, except that the field
applied here is Fq , as opposed to Z≥0 in the traditional case. Indeed, when q = p,
the matrix Pp is equal to the traditional Pascal matrix modulo p.

Example 2.4. When q = p = 5, the traditional Pascal matrix P5,T and our Pascal
matrix P5 are given by

P5,T =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 and P5 =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 1
0 0 0 1 4
0 0 0 0 1

.
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Indeed, the construction of the Pascal matrix over Fp shares the same additive
formula as the traditional Pascal matrix. Explicitly, Pp(m, n)= Pp(m−1,m−1)+
Pp(m, n− 1) for every pair of {m, n} ∈ [1, q − 1] (note that addition is modulo p).
This idea appears in Section 4B.

Definition 2.5. The truncated Pascal matrix Pq,k is the Pascal matrix Pq truncated
to the first k rows.

Example 2.6. Consider the matrix P5 given in Example 2.4. The truncated Pascal
matrix P5,2 is given by

P5,2 =

[
1 1 1 1 1
0 1 2 3 4

]
.

Definition 2.7. A supplemented Pascal matrix, denoted by Hq,k , is a truncated
Pascal matrix Pq,k appended with a column vector sk , which has a one in the bottom
entry and zeros everywhere else:

Hq,k =

Uq,k

∣∣∣∣∣∣∣∣∣
0
...

0
1

. (3)

Example 2.8. Supplementing the matrix P5,2 in Example 2.6 gives

H5,2 =

[
1 1 1 1 1 0
0 1 2 3 4 1

]
.

Our supplemented Pascal matrix has a desirable property, namely:

Theorem 2.9. Any k columns of Hq,k are linearly independent.

3. Proof of Theorem 2.9

We will first prove the following property of Pq,k , and then prove that Hq,k preserves
this property.

Lemma 3.1 (truncation lemma). Any k columns of Pq,k are linearly independent.

Proof. We first note that Pq (and thus Pq,k) has the important property that all the
entries in the m-th row (recall m begins at 0) are defined by the same polynomial
fm,q(n), which is a polynomial in σq(n) of degree m. Recall also that Pq (and thus
Pq,k) is upper-triangular. Indeed, we have that fm,q(n) has m roots in Fq (counting
multiplicity). Consequently, the first m entries of the m-th row are all zeros.

Given a truncated Pascal matrix Pq,k , suppose there exist k distinct values of
n such that the columns {n0, n1, . . . , nk−1} of Pq,k constitute a linearly dependent
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set. In other words, there exists a k× k submatrix M of Pq,k ,

M =


f0,q(n0) f1,q(n1) · · · f1,q(nk−1)

f1,q(n0) f2,q(n1) · · · f2,q(nk−1)
...

...
. . .

...

fk−1,q(n0) fk−1,q(n1) · · · fk−1,q(nk−1)

, (4)

whose rank is smaller than k.
If this is the case, then there must exist a nonzero vector [a0, a1, . . . , ak−1] ∈ Fq

such that aM = z, where z = [z0, z1, . . . , zk−1] = [0, 0, . . . , 0]:

[a0, a1, . . . , ak−1]M = [0, 0, . . . , 0].

Recall that the m-th row of Pq,k (and thus M) is defined by fm,q(n). Correspond-
ingly, z is defined by

f ′q(n),
k−1∑
m=0

αm fm,q(n),

where 0= z(i)= f ′q(ni )= 0 for all i ∈ [0, k− 1]. We also note that the degree of
f ′q(n) is at most k− 1, because the highest degree of its summands is the degree of
fk−1,q(n) with a value of k− 1.

Therefore if the columns {n0, n1, . . . , nk−1} of Pq,k constitute a linearly depen-
dent set, then we will obtain a polynomial f ′q(n) such that
• its degree is at most k− 1;

• it has k roots, whose values are {σq(n0), σq(n1), . . . , σq(nk−1)}.

However, with a degree of at most k−1, f ′q(n) can only have at most k−1 roots
unless f ′q(n)= 0, which is not the case because a is nonzero. Hence, f ′q(n) does
not exist, and thus our hypothesis is invalid. Therefore, every k columns of Pq,k

are linearly independent. Thus Lemma 3.1 is proved. �

Since Hq,k is constructed by appending sk to Pq,k , to prove Theorem 2.9 we
only need to prove that any k− 1 columns of Pq,k and sk together never constitute
a linearly dependent set. To see this, we can simply use sk to linearly cancel the
first q entries in the last row of Hq,k . This will transform Hq,k from (3) into

H ′q,k =


0

Pq,k−1 0
...

0 · · · 0 1

, (5)

which indicates that sk is orthogonal to all the other columns of H ′q,k . Then, by
applying the truncation lemma to Pq,k−1, we know that every k− 1 out of the first
q columns of H ′q,k are linearly independent. Adding sk to them will yield a linearly
independent set of k. Theorem 2.9 is thus proved.
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4. Applications

4A. Coding theory. The truncation lemma can be immediately generalized to any
appropriately defined k× n matrix over Fq that satisfies (1) n ≤ q , and (2) the m-th
row (m ∈ [0, k − 1]) is defined by a polynomial of degree m. For example, by
setting fm,q(n)= σq(n)m−1, we can obtain a k× n matrix over Fq such that every
set of k columns is a linearly independent set. Indeed, this matrix is the generator
matrix G of an [n, k] Reed–Solomon code:

σq(1)0 σq(2)0 · · · σq(n)0

σq(1) σq(2) · · · σq(n)
σq(1)2 σq(2)2 · · · σq(n)2
...

...
. . .

...

σq(1)k−1 σq(2)k−1
· · · σq(n)k−1

.

Then by appending sk , we can obtain an [n+1, k] extended Reed–Solomon code.
Therefore, our polynomial approach is a general approach of constructing nontrivial
[n, k] MDS codes. It also indicates that the maximum length of any MDS code is
at least q + 1 for any k 6 q. This result is in agreement with the MDS conjecture
[Ball 2012; Ball and De Beule 2012].

Among all the possible constructions, the supplemented Pascal matrix Hq,k

enjoys a high sparsity, which is the number of zeros in the matrix. Higher sparsity
is advantageous, because it generally leads to easier encoding/decoding. However,
the sparsity has an upper bound. In the following lemma, we will prove that Hq,k

approximates this bound with a factor of 1
2 :

Lemma 4.1 (matrix sparsity). The number of zeros in the supplemented Pascal
matrix Hq,k is 1

2 of the maximum sparsity of any [n, k] code.

Proof. Since any k×k submatrix of G has a rank of k, there is no all-zero row in this
matrix. Hence, there are at most k−1 zeros in each row of G, and at most k2

−k zeros
in total. Recall that in Hq,k the m-th row has m+1 zeros for m ∈ [0, k− 2] and the
(k−1)-th row has k−1 zeros. The total number of zeros is 1

2(k
2
+ k− 2). �

4B. Network coding theory. Network coding (NC) is a class of packet-based cod-
ing techniques. Consider a block of K ≥ 1 data packets {xk}

K−1
k=0 , each containing

L bits of information. NC treats these data packets as K variables, and sends in the
u-th (u ∈ Z≥0) transmission a linear combination yu of all of them:

yu =

K−1∑
k=0

αk,u xk, (6)

where coefficients {αk,u}
K−1
k=0 are elements of a finite field Fq .
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Ideally, NC is able to allow any receiver that has received any K coded packets
to decode all the K data packets by solving a set of K linear equations. To this end,
the associated coefficient matrix C, where

C =


α0,0 α0,1 · · ·

α1,0 α1,1 · · ·
...

...

αK−1,0 αK−1,1 · · ·

, (7)

must satisfy that every set of K columns of it is a linearly independent set. Once
this condition is met, NC is able to achieve the optimal throughput in wireless
broadcast scenarios [Yu et al. 2014].

However, it is highly nontrivial to meet this condition, which hinders the imple-
mentation of NC. First, to guarantee the linear independence, the sender chooses co-
efficients randomly from a sufficiently large Fq [Lucani et al. 2009; Heide et al. 2009]
or regularly collects receiver feedback to make online coding decisions [Fragouli
et al. 2007]. While a large Fq incurs heavy computational loads, collecting feedback
could be expensive or even impossible in certain circumstances, such as time-
division-duplex satellite communications [Lucani et al. 2009]. Second, to enable the
decoding, coding coefficients must be attached to each coded packet, which consti-
tute dK log2 qe bits of overhead in each transmission. When q is large and L is small,
the throughput loss due to the overhead may overwhelm all the other benefits of NC.

These practical shortages of NC can be easily overcome by the proposed supple-
mented Pascal matrix. By choosing a sufficiently large p and letting C = Hp,K ,
we obtain an NC that is both computational friendly (only operations modulo p)
and feedback-free. Moreover, for the receivers to retrieve the coding coefficients,
the sender only needs to attach the index u to the u-th packet, rather than attaching
the complete coefficients. Furthermore, the additive formula for Pascal matrix may
enable efficient progressive coding/decoding algorithms, which could be our future
research direction.

4C. Matroid theory. A matroid M= (E, I ) is a finite collection of elements called
the ground set, E , paired with its comprehensive set of independent subsets, I. A
uniform matroid U k

n has |E | = n and the property that any subset of size k of E is an
element of I and no subset of size k+1 is in I. U k

n is called q-representable if there
is a k× n matrix such that every k columns of it are linearly independent over Fq .

Corollary 4.2 (representability of uniform matroid). Any uniform matroid U k
n that

satisfies n 6 q + 1 is q-representable by any n columns of Hq,k . �

It is known that any uniform matroid U k
n that satisfies n6q+1 is q-representable

[Oxley 2011; Ball 2015; Reed and Solomon 1960]; one can obtain another con-
struction from Reed–Solomon codes. Hq,k is just another, sparse example.
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5. Conclusion

In this paper, we proposed the supplemented Pascal matrix, whose first k rows
are an MDS matrix over Fq for any prime power q and positive integer k 6 q.
Our construction can be potentially generalized to a framework that enables low-
complexity MDS code constructions and encoding/decoding as well. Our matrix
can overcome some practical shortages of network coding and, thus, enables high-
performance wireless network coded packet broadcast. Our matrix is in agreement
with existing results on the representability of uniform matroids, while also providing
new insights into this topic. In the future, we intend to study Pascal-based network
coding algorithms. We are also interested in applying our results to other fields
such as projective geometry and graph theory.
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Hexatonic systems and dual groups
in mathematical music theory

Cameron Berry and Thomas M. Fiore

(Communicated by Joseph A. Gallian)

Motivated by the music-theoretical work of Richard Cohn and David Clampitt on
late-nineteenth century harmony, we mathematically prove that the PL-group of a
hexatonic cycle is dual (in the sense of Lewin) to its T /I -stabilizer. Our points of
departure are Cohn’s notions of maximal smoothness and hexatonic cycle, and
the symmetry group of the 12-gon; we do not make use of the duality between the
T /I -group and PLR-group. We also discuss how some ideas in the present paper
could be used in the proof of T /I -PLR duality by Crans, Fiore, and Satyendra
(Amer. Math. Monthly 116:6 (2009), 479–495).

1. Introduction: hexatonic cycles and associated dual groups

Why did late nineteenth century composers, such as Franck, Liszt, Mahler, and
Wagner, continue to favor consonant triads over other tone collections, while
simultaneously moving away from the diatonic scale and classical tonality?

Richard Cohn [1996] proposed an answer, independent of acoustic consonance:
major and minor triads are preferred because they can form maximally smooth
cycles. Consider for instance the following sequence of consonant triads, called a
hexatonic cycle by Cohn:

E[, e[, B, b,G, g, E[. (1)

We have indicated major chords with capital letters and minor chords with lowercase
letters. Although the motion from a major chord to its parallel minor, e.g., E[ to e[,
B to b, and G to g, is distinctly nondiatonic, this sequence has cogent properties
of importance to late-Romantic composers, as axiomatized in Cohn’s notion of
maximally smooth cycle [1996, page 15]:

MSC2010: 20-XX.
Keywords: mathematical music theory, dual groups, hexatonic cycle, maximally smooth cycle, triad,

transposition, inversion, simple transitivity, centralizer, PLR-group, neo-Riemannian group,
transformational analysis, Parsifal.
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• It is a cycle in the sense that the first and last chords are the same but all others
are different. A cycle is required to contain more than three chords.

• All of the chords are in one “set class”; in this case each chord is a consonant
triad.

• Every transition is maximally smooth in the sense that two notes stay the same
while the third moves by the smallest possible interval: a semitone.

Cohn considered movement along this sequence transformationally as an action
by a cyclic group of order 6. Additionally, David Clampitt [1998] considered
movement along this sequence via P and L , and also via certain rotations and
reflections. As usual, we denote by P the “parallel” transformation that sends a
major or minor chord to its parallel minor or major chord, respectively. We denote
by L the “leading tone exchange” transformation, which moves the root of a major
chord down a semitone and the fifth of a minor chord up a semitone, so the L sends
consonant triads e[ to B, and b to G, and g to E[. The hexatonic cycle (1) is then
positioned in the network

E[ P // e[ L // B
P // b

L // G
P // g

L

jj (2)

with alternating P and L transformations between the nodes.
Wagner’s Grail motive in Parsifal can be interpreted in terms of network (2),

as proposed by David Clampitt [1998]. A small part of Clampitt’s analysis of
the first four chords is pictured in Figure 1. Clampitt includes the final D[ chord,
which lies outside of the hexatonic cycle (1), in his interpretation via a conjugation-
modulation applied to a certain subsystem. A third interpretation, in addition to the
cyclic one of Cohn [1996, Example 5] and the PL-interpretation in Figure 1, was
also proposed by Clampitt, this time in terms of the transpositions and inversions
{T0, T4, T8, I1, I5, I9}. Clampitt observes that this group and the PL-group form dual
groups in the sense of Lewin [1987], via their actions on the hexatonic set of chords
in (1). The perceptual basis of all three groups is explained in [Clampitt 1998].

The contribution of the present article is to directly prove that the PL-group
and the group {T0, T4, T8, I1, I5, I9} in Clampitt’s article are dual groups acting
on (1). Our points of departure are the hexatonic cycle (1), the standard action of
the dihedral group of order 24 on the 12-gon, and the Orbit-Stabilizer Theorem.
We do not use the duality of the T /I -group and PLR-group. Some arguments in
Section 3 are similar to arguments of Crans, Fiore, and Satyendra [Crans et al.
2009], but there are important differences; see Remark 3.10.

Just how special are the consonant triads with regard to the maximal smoothness
property? According to [Cohn 1996], only six categories of tone collections support
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near the end of the opera, shown in Example 1. After Parsifal has taken 
the Grail from the shrine and kneels before it, the Grail gradually begins 
to glow with a soft light ("Allmfihliche sanfte Erleuchtung des Grales").1 
The chromatic-enharmonic 'Grail' motive creates a harmonic disturbance 
within a larger tonal context. The motion in Act III, mm. 1098-1100, from 
Eb major to Db major takes place within a plagal I-V-IV-I progression in 
Ab major, (the tonality of the opera as a whole), beginning with the arrival 
on Ab in m. 1088 (after which the diatonic form of 'Grail' appears), and 
ending in m. 1102 with the plagal cadence.2 A hexatonic analysis applies 
to mm. 1098-99, preceding the completion of what Lewin (1984, 346) 
refers to as "the 'modulation' from V to IV." Example 1 reproduces Cohn's 
Example 5, with Figure 1 below it showing his interpretation of the pas- 
sage, with a slight notational adjustment. Where Cohn labels his trans- 
formations T1 and T3, I label the same transformations R1 and R3, since I 
prefer to reserve Ti for the transpositions of the usual TN/IN group of oper- 
ations. The upper and lower case letters refer to major and minor triads, 
respectively. I will give a sketch of Cohn's analytical framework with ref- 
erence to this example. 

The triadic space asserted by Cohn arises from a formal property that 
harmonic triads share with pentatonic and diatonic sets, and with sets that 
are the complements of harmonic triads. All of these set classes have the 
ability to support maximally smooth cycles. Two pitch-class sets are in a 
maximally smooth relation if there exists a pitch-class transposition or 
inversion mapping one set to the other that leaves all but one pitch class 
of a set invariant and moves the remaining pitch class by interval class 1. 
It should be clear that this definition is symmetric: X and Y are in the rela- 
tion if and only if Y and X are in the relation. Under this definition, for 
example, pairs of sets from set class 3-2, e.g., { C, Db, E } and { C, D, Eb }, 
are related in a maximally smooth way. A maximally smooth cycle is a 
cycle embracing at least three distinct sets such that adjacent sets in the 
cycle are in a maximally smooth relation, that is, an ordered set of pitch- 
class sets each of which is in a maximally smooth relation with both the 
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Example 1. Wagner, Parsifal, Act 3, mm. 1098-1100 
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E[ P L P //

P

66b
L // G

P L P // e[

Figure 1. Top: Grail motive from Wagner, Parsifal, Act 3, measures
1098–1100, reproduced from [Clampitt 1998, Example 1]. Bottom:
First four chords of the Grail motive in a hexatonic PL-network of
Clampitt. Notice that the bottom arrow is the composite of the three
top arrows, and goes in the opposite direction of the bottom arrow
of diagram (2).

maximally smooth cycles: singletons, consonant triads, pentatonic sets, diatonic
sets, complements of consonant triads, and 11-note sets. Clearly the singletons
and 11-note sets do not give musically significant cycles. The pentatonic sets
and the diatonic sets each support only one long cycle, which exhausts all 12 of
their respective exemplars. The consonant triads and their complements, on the
other hand, support short cycles that do not exhaust all of their transpositions and
inversions. The maximally smooth cycles of consonant triads are enumerated as
sets as follows:

{E[, e[, B, b,G, g}, (3)

{E, e,C, c, A[, a[}, (4)

{F, f,C], c], A, a}, (5)

{F], f ], D, d, B[, b[}. (6)

These are the four hexatonic cycles of Cohn [1996, page 17]. They (and their
reverses and complements) are the only short maximally smooth cycles that exist
in the Western chromatic scale.

2. Mathematical and musical preliminaries: standard dihedral group action
on consonant triads and the Orbit-Stabilizer Theorem

We quickly recall the standard preliminaries about consonant triads, transposition,
inversion, P, L , and the Orbit-Stabilizer Theorem. A good introduction to this very
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major triads minor triads

C = 〈0, 4, 7〉 〈0, 8, 5〉 = f
C]= D[= 〈1, 5, 8〉 〈1, 9, 6〉 = f ]= g[

D = 〈2, 6, 9〉 〈2, 10, 7〉 = g
D]= E[= 〈3, 7, 10〉 〈3, 11, 8〉 = g]= a[

E = 〈4, 8, 11〉 〈4, 0, 9〉 = a
F = 〈5, 9, 0〉 〈5, 1, 10〉 = a]= b[

F]= G[= 〈6, 10, 1〉 〈6, 2, 11〉 = b
G = 〈7, 11, 2〉 〈7, 3, 0〉 = c

G]= A[= 〈8, 0, 3〉 〈8, 4, 1〉 = c]= d[
A = 〈9, 1, 4〉 〈9, 5, 2〉 = d

A]= B[= 〈10, 2, 5〉 〈10, 6, 3〉 = d]= e[
B = 〈11, 3, 6〉 〈11, 7, 4〉 = e

Table 1. The set of consonant triads, denoted Triads, as displayed
on page 483 of [Crans et al. 2009].

well-known background material is [Crans et al. 2009]. Since this background has
been treated in many places, we merely rapidly introduce the notation and indicate
a few sources.

Consonant triads. We encode pitch classes using the standard Z12 model, where
C = 0, C]= D[= 1, and so on, up to B = 11. Via this bijection we freely refer to
elements of Z12 as pitch classes. Major chords are indicated as ordered 3-tuples in
Z12 of the form 〈x, x + 4, x + 7〉, where x ranges through Z12. Minor chords are
indicated as 3-tuples 〈x + 7, x + 3, x〉 with x ∈ Z12. We choose these orderings to
make simple formulas for P and L; this is not a restriction for applications, as the
framework was extended in [Fiore et al. 2013a] to allow any orderings. We call
the set of 24 major and minor triads Triads, this is the set of consonant triads. The
letter names are indicated in Table 1.

Transposition and inversion, and P and L. The 12-tone operations transposition
Tn : Z12→ Z12 and inversion In : Z12→ Z12 are given by

Tn(x)= x + n and In(x)=−x + n

for n ∈ Z12. These 24 operations are the symmetries of the regular 12-gon, when
we consider 0 through 11 as arranged on the face of a clock. In the music-theory
tradition, this group is called the T /I -group (the “/” does not indicate any kind of
quotient). The unique reflection of the 12-gon which interchanges m and n is Im+n ,
as can be verified by direct computation.
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Many composers, for instance Schoenberg, Berg, and Webern, utilized these
mod 12 transpositions and inversions. These functions and their compositional uses
have been thoroughly explored by composers, music theorists, and mathematicians;
see for example [Babbitt 1955; Forte 1973; Fripertinger and Lackner 2015; Hook
2007; Hook and Peck 2015; McCartin 1998; Mead 2015; Morris 1987; 1991; 2001;
2015; Rahn 1987]. Indeed, the three recent papers [Fripertinger and Lackner 2015;
Mead 2015; Morris 2015] together contain over 100 references.

We consider these bijective functions on Z12 also as bijective functions on Triads
via their componentwise evaluation on consonant triads:

Tn〈x1, x2, x3〉= 〈Tnx1,Tnx2,Tnx3〉 and In〈x1, x2, x3〉= 〈Inx1, Inx2, Inx3〉. (7)

Also on the set Triads of consonant triads (with the indicated ordering), but not
on the level of individual pitch classes, we have the bijective functions P and L
defined by

P〈x1, x2, x3〉 = Ix1+x3〈x1, x2, x3〉 and L〈x1, x2, x3〉 = Ix2+x3〈x1, x2, x3〉. (8)

As remarked above, P stands for “parallel” and L stands for “leading tone ex-
change”.

We consider Tn , In , P, and L as elements of the symmetric group Sym(Triads).

Proposition 2.1. The bijections P and L commute with Tn and In as elements of
the symmetric group Sym(Triads).

Proof. This is a straightforward computation using equations (7) and (8). This
computation has been discussed in broader contexts in [Fiore et al. 2013b] and
[Fiore and Satyendra 2005]. �

Orbit-Stabilizer Theorem. Suppose S is a set with a left group action by a group G
(all group actions in this paper are left group actions). Recall that the orbit of an
element Y ∈ S is

orbit of Y := {gY | g ∈ G}.

The stabilizer group of an element Y ∈ S is

GY := {g ∈ G | gY = Y }.

Theorem 2.2 (Orbit-Stabilizer Theorem). Let G be a group with an action on a
set S. Neither G nor S is assumed to be finite. Then the assignment

G/GY → orbit of Y,

gGY 7→ gY,

is a bijection. In particular, if G is finite, then each orbit is finite, and

|G|/|GY | = |orbit of Y |. (9)
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Simple transitivity. A group action of a group G on a set S is said to be simply
transitive if for any Y, Z ∈ S there is a unique g ∈ G such that gY = Z . Informally,
we also say the group G is simply transitive if the sole action under consideration
is simply transitive.

Proposition 2.3. (1) An action of a group G on a set S is simply transitive if and
only if it is transitive and every stabilizer GY is trivial.

(2) Suppose G is a finite group that acts on a set S. Then G is simply transitive if
and only if any two of the following three hold:

(a) G is transitive.
(b) Every stabilizer GY is trivial.
(c) G and S have the same cardinality.

In this case, the third condition also holds.
Another way to read this “if and only if” statement is: assuming G is finite

and any one of the conditions holds, G is simply transitive if and only if another
one of the conditions holds.

(3) Suppose a (not necessarily finite) group H1 acts simply transitively on a set S,
and a subgroup H2 of H1 acts transitively on S via its subaction. Then H1=H2.

Proof. (1) If the action is simply transitive, then it acts transitively and for each
Y ∈ S, there is only one g ∈ G with gY = Y, and hence each GY is trivial.

Suppose G acts transitively and for every Y ∈ S, the group GY is trivial. Suppose
Y, Z ∈ S and g1, g2 ∈ G satisfy g1Y = Z and g2Y = Z . Then Y = g−1

2 Z and
g−1

2 g1Y = Y, so g−1
2 g1 ∈ GY = {e}, and finally g1 = g2.

(2) We first prove that any two of the conditions implies the third and implies
simple transitivity.

(a)(b)⇒ (c): G is simply transitive by (1), and equation (9) says |G|/1= |S|, so
|G| = |S| and (c) holds.

(b)(c)⇒ (a): Equation (9) says |S| = |G|/1= |orbit of Y |, so S = orbit of Y, and
G is transitive and (a) holds, so G is simply transitive by (1).

(a)(c)⇒ (b): Equation (9) says |G|/|GY | = |G|, so |GY | = 1 and (b) holds, and
G is simply transitive by (1).

Now that we have shown any two of the conditions implies the third and simple
transitivity, we want to see that simply transitivity implies all three conditions.
From (1), simple transitivity implies (a) and (b), and we have already seen (a) and
(b) imply (c).

(3) Suppose H1 properly contains H2, and h1 ∈ H1\H2. Fix a Y ∈ S and define
Z := h1Y. Then by the transitivity of H2, there is an h2 ∈ H2 such that Z = h2Y.
But by the simple transitivity of H1, we must have h1 = h2, a contradiction. �
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3. Main theorem: Hexatonic Duality

We next review the notion of dual groups, and then turn to the main result,
Theorem 3.9 on hexatonic duality. Recall that subgroups G and H of Sym(S)
are dual in the sense of Lewin [1987, page 253] if each acts simply transitively on S
and each is the centralizer of the other.1 Recall the centralizer of G in Sym(S) is

C(G)= {σ ∈ Sym(S) | σg = gσ for all g ∈ G}.

Before turning to the main result, we prove two simultaneous redundancies in
the notion of dual groups: instead of requiring the two groups to centralize each
other, it is sufficient to merely require that they commute, and instead of requiring
H to act simply transitively, it is sufficient to merely require H acts transitively.

Proposition 3.1. Let S be a (not necessarily finite) set. Suppose G ≤ Sym(S) acts
simply transitively on S and H ≤ Sym(S) acts transitively on S. Suppose G and H
commute in the sense that gh = hg for all g ∈ G and h ∈ H. Then G and H are
dual groups. In particular, H also acts simply transitively and G and H centralize
one another.

Proof. We would like to first conclude from the simple transitivity of G, the
transitivity of H, and the commutativity of G and H, that the centralizer C(G) acts
simply transitively on S.

We claim C(G) acts simply transitively on S. It acts transitively, as C(G)⊇ H
and H acts transitively. So, it suffices by Proposition 2.3(1) to prove that, for each
s ∈ S, the only element of C(G) that fixes s is the identity. Let σ be an element of
C(G) that fixes s, and g any element of G. Then,

σ s=s =⇒ g(σ s)=g(s) =⇒ (gσ)s=(gs) =⇒ (σg)s=(gs) =⇒ σ(gs)=(gs).

1Lewin [1987, page 253] gave a more general situation that gives rise to examples of dual groups
in the sense defined above, though he did not formally make this definition. He starts with a group
G, there called STRANS, assumed to act simply transitively on a set S, and then makes three claims
without proof: (1) the centralizer C(G) in Sym(S) acts simply transitively on S (the centralizer
C(G) is called STRANS′ there); (2) the double centralizer C(C(G)) is contained in G, so actually
C(C(G))= G; and (3) the two generalized interval systems with transposition groups G and C(G)
respectively have interval-preserving transformation groups, precisely C(G) and G respectively. See
Proposition 3.2 for a proof of statements (1) and (2). Statement (3) is a consequence of the first
two statements in combination with COMM-SIMP duality, which was stated on page 101 of [Lewin
1995] and partially proved in [Lewin 1987, Theorem 3.4.10]. For a review of COMM-SIMP duality
and another proof, see [Fiore and Satyendra 2005, Section 2 and Appendix]. For the equivalence
of generalized interval systems and simply transitive group actions, see pages 157–159 of Lewin’s
monograph. The equivalence on the level of categories was proved by Fiore, Noll and Satyendra
[Fiore et al. 2013b, page 10]. The undergraduate research project of Sternberg [2006] worked out
some of the details of Lewin’s simply transitive group action associated to a generalized interval
system and investigated the Fugue in F from Hindemith’s Ludus Tonalis.



260 CAMERON BERRY AND THOMAS M. FIORE

So, not only does σ fix s, but σ also fixes (gs) for every g ∈ G. That is to say,
σ = IdS , and C(G) acts simply transitively on S.

Now we have the transitive subgroup H contained in the simply transitive group
C(G) by the assumed commutativity, so by Proposition 2.3(3), H = C(G), and H
also acts simply transitively.

To obtain C(H)= G, we use the newly achieved simple transitivity of H and
repeat the argument with the roles of G and H reversed. �

We may now use a result of Dixon and Mortimer to prove a statement of Lewin
[1987, page 253], as suggested by Julian Hook, Robert Peck, and Thomas Noll.
Parts (1) and (2) of the following proposition were stated by Lewin.

Proposition 3.2. Let S be a (not necessarily finite) set. Suppose G ≤ Sym(S) acts
simply transitively on S. Then:

(1) The centralizer C(G) in Sym(S) acts simply transitively on S.

(2) The centralizer of the centralizer C(C(G)) is equal to G.

(3) Define H := C(G). Then G and H are dual groups.

Proof. (1) This follows immediately from [Dixon and Mortimer 1996, Theo-
rem 4.2A(i) and (ii), page 109]. There semiregular means point stabilizers are
trivial and regular means simply transitive.

(2) Since C(G) is simply transitive, we can apply Dixon and Mortimer’s result to
C(G) to get that the double centralizer C(C(G)) simply transitive. But C(C(G))
contains the simply transitive group G, so C(C(G))= G by Proposition 2.3(3).

(3) This follows directly from the preceding two by definition. �

We now turn to the discussion of our main result.
Let Hex be the set of chords in the hexatonic cycle (1) and Hex the set of

underlying pitch classes of its chords; that is,

Hex := {E[, e[, B, b,G, g}, Hex := {2, 3, 6, 7, 10, 11}.

Our goal is to prove that the restriction of the PL-group to Hex and the restriction
of {T0, T4, T8, I1, I5, I9} to Hex are dual groups, and that each is dihedral of order 6.
The strategy is to separately prove the unrestricted groups act simply transitively
and are dihedral, and then finally to show that the restricted groups centralize each
other. We begin with a characterization of the consonant triads contained in Hex.

Lemma 3.3. The only consonant triads of Table 1 contained in Hex as subsets are
the elements of Hex.

Proof. We first identify the available perfect fifths in Hex (pairs with difference 7),
and then check if the corresponding major/minor thirds are in Hex.



HEXATONIC SYSTEMS AND DUAL GROUPS IN MATHEMATICAL MUSIC THEORY 261

0
1

2

3

4

5
6

7

8

9

10

11

Figure 2. The solid circles represent the subset Hex of Z12. The
symmetry of the subset makes apparent that the only rotations
which preserve Hex are T0, T4, and T8. The geometric locations of
the solid circles also imply that the reflections across the dashed
lines are the only reflections which preserve Hex.

The only pairs of the form 〈x, x + 7〉 are 〈3, 10〉, 〈7, 2〉, and 〈11, 6〉, and we see
that x + 4 is contained in Hex in each case; that is, 7, 11, and 3 are in Hex. Thus
we have the three major chords E[, G, and B, and no others.

The only pairs of the form 〈x+7, x〉 = 〈y, y+5〉 are 〈2, 7〉, 〈6, 11〉, and 〈10, 3〉,
and we see that x + 3= y+ 8 is contained in Hex in each case; that is, 10, 2, and 6
are in Hex. Thus we have the three minor chords g, b, and e[, and no others. �

Proposition 3.4. (1) The only elements of the T /I -group that preserve Hex as a
set are {T0, T4, T8, I1, I5, I9}, so they form a group, which we will denote by H.

(2) H := {T0, T4, T8, I1, I5, I9} is dihedral of order 6.

Proof. (1) If an element of the T /I -group preserves Hex as a set, then it must
also preserve the collection Hex of underlying pitch classes as a set. Geometric
inspection of the plot of Hex in Figure 2 reveals that the only rotations that preserve
Hex are T0, T4, and T8.

Again looking at Figure 2, we see that the three reflections which interchange
2↔ 3 or 6↔ 7 or 10↔ 11 preserve Hex. By a comment on page 256, these are

I2+3 = I5, I6+7 = I1, I10+11 = I9.

No other reflections preserve Hex, as we can see geometrically from its limited
reflection symmetry.

Since H := {T0, T4, T8, I1, I5, I9} is a setwise stabilizer of Hex, it is a group.
From Lemma 3.3 we see that {T0, T4, T8, I1, I5, I9} must also stabilize the chord

collection Hex as a set. No other transpositions or inversions stabilize Hex by the
argument at the outset of this proof.
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(2) The only noncommutative group of order 6 is the symmetric group on three
elements, denoted Sym(3), which is isomorphic to the dihedral group of order 6.
The group under consideration is noncommutative, because T4 I1(x)=−x+5 while
I1T4(x)=−x − 3. �

Proposition 3.5. The setwise stabilizer H acts simply transitively on Hex.

Proof. The H -orbit of E[ is all of Hex, as the following diagram shows.

E[ e[

G E[

T0

__

T4oo

T8
��

I1

??

I5 //

I9
��

g

B b

We have |H | = 6= |orbit of Y | so the Orbit-Stabilizer Theorem

|H |/|HY | = |orbit of Y |

implies |HY | = 1. See Proposition 2.3(2). �

Next we can investigate the subgroup of Sym(Triads) generated by P and L ,
which is called the PL-group.

Proposition 3.6. The subgroup 〈P, L〉 of Sym(Triads) is dihedral of order 6.

Proof. We first observe that P and L are involutions; that is, P2
= IdTriads and

L2
= IdTriads. A musical justification comes from the definitions of “parallel” and

“leading tone exchange”. Direct computations of P2 and L2 using the formulas
in (8) provide a mathematical justification.

Since P and L are involutions, every nontrivial element of 〈P, L〉 can be ex-
pressed as an alternating word in the letters P and L . The six functions IdTriads,
P, L P, P L P, L P L P, and P L P L P are all distinct by evaluating at E[ using the
following diagram from the Introduction.

E[ P // e[ L // B
P // b

L // G
P // g

L

jj (10)

From diagram (10) we also see that (L P)3(E[)= E[, and for any Y ∈ {E[, B,G},
(L P)3(Y )= Y. Similarly, by reading the diagram backwards (recall P and L are
involutions), we see (L P)3(Y ) = Y for any minor triad Y ∈ {e[, b, g}. We have
similar PL-diagrams and considerations for the cycles in (4), (5), and (6), and
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therefore (L P)3 = IdTriads on the entire set Triads of consonant triads. Another way
to see that (L P)3 = IdTriads is to combine the observation (L P)3(E[)= E[ from
diagram (10) with Proposition 2.1 and the fact that Triads is the T /I -orbit of E[.

We next show via a word-theoretic argument that 〈P, L〉 consists only of the
six functions IdTriads, P, L P, P L P, L P L P, and P L P L P discussed above. From
(L P)3 = IdTriads, we express PL in terms of L P. Namely,

(L P)3=IdTriads =⇒ (L P)3(P L)=(P L) =⇒ (L P)2=P L .

Consider any alternating word in P and L . If the rightmost letter is P, then we
can use (L P)3 = IdTriads to achieve an equality with one of the six functions we
already have. If the rightmost letter is L , then we replace each PL by (L P)2 and
use L2

= IdTriads if L L results on the far left. Then we have an equal function
with rightmost letter P, which we can then reduce to one of the six above using
(L P)3 = IdTriads, as we did in the first case of rightmost letter P. Thus 〈P, L〉 =
{IdTriads, P, L P, P L P, L P L P, P L P L P}.

This group is noncommutative, as P L 6= L P; hence it is isomorphic to Sym(3),
the only noncommutative group of order 6. But Sym(3) is dihedral of order 6.

Instead of the previous paragraph, we can show 〈P, L〉 is dihedral of order 6
using a presentation. Let t := L and s := L P; then s3

= e, t2
= e, and tst = s−1.

The dihedral group of order 6 is the largest group with elements s and t such that
s3
= e, t2

= e, and tst = s−1. But we observed from diagram (10) that 〈P, L〉 has
at least six distinct elements. Hence, 〈P, L〉 is dihedral of order 6. �

Proposition 3.7. The PL-group 〈P, L〉 acts simply transitively on Hex.

Proof. From diagram (10) we see that 〈P, L〉 acts transitively on Hex. Since 〈P, L〉
and Hex have the same cardinality, the Orbit-Stabilizer Theorem implies that every
stabilizer must be trivial. See Proposition 2.3(2). �

Lemma 3.8. Let S be a set and suppose G ≤ Sym(S). Suppose G acts simply
transitively on an orbit S, and G is the restriction of G to the orbit S. Then the
restriction homomorphism G → G is an isomorphism, and G also acts simply
transitively.

Proof. Suppose g ∈ G has restriction ḡ with ḡ s̄ = s̄ for all s̄ ∈ S. Then g also has
gs̄= s̄ for all s̄ ∈ S, so g= IdS by simple transitivity, and the kernel of the surjective
homomorphism G→ G is trivial. The transitivity of G is clear: for any s̄, t̄ ∈ S
there exists g ∈ G such that gs̄ = t̄ , so also ḡ s̄ = t̄ with ḡ ∈ G. The uniqueness of
ḡ ∈ G is also clear: if h̄ ∈ G also satisfies h̄ s̄ = t̄ , then so do g and h, so g = h by
the simple transitivity of G acting on S, so ḡ = h̄. �

Theorem 3.9 (Hexatonic Duality). The restrictions of the PL-group and the group
H = {T0, T4, T8, I1, I5, I9} to Hex are dual groups in Sym(Hex), and both are
dihedral of order 6.
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Proof. Let G be the restriction of the PL-group to Hex, and let H be the restriction
of H = {T0, T4, T8, I1, I5, I9} to Hex.

We already know that G and H are dihedral of order 6 by Propositions 3.4
and 3.6 and Lemma 3.8.

We also already know that G and H each act simply transitively on Hex by
Propositions 3.5 and 3.6 and Lemma 3.8. We even already know that the groups
G and H commute by Proposition 2.1. Finally, Proposition 3.1 guarantees that G
and H centralize one another. �

Remark 3.10 (Comparison with the proof strategy of Crans, Fiore, and Satyendra).
There are several differences between the proof strategy of hexatonic duality in the
present Theorem 3.9 and the proof strategy of T /I -PLR duality in Theorem 6.1
of [Crans et al. 2009]. In the present paper, we first proved that the concerned
groups act simply transitively, and determined their structure, and only then showed
that the groups exactly centralize each other. In [Crans et al. 2009], on the other
hand, the determination of the size of the PLR-group was postponed until after
the centralizer C(T /I ) was seen to act simply, i.e., that each stabilizer C(T /I )Y is
trivial. Then, from these trivial stabilizers, the Orbit-Stabilizer Theorem, the earlier
observation that 24≤ |PLR-group|, and the consequence

24≤ |PLR-group| ≤ |C(T /I )| ≤ |orbit of Y | ≤ 24

on page 492, the authors of [Crans et al. 2009] simultaneously conclude that the
PLR-group has 24 elements and is the centralizer of T /I .

A slight simplification of the aforementioned inequality would be an argument
like the one in the present paper: observe that the PLR-group acts transitively on
the 24 consonant triads because of the Cohn LR-sequence, recalled on page 487 of
[Crans et al. 2009]; then C(T /I ) must act transitively as it contains the PLR-group,
and then the Orbit-Stabilizer Theorem and the trivial stabilizers imply that |C(T /I )|
must be 24, so the PLR-group also has 24 elements. Also, instead of postponing
the proof that the PLR-group has exactly 24 elements from Theorem 5.1 of [Crans
et al. 2009] until the aforementioned inequality in Theorem 6.1, one could do a
word-theoretic argument in Theorem 5.1 to see that the PLR-group has exactly
24 elements, similar to the present argument in Proposition 3.6.

Remark 3.11. For an explicit computation of the four hexatonic cycles as orbits of
the PL-group, see [Oshita 2009], which was also an undergraduate research project
with the second author of the present article. That preprint includes a sketch that
〈P, L〉 ∼= Sym(3).

Remark 3.12 (Alternative derivation using the Sub Dual Group Theorem). Hexa-
tonic Duality, Theorem 3.9, can also be proved using the Sub Dual Group Theorem
of Fiore and Noll [2011, Theorem 3.1], if one assumes already the duality of the
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k kHex k Hk−1
= dual group to PL-group on kHex

IdTriads {E[, e[, B, b,G, g} H = {T0, T4, T8, I1, I5, I9}

T1 {E, e,C, c, A[, a[} {T0, T4, T8, I3, I7, I11}

T2 {F, f,C], c], A, a} {T0, T4, T8, I5, I9, I1}

T3 {F], f ], D, d, B[, b[} {T0, T4, T8, I7, I11, I3}

Table 2. The four hexatonic cycles as PL-orbits and the respective
dual groups determined as conjugations of H via the Sub Dual
Group Theorem of Fiore and Noll.

T /I -group and PLR-group (maximal smoothness is not discussed in that paper).
In Section 3.1 of the same paper, they apply the Sub Dual Group Theorem to the
construction of dual groups on the hexatonic cycles. The method is to select G0

to be the PL-group, select s0 = E[, and compute S0 := G0s0 = Hex, and then the
dual group will consist of the restriction of those elements of the T /I -group that
map E[ into S0.

Notice that in the present paper, on the other hand, we first determined which
transpositions and inversions preserve Hex in Proposition 3.4, and then proved
duality, whereas the application of the Sub Dual Group Theorem of Fiore and Noll
starts with the PL-group and determines from it the dual group as (the restrictions
of) those elements of the T /I -group that map E[ into S0. Notice also, in the present
paper we determined that the PL-group and its dual H are dihedral of order 6,
but that the Sub Dual Group Theorem of Fiore and Noll does not specify which
group structure is present. In any case, Clampitt [1998] explicitly wrote down all
6 elements of each group in permutation cycle notation.

The present paper is complementary to the work [Fiore and Noll 2011] in that
we work very closely with the specific details of the groups and sets involved to
determine one pair of dual groups in an illustrative way, rather than appealing to a
computationally and conceptually convenient theorem. Fiore and Noll, however,
also use their Corollary 3.3 to compute the other hexatonic duals via conjugation,
as summarized in Table 2.

The application of the Sub Dual Group Theorem to construct dual groups on
octatonic systems is also treated in [Fiore and Noll 2011], and utilized in [Fiore
et al. 2013b].

Remark 3.13 (Other sources on group actions). Music-theoretical group actions
on chords have been considered by many, many authors over the past century. In
addition to the selected references of Babbitt, Forte, and Morris above, we also
mention the expansive and influential work of Mazzola [1985; 1990; 2002] and
numerous collaborators. Moreover, issue 42:2 of the Journal of Music Theory from
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1998 is illuminating obligatory reading on groups in neo-Riemannian theory. That
issue contains Clampitt’s article [1998], which is the inspiration for the present
paper. Clough’s article [1998] in that issue illustrates the dihedral group of order 6
and its recombinations with certain centralizer elements in terms of two concentric
equilateral triangles (but it does not treat hexatonic systems and duality). The
dihedral group of order 6 is a warm-up for his treatment of recombinations of the
Schritt-Wechsel group with the T /I -group, which are both dihedral of order 24.
Peck’s article [2010] studies centralizers where the requirement of simple transitivity
is relaxed in various ways, covering many examples from music theory. Peck
determines the structure of centralizers in several cases.

Remark 3.14 (Discussion of local diatonic containment of hexatonic cycles). No
hexatonic cycle is contained entirely in a single diatonic set, as one can see from
any of the cycles (3)–(6). However, one can consider a sequence of diatonic sets
that changes along with the hexatonic cycle and contains each respective triad, as
in [Douthett 2008, Table 4.7]. After transposing and reversing Douthett’s table, we
see a sequence of diatonic sets such that each diatonic set contains the respective
triad of (3).

triad E[ e[ B b G g

in scale E[-major D[-major B-major A-major G-major F-major

This sequence of diatonic sets (indicated via major scales) descends by a whole
step each time, so is as evenly distributed as possible.

Other diatonic set sequences also contain the hexatonic cycle, though unfortu-
nately there is no maximally smooth cycle of diatonic sets that does the job (recall
that the diatonic sets can only form a cycle of length 12). But it is possible to have
a maximally smooth sequence of diatonic sets that covers four hexatonic triads. We
list all possible diatonic sets containing the respective hexatonic chords.2

triad E[ e[ B b G g

E[ G[ B D G B[
in major scales B[ D[ F] A D F

A[ B E G C E[

2Recall that major chords only occur with roots on major scale degrees 1, 4, and 5, so we determine
in the table the scales containing a given major triad by considering the root, a perfect fourth below the
root, and a perfect fifth below the root. Minor chords can only occur with roots on major scale degrees
2, 3, and 6, so we determine in the table the scales containing a given minor triad by considering
a major sixth below the root, a whole step below the root, and a major third below the root. This
inconsistent major/minor ordering allows us to see (at vertical dividing lines) all three maximally
smooth transitions from diatonic sets containing a given a minor triad to a diatonic set containing its
subsequent major in a hexatonic cycle.
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Vertical dividing lines indicate maximally smooth transitions between consecutive
diatonic sets. As indicated by these dividing lines, the transition from a minor
triad to its subsequent major in a hexatonic cycle via L is contained in three
maximally smooth transitions of diatonic sets. On the other hand, the transition
from a major triad to its subsequent minor in a hexatonic cycle via P is contained
in only one maximally smooth transition of diatonic sets, as indicated by the bold
letters. Altogether, we can trace three maximally smooth chains of four major scales
that contain part of the hexatonic cycle (3):

B− E − A− D,

G−C − F − B[,

E[− A[− D[− F].

Local containment of hexatonic cycles in diatonic chains has ramifications for
music analysis. Jason Yust [2013; 2015] proposed to include diatonic contexts
into analyses involving PL-cycles or PR-cycles, and he provides analytical tools to
do so.

4. Conclusion

We began this article with Cohn’s proposal that the maximal smoothness of con-
sonant triads is a key factor for their privileged status in late-nineteenth century
music. Indeed, consonant triads and their complements are the only tone collections
that accommodate short maximally smooth cycles. The four maximally smooth
cycles of consonant triads, the so-called hexatonic cycles of Cohn, can be described
transformationally as alternating applications of the neo-Riemannian “parallel” and
“leading tone exchange” transformations. Cohn interpreted Wagner’s Grail motive in
terms of a cyclic group action on the hexatonic cycle Hex, whereas Clampitt used the
PL-group and the transposition-inversion subgroup we called H in Proposition 3.4.
In the present article, we proved the Lewinian duality between these latter two
groups, which was discussed by Clampitt [1998].

For perspective, we mention that simply transitive group actions correspond to the
generalized interval systems of Lewin; see the very influential original source [Lewin
1987], or see [Fiore et al. 2013b, Section 2] for an explanation of some aspects. Dual
groups correspond to dual generalized interval systems: the transpositions of one
system are the interval-preserving bijections of the other. Clampitt [1998] explained
the coherent perceptual basis of the three generalized interval systems associated
to the three group actions on Hex by Cohn’s cyclic group, the PL-group, and the
H group. He employed the coherence of generalized interval systems to incorporate
the final D[ of the Grail motive into his interpretation via a conjugation-modulation
of a subsystem.
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On computable classes of equidistant sets:
finite focal sets
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The equidistant set of two nonempty subsets K and L in the Euclidean plane is
the set of all points that have the same distance from K and L . Since the classical
conics can be also given in this way, equidistant sets can be considered as one
of their generalizations: K and L are called the focal sets. The points of an
equidistant set are difficult to determine in general because there are no simple
formulas to compute the distance between a point and a set. As a simplification
of the general problem, we are going to investigate equidistant sets with finite
focal sets. The main result is the characterization of the equidistant points in
terms of computable constants and parametrization. The process is presented by
a Maple algorithm. Its motivation is a kind of continuity property of equidistant
sets. Therefore we can approximate the equidistant points of K and L with the
equidistant points of finite subsets Kn and Ln . Such an approximation can be
applied to the computer simulation, as some examples show in the last section.

1. Introduction: notation and preliminaries

Let K ⊂ R2 be a subset in the Euclidean coordinate plane. The distance between a
point (x, y) and K is measured by the usual infimum formula:

d((x, y), K ) := inf{d((x, y), (a, b)) | (a, b) ∈ K }.

Let us define the equidistant set of K and L ⊂ R2 as the set of all points that have
the same distance from K and L:

{K=L} := {(x, y) ∈ R2
| d((x, y), K )= d((x, y), L)}.

The equidistant sets can be considered as a kind of generalization of conics [Ponce
and Santibáñez 2014]: K and L are called the focal sets. Equidistant sets are often
called midsets. Their investigations were started by Wilker [1975] and Loveland

MSC2010: 51M04.
Keywords: generalized conics, equidistant sets.
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[1976]. For another generalization of the classical conics and their applications, see,
e.g., [Erdős and Vincze 1958; Melzak and Forsyth 1977] for polyellipses and their
applications, and [Gross and Strempel 1998; Nagy and Vincze 2010; Vincze and
Nagy 2011; 2012]. “We find equidistant sets as conventionally defined frontiers
in territorial domain controversies: for instance, the United Nations Convention
on the Law of the Sea (Article 15) establishes that, in absence of any previous
agreement, the delimitation of the territorial sea between countries occurs exactly
on the median line every point of which is equidistant of the nearest points to each
country”; for the citation, see [Ponce and Santibáñez 2014].

Let R > 0 be a positive real number. The parallel body of a set K ⊂ R2 with
radius R is the union of the closed disks with radius R centered at the points of K.
The infimum of the positive numbers such that L is a subset of the parallel body
of K with radius R and vice versa is called the Hausdorff distance of K and L . It
is well known that the Hausdorff metric makes the family of nonempty closed and
bounded (i.e., compact) subsets in the plane a complete metric space; for the details,
see, e.g., [Lay 1982; Vincze 2013]. In what follows we are going to characterize
the equidistant points of finite focal sets in terms of computable constants and
parametrization. The process will be presented by a Maple algorithm. Its motivation
is the continuity property of equidistant sets in the sense of the following theorem.

Theorem 1 [Ponce and Santibáñez 2014, Theorem 11]. If K and L are disjoint
compact subsets in the plane, and Kn→ K and Ln→ L are convergent sequences
of nonempty compact subsets with respect to the Hausdorff metric then for any
R > 0 we have

{Kn = Ln} ∩ D(R)→ {K = L} ∩ D(R),

where D(R) denotes the closed disk with radius R centered at the origin.

Since any compact subset can be approximated by finite subsets with respect to
the Hausdorff metric, we can approximate the equidistant points of K and L with
the equidistant points of finite subsets Kn and Ln . Such an approximation can be
applied to the computer simulation as an alternative to the error estimation process
for quasiequidistant points suggested by [Ponce and Santibáñez 2014, §4.2].

2. The main result

Let K, L ⊂R2 be nonempty finite disjoint subsets in the Euclidean coordinate plane:

K := {(ai , bi ) | i = 1, . . . , p} and L := {(ck, dk) | k = 1, . . . , q},

where p and q are positive integers. Since we have only finitely many lines
determined by the points of K ∪ L we can use the following technical condition
without loss of generality:
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(H) Each line determined by the points of K ∪ L has a slope different from zero;
i.e., there are no horizontal “focal lines”.

Indeed, an infinitesimal rotation about the origin provides the configuration we need
to satisfy condition (H). On the other hand, the inverse rotation takes the equidistant
points of the rotated sets into the equidistant points of the original ones. Let

Ki :=
{
(x, y) ∈ R2 ∣∣ d((x, y), K )= d((x, y), (ai , bi ))

}
(i = 1, . . . , p).

It is clear that
Ki =

⋂
j=1,...,m

j 6=i

Fi j ,

where the closed half-planes Fi j (i 6= j ) are determined by the perpendicular bisector

(ai − aj )x + (bi − bj )y =
a2

i − a2
j

2
+

b2
i − b2

j

2
(1)

of the segment (ai , bi ) and (aj , bj ) such that (ai , bi ) ∈ Fi j . For any index i , the
set Ki is closed and convex as the intersection of finitely many closed half-planes.
It is nonempty because (ai , bi ) ∈ Ki . Since Ki ∩ K j (i 6= j) is a subset of the
perpendicular bisector (1) of the corresponding focal points in K , we can conclude
that int Ki ∩ int K j =∅ for any i 6= j . Finally,

R2
=

p⋃
i=1

Ki ;

i.e., we have a partitioning of the plane into (nonempty, closed and convex) regions
with pairwise disjoint interiors based on the distance to points in a specific subset.
It is called the Voronoi decomposition.

Exercise 1. Prove that Ki is bounded if and only if (ai , bi ) is in the interior of the
convex hull of K.

The Voronoi decomposition of the plane with respect to the points of K means
that the plane is divided into (nonempty, closed and convex) regions with pairwise
disjoint interiors such that the distance of (x, y) ∈ Ki to the focal set K can be
measured as the distance of (x, y) ∈ Ki to (ai , bi ) ∈ K. In terms of inequalities,

Ki : (ai − aj )x + (bi − bj )y ≥
a2

i − a2
j

2
+

b2
i − b2

j

2
, (2)

where j runs from 1 to p but i 6= j . Using condition (H) we can reformulate the
system of inequalities as

Ki : y ≥ αi j x +βi j (bi − bj > 0),

y ≤ αi j x +βi j (bi − bj < 0),
(3)
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where

αi j =−
ai − aj

bi − bj
, βi j =

1
bi − bj

(a2
i − a2

j

2
+

b2
i − b2

j

2

)
and i 6= j.

In a similar way consider the Voronoi decomposition of the plane with respect to
the points of L:

Lk :=
{
(x, y) ∈ R2 ∣∣ d((x, y), L)= d((x, y), (ck, dk))

}
(k = 1, . . . , q),

Lk =
⋂

l=1,...,q
l 6=k

Fkl,

where the closed half-planes Fkl (k 6= l) are determined by the perpendicular bisector

(ck − cl)x + (dk − dl)y =
c2

k − c2
l

2
+

d2
k − d2

l

2
(4)

of the segment (ck, dk) and (cl, dl) such that (ck, dk) ∈ Fkl ,

R2
=

q⋃
k=1

Lk .

In terms of inequalities,

Lk : (ck − cl)x + (dk − dl)y ≥
c2

k − c2
l

2
+

d2
k − d2

l

2
, (5)

where l runs from 1 to q but k 6= l. Using condition (H) we can reformulate the
system of inequalities as

Lk : y ≥ γkl x + δkl (dk − dl > 0),

y ≤ γkl x + δkl (dk − dl < 0),
(6)

where

γkl =−
ck − cl

dk − dl
, δkl =

1
dk − dl

(
c2

k − c2
l

2
+

d2
k − d2

l

2

)
and k 6= l.

Lemma 1. The set of equidistant points is equal to the union of
p⋃

i=1

q⋃
k=1

(Ki ∩ Lk ∩ lik),

where

lik : (ai − ck)x + (bi − dk)y =
a2

i − c2
k

2
+

b2
i − d2

k

2
(7)

is the perpendicular bisector of (ai , bi ) and (ck, dk).
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In what follows we characterize the sets of the form Ki ∩ Lk ∩ lik in terms of
a system of linear inequalities. According to condition (H), equation (7) of the
perpendicular bisector lik can be written in the form

lik : y = µik x + νik, (8)
where

µik := −
ai − ck

bi − dk
and νik =

1
bi − dk

(
a2

i − c2
k

2
+

b2
i − d2

k

2

)
. (9)

This means by (3) and (6) that

Ki ∩ Lk ∩ lik : µik x + νik ≥ αi j x +βi j (bi − bj > 0),

µik x + νik ≤ αi j x +βi j (bi − bj < 0),

µik x + νik ≥ γkl x + δkl (dk − dl > 0),

µik x + νik ≤ γkl x + δkl (dk − dl < 0),

(10)

where j runs from 1 to p but j 6= i and l runs from 1 to q but l 6= k. It can
be easily seen that the number of inequalities is p+ q − 2 for any fixed pair of
indices (i, k) and the equidistant set is the union of finitely many polygonal chains
determined by inequalities of type (10). To reduce the number of possible cases,
we formulate necessary and sufficient conditions for the solvability of system (10).
Let us introduce the following set of indices:

P+ik := { j | (bi − bj )(µik −αi j ) > 0},

P−ik := { j | (bi − bj )(µik −αi j ) < 0},

P0+
ik := { j | bi − bj > 0 and µik −αi j = 0},

P0−
ik := { j | bi − bj < 0 and µik −αi j = 0},

Q+ik := {l | (dk − dl)(µik − γkl) > 0},

Q−ik := {l | (dk − dl)(µik − γkl) < 0},

Q0+
ik := {l | dk − dl > 0 and µik − γkl = 0},

Q0−
ik := {l | dk − dl < 0 and µik − γkl = 0}.

(11)

Then we have that (x, y) ∈ Ki ∩ Lk ∩ lik if and only if the following conditions are
satisfied:

x ≥
βi j − νik

µik −αi j
( j ∈ P+ik ) and x ≥

δkl − νik

µik − γkl
(l ∈ Q+ik), (12)

x ≤
βi j − νik

µik −αi j
( j ∈ P−ik ) and x ≤

δkl − νik

µik − γkl
(l ∈ Q−ik), (13)
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νik ≥ βi j ( j ∈ P0+
ik ) and νik ≥ δkl (l ∈ Q0+

ik ), (14)

νik ≤ βi j ( j ∈ P0−
ik ) and νik ≤ δkl (l ∈ Q0−

ik ). (15)

Therefore we can formulate the sufficient and necessary conditions in terms of the
following constants:

mK
ik :=

{
−∞ if P+ik =∅,
sup j∈P+ik

(βi j − νik)/(µik −αi j ) otherwise,
(16)

mL
ik :=

{
−∞ if Q+ik =∅,
supl∈Q+ik

(δkl − νik)/(µik − γkl) otherwise,
(17)

M K
ik :=

{
∞ if P−ik =∅,
inf j∈P−ik

(βi j − νik)/(µik −αi j ) otherwise,
(18)

M L
ik :=

{
∞ if Q−ik =∅,
infl∈Q−ik

(δkl − νik)/(µik − γkl) otherwise,
(19)

r K
ik :=

{
−∞ if P0+

ik =∅,
sup j∈P0+

ik
βi j otherwise,

(20)

r L
ik :=

{
−∞ if Q0+

ik =∅,
supl∈Q0+

ik
δkl otherwise,

(21)

RK
ik :=

{
∞ if P0−

ik =∅,
inf j∈P0−

ik
βi j otherwise,

(22)

RL
ik :=

{
∞ if Q0−

ik =∅,
infl∈Q0−

ik
δkl otherwise,

(23)

mik := sup{mK
ik,mL

ik}, Mik := inf{M K
ik ,M L

ik}, (24)

rik := sup{r K
ik , r

L
ik}, Rik := inf{RK

ik , RL
ik}. (25)

Theorem 2. If K and L are disjoint finite subsets satisfying condition (H) then for
any pair (i, k) of indices, Ki ∩ Lk contains equidistant points if and only if

mik ≤ Mik and rik ≤ νik ≤ Rik .

The parametrization of the line segment of the equidistant points in Ki ∩ Lk is

y = µik x + νik (mik ≤ x ≤ Mik).

Proof. It is clear that in the case where

mik ≤ Mik and rik ≤ νik ≤ Rik,

conditions (12)–(15) are satisfied for any mik ≤ x ≤ Mik . �
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3. A Maple algorithm

Our algorithm, available in the online supplement, is implemented in Maple. The
input data are the lists of K and L containing the points of the focal sets, respectively.
K [i][1] and K [i][2] denote the coordinates of the i-th point in the focal set K for
each i ∈ {1, 2, . . . , p}, and L[k][1] and L[k][2] denote the coordinates of the k-th
point in the focal set L for each k∈{1, 2, . . . , q}. The main procedure equidistant
creates a plot of the equidistant set with focal sets K and L . The Maple command
LinearUnivariateSystem produces the solution of system (10).

The procedure equidistant_ini takes the lists K and L as input and returns
the following six objects as output:

• a is a list containing the slopes a[i][ j] := αi j for each i, j ∈ {1, 2, . . . , p} and
i 6= j , while a[i][ j] = 0 when i = j .

• g is a list containing the slopes g[k][l] := γkl for each k, l ∈ {1, 2, . . . , q} and
k 6= l, while g[k][l] = 0 when k = l.

• b is a list containing the constants b[i][ j] := βi j for each i, j ∈ {1, 2, . . . , p}
and i 6= j , while b[i][ j] = 0 when i = j .

• d is a list containing the constants d[k][l] := δkl for each k, l ∈ {1, 2, . . . , q}
and k 6= l, while d[k][l] = 0 when k = l.

• m is a list containing the slopes m[i][k] := µik for each i ∈ {1, 2, . . . , p} and
k ∈ {1, 2, . . . , q}.

• n is a list containing the constants n[i][k] := νik for each i ∈ {1, 2, . . . , p} and
k ∈ {1, 2, . . . , q}.

The procedure xmaxmin returns the maximal and the minimal values of the first
coordinates of the points in the focal sets K and L , respectively. They appear in
the range option of the “plot” command.

The procedure equidistant_system creates the system of inequalities (10)
for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2, . . . , q}. In the input data, a, g, b, d,m, n
are the objects created by equidistant_ini.

The procedure inequality_range defines the ranges for the next procedure,
equidistant_grafikon. The equidistant set can be considered as the graph of a
piecewise linear, continuous real function. The domain of such a function can be
split into a finite number of disjoint intervals such that the function is linear over
each interval. The procedure defines the endpoints of such intervals. The operands
of the local variable T containing the solution of a linear univariate system of
inequalities are of the forms c1 < x and x < c2. If T has at least (and, consequently,
exactly) two operands of the forms c1 < x and x < c2, respectively, then we have
both lower and upper bounds for the solution. Otherwise we have only a lower or

http://msp.org/involve/2018/11-2/involve-v11-n2-x08-Maple_algorithm_and_examples.pdf
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Figure 1. Examples 1 (left) and 2 (right).

an upper bound of the form c1 < x or x < c2. In the case of c1 < x , we choose the
variable of numeric type as the lower bound for the range: c1. The upper bound for
the range is defined as the maximum of c1+ 1 and xmax+ 1.

The procedure equidistant_ grafikon generates the list of plots of the graph
of the linear functions, which represent the equidistant set with focal sets K and L .
In the input data, m, n are created by equidistant_ini and S is a list containing
the list of ranges created by inequality_range.

3.1. Examples. We present some examples generated by the algorithm above. The
code for Examples 1, 2, and 4 can be found in the online supplement.

Example 1. The focal set K contains the points of a regular 10-gon inscribed in
the unit circle; it is rotated by a small angle 0.1 to satisfy condition (H). The focal
set L contains the points (1, 4), (2, 3), (3, 2), (4, 1) and (5, 0). They are lying on
the same line segment y =−x + 5 (0≤ x ≤ 5). See Figure 1.

Example 2. This case, shown in Figure 1, illustrates what happens when increasing
the number of the focal points in Example 1.

The limit shape is a parabolic arc,

r(ϕ)=
1+ 5/

√
2

1+ cos
(
ϕ− 1

4π
) , (26)

provided that the polar angle belongs to the interval

− arcsin 12
√

2
26+5

√
2
≤ ϕ ≤

π

2
+ arcsin 12

√
2

26+5
√

2

because the line segment can be substituted by the entire line without changing the
equidistancy in this region. Otherwise we have hyperbolic arcs because the distance
to the line segment reduces to the distance from one of its endpoints.

http://msp.org/involve/2018/11-2/involve-v11-n2-x08-Maple_algorithm_and_examples.pdf
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Figure 2. The asymptotic ends.

The asymptotic “ends”, shown in Figure 2, are the bisectors of the points
P(0, 5), T2 and Q(5, 0), T4, where T2, T4 denote the touching points of the tangent
lines passing through P and Q in the second and the fourth quadrants, respectively.
For the asymptotic behavior of the equidistant sets, see [Ponce and Santibáñez 2014,
Theorem 12].

Example 3. The focal set K contains the points (−2, 1), (−1, 1.3), (0, 0), (1,−2),
(2,−2.2), (3, 1.5) and (4, 3.5) and the focal set L consists of (1, 2), (−1, 3), (2, 4)
and (3, 5); see Figure 3.

Example 4. The focal set K contains the points of a regular 7-gon inscribed in the
circle of radius 1

3 centered at the origin; it is also rotated by a small angle 0.1 to

Figure 3. Example 3.
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Figure 4. Examples 4 (left) and 5 (right).

satisfy condition (H). The focal set L is a singleton containing the origin. In the
same way any regular n-gon can be given as an equidistant set. See Figure 4.

Example 5. In this case, shown in Figure 4, we can see a disconnected case with
focal sets K containing the points (−1, 1), (1,−1) and L containing the points
(−3,−3), (0, 0), (3, 3), respectively.

3.2. Concluding remarks. The application of the algorithm for more complicated
focal sets is based on the continuity properties of the equidistant sets; see Section 1
and also [Ponce and Santibáñez 2014, Theorem 11].

Examples 1 and 2 represent the approximation of the equidistant set to a circle and
a segment as focal sets. The Hausdorff distance can be estimated by comparing the
polar distance of the equidistant points and the points of the limit shape as follows;
see (26). First, get the polar coordinates of the vertex points of the approximating
equidistant set. Since it is a polygonal chain, we have finitely many data depending
on the number of the focal points: (ri , ϕi ), where i <∞. By (26) we can compute
the exact polar distance r(ϕi ) belonging to the polar angle ϕi on the limit parabola.
Taking

D1 :=maxi |r(ϕi )− ri |,

we have an upper bound for the Hausdorff distance between the approximating
equidistant set and the polygonal chain inscribed in the limit parabola with vertices of
the polar angles ϕi . Indeed, if the polar body of a segment contains the endpoints of
another one then it contains the entire line segment too. To estimate the Hausdorff
distance of the inscribed polygonal chain and the parabolic arc, it is natural to
consider the triangles 4i formed by adjacent vertices Vi and Vi+1 of the polygonal
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chain and the intersection of the tangent lines to the arc at Vi and Vi+1. If mi

denotes the height of the 4i belonging to the i-th side of the polygonal chain then
its maximum D2 gives an upper bound for the Hausdorff distance between the
inscribed polygonal chain and the parabolic arc. Using the triangle inequality, the
sum D := D1 + D2 is an upper bound for the Hausdorff distance between the
estimating polygonal chain and the limit parabola.

In the same way, we can approximate the equidistant set to a pair of convex
polytopes (the convex hulls of finite sets of points). Taking finitely many convex
combinations of the vertices, one can produce finite focal sets to apply the algorithm.
In case of general compact subsets we can use their intersections with a sequence
of nested grids.

As the limit shape we have a circle by increasing the number of the vertices of
the inscribed regular polygon (the focal set K ) in Example 4. On the other hand,
Example 4 shows a way of presenting regular polygons as equidistant sets. It has
an important theoretical consequence in view of Weiszfeld’s problem. E. Vázsonyi,
also known as E. Weiszfeld, posed the problem of approximating convex plane
curves with so-called polyellipses, all of whose points have the same sum of
distances from finitely many focal points in the plane. It is the additive version of
the approximation of plane curves by polynomial lemniscates, all of whose points
have the same product of distances from finitely many focal points in the plane.
P. Erdős and I. Vincze [1958] proved that the approximation of a regular triangle
with polyellipses has an absolute error even if the number of focuses is increased
to the infinity; see also [Varga and Vincze 2008]. This means that the idea of
polyellipses gives an essentially different generalization of the classical conics.
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Zero divisor graphs of commutative graded rings
Katherine Cooper and Brian Johnson

(Communicated by Scott T. Chapman)

We study a natural generalization of the zero divisor graph introduced by Anderson
and Livingston to commutative rings graded by abelian groups, considering only
homogeneous zero divisors. We develop a basic theory for graded zero divisor
graphs and present many examples. Finally, we examine classes of graphs that
are realizable as graded zero divisor graphs and close with some open questions.

1. Introduction

Zero divisor graphs of commutative rings have been well-studied since their in-
troduction by Beck [1988], and there have also been many generalizations, from
noncommutative rings to semigroups. Anderson and Livingston [1999] began
studying the graph created from just the nonzero zero divisors. We focus on a gener-
alization of their graph to graded rings. In this way we are able to realize significantly
more graphs as graded zero divisor graphs. While the class of realizable graphs is
expanded, some of the same restrictions still exist in the graded case. For other types
of graphs associated to graded rings, see [Khosh-Ahang and Nazari-Moghadam
2016]. For examples of other graphs associated to commutative rings, see [Anderson
and Badawi 2012; Ashrafi et al. 2010; Badawi 2014; 2015; Behboodi and Rakeei
2011]. For more examples in the commutative case and characterizations based on
numbers of zero divisors, among other things, see [Anderson and Badawi 2008].

In Section 2 we summarize the basic notation, terminology, and necessary facts
for graded rings. We also define the graded zero divisor graph and give some basic
examples.

Section 3 contains the basic properties and theory of graded zero divisor graphs.
As mentioned, many of the familiar properties from the nongraded case hold true
in the graded case: the graded zero divisor graph is connected with diameter less
than or equal to 3, the girth is less than or equal to 4 (when finite), and the graph is
finite if and only if the ring is finite.

MSC2010: 05C25, 13A02.
Keywords: graded ring, zero divisor graph.
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The final section is devoted to realizability of various graphs and classes of
graphs. We show that all but one of the connected graphs on four vertices are
realizable as graded zero divisor graphs, and we completely classify the connected
graphs on five vertices. Further, we show that every star, complete, and complete
bipartite graph is realizable, a marked difference from the nongraded case. We also
include some interesting open questions.

Throughout the paper, all rings are assumed to be commutative with identity,
and G will always represent an abelian group.

2. Preliminaries

We now summarize some basic language and notation relating to rings graded by
abelian groups as well as zero divisor graphs associated with such rings. For more
details on graded commutative rings, the reader is referred to [Johnson 2012]. For
a more general treatment, see [Năstăsescu and Van Oystaeyen 2004].

Graded rings. Let G be an abelian group. A G-graded ring R is a ring R with a
family of subgroups fRg jg 2Gg of R such that RD

L
g2G Rg (as abelian groups)

and RgRh �RgCh for all g; h 2G. At times, we may refer simply to the “graded
ring R” if G is understood. If r 2R then there exist unique elements rg 2Rg for each
g 2G, all but finitely many of which are zero, such that r D

P
g2G rg . If r D rg for

some g2G then r is called G-homogeneous of degree g (or simply “homogeneous”).
An ideal I � R is G-homogeneous (again, “homogeneous” when appropriate)
provided I D

L
g2G Ig for some family of subgroups fIg j g 2Gg. Equivalently,

we only need know that I has a generating set consisting of homogeneous elements.
When defining some basic ring-theoretic properties in terms of only homogeneous

elements, we incorporate the grading group to simplify language and avoid confu-
sion. For example, a G-graded ring R is called a G-field (respectively, G-domain)
if every nonzero G-homogeneous element of R is a unit (respectively, not a zero
divisor). Note that when we refer to a property holding under the trivial grading, or
0-grading, we will not write “R is a 0-field,” but rather “R is a field.”

The following lemma is interesting on its own. It says that to decompose a
graded ring as a (graded) direct product, it is enough to write the ring as a direct
product of subrings. We use it later in our analysis of realizable graphs.

Lemma 2.1. Suppose R is a G-graded ring, and R D S � T for subrings S and
T of R. Then S and T are G-graded subrings of R, and R is the (graded) direct
product of S and T.

Proof. As above, suppose R D S � T. Define Sg WD fs 2 S j .s; 0/ 2 Rgg and
Tg WD ft 2 T j .0; t/ 2 Rgg. This defines a G-grading on S and T, and so it only
remains to be shown that R is their graded direct product.

By Remark 1.2.3 in [Năstăsescu and Van Oystaeyen 2004], we are done. �
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x xCx2

xCx3

xCx4

xCx2Cx3

xCx2Cx4

xCx2Cx3Cx4

xCx3Cx4

x2x2Cx3

x2Cx4

x2Cx3Cx4

x3

x3Cx4

x4

Figure 1. �.R/.

Zero divisor graphs. Let R be a G-graded ring, and let Z�G.R/ denote the collec-
tion of nonzero G-homogeneous zero divisors. Define the G-graded zero divisor
graph (or just the “graded zero divisor graph” if G is understood) �G.R/ to be the
graph whose vertices are the elements of Z�G.R/ and which has an edge between
distinct elements x; y 2Z�G.R/ provided xy D 0. It is worth mentioning that one
could eliminate the restriction that x and y be distinct; the only change is that the
graphs now might have loops. However, the graph theory becomes significantly
more complicated. See [Vietri 2015] for examples of classifications involving loops.

As in the case of 0-fields, for example, when we consider a trivial grading, we
use Z.R/, Z�.R/, and �.R/ rather than include the subscript 0.

One interesting result of studying a graded version of zero divisor graphs is that
the same ring may have different gradings, leading to distinct graphs from the same
underlying ring.

Example 2.2. Let R D Z2ŒX�=.X5/ and use x to denote the image of X in the
quotient.

(1) Consider R under a trivial grading. That is, suppose the degree of every element
is 0 (so G could be any abelian group, in fact). Since all elements of R are homoge-
neous, this is the same as the usual zero divisor graph �.R/, as shown in Figure 1.

(2) Now consider R as a Z2-graded ring under the assignment induced by deg.x/D1,
so the degree of xi is i .mod 2/. This restricts the number of homogeneous elements
and homogeneous zero divisors, as shown in Figure 2. For example, x2C x4 is
homogeneous, but x2C x3 is not.

(3) Finally, consider R as a Z-graded ring under the assignment induced by
deg.x/ D 1, so the degree of xi is i . This further restricts the number of ho-
mogeneous zero divisors, as seen in Figure 3. In fact, the only homogeneous zero
divisors are elements of the form xi , for i D 1; 2; 3; 4.
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x

x2x3

xCx3x4

x2Cx4

Figure 2. �Z2
.R/.

x x2

x3x4

Figure 3. �Z.R/.

It is worth mentioning that the gradings on the first two rings can be induced
from the third ring. In general, given a G-graded ring R and a subgroup H of G,
there is a natural grading of R by the quotient G=H, obtained by setting RgCH DL

h2H RgCh. For instance, to obtain the Z2-grading of R from the Z-grading, we
take GDZ and H D 2Z, whereas to obtain the trivial grading, we take GDH DZ.

3. Basic properties

Many of the basic properties of �.R/ described by Anderson and Livingston [1999]
have analogues for �G.R/. For example, they show that the zero divisor graph
is finite if and only if R is finite or a domain. With modifications we can use a
similar proof, combined with the following lemma, to prove a corresponding result
for graded rings.

Lemma 3.1. If ZG.R/ is finite, then for every x 2Z�G.R/, ann.x/ is finite.

Proof. Let I D ann.x/. As x is homogeneous, I is homogeneous, and thus
I D

L
g2G Ig . Further, Ig �ZG.R/ for every g 2G, so Ig D 0 for all but finitely

many g 2G and each nonzero Ig is finite. Since there are finitely many nonzero Ig ,
say Ig1

; : : : ; Igk
, we have jI j D

ˇ̌Lk
iD1 Igi

ˇ̌
D
Qk

iD1 jIgi
j. Therefore jI j<1. �
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Theorem 3.2. Let R be a commutative ring. Then j�G.R/j is finite if and only if R

is a G-domain or R is finite.

Proof. Suppose R is not a G-domain and jZ�G.R/j is finite. Then there exist
nonzero homogeneous x; y 2R with xy D 0. Let I D ann.x/. By Lemma 3.1, I

is finite. Also, ry 2 I for all r 2 R. If R is infinite, then there exists i 2 I with
B D fr 2 R j ry D ig infinite. For any r; s 2 B , we have .r � s/y D 0, so ann.y/

is infinite, contradicting Lemma 3.1. Thus R must be finite. �
Because there is no “graded” version of the ring being finite, we get an interesting

corollary.

Corollary 3.3. If 1� jZ�G.R/j<1, then 1� jZ�.R/j<1.

Proof. Suppose 1� jZ�G.R/j<1. If jZ�.R/jD1, then R is not finite. Therefore,
R must be a G-domain, so jZ�G.R/j D 0, a contradiction. If jZ�G.R/j � 1, clearly
jZ�.R/j � 1. �
Note. The converse of Corollary 3.3 is also true for the upper bounds, but fails
when the lower bound 1 is added, as the following example shows.

Example 3.4. Consider

R WD
Z3ŒX�

.X2� 1/
D Z3˚Z3x;

where x is the image of X in the quotient ring. This has a natural grading by Z2,
where deg.xi /D i .mod 2/. One easily verifies that this grading makes R a Z2-field.
However, .xC 1/.x� 1/D x2� 1D 0, so jZ�G.R/j D 0, yet jZ�.R/j � 1.

Another obvious consequence of the finiteness result above is that we can assume
a ring with a finite graded zero divisor graph is graded by a finitely generated group.
Moreover, it can be shown that the grading group can be chosen to be finite. For
example, if such a ring R is graded by Z, say R D

L
n2Z Rn, we can form the

quotient group G D Z=kZ, where k D maxfm� ` j Rm ¤ 0 and R` ¤ 0g. This
argument can be extended to any finitely generated group by applying it in each
component of the free part of the grading group as necessary.

Other well known facts about zero divisor graphs concern connectedness, diame-
ter, and girth. None of these theorems change in the graded setting.

Theorem 3.5. Let G be an abelian group and R a G-graded ring. Then �G.R/ is
connected and diam.�G.R//� 3.

Proof. The proof given in [Anderson and Livingston 1999, Theorem 2.3] can be
used if one simply adds that each zero divisor chosen is homogeneous. �

Similarly, the following well-known result can be obtained by modifying the
proof given by Axtell, Coykendall, and Stickles [Axtell et al. 2005], insisting that
each choice of a zero divisor is homogeneous.
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Theorem 3.6. Suppose G is an abelian group and R is a G-graded ring. If �G.R/

contains a cycle, then the girth of �G.R/ is less than or equal to 4.

Some of the previous facts can also be obtained by results on zero divisor graphs
of semigroups found in [DeMeyer et al. 2002]. Indeed, the homogeneous elements
(together with 0) in a ring are closed under the ring multiplication.

4. Realizability of Graphs

There has been ample study on which graphs are realizable as zero divisor graphs of
commutative rings; for example, see [Axtell et al. 2009; LaGrange 2008; Redmond
2007]. Certainly, any graph realizable as �.R/ for a ring R is realizable as �G.R/

for the same ring under a trivial grading (by any group G). It turns out that there are
significantly more graphs realizable as graded zero divisor graphs. We begin with
graphs on four vertices, but every connected graph on one, two, or three vertices is
realizable as the (nongraded) zero divisor graph of a commutative ring. Therefore,
there is nothing to show in the graded case for these.

Connected graphs on four vertices. Anderson and Livingston [1999] indicate that
of the six connected graphs on four vertices, only those shown in Figure 4 may be
realized as �.R/. Their proofs that the other three graphs seen in Figure 5 are not
realizable all have a similar flavor. One uses the fact that certain sums or products
must be annihilated by another element in the graph, and therefore must also be
vertices in the zero divisor graph. This breaks down (often) in the graded case. Even
though all of the vertices represent homogeneous elements and the sum of elements
may still be annihilated, unless we know that both (homogeneous) elements are of
the same degree, this sum no longer needs to be another vertex in the graded zero
divisor graph.

For zero divisor graphs of graded rings, the three graphs in Figure 4 are still
realizable, but we can also produce two more.

The graph on the left in Figure 5 is realized using the ring Z2ŒX; Y �=.XY; X2; Y 4/

under the Z2˚Z4-grading defined by deg.x/D.1 .mod 2/;0 .mod 4// and deg.y/D

.0 .mod 2/;1 .mod 4//, where x and y represent the images of X and Y in the
quotient.

Figure 4. The three connected graphs on four vertices realizable as �.R/.
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Figure 5. Two additional graphs realizable as �G.R/ (left, middle)
and an unrealizable (right) connected graph on four vertices.

The graph in the middle is realized with the ring Z2ŒX�=.X5/ under the Z-grading
defined by deg.x/D 1, where x is the image of X in the quotient. We could also
obtain the same graph using a Z5-grading and setting deg.xi /D i .mod 5/.

The final graph on the right in Figure 5 remains unrealizable as �G.R/ for any
group G. It can be proven that each of the four zero divisors must be (homogeneous)
of the same degree, and thus the proof provided by Anderson and Livingston can
be used.

Connected graphs on five vertices. An interesting fact is that while there are 21
connected graphs on five vertices, there are still only three of these graphs realizable
as �.R/. This can be proved using a mix of results from [Anderson and Livingston
1999] and direct analysis of adding and/or multiplying certain zero divisors together
to reach a contradiction; alternatively, this is shown in [Redmond 2003]. These
three graphs and the rings used to construct them are shown in Figure 6. Here, F4

represents a finite field with four elements.
As before, we are able to construct more of these graphs in the graded setting

(in addition to those in Figure 6). Figure 7 summarizes the additional graphs we
are able to realize, while Table 1 summarizes the grading used on each ring. In the
table we use x and y to denote the images of X and Y in factor rings, while ei

denotes the i -th basis vector, which has a 1 .mod n/ (for the appropriate n) in the
i -th position and 0s elsewhere.

Not every connected graph on five vertices is realizable as a graded zero divisor
graph. Figure 8 contains the graphs unrealizable as graded zero divisor graphs.

G2 D �.Z2 �Z5/ G3 D �.Z2 �Z4/ G11 D �.Z3 � F4/

Figure 6. Connected graphs on five vertices realizable as (non-
graded) zero divisor graphs.
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G5 G8 G9 G13

G14 G15 G16 G17

G18 G19 G20 G21

Figure 7. Additional connected graphs on five vertices realizable
as graded zero divisor graphs.

graph ring group grading

G5
Z3ŒX�

.X2/
�Z2 Z2 deg..x; 0//D1 .mod 2/

G8
Z2ŒX�

..XC1/2X2/
Z2 deg.xi /D i .mod 2/

G9
Z2ŒX�

.X2/
�

Z2ŒY �

.Y 2/
Z2 deg..x; 0//Ddeg..0; y//D1 .mod 2/

G13
Z2ŒX�

.X6/
Z6 deg.x/D1 .mod 6/

G14
Z2ŒX�

.X3/
�Z3 Z3 deg..x; 0//D1 .mod 3/

G15
Z2ŒX;Y �

.X3;Y 2/
Z3˚Z2 deg.x/D e1, deg.y/D e2

G16
Z2ŒX;Y �

.XY;X2;Y 4/
Z4 deg.x/Ddeg.y/D1 .mod 4/

G17
Z2ŒX;Y �

.X;Y /2 �Z2 Z2 deg..x; 0//Ddeg..y; 0//D1 .mod 2/

G18
Z2ŒX;Y �

.XY;X3�Y 3/
Z3˚Z3 deg.x/D e1, deg.y/D e2

G19
Z2ŒX;Y �

.XY 2;X2;Y 4/
Z2˚Z4 deg.x/D e1, deg.y/D e2

G20
Z2ŒX;Y �

.XY;X3;Y 3/
Z3 deg.x/D1 .mod 3/, deg.y/D0

G21
Z2ŒX1;X2;:::;X5�

.Xi Xj ji;j2f1;2;:::;5g/
.Z2/5 deg.xi /D ei

Table 1. Rings and their gradings used to construct the graphs in Figure 7.
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G1 G4 G6

G7 G10 G12

Figure 8. Connected graphs on five vertices unrealizable as a
graded zero divisor graph.

Some can be eliminated easily, based on girth or diameter considerations, such as G1

and G4. To eliminate others, we used techniques similar to the nongraded case, with
some modifications. To indicate the complications that arise, we provide an example.

Example 4.1. To show the graph G10 is unrealizable, label the vertices a, b, c, d ,
and e so that a is the vertex at the top, continuing in alphabetical order clockwise.

From relations in the graph, we get that bc, bd , ce, and de must be (nonzero)
zero divisors. It is easily shown that each of these products must be equal to a.
This implies b; e 2Rg and c; d 2Rh for some g; h 2G; that is, these elements are
homogeneous of the same degree. Clearly, b � e 2 Rg and b � e ¤ 0. Similarly,
c � d 2 Rh and c � d ¤ 0. As each of these differences is annihilated by a, we
have b� e; c � d 2Z�G.R/.

We now simply exhaust all possibilities for b� e and c � d . If b� e D b, then
e D 0, a contradiction. If b � e D e, then cb � ce D ce, so that a � a D a, a
contradiction. Similarly, we reach contradictions if c � d 2 fc; dg. This gives
b� e 2 fa; c; dg and c � d 2 fa; b; eg.

Suppose b�eD a. Then b; e; a 2Rg . Thus, if c�d 2 fa; b; eg, then c; d 2Rg ,
and the following statement holds:

.�/ All five vertices are of the same degree, and deD a (for example) implies this
is degree 0. This implies �G.R/D �.R0/, but we know this graph cannot be
realized as the usual zero divisor graph of any ring.

Now suppose b � e D c. Then b; e; c; d 2 Rg . If c � d D a, then .�/ applies
again. If c�d D b, then c�d � e D c, so d D�e. This contradicts (for example)
the fact that ce ¤ 0. We obtain a similar contradiction if c � d D e.

Finally, suppose b � e D d . Then b; e; c; d 2 Rg . Again, if c � d D a, .�/

applies. If c � d D b, then c � d � e D d , so bc � bd � be D bd gives us aD 0,
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a contradiction. If c � d D e, then b � cC d D d , so b D c, a contradiction. It
follows that G10 cannot be realized as �G.R/.

Complete graphs. A central result of Anderson and Livingston [1999, Theorem 2.5]
in their classification of realizable complete graphs (and in their classification of
realizable star graphs, in fact) states that �.R/ has a vertex adjacent to every other
vertex if and only if R Š Z2 �A, where A is an integral domain, or Z.R/ is an
annihilator ideal (and hence is prime). We prove a similar result in Theorem 4.3,
using the following lemma.

Lemma 4.2. Suppose R is a G-graded ring and a 2R is homogeneous. If ann.a/

is maximal among annihilators of homogeneous elements, then ann.a/ is G-prime.

Proof. Suppose x and y are homogeneous and xy 2 ann.a/, but x … ann.a/. We
have xa¤ 0, but xyaD 0. Thus y 2 ann.xa/. However, ann.xa/� ann.a/ implies
ann.xa/D ann.a/. This implies y 2 ann.a/, and thus ann.a/ is a G-prime ideal. �

Because ZG.R/ is very often not an ideal in the graded setting, we will end up
considering .ZG.R//, the ideal generated by the homogeneous zero divisors, in the
theorem below.

Theorem 4.3. Suppose R is a G-graded ring. Then there is a vertex of �G.R/

adjacent to every other vertex if and only if R Š Z2 � A, where Z2 and A are
G-graded and A is a G-domain, or .ZG.R//D ann.x/ for some nonzero homoge-
neous x 2R.

Proof. (() If .ZG.R// D ann.x/, then x is adjacent to every other vertex. If
RŠZ2�A, where A is a G-domain, then .1; 0/ is adjacent to everything in Z�G.R/,
except .1; 0/.

()) Suppose .ZG.R// ¤ ann.x/ for all nonzero homogeneous x 2 R. Also,
suppose there exists a such that 0¤a2ZG.R/ with a adjacent to every other vertex.

If a 2 ann.a/, then ax D 0 for all x 2ZG.R/. This implies .ZG.R//� ann.a/.
Also, ann.a/ is homogeneous, so every homogeneous generator of ann.a/ is in
ZG.R/. Thus ann.a/� .ZG.R//. So ann.a/D .ZG.R//, a contradiction. There-
fore a … ann.a/.

We claim ann.a/ is maximal among those ann.x/ such that x is homogeneous.
To see this, note that a is adjacent to every other homogeneous zero divisor, yet
a … ann.a/.

By Lemma 4.2, ann.a/ is G-prime. Since a is a zero divisor, a2 is also a
homogeneous zero divisor. But a … ann.a/, so a2¤ 0. If a2¤ a, then a2 2 ann.a/,
but ann.a/ is G-prime, so a 2 ann.a/, a contradiction. Therefore a2 D a; that is,
a is a nontrivial (homogeneous) idempotent of degree 0.

By Lemma 2.1, R D S � T (as graded rings). Without loss of generality, let
aD .1; 0/. Then RD Z2 �A, where A is a G-domain. �
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As we have seen in the examples above, we can construct graded zero divisor
graphs that are complete for both four and five vertices. This already contrasts with
the nongraded case, as Anderson and Livingston [1999, Theorem 2.10] show that
only complete graphs on pn�1 vertices, where p is prime and n� 1, are realizable
as the zero divisor graph of a ring. In fact, in the graded case, we can realize every
complete graph as a graded zero divisor graph. While we assume the graph is finite,
the proof can easily be extended to infinite complete graphs.

Theorem 4.4. A complete graph of any size is realizable as �G.R/ for some abelian
group G and G-graded ring R.

Proof. Consider Kn, the complete graph on n vertices, where n � 1. Define the
ring S to be Z2ŒX1; : : : ; Xn�, where the Xi are indeterminates. This has an obvious
grading by the group G WD Zn, where we define the degree of Xi to be ei , the i -th
basis vector in G (which has a 1 in the i -th position and 0s elsewhere).

Let I D .XiXj j i; j 2 f1; : : : ; ng/ be the ideal generated by all products of
two (not necessarily distinct) variables. As each generator is homogeneous, I is a
homogeneous ideal, and R WD S=I is also a G-graded ring.

One can now verify that �G.R/ D Kn by noting that the only homogeneous
elements in R are the images of the Xi , all of which annihilate each other. �

Star graphs and complete bipartite graphs. Another well-studied class of graphs
is the class of star graphs. A star graph is the complete bipartite graph K1;k for
some k � 0. Except for the case k D 0, it can be thought of as having one vertex
adjacent to all other vertices with no additional edges. Anderson and Livingston
[1999, Theorem 2.13] completely characterized which star graphs are realizable
for finite commutative rings. Star graphs were also studied by Coykendall, Sather-
Wagstaff, Sheppardson, and Spiroff [Coykendall et al. 2012], but they focused on a
different construction introduced by Mulay [2002], based on equivalence classes of
zero divisors, denoted by �E .R/.

For nongraded rings, it is only possible to realize the star graphs with pn vertices,
where p is a prime and n� 0. As with complete graphs, we can construct all (finite)
star graphs in the graded setting. The following theorem is an obvious corollary of
Theorem 4.6, and we omit the proof.

Theorem 4.5. A star graph of any (finite) size is realizable as �G.R/ for some
abelian group G and G-graded ring R.

Not only can we realize all star graphs as graded zero divisor graphs, we can
also realize every complete bipartite graph.

Theorem 4.6. A complete bipartite graph of any (finite) size is realizable as �G.R/

for some abelian group G and G-graded ring R.
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Proof. Consider the graph Km;n and the rings defined by S DZ2ŒX�=.Xm�1/ and
T D Z2ŒY �=.Y n � 1/. Use x and y, respectively, to denote the images of X and
Y in S and T. Define LD lcm.m; n/. Set G D ZL and define ZL-gradings on S

and T , respectively, by setting deg.x/D L
m

and deg.y/D L
n

. It is a straightforward
exercise to show that each of these rings is now a ZL-field under its respective
grading.

Form the graded direct product R WD S �T (where Ri D Si �Ti ). Notice that
every nonzero element of R of the form .s; 0/ or .0; t/, where s 2 S and t 2 T are
homogeneous, is a vertex in �G.R/. Also, each such element .s; 0/ is adjacent
to each element .0; t/. Further, we claim these are the only vertices and edges
in �G.R/. To see this, suppose .s1; t1/ and .s2; t2/ are two elements of Z�G.R/.
Because S and T are ZL-fields, and the si and ti must be homogeneous, we can
only have

.s1; t1/.s2; t2/D .0; 0/

when the elements on the left are of the form .s1; 0/ and .0; t2/ or .0; t1/ and
.s2; 0/. �

Open questions.

Question 4.7. Notice that for the constructions above, each ring is graded by a
different abelian group. Another interesting question to consider is whether this
is necessary. For example, for a fixed group G, can we still realize all complete
graphs? If not, which graphs can we realize for a specific group?

Question 4.8. Theorem 4.3 is a step toward characterizing the graded rings that
give rise to graded zero divisor graphs that are stars or complete graphs. A further
avenue of study would be to determine if one can classify, completely or in part,
the (graded) rings that give rise to star and/or complete graphs.

Question 4.9. Is there a generalization, in part or whole, of Theorem 4.6 to n-partite
graphs? For example, Akbari, Maimani, and Yassemi [Akbari et al. 2003, Theorem
3.1] determine the rings whose zero divisor graphs are n-partite. They show, in
particular, that if n � 3, at most one partitioning subset of �.R/ can have more
than one vertex. As a contrast, graph G18 in Figure 7 shows that in the graded case
we can construct a complete 3-partite graph with more than one partitioning subset
having size greater than 1.
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The behavior of a population interaction-diffusion
equation in its subcritical regime

Mitchell G. Davis, David J. Wollkind,
Richard A. Cangelosi and Bonni J. Kealy-Dichone

(Communicated by Martin J. Bohner)

A model interaction-diffusion equation for population density originally analyzed
through terms of third-order in its supercritical parameter range is extended
through terms of fifth-order to examine the behavior in its subcritical regime.
It is shown that under the proper conditions the two subcritical cases behave
in exactly the same manner as the two supercritical ones unlike the outcome
for the truncated system. Further, there also exists a region of metastability
allowing for the possibility of population outbreaks. These results are then used
to offer an explanation for the occurrence of isolated vegetative patches and sparse
homogeneous distributions in the relevant ecological parameter range where there
is subcriticality for a plant-groundwater model system, as opposed to periodic pat-
terns and dense homogeneous distributions occurring in its supercritical regime.

1. Introduction and formulation of the problem

Consider the following interaction-diffusion partial differential equation boundary
value problem for N = N (s, τ )≡ population density, where s ≡ one-dimensional
spatial variable and τ ≡ time:

∂N
∂τ
= D0

∂2 N
∂s2 + R0 Ner

(
N − Ne

Ne

)
, 0< s < L , (1-1a)

N (0, τ )= N (L , τ )= Ne, (1-1b)
with

r(θ)= θ +αθ3
+ γ θ5

+ O(θ7). (1-1c)
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Here, D0 ≡ dispersal constant, R0 ≡ interaction rate, Ne ≡ equilibrium population
density, and L ≡ territory size, while α and γ represent dimensionless interaction
coefficients. Note that

N (s, τ )≡ Ne (1-2)

is an exact solution to boundary value problem (1-1).
Introducing the nondimensional variables and parameter

z =
πs
L
, t =

D0π
2τ

L2 , θ(z, t)=
N (s, τ )− Ne

Ne
, β =

R0L2

D0π2 , (1-3)

our original problem transforms into

∂θ

∂t
−
∂2θ

∂z2 = βr(θ), 0< z < π, (1-4a)

θ(0, t)= θ(π, t)= 0. (1-4b)

Note that the exact solution (1-2) to the dimensional problem corresponds to

θ(z, t)≡ 0 (1-5)

for our dimensionless one (1-4).
This is an extension to fifth-order of a model equation introduced by Wollkind

et al. [1994] to illustrate the Stuart–Watson method of weakly nonlinear stability
analysis of prototype reaction-diffusion equations. Asymptotic analyses of this
sort are very useful for predicting pattern formation in such nonlinear systems.
That analysis requires the expansion of θ in powers of an unknown function A(t)
with spatially dependent coefficients. The pattern-formational aspect of this system
can be predicted from the long-time behavior of that amplitude function, which is
governed by its Landau ordinary differential equation

d A
dt
∼ σ A− a1 A3

− a3 A5
= F(A), (1-6)

where σ is the growth rate of linear stability theory and a1,3 are the Landau constants.
That long-time behavior is crucially dependent upon the signs of these Landau
constants. Wollkind et al. [1994] concentrated on the special case for which
r(θ) = sin (θ), employed by Matkowsky [1970] to develop his two-time method
of weakly nonlinear stability theory, since their main concern was to compare
the results obtained from the application of the Stuart–Watson method with those
he deduced. Then a1 > 0, identically (see below), and it is only necessary to
include terms through third-order in r(θ) to make pattern formation predictions for
this problem. In that event, there are two solutions of the truncated system: the
first, a homogeneous one that is stable for σ < 0 and the second, a supercritical
re-equilibrated pattern forming one that exists and is stable for σ > 0. These results
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can be directly applied to our problem for its generalized r(θ) in the parameter
range where a1 > 0. In the range where a1 < 0 and there is so-called subcriticality,
the solutions to the truncated problem can grow without bound, and one must take
the fifth-order terms into account in order to determine the long-time behavior of
the system. Then we shall show that, if there is a parameter range over which the
other Landau constant a3 satisfies a3 > 0, the pattern formation properties of our
system can be ascertained without having to resort to considering even higher-order
terms in r(θ). That requires the development of a formula for this Landau constant
and an examination of its sign as a function of α and γ .

2. The Stuart–Watson method of nonlinear stability theory

Toward that end, we seek a Stuart–Watson expansion for the solution of our model
equation of the form [Wollkind et al. 1994]

θ(z, t)∼ A(t) sin (z)+ A3(t)[θ31 sin (z)+ θ33 sin (3z)]
+ A5(t)[θ51 sin (z)+ θ53 sin (3z)+ θ55 sin (5z)]. (2-1)

Note that the spatial terms in expansion (2-1) satisfy our boundary conditions (1-4b)
at z = 0 and π , identically. Then, expanding r(θ) in powers of A(t), employing
the relevant trigonometric identities for the resulting products of sine functions
contained in its coefficients, and making use of the Landau amplitude equation
(1-6), we obtain a series of problems, one for each term appearing explicitly in our
expansion of the form An(t) sin (mz), given by

A(t) sin (z) : σ + 1= β,

A3(t) sin (z) : 3σθ31− a1+ θ31 = β
(
θ31+

3
4α
)
,

A3(t) sin (3z) : 3σθ33+ 9θ33 = β
(
θ33−

1
4α
)
,

A5(t) sin (z) : 5σθ51− a3− 3a1θ31+ θ51 = β
(
θ51+

9
4αθ31−

3
4αθ33+

5
8γ
)
.

Although there are also two other A5(t) problems, they have not been cataloged
above since only the one proportional to sin (z) which involves a3 is required for
our purposes. Here, while σ and the θnm are being considered as functions of β,
the coefficients a1,3 are assumed to be independent of that bifurcation parameter
and hence the use of the terminology Landau constants. That assumption is critical
for their determination as solvability conditions, which is developed below.

We now solve these problems sequentially. Then, from the ones not involving
these Landau constants, we obtain in a straightforward manner that

σ(β)= β − 1, (2-2a)
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and
θ33(β)=−

αβ

8(β + 3)
, (2-2b)

while the other two problems yield

2σ(β)θ31(β)= a1+
3
4αβ (2-2c)

and

4σ(β)θ51(β)= a3+ 3θ31(β)
(
a1+

3
4αβ

)
−

3
4αβθ33(β)+

5
8γβ. (2-2d)

(i) Assuming that θ31(β) is well behaved at the critical bifurcation value of β = 1
and taking the limit of this first relation as β→1, while noting that σ(β)=β−1→0
in this limit, we obtain the solvability condition

a1 =−
3
4α (2-3a)

and, upon substitution of this back into (2-2c), the solution

θ31(β)≡ θ31 =
3
8α. (2-3b)

Hence, we can deduce that

a1 > 0 for α < 0 and a1 < 0 for α > 0. (2-4)

Thus, as mentioned earlier,

r(θ)= sin (θ)= θ − 1
6θ

3
+ O(θ5) =⇒ α=−1

6 =⇒ a1=
1
8 . (2-5)

Now, in this case, defining

ε2
=
σ(β)

a1
or β = 1+ 1

8ε
2 (2-6a)

and introducing the rescaled variables

η = σ t, A(η)=
A(t)
ε

(2-6b)

into the truncated amplitude equation

d A
dt
= σ A− a1 A3

+ O(A5), (2-6c)

we obtain
dA
dη
=A−A3

+ O(ε2), (2-6d)

which justifies that truncation procedure. Now multiplying the truncated amplitude
equation by A(t) and rewriting it as

1
2

d A2

dt
= σ A2

− a1 A4
= σ A2

(
1−

A2

σ/a1

)
= f3(A2), (2-7)
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1

2 3

4

1 2
d dt
[
A

2 (
t)
]

supercritical re-equilibration
a1=−3α/4> 0, σ =β−1> 0

A2
e = σ/a1

A2(t)

a1< 0, σ > 0

unstable
A2(t)

a1> 0, σ < 0

stable
A2(t)

subcritical instability
a1< 0, σ < 0

A2
e = σ/a1

A2(t)

Figure 1. Plots of f3(A2) for the third-order truncated amplitude
equation with σ =β−1 and a1=−

3
4α. Here the circled numbers

correspond to the quadrants in the αβ-space of Figure 5 with
horizontal axis β = 1 and vertical axis α= 0.

we can easily deduce its long-time behavior by means of the four phase-plane plots of

1
2

d A2

dt
= f3(A2)

that constitute Figure 1, which catalogs the four qualitatively different cases corre-
sponding to the possibility of σ and a1 being either positive or negative. These serve
as graphical representations of the cases discussed in Section 1 for the truncated
version of our amplitude equation.

In particular, for the supercritical re-equilibration case of σ, a1 > 0, we have

lim
t→∞

A(t)= Ae = ε, (2-8a)

and hence
lim

t→∞
θ(z, t)∼ θe(z)= δ sin (z) as δ→ 0 (2-8b)

since

lim
t→∞

θ(z, t)= ε sin (z)+ ε3
[θ31 sin (z)+ θ33(β) sin (3z)] + O(ε5)

= (ε+ θ31ε
3) sin (z)+ ε3θ33(1) sin (3z)+ O(ε5)

= δ sin (z)+ 1
192δ

3 sin (3z)+ O(δ5)∼ δ sin (z) as δ→ 0, (2-8c)
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θ

δ

π/2 π
z

θ = θe(z)= δ sin(z)

Figure 2. Plot of the arch solution θe(z) for 0≤ z ≤ π .

where δ = ε+ ε3θ31 > 0. This equilibrium state, plotted in Figure 2, is an arch-
type pattern formed from one-cycle of a sine curve with its maximum amplitude δ
occurring at z = 1

2π .

(ii) We next proceed to analyze the second Landau constant relation (2-2d) involving
a3 and θ51 in an analogous manner to that just employed to evaluate a1 and θ31.
Thus, assuming θ51(β) to be well behaved at β = 1 and taking the limit of this
relation as β→ 1, we obtain the solvability condition

a3 =−
5
8γ − 3θ31

(
a1+

3
4α
)
+

3
4αθ33(1)=− 5

8γ −
3

128α
2 (2-9a)

and, upon substitution of this back into (2-2d), the solution

θ51(β)=
5

32γ +
9
16αθ31+

3α2(4β + 3)
512(β + 3)

. (2-9b)

Observe that, by virtue of the value of a1, we have a3 is independent of θ31. Also
observe that, unlike this quantity, θ51 is a function of β. Finally note, in addition,
should we have assumed that the Stuart–Watson expansion for θ(z, t) and the Landau
equation for d A/dt contained even powers of A(t), then the solvability conditions
and solutions for their coefficients would have shown them to be zero. Hence our
implicit assumption that these quantities only contained odd powers was made
without loss of generality and follows as a direct consequence of the form of r(θ).

Having determined its coefficients, we shall examine the truncated amplitude
equation (1-6) through terms of fifth-order, i.e.,

d A
dt
= F(A), (2-10)

and defer until after this examination has been completed a justification for that
truncation. We seek conditions under which the inclusion of fifth-order terms will
re-equilibrate the growing solutions predicted through third-order when a1 < 0.
Hence we assume a parameter range in which a1 < 0 or α > 0. Further, anticipating
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f(
A

2 )
=

1 2
d

A
2

dt
4a 4b 1

A2(t) A2(t) A2(t)

σ < σ−1 < 0 σ−1 < σ < 0 σ > 0

A−2
e A+2

e A+2
e

Figure 3. Plots of f (A2) for the fifth-order truncated amplitude
equation with a1 < 0; a3 > 0; and σ < σ−1 = −a2

1/(4a3) < 0,
σ−1 < σ < 0, and σ > 0, respectively. Here, the circled numbers
correspond to the quadrants in the αβ-space of Figure 5.

our results to be demonstrated below, we assume that a3 > 0, while, as always,
σ ∈ R. This equation has three equilibrium points

A(t)≡ Ae such that F(Ae)= 0 (2-11a)
satisfying either

Ae = 0 or 2a3 A±e
2
=±

√
a2

1 + 4a3σ − a1. (2-11b)

Observe that, since they must be real and positive, A+e
2 exists for σ ≥ σ−1 =

−a2
1/(4a3), while A−e

2 only exists for σ−1 ≤ σ < 0. Multiplying our truncated
amplitude equation (2-10) by A(t), we obtain

1
2

d A2

dt
= σ A2

− a1 A4
− a3 A6

= A2(A−e
2
− A2)(A2

− A+e
2
)= f (A2). (2-12)

Then we can determine the global stability properties of these equilibrium points by
plotting 1

2 d A2/dt = f (A2) for σ <σ−1< 0, σ−1<σ < 0, and σ > 0, respectively,
in the three phase-plane plots of Figure 3. From that figure, we can see that 0 is
globally stable for σ <σ−1< 0, A+e

2 is globally stable for σ > 0, and in the overlap
region where either can be stable, depending on initial conditions, 0 is stable for
0< A2(0) < A−e

2 and A+e
2 is stable for A2(0) > A−e

2, while A−e
2, which only exists

in that bistability region, is not stable there.
To justify this truncation procedure we consider our Landau equation in the form

d A
dt
= F(A)+ O(A7), (2-13)

define ε2
=−a1, assume a3=O(1) as ε→0, and let σ =O(ε4). Then A+e

2
=O(ε2),

which implies that A+e = O(ε). Note, α= 10−2 and γ =−2 yield Landau constants
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γ

a3 > 0

γ =− 3α2

80

α

Figure 4. Plot of the region in the αγ -plane, where a3 > 0.

satisfying these conditions. Now, analogous to our approach at third order, we
introduce the rescaled variables

η = σ t, A(η)= A(t)/A+e , where A,
dA
dη
= O(1) as ε→ 0. (2-14)

Since
d A
dt
= σ A+e

dA
dη
= O(ε5), σ A = σ A+e A= O(ε5),

a1 A3
= a1 A+e

3A3
= O(ε5), a3 A5

= a3 A+e
5A5
= O(ε5),

while O(A7)= O(A+e
7A7)= O(ε7)

(2-15)

under these conditions, this justifies our truncation procedure at fifth order.
Finally, when σ > 0, we have the same type of equilibrium solution as depicted

in Figure 2, except in this case

δ= ε0+θ31(1)ε3
0+θ51(1)ε5

0, where A+e = A0ε= ε0 with A0= O(1) as ε→ 0.
(2-16)

This result depends upon

a3 > 0 =⇒ γ <− 3
80α

2. (2-17)

Recall that, in addition, we have already taken α> 0 to guarantee that a1=−
3
4α< 0.

That region is plotted in the fourth quadrant of the αγ -plane of Figure 4. In this
context, note from Figure 3 that, unlike the situation depicted in Figure 1 for α > 0,
all the solutions remain bounded when the fifth-order terms in r(θ) are retained.

3. Bifurcation diagram, ecological interpretations, and conclusions

Should there exist a parameter range in a dynamical systems model of a given
phenomenon for which the third-order Landau constant a1 satisfies a1 < 0 and
hence the bifurcation is subcritical, the weakly nonlinear stability analysis must
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be pushed to fifth order as originally pointed out by DiPrima et al. [1971]. This
has been standard operating procedure particularly over the last five years when
practitioners of the Palermo nonlinear stability theory group began considering
fifth-order terms in the Landau equation during their investigation of subcritical
bifurcation for a variety of two-component reaction-diffusion systems [Gambino
et al. 2010; 2012; Tulumello et al. 2014]. By necessity, such calculations are long
and technically complicated. Thus, when surveying the theory, there is some merit
in introducing a simple model equation that preserves all the salient features of a
more complex system but considerably reduces the labor involved in determining
the Landau constants. This was our rationale for considering the generalized
Matkowsky equation under investigation. That was also the rationale for Drazin and
Reid’s [1981] employment of their nondimensionalized version of the Matkowsky
equation in order to develop weakly nonlinear theory relevant to hydrodynamic
stability. Matkowsky [1970] regarded his problem as a mathematical model for
temperature distribution in a finite bar with a nonlinear source term, the ends of
which were maintained at the ambient, while Drazin and Reid [1981] offered their
corresponding version as a phenomenological model of parallel flow in a channel.
Hence, they both envisioned their instabilities to be rate-driven by considering the
bifurcation parameter β ∼ R0. For ecological applications, it is often more relevant
to envision these instabilities to be territory-size driven by considering β ∼ L2

and then the instability criterion describes the evolution of spatially heterogeneous
structure in a specific domain.

Given that the fifth-order extensions referenced above primarily concentrated
only on the subcritical regime, we begin this section by synthesizing our fifth-order
results of Figure 3 valid for a1<0 or, equivalently, α>0, and a3>0 or, equivalently,
3α2
+ 80γ < 0, with those valid for a1 > 0 or, equivalently, α < 0, and a3 > 0, as

well. Note, that under these conditions, A+e
2
> 0 for σ > 0 and A−e

2
< 0, identically.

If we plot a figure analogous to the supercritical cases of Figure 1, it is obvious that
the qualitative morphological behavior of those cases is preserved at fifth order with
the only change being now A2

e = A+e
2. We accomplish this synthesis by means of

Figure 5, a bifurcation diagram in αβ-space, where the relevant regions associated
with these predicted morphological identifications are represented graphically. Since
those results also depend on the behavior of σ , while σ = 0 and σ = σ−1 are the
critical loci for that quantity in this regard, it is necessary for us to generate loci
equivalent to them in αβ-space. In this context, using our previous solvability
conditions and definitions, we can deduce the following equivalences:

σ =β − 1= 0 ⇐⇒ β = 1,

σ =β − 1= σ−1=−
a2

1

4a3
=

18α2

3α2+ 80γ
⇐⇒ β = 1+

18α2

3α2+ 80γ
,

(3-1)
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β

1

12

3

4a

4b

σ = 0

σ = σ−1

0 α0
α

Figure 5. Bifurcation diagram in αβ-space with σ−1=−a2
1/(4a3),

σ = β − 1, a1 = −
3
4α, and a3 = −

5
8γ −

3
128α

2 > 0, where the
circled numbers correspond to the quadrants denoted in Figures 1
and 3.

quadrant 1 2 3 4a 4b

stable equilibrium point A+e
2 A+e

2 0 0 0
A+e

2

Table 1. Stable equilibrium points for A2 in the quadrants of Figure 5.

which are plotted in Figure 5. Here, that first locus is a horizontal line parallel
to the α-axis which divides our αβ-space into the four quadrants formed by it
and the β-axis, while the second is a concave downward decreasing curve having
a horizontal tangent at its β-intercept of 1 and an α-intercept of α0 > 0, where
α2

0 =−
80
21γ , which separates the fourth quadrant of that space into two parts. From

an examination of the modification of the supercritical cases of Figure 1 described
above and the subcritical cases of Figure 3, we construct Table 1 cataloging the
stable equilibrium points for A2 in each of the quadrants of Figure 5.

Note that these fifth-order results for our model equation are much more self-
consistent than those obtained in the case of its third-order truncation, in that, the
behavior for the subcritical quadrants 1 and 4a now exactly resemble the behavior
for the supercritical quadrants 2 and 3, respectively. In the subcritical quadrant 4b,
we have what biologists refer to as metastability, in that, the 0 equilibrium point is
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quadrant 1 2 3 4a 4b

stable pattern arch arch dense hom. sparse hom. sparse hom.
arch

Table 2. Morphological stability predictions for Table 1.

N

Nc
N = Ne(α)= e−αNc

α

Figure 6. Plot of the population equilibrium density Ne versus α.

stable to initially small disturbances, but the model will switch to the equilibrium
point A+e

2 for sufficiently large ones. The existence of such a region of metastability
allows our model equation to exhibit outbreak behavior wherein the maximum
population level increases several-fold upon a sufficient initial perturbation in
amplitude.

Returning to our original dimensional formulation (1-1), the fact that A2
= 0

represents a globally stable equilibrium point implies that

lim
τ→∞

N (s, τ )= Ne. (3-2)

Hence this solution represents a homogeneous population. In many actual biological
systems, such as the interaction-diffusion plant-groundwater one employed by
Chaiya et al. [2015] to model vegetative pattern formation in a flat arid environment,
the homogeneous patterns in the subcritical parameter range correspond to rela-
tively sparse distributions, while most of those patterns in the supercritical range
correspond to much denser distributions, where the threshold between these two
types of distributions occurs at some Nc. We can induce this sort of behavior in our
model equation by adopting the relationship

Ne = Ne(α)= Nce−α, (3-3)

which is plotted in Figure 6. Then from this relation and Table 1 in conjunction
with Figure 2, we can deduce the stable pattern predictions given in Table 2 for the
quadrants of Figure 5.
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In [Chaiya et al. 2015], it was conjectured that the region of parameter space
of subcriticality, where a1 < 0, corresponded to isolated vegetative patches when
σ > 0 and low-density homogeneous distributions when σ < 0, as opposed to
the occurrence of periodic patterns for σ > 0 and high-density homogeneous
distributions when σ < 0, where a1 > 0, which were already predicted by their
rhombic-planform two-dimensional nonlinear stability analysis. Such isolated
patches are a compromise between periodic patterns and homogeneous stable states
that are sparse enough to resemble bare ground. They then associated equilibrium
points 0 and A+e

2 of quadrants 1 and 4 of Table 1 with the sparse homogeneous
state and the isolated patch, respectively, that would occur in a postulated fifth-
order extension, should a3 > 0 for this parameter range. Our fifth-order results
summarized in Table 2 represent the first step in a conclusive demonstration of the
validity of this conjecture.

We conclude by noting that although these results are only strictly asymptotically
valid in a neighborhood of the marginal stability curve β = 1, Boonkorkuea et al.
[2010], by comparing their theoretical predictions of this sort with existing numerical
simulations of vegetative pattern formation for a model evolution equation, recently
showed that the former can often be extrapolated to those regions of parameter
space relatively far from the marginal curve. These theoretical predictions also
associated that region of parameter space, where numerical simulation generated
isolated patches, with σ > 0 and a1 < 0.

Finally, we close by offering, for the sake of definiteness, a closed-form repre-
sentation of r(θ), composed of combinations of common functions that produce
Landau constants consistent in sign with our subcriticality assumptions. Recall the
following Maclaurin polynomials truncated through terms of fifth order:

sinh (z)∼ z+ 1
6 z3
+

1
120 z5 and arctan (z)∼ z− 1

3 z3
+

1
5 z5. (3-4)

Then

4 sinh
( 1

2θ
)
∼ 4

( 1
2θ +

1
48θ

3
+

1
3840θ

5)
= 2θ + 1

12θ
3
+

1
960θ

5,

2 arctan
( 1

2θ
)
∼ 2

( 1
2θ −

1
24θ

3
+

1
160θ

5)
= θ − 1

12θ
3
+

1
80θ

5.
(3-5)

Now, defining r(θ) to be the difference between these two functions, we obtain

α = 1
6 > 0, γ =− 11

960 such that 80γ + 3α2
=−

11
12 +

1
12 =−

5
6 < 0. (3-6)
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Forbidden subgraphs of coloring graphs
Francisco Alvarado, Ashley Butts,

Lauren Farquhar and Heather M. Russell

(Communicated by Jerrold Griggs)

Given a graph G, its k-coloring graph has vertex set given by the proper k-colorings
of the vertices of G with two k-colorings adjacent if and only if they differ at exactly
one vertex. Beier et al. (Discrete Math. 339:8 (2016), 2100–2112) give various
characterizations of coloring graphs, including finding graphs which never arise as
induced subgraphs of coloring graphs. These are called forbidden subgraphs, and
if no proper subgraph of a forbidden subgraph is forbidden, it is called minimal
forbidden. In this paper, we construct a finite collection of minimal forbidden sub-
graphs that come from modifying theta graphs. We also construct an infinite family
of minimal forbidden subgraphs similar to the infinite family found by Beier et al.

1. Introduction

A graph G = (V, E) consists of a set V = V [G] = {v1, . . . , vn} of vertices and a
set E = E[G] ⊆ {vv′ : v, v′ ∈ V } of edges, where vv′ represents an unordered pair
of vertices. In this paper, we assume G has finite order (i.e., |V | is finite), v 6= v′

whenever vv′ ∈ E , and G has at most one edge between a single pair of vertices.
A graph H is an induced subgraph of G if V [H ] ⊆ V [G] and vv′ ∈ E[H ] if and
only if vv′ ∈ E[G].

Given k ∈ N, a proper k-coloring of a graph G is a function α : V [G] →
{1, 2, . . . , k} such that α(v) 6= α(v′) whenever vv′ ∈ E[G]. The k-coloring graph
of G, denoted by Ck(G), is the graph with vertex set consisting of all proper
k-colorings of G. Edges between colorings exist if and only if the colorings differ
at precisely one vertex of G. Figure 1 shows an example. When discussing
properties of Ck(G), we refer to G as the base graph for Ck(G).

Interest in coloring graphs stems from applications in theoretical physics. Color-
ing graphs model the Glauber dynamics of the antiferromagnetic Potts model at zero
temperature [Dyer et al. 2006; Jerrum 1995; Molloy 2004; Vigoda 2000]. Beier et
al. [2016] approach coloring graphs from an inverse perspective, asking “Given a
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Keywords: proper graph coloring, coloring graph, forbidden subgraph.
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graph G ′, does there exist a graph G and natural number k such that Ck(G)= G ′?”
We build on their work on permissible and forbidden subgraphs of coloring graphs.

A graph H ′ is called permissible if it is an induced subgraph of some coloring
graph. If H ′ is not an induced subgraph of any coloring graph, we say H ′ is forbid-
den. The graph H ′ is called minimal forbidden if H ′ is forbidden and each proper
induced subgraph of H ′ is permissible. Beier et al. define an infinite two-parameter
family of graphs Mn,p and show an infinite number of them are minimal forbidden.
They define another infinite collection of graphs called theta graphs and completely
classify them into permissible, minimal forbidden, and forbidden but not minimal.

The goal of this paper is to formalize and enhance the tools and techniques for
studying the forbidden and permissible subgraphs of coloring graphs introduced in
[Beier et al. 2016] and to provide new examples. This will aid others investigating
coloring graphs and, perhaps more interestingly, other types of transition graphs,
like those found in [Cohen and Teicher 2014; Zhang et al. 1988; Haas 2012; Mohar
2007].

Section 2 expands on coloring edge labeling and edge labeling partitions, which
were first introduced in [Beier et al. 2016]. We also recall necessary results from that
paper involving permissible subgraphs. As an application of Section 2, we give two
new collections of minimal forbidden subgraphs in Section 3. One collection comes
from modifying theta graphs, and the other is an infinite subset of the two-parameter
family of graphs Ln,p, which we define in that section. Finally, Section 4 provides
several future directions for this work.

Our notation and conventions follow [Beier et al. 2016; Diestel 1997]. If we are
unsure whether a graph is a coloring graph, we sometimes refer to it as a candidate
coloring graph. Base graphs will be denoted by G, and candidate coloring graphs
will be denoted by G ′. Subgraphs (usually induced) of G and G ′ will be denoted by
H and H ′ respectively. Vertices in the coloring graph will be identified by Greek
letters (α, β, γ, . . . ), and vertices in the base graph will be denoted by lowercase
letters (u, v, w, . . . ).

We denote by In the graph consisting of n vertices and no edges. Given graphs
G1 = (V1, E1) and G2 = (V2, E2), we denote their disjoint union by G1 tG2. The
Cartesian product of G1 and G2, denoted by G1 �G2, has vertex set V1× V2 with
an edge between (v1, v2) and (w1, w2) exactly when v1 = w1 and v2w2 ∈ E2 or
v2 = w2 and v1w1 ∈ E1.

2. Background

In this section, we recall and formalize definitions, theorems, and techniques from
[Beier et al. 2016] needed to analyze forbidden and permissible subgraphs. We
begin with a discussion of edge labeling of coloring graphs, which is a key tool
used to prove graphs are minimal forbidden.
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v
u

v

u
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Figure 1. Coloring edge labeling of C3(P1).

An edge labeling of a graph is a function with domain the edge set of the graph.
Given a graph G and k ∈N, the coloring edge labeling of the coloring graph Ck(G)
is the map from E[Ck(G)] to V [G] that labels each edge αβ ∈ E[Ck(G)] with the
unique vertex of V [G] at which the colorings α and β differ. This labeling technique
was first introduced in [Beier et al. 2016, p. 2102], where it is referred to as edge
labeling. Figure 1 shows the coloring edge labeling for coloring graph C3(P1),
where V [P1] = {u, v}.

For a graph H ′, we call an edge labeling a proper edge labeling if there exists a
graph G and a k ∈ N such that H ′ is an induced subgraph of Ck(G) and the edge
labeling of H ′ coincides with the coloring edge labeling of Ck(G). An improper
edge labeling is an edge labeling that is not proper.

It follows from these definitions that a graph H ′ is permissible if and only if it has
a proper edge labeling. In [Beier et al. 2016, Corollary 12], it is shown that all cycles
except C5 are permissible subgraphs, so a cycle Cn of size n 6= 5 must have at least
one proper edge labeling. We use properties of proper edge labelings of cycles to an-
alyze proper edge labelings of more complicated graphs. The following lemma sum-
marizes properties of coloring edge labelings of cycles used in [Beier et al. 2016].

Lemma 1. A proper edge labeling of a cycle Cn must satisfy the following condi-
tions:

(1) Each label must occur at least twice.

(2) Adjacent edges have the same label if and only if n = 3.

(3) If a cycle has three edges consecutively labeled u, v, u with u 6= v then either
n = 4 or u occurs as a label at least three times.

While the conditions outlined in Lemma 1 are necessary for a proper edge
labeling of a cycle, they are not sufficient. One can show that the edge labeling
in Figure 2 is not proper though it meets all conditions in Lemma 1. Also, we
emphasize that the conditions in Lemma 1 are necessary only for cycles.

Also introduced in [Beier et al. 2016, p. 2102] is the concept of edge label
partitioning. The edge label partition corresponding to a proper edge labeling of a
cycle Cn is the partition of n consisting of the number of occurrences of each label.
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Figure 2. An improper edge labeling of C12.

C3 C4 C6 C7 C8 C9

3 ` 3 4 ` 2, 2 6 ` 3, 3 7 ` 2, 2, 3 8 ` 4, 4 9 ` 2, 3, 4
6 ` 2, 2, 2 8 ` 2, 2, 4 9 ` 3, 3, 3

8 ` 2, 3, 3 9 ` 2, 2, 2, 3
8 ` 2, 2, 2, 2

Table 1. Edge label partition types for small cycles.

For example, the edge label partition corresponding to the proper edge labeling of
C6 shown in Figure 1 is 6 ` 3, 3 since u and v each occur three times. Note that
each proper edge labeling corresponds to a unique edge label partition. However, a
partition does not necessarily uniquely determine a proper edge labeling.

Moreover, not every partition of n corresponds to a proper edge labeling. In fact,
conditions on edge labelings stated in Lemma 1 give restrictions on which partitions
can be edge label partitions. Each part of an edge label partition must be greater
than 1 according to the first condition in Lemma 1. Also by the first condition, no
part of an edge label partition can be greater than half of n. The following is a
complete list of possible edge label partition types for Cn with 3≤ n ≤ 9. (Recall
C5 is forbidden, so there are no edge label partitions of 5.)

Table 1 is very useful when attempting to find proper edge labelings of graphs.
For instance, if H ′ contains an induced copy of C7, then a proper edge labeling of
H ′ must have exactly three distinct labels on that cycle and a corresponding edge
label partition type of 7 ` 2, 2, 3. We can then use Lemma 1 to further investigate
how those labels could be arranged.

In addition to examining cycles, our analysis of forbidden subgraphs builds on
the following results about permissible and forbidden subgraphs.

Theorem 2 [Beier et al. 2016, Theorem 9]. If H ′1 and H ′2 are permissible, then
H ′1 t H ′2 is permissible. Alternately, if H ′1 t H ′2 is forbidden, then either H ′1 or H ′2
is forbidden.

Theorem 3 [Beier et al. 2016, Theorem 10]. If H ′1 and H ′2 are permissible, then
H ′1 � H ′2 is permissible. Alternately, if H ′1 � H ′2 is forbidden, then either H ′1 or H ′2
is forbidden.
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Figure 3. Attaching P3 to C6.

These two preceding theorems allow us to construct a number of permissible
subgraphs. Since the path P1 is permissible, given any permissible subgraph H ′,
it follows that P1 � H ′ is permissible. Note that H ′ with one new vertex and an
edge from that new vertex to any other vertex is an induced subgraph of P1 � H ′.
We call this attaching a copy of P1. More generally, we refer to the process of
identifying an endpoint of a path with some vertex of a graph H ′ as attaching a
path to H ′. Figure 3 shows an example of attaching a path to a 6-cycle. By an
inductive argument, we arrive at Corollary 4. By similar arguments, Corollaries 5
and 6 also follow from Theorems 2 and 3.

Corollary 4 [Beier et al. 2016, p. 2104]. A permissible subgraph with any number
of paths of any length attached is permissible.

Corollary 5 [Beier et al. 2016, Corollary 11]. All trees are permissible.

Corollary 6 [Beier et al. 2016, Corollary 12]. The graph Cn for n 6=5 is permissible.
The graph C5 is forbidden.

In addition to appending paths to build new permissible subgraphs, we can
sometimes add additional vertices along induced paths of permissible subgraphs to
get new permissible subgraphs. The next theorem explains the conditions under
which this can be done. The result of replacing an edge of a graph with P2 will be
called subdividing an edge.

Theorem 7 [Beier et al. 2016]. Let H ′ be a permissible subgraph containing a
degree-2 vertex whose neighbors are not adjacent. The graph obtained by subdivid-
ing both edges incident to the vertex of degree 2 is also permissible.

This subdivision theorem is useful when studying permissibility of so-called
theta graphs. A (generalized) theta graph, denoted by T (m1,m2, . . . ,mk) where
mi ≤mi+1 for all i , consists of a collection of internally disjoint paths of lengths m1,
m2, . . . ,mk with a single common initial vertex u and terminal vertex v where
u 6= v. Thus, u and v will have degree k, while all other vertices have degree 2.
Note that theta graphs generalize cycles since Cn = T (1, n − 1). The collection
of generalized theta graphs are completely categorized as permissible, minimal
forbidden, or forbidden not minimal in [Beier et al. 2016]. Any theta graph not
containing those listed in the following theorem is permissible.

Theorem 8 [Beier et al. 2016, Theorem 15]. The complete list of minimal forbidden
theta graphs is

T (1, 4), T (1, 2, 2), T (2, 2, 2), T (3, 3, 3) and T (2, 2, 4).
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Figure 4. Mn,p, where n, p ≥ 1.

An infinite set of minimal forbidden subgraphs is introduced in [Beier et al.
2016]. These are part of the set of graphs denoted by Mn,p, where n, p ≥ 1. These
graphs contain a chain of n− 1 induced copies of C4 with a path of length p+ 1
between two vertices, as seen in Figure 4. The following theorem, which is needed
in our arguments, summarizes the results on Mn,p graphs from [Beier et al. 2016].

Theorem 9 [Beier et al. 2016, Lemma 16, Theorem 17]. The family Mn,p is for-
bidden but not minimal if and only if n ≥ 1 and p ≤ 2. The family Mn,3 is minimal
forbidden if and only if n ≥ 2.

3. Two collections of minimal forbidden subgraphs

Figure 5 has 14 new examples of minimal forbidden subgraphs that come from
modifying the structure of generalized theta graphs. We will prove graph (a) is
minimal forbidden by applying the language and lemmas from the previous section.
The proofs that the other graphs are minimal forbidden are very similar in style and
are therefore left to the reader.

The proof that a graph is minimal forbidden breaks into two parts: showing
it is forbidden and showing it is minimal. To prove a graph is forbidden, we
focus on its induced cycles examining their interactions and showing they have no
simultaneous proper edge labelings. To prove a forbidden subgraph is minimal, we
show that each of its proper induced subgraphs is permissible. Since subgraphs
of permissible subgraphs are permissible, it is sufficient to show that all induced
subgraphs obtained by removing one vertex are permissible.

Theorem 10. Graph (a) in Figure 5 is a minimal forbidden subgraph.

Proof. Consider the following graph H ′, which is Figure 5(a) with a choice of
vertex names:

α1

α2 α3

α4

α5 α6

α7

α8
α9
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m) (n)

Figure 5. A finite collection of minimal forbidden subgraphs.

Since α5 is not a vertex of an induced C3, a proper edge labeling of H ′ must assign
a different label to each of the four edges incident to α5. Since the edges incident
to α5 are part of two edge-disjoint induced copies of C4, these induced copies of
C4 will have repeated edge labels, say u, v, u, v and w, x, w, x . However, each
induced copy of C4 shares two consecutive edges with an induced copy of C7.
Thus this C7 would have at least four distinct edge labels, which is not possible by
Lemma 1. We conclude H ′ is forbidden.

Next, we demonstrate that H ′ is permissible by arguing that removing any vertex
from H ′ yields a permissible subgraph. Removing α1, α2, α6, or α7 from H ′ results
in a copy of theta graph T (2, 2, 5), which is permissible by Theorem 8. Removing
α5 forms a tree, which is permissible by Corollary 5. Upon removing α3 or α8

from H ′ we obtain C4 with three paths of length 1 or 2 attached. Such graphs are
permissible by Theorem 3 and Corollary 5. Removing α4 or α9 results in a tree
attached to two copies of C4 that share a vertex. Two copies of C4 glued at one vertex
is an induced subgraph of C4 � P2, which is permissible by Theorem 3. Appending
a tree is then permissible by Corollary 5. It follows that all proper induced subgraphs
of H ′ are permissible, and so H ′ is a minimal forbidden subgraph. �

We now construct a new infinite family of minimal forbidden subgraphs similar
to the subset of Mn,p graphs discussed in [Beier et al. 2016]. Figure 6 shows the
graph Ln,p with n, p ≥ 0; the vertex names in the figure will be referenced in our
arguments.
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δ1δ2δ3δ4

γ1γ2γ3

γ4

β0β1βn−1βn

α0α1αn−1αn

εp ε1

Figure 6. Vertex labels for Ln,p, where n, p ≥ 0.

Lemma 11. For all p ≥ 1 and n ≥ 0 with p+ n ≥ 3, the graph Ln,p is permissible.

Proof. We begin by arguing that L2k,1 is an induced subgraph of Ck+1(I4) and
L2k+1,1 is an induced subgraph of Ck+2(I4) for k ≥ 1. Note that we include 0 as
a color. Consider I4 with V [I4] = {u, v, w, y}. We represent colorings of I4 as
sequences of four numbers. For instance, the sequence 1230 corresponds to the
coloring α where α(u)=1, α(v)=2, α(w)=3, and α(y)=0. Figure 7 shows a set
of colorings of I4 using k+ 1 colors that span a copy of L2k,1 in Ck+1(I4).

For n = 2k+ 1, the construction is almost the same. Consider the colorings in
Figure 7 with the following modifications. Add colorings 00k(k+1) and 10k(k+1)
on the left. Change the top coloring from 01kk to 01k(k+1) and the rightmost
colorings from 22kk and 21kk to 22k(k+1) and 21k(k+1). One can check that
these colorings span a copy of L2k+1,1 in Ck+2(I4).

Consider Ln,p with p> 1, n ≥ 0, and p+n ≥ 3. Then n+ p−1≥ 2, and hence
it follows by the previous argument that Ln+p−1,1 is permissible. Removing all ver-
tices βi from Ln+p−1,1 with n+1≤ i ≤ n+ p−1 yields an induced copy of Ln,p. In-
duced subgraphs of permissible subgraphs are permissible, so Ln,p is permissible. �

For n+ p < 3, the graphs Ln,p are forbidden but not minimal. Indeed, the graph
L0,0 contains an induced copy of T (2, 2, 4), the graph L0,1 contains an induced

01kk

00kk 00(k−1)k

10kk 10(k−1)k

0011

1011

0001

1001

0000

1000

1100

0200

2200

2100

22k0

21k0

22kk

21kk

Figure 7. L2k,1 is an induced subgraph of Ck+1(I4).
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G

µ0 µn

ν0 νn

Figure 8. The graph G ′ described in Lemma 12.

copy of M2,3, and the graph L1,0 contains an induced copy of M3,3. The graphs
L2,0, L0,2, and L1,1 each contain an induced copy of graph (d) in Figure 5. Our
final goal is to show that Ln,0 is minimal forbidden for all n ≥ 3, but first we need
one additional lemma.

Lemma 12. Let G be a permissible subgraph containing an induced path of length n
on vertices µ0, . . . , µn . Then the graph G ′ with V [G ′] = V [G] ∪ {ν0, . . . , νn} and

E[G ′] = E[G] ∪ {νiνi+1 : 0≤ i < n} ∪ {µiνi : 0≤ i ≤ n}

is also permissible. The graph G ′ is shown in Figure 8.

Proof. Since G is permissible, the graph G � P1 is permissible. The graph G ′ is an
induced subgraph of G � P1. �

Theorem 13. For n ≥ 3, the graph Ln,0 is minimal forbidden.

Proof. Any proper edge labeling of Ln,0 must restrict to a proper edge labeling of
the central copy of C6 spanned by α0, β0, γ3, γ4, δ3 and δ4. By Lemma 1, the only
possible proper edge labelings of C6 are (a) u, v, u, v, u, v or (b) u, w, v, u, w, v,
where u, v, and w are distinct vertices in a base graph. Without loss of generality,
assume edge β0α0 has label u. This is illustrated in Figure 9.

In case (a), edges α0γ4, δ4β0, and γ3δ3 have label v, while edges γ3γ4 and δ3δ4

have label u. By Lemma 1, all edges αiβi for 1 ≤ i ≤ n must have label u, and
edges δjγj for 1≤ j ≤ 3 must have label v. Furthermore u must label at least one
more edge in the induced (n+6)-cycle highlighted in Figure 9.

Invoking Lemma 1 once again, we see that u cannot label αi−1αi for any 1≤ i ≤n
or edges αnδ1 and γ2γ3 since u labels an adjacent edge in each case. Thus u can
only label edge γ1γ2. This contradicts the third statement in Lemma 1 since the
cycle under consideration has size greater than 4. We conclude that a proper edge
labeling of Ln,0 restricting to the labeling of C6 in case (a) does not exist.

In case (b) by Lemma 1, the edges αiβi for 1 ≤ i ≤ n and γjδj for 1 ≤ j ≤ 3
must have label u. With these forced edge labelings, the (n+6)-cycle shown in
Figure 9 does not have a proper edge labeling satisfying the conditions of Lemma 1
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u u u u

v

u

v

u

v

v v

u u u u

w

v

u

w

v

u u

Figure 9. Possible edge labelings for Ln,0 from the proof of
Theorem 13, case (a) on the left and case (b) on the right.

since u cannot label two edges. We conclude that a proper edge labeling of Ln,0

restricting to the labeling of C6 in case (b) does not exist. Since no proper edge
labeling of Ln,0 restricts to a proper edge labeling of the central copy of C6, we
conclude that Ln,0 has no proper edge labeling and is therefore forbidden.

We now check that each induced subgraph of Ln,0 spanned by all but one vertex
is permissible. We refer to the vertex labels of Ln,0 shown in Figure 6. There are
seven cases.

Case 1: Removing δ1 or αn yields a 6-cycle with two disjoint chains of 4-cycles,
one of which has an attached copy of P1. Recall that 6-cycles are permissible by
Corollary 6 and attaching paths to permissible subgraphs yields new permissible
subgraphs by Corollary 4. Finally, note that by inductively applying Lemma 12 to
a path of length 1, one can append a chain of 4-cycles to a permissible subgraph to
obtain another permissible subgraph.

Case 2: Removing β0, α0, δ3, δ4, γ3, or γ4 yields a proper induced subgraph of
Mn+4,0 possibly with paths attached. The graph Mn+4,0 is permissible by Theorem 9,
so every induced subgraph is also permissible. Once again, Corollary 4 allows us
to attach a paths.

Case 3: Removing βi for 1≤ i ≤ n yields a copy of P1 attached to L i−1,n−i+1 with
a chain of 4-cycles attached along a path of length n− i , as in Lemma 12. Since
n ≥ 3 and i ≥ 1, it follows that (i − 1)+ (n− i + 1)≥ 3. Thus by Section 3 we see
that L i−1,n−i+1 is permissible.

The remaining cases are proven with explicit constructions. In the figures, strings
of lengths 3 and 4 represent colorings of I3 and I4. If n is even, we say n = 2k, and
if n is odd, say n = 2k+ 1. Since n ≥ 3, we have k ≥ 1 for n even or odd.

Case 4: For n ≥ 3, the graph spanned by all but vertex δ2 of Ln,0 is an induced
subgraph of Ck+3(I3), as is shown in Figure 10 for n even and Figure 11 for n odd.

Case 5: If n is odd, the subgraph of Ln,0 spanned by all but vertex γ1 is an induced
subgraph of Ck+4(I3), as is shown in Figure 12. For n even, the subgraph of Ln,0

spanned by all but vertex γ1 is an induced subgraph of Ck+2(I4), as is shown in
Figure 13.
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0kk 0(k−1)k

1kk 1(k−1)k

011

111

001

101

000

100

1(k+1)0

0(k+2)0

3(k+2)0

3(k+1)0

3(k+2)(k+1) 3k(k+1)

0k(k+1)

Figure 10. Case 4 for n even.

0k(k+1) 0kk

1k(k+1) 1kk

011

111

001

101

000

100

1(k+1)0

0(k+2)0

3(k+2)0

3(k+1)0

3(k+2)(k+2) 3k(k+2)

0k(k+2)

Figure 11. Case 4 for n odd.

0k(k+1) 0kk

1k(k+1) 1kk

011

111

001

101

000

100

1(k+2)0

0(k+3)0

(k+2)(k+3)0

(k+2)(k+2)0

(k+2)(k+3)(k+1)

(k+2)(k+2)(k+1) 0(k+2)(k+1)

Figure 12. Case 5 for n odd.

Case 6: The graph spanned by all but vertex γ1 of Ln,0 is the result of removing one
vertex from one of the graphs in Figures 12 and 13 (depending on parity of n) and
attaching a copy of P1. By the previous case and Corollary 4, this is permissible.
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0(k−1)(k−1)0 0(k−1)(k−1)1

1(k−1)(k−1)0 1(k−1)(k−1)1

0110

1011

0001

1001

0000

1000

1(k+1)00

0k00

kk00

k(k+1)00

kk(k−1)0

k(k+1)(k−1)0 0(k+1)(k−1)0

Figure 13. Case 5 for n even.

21kk

20kk 10kk 1011 1010

0000

1000

1100

0300

2300

2100

23(k+1)0

21(k+1)0

23(k+1)k

21(k+1)k

Figure 14. Case 7 for n odd.

Case 7: In Figure 14, the colors of the last two vertices are alternately incremented
as we move to the left away from the central 6-cycle until the very last step where
the color of the first vertex is changed. When a vertex αi for 1≤ i ≤ n is removed
from Ln,0, there will be one missing vertex among the empty vertices shown in
Figure 14. Vertices in positions αj for j > i should be assigned colorings by
changing the second vertex in the coloring below from color 0 to color 1. For the
vertices in positions αj with j < i , the colorings should differ from the ones below
by changing the first vertex from color from 1 to 0. One can check that the colorings
shown in Figure 14, together with the ones just described, span Ln,0 with vertex αi

removed inside of Ck+2(I4). The same concept works for n even. The labels are
shown in Figure 15. �

4. Future directions

Given time and creativity, it seems certain one could find many other examples
of minimal forbidden subgraphs of coloring graphs, but there are several other
interesting directions one could explore related to this research. This paper builds on
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21(k−1)k

20(k−1)k 10(k−1)k 1011 1010

0000

1000

1100

0300

2300

2100

23(k+1)0

21(k+1)0

23(k+1)k

21(k+1)k

Figure 15. Case 7 for n even.

[Beier et al. 2016] to provide a template for showing graphs are minimal forbidden,
but are there other less brute-force ways to show graphs are minimal forbidden?

Coloring edge labelings are still not completely understood. We provide some
necessary conditions for edge labelings of cycles to be proper, but are there others?
Are there sufficient conditions for an edge labeling of a cycle to be proper? Closely
related to this, can we find a simple method for determining when a partition is an
edge labeling partition? Finally, coloring graphs are a particular type of transition
graph. To what extent will the methods presented here apply to other types of
transition graphs? Other examples of transition graphs can be found in [Cohen and
Teicher 2014; Zhang et al. 1988; Haas 2012; Mohar 2007].
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Computing indicators of Radford algebras
Hao Hu, Xinyi Hu, Linhong Wang and Xingting Wang

(Communicated by Kenneth S. Berenhaut)

We compute higher Frobenius–Schur indicators of Radford algebras in positive
characteristic and find minimal polynomials of these linearly recursive sequences.
As a result of the work of Kashina, Montgomery and Ng, we obtain gauge
invariants for the monoidal categories of representations of Radford algebras.

1. Introduction

In group theory, the Frobenius–Schur (FS) indicator provides a criterion, depending
on its possible values 1, 0, or −1, for determining whether an irreducible repre-
sentation of a finite group G is real, complex or quaternionic. This result was
generalized to any semisimple Hopf algebra over an algebraically closed field of
characteristic zero in [Linchenko and Montgomery 2000]. Kashina, Montgomery
and Ng [Kashina et al. 2012] proposed a definition of higher Frobenius–Schur (FS)
indicators for an arbitrary finite-dimensional Hopf algebra, which further generalizes
the notion given in [Kashina et al. 2006] regarding the regular representation of a
semisimple Hopf algebra. Moreover, they proved that these indicators are gauge
invariant under gauge equivalence in the sense of [Kassel 1995]. Later, the properties
of these indicators were further discussed by Shimizu [2015], who mainly focused
on the complex Hopf algebras.

The definition of higher FS indicators of the regular representation of a finite-
dimensional Hopf algebra is straightforward by taking the trace of the Sweedler
powers followed by the antipode; see [Kashina et al. 2012, Definition 2.1]. But to
find their values can be arithmetically challenging over the complex numbers, e.g.,
in the case of the indicators of Taft algebras; see [Kashina et al. 2012, §3]. Besides
Taft algebras, another well-studied Hopf algebra with simple defining relation is the
Radford algebra R(p), which was introduced in [Radford 1977, 4.13] and is over a
base algebraically closed field of prime characteristic p. It was proved in [Wang
and Wang 2014] that R(p) is the only noncommutative and noncocommutative
pointed Hopf algebra of dimension p2.
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In this short note, we find that the higher FS indicators of the Radford algebra
R(p) are

{νn(R(p))}n≥1 = {1, . . . , 1︸ ︷︷ ︸
p−1

, 0, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . }.

Our approach is via concrete computation involving the left integrals of the Radford
algebra and those of its dual Hopf algebra. Our result verified, in the case of the
Radford algebra, a theorem by Shimizu [2015, Corollary 4.6] on higher FS indicators
over positive characteristic, which states that the sequence of indicators always
appears periodically in positive characteristic. As a result of the work of Kashina,
Montgomery and Ng, we obtain gauge invariants for the monoidal category of the
representation of Radford algebras. Moreover, we also find the minimal polynomial
of the sequence of indicators of the Radford algebra.

2. Preliminaries

Throughout, k is an algebraically closed field, H is a finite-dimensional Hopf algebra
over k. We use the standard notation (H,m, u,1, ε, S), where m : H ⊗ H → H
is the multiplication map, u : k→ H is the unit map, 1 : H → H ⊗ H is the
comultiplication map, ε : H→ k is the counit map, and S : H→ H is the antipode.
The vector space dual of H is also a Hopf algebra and will be denoted by H∗.
The bialgebra maps and antipode of H∗ are given by (m H∗, u H∗,1H∗, εH∗, SH∗)=

(1∗, ε∗,m∗, u∗, S∗), where ∗ is the transpose. We use the Sweedler notation1(h)=∑
h(1) ⊗ h(2). If f, g ∈ H∗, then f g(h) =

∑
f (h(1))g(h(2)) for any h ∈ H and

εH∗( f )= f (1).

2.1. Definition [Montgomery 1993, Definition 2.1.1]. A left integral in H is an
element 3 ∈ H such that h3 = ε(h)3 for all h ∈ H ; a right integral in H is an
element 3′ ∈ H such that 3′h = ε(h)3′ for all h ∈ H. The spaces of left and right
integrals are denoted by

∫ l
H and

∫ r
H , respectively.

2.2. Lemma [Montgomery 1993, Theorem 2.1.3]. The spaces
∫ l

H and
∫ r

H are each
one-dimensional.

2.3. Lemma. Suppose λ ∈ H∗. Then λ is a left integral of H∗ if and only if∑
h(1)λ(h(2))= λ(h) for any h ∈ H. A similar criterion holds for a right integral

of H∗, i.e., λ is a right integral of H∗ if and only if
∑
λ(h(1))h(2) = λ(h) for any

h ∈ H.

Proof. By definition, λ is a left integral in H∗ if and only if f λ= εH∗( f )λ for any
linear function f ∈ H∗. That is, f λ(h) = εH∗( f )λ(h) for any h ∈ H. By duality,
this is equivalent to

∑
f (h(1))λ(h(2))= f (1)λ(h) or f

(∑
h(1)λ(h(2))

)
= f (1λ(h))

since f is linear. Note that f is arbitrary in H∗. We have λ is a left integral in H∗
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if and only if
∑

h(1)λ(h(2))= λ(h) for any h ∈ H. The proof for right integrals is
the same. �

2.4. Definition [Kashina et al. 2012, Definition 2.1]. Let n be a positive integer.
Suppose h1, . . . , hn ∈ H. Then the n-th power of multiplication is defined as

m(n)(h1⊗ · · ·⊗ hn)= h1 · · · hn.

Let h ∈ H. The n-th power of comultiplication is defined to be

1(n)(h)=
{

h, n = 1,
(1(n−1)

⊗ id)(1(h)), n ≥ 2.

The n-th Sweedler power of h is defined to be

Pn(h)= h[n] =
{
ε(h)1H , n = 0,
m(n)
◦1(n)(h), n ≥ 1.

The n-th indicator of H is given by

νn(H)= Tr(S ◦ Pn−1).

In particular, ν1(H)= 1 and ν2(H)= Tr(S).

Let H and K be two finite-dimensional Hopf algebras over k such that the two
representation categories Rep(H) and Rep(K ) are monoidally equivalent. By [Ng
and Schauenburg 2008, Theorem 2.2], H ∼= K F, where K F is a Drinfeld twist by a
gauge transformation F on H which satisfies some 2-cocycle conditions. Then H
and K are said to be gauge equivalent Hopf algebras.

2.5. Theorem [Kashina et al. 2012, Theorem 2.2, Corollary 2.6]. The sequence
{νn(H)} is an invariant of the gauge equivalence class of Hopf algebras of H ; that
is, if H and K are gauge equivalent then {νn(H)} = {νn(K )}. Suppose λ ∈ H∗ and
3 ∈ H are both left integrals (or both right integrals) such that λ(3)= 1. Then

νn(H)= λ(3[n])

for all positive integers n.

2.6. Proposition [Shimizu 2015, Corollary 4.6]. Suppose char k> 0. Then, for any
finite-dimensional Hopf algebra H over k, the sequence {νn(H)} is periodic.

2.7. Definition. A sequence {an}n≥1 is linearly recursive if there exists a nonzero
polynomial f (x)= f0+ f1x + fm−1xm−1

+ fm xm such that

f0an + f1an+1+ · · ·+ fmam+n = 0

for any positive integer n. In such a case, we say that {an}n≥1 satisfies the polynomial
f (x). The monic polynomial of the least degree satisfied by a linearly recursive
sequence is called the minimal polynomial of the sequence.
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2.8. Proposition [Kashina et al. 2012, Proposition 2.7]. The sequence {νn(H)} is
linearly recursive and the degree of its minimal polynomial is at most (dim H)2.
The minimal polynomial is also a gauge invariant; that is, if H and K are gauge
equivalent, then {νn(H)} and {νn(K )} have the same monic minimal polynomial.

Next, we consider a free bialgebra B and the comultiplication of certain mono-
mials in B. This information will be used later in our computation of indicators
of R(p).

2.9. Definition. Let B= k〈g, x〉 be the free k-algebra on two generators g and x .
Equipped with the comultiplication and the counit given by

1(g)= g⊗ g, 1(x)= x ⊗ 1+ g⊗ x, ε(g)= 1 and ε(x)= 0,

the free algebra becomes the free bialgebra (B, 1, ε). Let Ck,l denote the sum
of all monomials with k g’s and l x’s, and C0,0 = 1 and Ck,l = 0 if k or l < 0 by
convention.

2.10. Lemma. In the free bialgebra B, we have

(a) Ck,l = g Ck−1,l + x Ck,l−1 = Ck−1,l g+Ck,l−1 x.

(b) 1(xn)=
∑

k≥0 Ck,n−k ⊗ xk for n ≥ 0.

(c) 1(C p,q)=
∑

k≥0 C p+k,q−k ⊗C p,k .

Proof. Part (a) is clear, since the leftmost (rightmost) factor of any monomial in the
sum Ck,l is either g or x . For (b), we use induction. When n = 0,∑

k≥0

Ck,n−k ⊗ xk
= C0,0⊗ 1= 1⊗ 1=1(1).

When n = 1,∑
k≥0

Ck,n−k ⊗ xk
= C0,1⊗ 1+C1,0⊗ x = x ⊗ 1+ g⊗ x =1(x).

Suppose 1(xn)=
∑

k≥0 Ck,n−k ⊗ xk. Then

1(xn+1)=1(xn)1(x)=
(∑

k≥0

Ck,n−k ⊗ xk
)
· (x ⊗ 1+ g⊗ x)

=

∑
k≥0

Ck,n−k x ⊗ xk
+

∑
k≥1

Ck−1,n−k+1g⊗ xk

=

∑
k≥0

Ck,n−k x ⊗ xk
+

∑
k≥1

(Ck,n−k+1−Ck,n−k x)⊗ xk

=

∑
k≥0

Ck,(n+1)−k ⊗ xk .
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To show (c), we use the fact that

(1⊗ id)(1(xn))= (id⊗1)(1(xn)).

By (b), we have

(1⊗ id)(1(xn))=
∑
k≥0

1(Ck,n−k)⊗ xk
=

∑
p+q=n

1(C p,q)⊗ x p.

On the other hand,

(id⊗1)(1(xn))=
∑
l≥0

Cl,n−l ⊗1(x l)=
∑
l≥0

Cl,n−l ⊗

(∑
p≥0

C p,l−p⊗ x p
)

=

∑
p≥0

∑
l≥p

Cl,n−l ⊗C p,l−p⊗ x p

=

∑
p+q=n

( ∑
l−p=k≥0

C p+k,q−k ⊗C p,k

)
⊗ x p.

It then follows that 1(C p,q)=
∑

k≥0 C p+k,q−k ⊗C p,k . �

2.11. Lemma. In the free bialgebra B, we have

(gix j )[n+1]
=

∑
0≤k1+···+kn≤ j

giCk1+···+kn, j−(k1+···+kn)g
iCk1+···+kn−1,kn· · ·g

iCk1,k2 giC0,k1 .

Proof. By induction on n, using Lemma 2.10, it is easy to see that

1(n+1)(C p,q)=
∑

0≤k1+···+kn≤q

C p+k1+···+kn,q−(k1+···+kn)

⊗C p+k1+···+kn−1,kn ⊗ · · ·⊗C p+k1,k2 ⊗C p,k1 .

Therefore, we have

(gi x j )[n+1]
= m(n+1)(1(n+1)(gi )1(n+1)(x j )

)
= m(n+1)(gi

⊗ · · ·⊗ gi )

(∑
k≥0

1(n)(Ck, j−k)⊗ xk
)

=

∑
0≤k1+···+kn≤ j

gi Ck1+···+kn, j−(k1+···+kn) · · · g
i Ck1,k2 gi C0,k1 . �

3. Radford algebras

In this section, the base field k is algebraically closed of prime characteristic p.

3.1. The Radford algebra R(p) [1977, 4.13] was first discussed over a base field k
of prime characteristic p, and was proved in [Wang and Wang 2014] to be the only
noncommutative and noncocommutative pointed Hopf algebra of dimension p2
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over k. In fact, one can write R(p) as the quotient Hopf algebra B/R, where the
ideal R of B is generated by

g p
− 1, x p

− x, [g, x] − (g2
− g) (R)

if p > 2, or
g2
− 1, x2

− x, [g, x] − (1− g)

if p= 2. It is straightforward to check that the Radford algebra R(p) has dimension
p2 and the linear basis can be chosen as {gi x j

| 0 ≤ i, j ≤ p − 1}. We denote
by ck,l the image of Ck,l (the sum of all monomials with k g’s and l x’s in B)
in R(p) under the projection B→ B/R = R(p). It follows from (R) that, for
0≤ k, l ≤ p− 1,

ck,l =

(k+l
k

)
gk x l
+

∑
0≤i≤p−1
0≤ j≤l−1

ai j gi x j for some ai j ∈ k. (1)

Moreover, the Radford algebra R(p) is self-dual. The dual basis of (R(p))∗ to the
chosen basis {gi x j

| 0≤ i, j ≤ p− 1} of R(p) is {δgi x j | 0≤ i, j ≤ p− 1}, where
δgi x j are characteristic functions, that is,

δgi x j (gm xn)=

{
1 if m = i, n = j,
0 otherwise.

3.2. Lemma. For the Radford algebra R(p), the integral spaces are given by∫ l

R(p)
= k

( ∑
0≤i≤p−1

gi
)( ∑

1≤i≤p−1

(−1)i x i
)
,

∫ r

R(p)
= k

( ∑
1≤i≤p−1

x i
)( ∑

0≤i≤p−1

gi
)
.

For the dual Hopf algebra (R(p))∗, the integral spaces are given by∫ l

R(p)∗
= k δgx p−1 and

∫ r

R(p)∗
= k δx p−1,

Proof. Note that ε(g) = 1, ε(x) = 0, and ε is linear. To show that the element
3=

(∑
0≤i≤p−1 gi

)(∑
1≤i≤p−1(−1)i x i

)
is a left integral in R(p), it is sufficient to

show that g3=3 and x3= 0. The first equation is obvious. To show the second,
one can check that [x, gi

] = igi (1− g). Hence we have[
x,

p−1∑
i=1

gi
]
=

p−1∑
i=1

igi (1− g)=
p−1∑
i=1

igi
−

p∑
j=2

( j−1)g j
= g+

p−1∑
i=2

gi
+ g p
=

p−1∑
i=0

gi,
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and so

x3= x
( ∑

0≤i≤p−1

gi
)( ∑

1≤i≤p−1

(−1)i x i
)

=

( p−1∑
i=0

gi
)
(x + 1)

( ∑
1≤i≤p−1

(−1)i x i
)
=

( p−1∑
i=0

gi
)
(x p
− x)= 0.

Therefore, 3 is a left integral in R(p).
To show that the characteristic function δgx p−1 is a left integral in R(p)∗, it is

sufficient, by Lemma 2.3, to verify that∑
h(1)δgx p−1(h(2))= δgx p−1(h) for h = gi x j

∈ R(p) with 0≤ i, j ≤ p− 1.

By Lemma 2.10, we have 1(gi x j ) = (gi
⊗ gi )1(x j ) =

∑ j
k=0 gi ck, j−k ⊗ gi xk.

Hence

∑
h(1)δgx p−1(h(2))=

j∑
k=0

(
gi ck, j−k · δgx p−1(gi xk)

)
=

{
gcp−1,0 = 1 if i = 1, j = k = p− 1,
0 otherwise.

On the other hand,

δgx p−1(h)= δgx p−1(gi x j )=

{
1 if i = 1, j = p− 1,
0 otherwise.

Therefore, δgx p−1 is a left integral in R(p)∗. The statements on right integrals can
be shown similarly. �

3.3. Theorem. The higher FS indicators of the Radford algebra R(p) are given by

νn(R(p))=
{

1 if n 6≡ 0 (mod p),
0 if n ≡ 0 (mod p).

Proof. By Lemma 3.2, we choose the left integral λ= δgx p−1 of the dual Hopf algebra
(R(p))∗, and the left integral 3=

(∑
0≤i≤p−1 gi

)(∑
1≤i≤p−1(−1)i x i

)
of R(p). It

is clear that λ(3)= 1. By Theorem 2.5, we have

νn+1(R(p))= λ(3[n+1])= δgx p−1

( ∑
0≤i, j≤p−1

(−1) j (gi x j )[n+1]
)
.

By Lemma 2.11 and (1), one sees that, for any 0≤ i, j ≤ p− 1,

(gi x j )[n+1]
∈ Span

(
gk x l

∣∣ 0≤ k ≤ p− 1, 0≤ l ≤ j
)
.
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Hence,

νn+1(R(p))= δgx p−1

( ∑
0≤i≤p−1

(gi x p−1)[n+1]
)
.

Suppose k1, . . . , kn are nonnegative integers such that
∑n

i=1 ki = m. Recall that
the multinomial coefficients are given by( m

k1, . . . , kn

)
:=

(m!)
(k1!) · · · (kn!)

.

Assume that n ≥ 1. Set kn+1 = p− 1− k1− · · ·− kn . By Lemma 2.11, we have∑
0≤i≤p−1

(gi x p−1)[n+1]

=

∑
0≤i≤p−1

0≤k1,...,kn≤p−1

(
gi ck1+···+kn,kn+1 gi ck1+···+kn−1,kn · · ·g

i ck1,k2 gi c0,k1

)

=

∑
0≤i≤p−1

0≤k1,...,kn≤p−1

(( p−1
k1+·· ·+kn

)(k1+·· ·+kn
kn

)
· · ·

(k1+k2
k1

)
gi (gk1+···+kn xkn+1)gi (gk1+···+kn−1 xkn ) · · ·gi (gk1 xk2)gi (xk1)

)
=

∑
0≤i≤p−1

0≤k1,...,kn≤p−1

( p−1
k1, . . . ,kn+1

)
gκx p−1,

where κ = (n+ 1)i + nk1+ (n− 1)k2+ · · ·+ kn . Therefore,

νn+1(R(p))=
∑

0≤k1,...,kn+1≤p−1

( p−1
k1, . . . , kn+1

)
δgx p−1

( p−1∑
i=0

gκx p−1
)
.

Suppose the indices k1, k2, . . . , kn are fixed. Then the inner summation of the above
equation becomes∑

0≤i≤p−1

gκx p−1
=

{
p(g(nk1+(n−1)k2+···+kn)x p−1)= 0 if p | n+ 1,
(1+ g+ · · ·+ g p−1)x p−1 if p -n+ 1.

In a conclusion, by Fermat’s little theorem and for n ≥ 1, we have

νn+1(R(p))=

{
0 if p | n+ 1,∑

k1,...,kn+1

( p−1
k1, . . . , kn+1

)
= (n+ 1)p−1

= 1 if p -n+ 1.

Note that ν1(R(p))= 1. Therefore, we showed that

{νn(R(p))}n≥1 = {1, . . . , 1︸ ︷︷ ︸
p−1

, 0, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . .}. �
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3.4. Proposition. The minimal polynomial of the sequence {νn(R(p))} is

f (x)= x p
− 1.

Proof. The first p + 1 terms of {νn(R(p))} are 1, . . . , 1, 0, 1. The degree of
the minimal polynomial cannot be less than p. Otherwise, {νn(R(p))} satisfies a
polynomial f (x)= f0+ f1x1+ · · ·+ f p−1x p−1. Then

A[ f0 f1 . . . f p−1]
T
= 0,

where A is the matrix with 0’s on the antidiagonal and 1’s elsewhere. Note that the
determinant of A is p−1 or −(p−1). This implies that f0 = f1 = · · · = f p−1 = 0,
a contradiction. Hence the degree of the minimal polynomial is at least p. One can
verify that {νn(R(p))} satisfies the polynomial f (x)= x p

− 1. �
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Unlinking numbers of links
with crossing number 10

Lavinia Bulai

(Communicated by Colin Adams)

We investigate the unlinking numbers of 10-crossing links. We make use of various
link invariants and explore their behaviour when crossings are changed. The
methods we describe have been used previously to compute unlinking numbers of
links with crossing number at most 9. Ultimately, we find the unlinking numbers
of all but two of the 287 prime, nonsplit links with crossing number 10.

1. Introduction

A knot can be thought of as a knotted piece of string with cross-section a single
point and ends glued together to form a closed curve. A link is a collection of
knots, each knot representing a component of the link. A sublink of a link is the
disjoint union of some of its components. Formally, a knot is a smooth isotopy
class of embeddings of S1 in R3 or S3. Similarly, a link is a smooth isotopy class
of embeddings of a disjoint union of one or more circles in R3 or S3. A smooth
isotopy is a smooth map F : S1

t · · · t S1
×[0, 1] → R3 together with a family of

embeddings ft : S1
t· · ·tS1

→R3 such that ft(x)= F(x, t) for all x ∈ S1
t· · ·tS1

and t ∈ [0, 1]. A link is trivial if it is isotopic to the disjoint union of finitely many
circles in a plane.

A link is oriented if each of its components is assigned an orientation. There
are 2n ways to orient a link with n components, by adding an arrow on each knot,
pointing in one of two possible directions. A projection of a link onto a plane
together with a set of instructions on under-crossings and over-crossings that suffice
to reconstruct the original link is referred to as a link diagram. We assume the
projection is injective, except for some double points. If the crossings are such that
one goes under and over alternately when travelling along each component from an
arbitrary point back to itself, then the link diagram is said to be alternating. This
property is illustrated in Figure 1. A link is alternating if it admits an alternating

MSC2010: 57M25, 57M27.
Keywords: unlinking numbers, prime link, nonsplit link, Goeritz matrix.
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Figure 1. The horizontal strand goes alternately over and under
the vertical strands.

diagram. A split link is a link that has a projection as a disconnected diagram.
Otherwise, if every diagram of the link is connected, the link is said to be nonsplit.
A link L is called nonprime if it admits a diagram which is divided into two subsets
by a straight line in the plane which intersects the diagram in two points, and such
that one does not obtain a diagram of L by replacing either of the subsets by an
embedded line segment. A link is prime if it is not nonprime.

The crossing number of a link is the minimal number of crossings in any of its
diagrams. The operation of swapping the two strands that form a crossing such that
an under-crossing becomes the over-crossing and vice versa is known as changing
a crossing. With a sensible choice of crossing changes, one can obtain the trivial
link from any given diagram. The unlinking number is the minimal number of
crossings one has to change in order to obtain the trivial link, where the minimum
is taken over all diagrams of the link. In general, unlinking numbers are difficult
to determine. In this paper we investigate the unlinking number of each of the
287 prime, nonsplit links with crossing number 10 and at least 2 components by
finding constraints on the values it can take. Methods developed by Borodzik,
Friedl and Powell [Borodzik et al. 2016], Kauffman and Taylor [1976], Kawauchi
[2014], Kohn [1993], Murasugi [1965] and Nagel and Owens [2015] give us lower
bounds, whereas upper bounds follow from experiment. Of the links we looked at,
the unlinking numbers of two are still unknown and require new techniques to be
developed. Good references for basics of knot theory are [Adams 2004; Cromwell
2004; Lickorish 1997; Livingston 1993].

In Section 2 we describe various techniques that can be used to produce lower
bounds on unlinking numbers. In Section 3 we give a table of the 10-crossing links
and their unlinking numbers, with the exception of two links. For each of these
links, we indicate in the table the technique with which the claimed lower bound is
produced.

2. Lower bounds on unlinking numbers

All the methods we will use throughout this paper to compute unlinking numbers of
links with crossing number 10 have previously been used to find unlinking numbers
of links with crossing number 9 or less.
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We begin with a lemma about real symmetric matrices. The signature sign A of
a real symmetric matrix A is the number of positive eigenvalues minus the number
of negative eigenvalues, counted with multiplicities. The nullity of a matrix is the
dimension of its kernel.

Lemma 1. Let A be an n× n real symmetric matrix. Suppose that the matrix B
is identical to A, apart from one diagonal entry, say bi i 6= ai i , where bi i ∈ R, for
some i ∈ {1, . . . , n}. It follows that:

(i) The nullity of B differs from the nullity of A by at most 1.

(ii) If A and B have the same nullity and bi i > ai i , then the signature of B and the
signature of A are related by either sign B = sign A or sign B = sign A+ 2.

(iii) If A and B have different nullities and bi i > ai i , then sign B = sign A+ 1.

Sketch of proof. (i) The rank of the matrix A is the dimension of its column space,
which in turn is equal to the number of linearly independent columns. By changing
the diagonal entry ai i for some i ∈ {1, . . . , n}, the column i will also change; hence
the rank of A increases by 1, stays the same, or decreases by 1. However, the
change has no effect on the size of A. From the rank-nullity theorem it follows
that, as the rank changes, the nullity of A will either decrease by 1, stay the same
or increase by 1.

(ii)–(iii) The key fact is that by reordering the basis, one can arrange for the leading
principal minors of A to form a sequence d1, . . . , dk, 0, . . . , 0, where dk 6=0 and k is
the rank of A; furthermore, if di = 0 then di−1di+1 < 0. This may be done in such a
way that the diagonal entry bi i in which B differs from A is either i = k or i = k+1.
Note that the number of sign changes in this sequence is equal to the number of
negative eigenvalues of A. See also the proof of Theorem 4 in [Jones 1950]. �

2.1. Linking number. Let D be a diagram of the oriented link L , and c a crossing.
There are two possible configurations near c, as illustrated in Figure 2. The crossing
on the left is said to be positive, whereas the crossing on the right is negative. Let

ε(c)=
{

1 if c is a positive crossing,
−1 if c is a negative crossing,

positive negativepositive negative

Figure 2. Crossing type in an oriented link.
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and let L1 and L2 be disjoint sublinks of L such that L = L1 t L2. In the diagram
of L , a crossing may be classified according to the origin of the two strands that
form it: L1 with itself, L2 with itself, or L1 with L2. The linking number of L1 and
L2 is defined as

lkD(L1, L2)=
1
2

∑
c∈π(L1)∩π(L2)

ε(c),

where π(L i ) is the projection of L i to the diagram D, and we write c∈π(L1)∩π(L2)

if one of the strands in the crossing belongs to L1 and the other to L2. Once an
orientation is fixed, the linking number does not depend on the choice of diagram,
so we can refer to it as lk(L1, L2). Thus the linking number is an invariant of the
link and the chosen sublinks, and a measure of the number of times one sublink
winds around the other.

Proposition 2 [Kohn 1993, Theorem 1]. Let L = L1 t L2 be an oriented link in R3,
where L1 and L2 are disjoint sublinks of L. Then the unlinking number of L satisfies

u(L)≥ u(L1)+ u(L2)+ |lk(L1, L2)|,

where lk(L1, L2) is the linking number of L1 and L2.

Proof. Consider some crossing in a diagram D of the link L . If both strands belong
to the sublink L1, then changing the crossing will affect neither the sublink L2

nor the linking number of L1 and L2. Similarly, if both strands belong to L2, then
changing the crossing will affect neither L1 nor the linking number of the sublinks.
However, if one strand belongs to L1 and the other to L2, then changing the crossing
will have no effect on the two sublinks, but the linking number will change by 1. Let
us now consider an unlinking sequence that realises u(L). The number of crossing
changes between L1 and L2 is then bounded below by |lk(L1, L2)|, and the number
of crossing changes completely in L1 or completely in L2 is bounded below by
u(L1) and u(L2) respectively, thus proving the inequality. �

To illustrate the application of this method, consider the link L10n96, oriented
as in Figure 3. Let the sublinks L1 and L2 both be Hopf links — red with blue,
and green with purple, respectively. The linking number of L1 and L2 is 3, and it
follows from an easy application of Proposition 2 that the unlinking number of a
Hopf link is 1, so that u(L10n96)≥ 5. Therefore, the link has unlinking number 5,
as it can be converted to the trivial link with four components by changing the five
crossings indicated in the figure.

2.2. Link signature. For the next method, let us begin by describing a formula
for the signature of a link. Consider a diagram of the link L with chessboard
shading, so that no two adjacent regions share the same colour. Assign an incidence
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Figure 3. One possible way to unlink L10n96.

number ι(c) to each crossing in the diagram, by letting

ι(c)=
{

1 if c is a right-handed crossing,
−1 if c is a left-handed crossing.

Handedness is illustrated in Figure 4. Note that this is defined using the shading,
and is independent of orientation. Let the n+ 1 unshaded regions in the diagram
of L be R0, R1, . . . , Rn . Construct the square matrix G ′ = (gi j ), with entries

gi j=


−
∑
ι(c) if i 6= j, summing over crossings c incident to both Ri and Rj ,

−

k=n∑
k=0,k 6=i

gik if i= j.

After deleting the zeroth row and column of G ′, another matrix is obtained,
namely the symmetric square integer Goeritz matrix G of the chessboard-shaded
link diagram. Let us now orient the link and consider a crossing c in its diagram.
If we discard information on under-crossing and over-crossing, then there are two

right-handed left-handed

right-handed left-handed

Figure 4. Crossings in a chessboard-shaded diagram.
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type I type II

type I type II

Figure 5. Crossings in an oriented chessboard-shaded diagram.

possible configurations near c, type I and type II, as illustrated in Figure 5. Define

µ=
∑

type II

ι(c),

where the sum is taken over all crossings of type II in the diagram of the link. Then
the signature of the link is given by

σ(L)= sign G−µ, (∗)

where sign G is the signature of the Goeritz matrix of the diagram. This definition
of signature is due to Gordon and Litherland [1978], who proved it to be equivalent
to an older definition using Seifert surfaces. Signature is a link invariant — once an
orientation is fixed, the signature remains constant under isotopy. This was proved
in [Trotter 1962] for knots and in [Murasugi 1965] for links.

Proposition 3 [Murasugi 1965, Theorem 10.1; Cochran and Lickorish 1986, Corol-
lary 3.9]. Let L be an oriented link in R3. Then the unlinking number of L satisfies

u(L)≥ 1
2 |σ(L)|,

where σ(L) is the signature of the link.

Proof. Consider the trivial link with k components and the standard diagram
consisting of k nonnested circles with no crossings. For one choice of shading, the
corresponding Goeritz matrix G of this link is the zero matrix with k− 1 rows and
columns, which has sign G = 0. Since there are no crossings in this diagram of
the link, we have µ = 0. It follows from (∗) that the signature of the trivial link
is 0, irrespective of the number of components. Now, given an oriented link L with
diagram D, we aim to obtain the trivial link by changing crossings in D. At each
step, let c denote the crossing to be changed, and choose the chessboard colouring
of the diagram that makes c a double point of type I. Also, relabel the white regions
so that c is adjacent to R0 and Rn . In the matrix G ′ of the link, the effect of the
crossing change amounts to changing entries g00, g0n , gn0 and gnn . Therefore, the
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Figure 6. One possible way to unlink L10a99.

new Goeritz matrix of the link is identical to the original one, except for the diagonal
entry gnn . By Lemma 1, sign G changes by at most 2. Since c is a double point of
type I, changing the crossing will not affect µ. It follows from (∗) that σ(L), in
turn, changes by at most 2. The link is eventually converted to the trivial link, so
that its signature changes by at most twice the unlinking number throughout the
process, which implies that |σ(L)| ≤ 2u(L), or equivalently, u(L)≥ 1

2 |σ(L)|. �

To illustrate the application of this method, consider the link L10a99. Using (∗),
one may show that the link has signature −5 when oriented as in Figure 6, so that
u(L10a99)≥3. Therefore, the link has unlinking number 3, as it can be converted to
the trivial link with 2 components by changing the 3 crossings indicated in the figure.

2.3. Link determinant and link nullity. The determinant of a link is defined to be
the determinant of its Goeritz matrix. Similarly, the nullity of a link is equal to the
nullity of its Goeritz matrix, provided that a connected diagram is considered.

Proposition 4 [Kauffman and Taylor 1976, Corollary 3.21; Kawauchi 2014, Corol-
lary 4.3; Nagel and Owens 2015, Lemma 2.4]. Let L be a link in R3, with k
components, nullity η(L) and determinant det L. Let u(L) be the unlinking number
of L:

(a) Then
u(L)≥ k− 1− η(L).

(b) If u(L)≤ k− 1, then det L = 2k−1c2 for some c ∈ Z.

Proof. Consider the trivial link with k components and a connected diagram
consisting of k circles sitting in a row, with two crossings between each adjacent
pair of circles and no other crossings. For either choice of shading, the Goeritz
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Figure 7. One possible way to unlink L10a169.

matrix G of this link is the zero matrix with k− 1 rows and columns, which has
nullity k−1. Now, given a diagram of a link L with k components and nullity η(L),
construct the matrix G ′ as in Section 2.2 and change a crossing. As before, we can
arrange so that the change affects only one entry in the Goeritz matrix of L , namely
the bottom right element gnn . It follows from Lemma 1 that the nullity of the Goeritz
matrix will change by at most 1, and so too will the nullity of the link. Since L is
converted to the trivial link with u(L) crossing changes, its nullity cannot change
by more than the unlinking number, giving u(L)≥ |(k−1)−η(L)| ≥ k−1−η(L).
For a proof of part (b) see [Kawauchi 2014], where this statement is shown to
follow from a stronger condition involving multivariable Alexander polynomials,
or [Nagel and Owens 2015]. �

To illustrate the application of the method described in Proposition 4(a), consider
the link L10a169 with four components and nullity 0, so that u(L10a169) ≥ 3.
Therefore, the link has unlinking number 3, as it can be converted to the trivial link
with four components by changing the three crossings indicated in Figure 7.

For the method described in part (b), let L be the link L10n33, with k = 2
components and determinant det L = 48. Suppose that u(L) ≤ 1. Then by the
proposition, c2

= 24 for some c ∈ Z, a contradiction that gives u(L) > 1. Therefore,
the link has unlinking number 2, as it can be converted to the trivial link with two
components by changing the two crossings indicated in Figure 8.

Every n× n integer matrix M can be transformed by a finite sequence of row
and column operations into a diagonal matrix, whose diagonal entries form a
sequence {a1, a2, . . . , ar , 0, . . . , 0}, where ai is nonnegative and ai divides ai+1.
This diagonal matrix is independent of the sequence of row and column operations,
and is called the Smith normal form of M. The matrix M presents the quotient group
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Figure 8. One possible way to unlink L10n33.

Zn/MZn, which is cyclic if and only if the Smith normal form S of M satisfies
si i = 1 for i = 1, . . . , n− 1, and snn = det M.

Proposition 5 [Nagel and Owens 2015, Lemma 4.1]. Let L be a link with two
components in R3 and determinant det L such that its unlinking number satisfies
u(L) < 3. Suppose that the Goeritz matrix of L presents a finite cyclic group. Then
at least one of the following statements holds:

• det L is a multiple of 4, and the absolute value of at least one of the signatures
of L is 1.

• det L is a multiple of 16.

• det L = 2t2 for some t ∈ Z.

The proof of this proposition is based on a 4-dimensional manifold bounded by
the double branched cover Y of the link L . This gives constraints on the linking
form of Y, which in turn gives constraints on the determinant and signature of L .
For details see [Nagel and Owens 2015].

To illustrate the application of this method, let L be the link L10a54, with two
components and determinant 78. The Smith normal form of the Goeritz matrix G
of L is

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 78

,
so that G presents a finite cyclic group. The determinant of L is neither a multiple
of 4, nor a multiple of 16, nor twice the square of some t ∈ Z, so that u(L)≥ 3 by
Proposition 5. Therefore, the link has unlinking number 3, as it can be converted to
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Figure 9. One possible way to unlink L10a54.

the trivial link with two components by changing the three crossings indicated in
Figure 9.

The following lemma can be viewed as a signed refinement of Proposition 4(a).

Lemma 6 [Nagel and Owens 2015, Lemma 2.2]. If an oriented link L with k
components, signature σ(L) and nullity η(L) is converted to the trivial link by
changing p positive crossings and n negative crossings in some diagram D of the
link, then

p ≥
−σ(L)− η(L)+ k− 1

2
.

Proof. Let c be a positive crossing in the diagram of L , and choose the chessboard
colouring of D that makes c a double point of type I. In this situation, c has incidence
number ι(c) = −1. Let G be the Goeritz matrix of the diagram and suppose we
change the crossing c. As in the proof of Proposition 3, we are free to relabel the
white regions, so that the new Goeritz matrix of the link is identical to the original
one, except for one diagonal entry. After the change, c is still a double point of
type I, but its incidence number becomes ι(c)= 1. Therefore, the diagonal entry
that distinguishes between the two Goeritz matrices increases. By Lemma 1, if
the nullity of G stays the same, then the signature of G either stays the same or
increases by 2, and following (∗), so too does σ(L)+ η(L). If the nullity changes,
it can only be by 1, in which case Lemma 1 tells us that the signature of G increases
by 1, and consequently, σ(L)+η(L) stays the same or increases by 2. By a similar
argument, changing a negative crossing causes σ(L)+ η(L) to either stay constant
or decrease by 2. As we have seen previously, the signature and nullity of the trivial
link with k components add up to k− 1. The link L is eventually converted to the
trivial link, so that σ(L)+ η(L) increases by at most twice the number of positive



UNLINKING NUMBERS OF LINKS WITH CROSSING NUMBER 10 345

Figure 10. One possible way to unlink L10a138.

crossings we change, giving (k− 1)− (σ (L)+ η(L))≤ 2p, or equivalently,

p ≥
−σ(L)− η(L)+ k− 1

2
. �

2.4. Lattice embeddings. Suppose that the set of vectors {a1, . . . , an} forms a
basis for Rn over R. These vectors span a lattice 3, which is the set of all linear
combinations {m1a1 + · · · +mn an} with mi ∈ Z, i = 1, . . . , n. Let {b1, . . . , bk}

be a set of vectors in 3. These vectors span a sublattice 3b ⊂ 3, which is the
set of all linear combinations {n1b1+ · · ·+ nk bk} with n j ∈ Z, j = 1, . . . , k. The
sublattice 3b of 3 is called primitive if for all v ∈3 and for all m ∈N, if mv ∈3b

then v ∈3b. Nagel and Owens gave an obstruction to equality in the lower bound
from Lemma 6, which we describe next.

Proposition 7 [Nagel and Owens 2015, Corollary 3]. Let L be an oriented non-
split alternating link, with k components and signature σ(L). Suppose L can be
converted to the trivial link by changing p = 1

2(−σ(L)+ k− 1) positive crossings
and n negative crossings in some diagram of L. Let m be the rank of the positive-
definite Goeritz matrix G associated to an alternating diagram of L , and define
l = m + 2(n + p)− k + 1. Then G admits a factorisation as AT A, where A is
an integer l ×m matrix. Moreover, there exist vectors vi for i = 1, . . . , p+ n in
(Col A)⊥ ⊂ Zl spanning a primitive sublattice of Zl such that vi · vj = 2δi j , where
δi j is the Kronecker delta.

The proof of Proposition 7 uses results of Gordon and Litherland [1978], as well
as the celebrated diagonalisation theorem of Donaldson [1987], and is based on a
generalisation of earlier work by Cochran and Lickorish [1986].

To illustrate the application of this method, let L be the link L10a138, with three
components, determinant 48 and nullity 0. By part (b) of Proposition 4, u(L) > 2,
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and we aim to obstruct it from being 3. When oriented as in Figure 10, the link has
signature −4. Suppose L can be converted to the trivial link by changing p positive
crossings and n negative crossings in some diagram. By Lemma 6, p ≥ 3. Thus
the only possibility if u(L) = 3 is to have p = 3 and n = 0, which we will show
cannot occur. Suppose p = 3 and n = 0. The positive-definite Goeritz matrix of the
chosen alternating diagram is

G =

 7 −1 −1
−1 3 −1
−1 −1 3

,
which has rank m = 3. Keeping the notation in Proposition 7, we have l = 7. For
any factorisation of G as AT A, where A is a 7× 3 integer matrix and AT is its
transpose, another may be obtained by interchanging the second and third columns
of A, permuting the rows of A, or multiplying a subset of the rows of A by −1. Up
to these symmetries, we are left with nine solutions:

−1 1 1
2 0 0
1 −1 1
−1 −1 1

0 0 0
0 0 0
0 0 0


,



−1 1 1
2 0 0
0 −1 1
0 −1 1
1 0 0
1 0 0
0 0 0


,



1 1 0
1 −1 1
−1 1 0
−1 0 1
−1 0 1

1 0 0
1 0 0


,



−1 1 1
1 −1 1
−1 −1 1

1 0 0
1 0 0
1 0 0
1 0 0


,



−2 1 0
1 0 1
−1 −1 1
−1 0 1

0 1 0
0 0 0
0 0 0


,



−2 1 0
1 1 0
0 −1 1
−1 0 1

0 0 1
1 0 0
0 0 0


,



2 0 0
1 −1 1
−1 0 1
−1 0 1

0 1 0
0 1 0
0 0 0


,



−2 1 0
−1 −1 1

0 1 0
0 0 1
0 0 1
1 0 0
1 0 0


,



2 0 0
0 −1 1
−1 1 0
−1 0 1

0 1 0
0 0 1
1 0 0


.

It is straightforward to check that for any matrix A in this list, there does not
exist a set of vectors {v1, v2, v3} in the orthogonal complement of the column space
of A such that vi · vj = 2δi j , so that u(L) ≥ 4 by Proposition 7. Therefore, the
link has unlinking number 4, as it can be converted to the trivial link with three
components by changing the four crossings indicated in Figure 10.

In general, the method based on Proposition 7 gives a somewhat involved algo-
rithm to obstruct equality in Lemma 6, leading to improved lower bounds on the
unlinking number. All possible factorisations of the Goeritz matrix can be found
by hand, but this can also be done using the command OrthogonalEmbeddings
provided by GAP [2015].
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Figure 11. Diagram of L10a7.

So far, five methods that give lower bounds on the unlinking number of a link —
alone or combined — have been described in Propositions 2, 3, 4, 5 and 7. The next
method was developed by Kohn [1993].

2.5. Covering links. Let p : C×R→ C×R be the map taking (z, t) to (z2, t).
Let L be a link with two components, say L = A t B, where A is the trivial knot
and lk(A, B)= 0. Assume, after isotopy in S3

= R3
∪ {∞} = C×R∪ {∞}, that A

is 0×R, and let B̃ be the preimage of B under p. We refer to B̃ as the covering
link of B under p.

Proposition 8 [Kohn 1993, Method 5]. Let L be a link with two components, say A
and B, such that A is the trivial knot and lk(A, B)= 0. If L is unlinked by a single
crossing change involving B only, then the unlinking number of B̃ is at most 2.

Sketch of proof. Suppose L can be converted to the trivial link by changing a single
crossing c, with both strands of c belonging to component B. We may isotope B
so that it lies near the plane C× {0} and its projection onto this plane contains
the unlinking crossing c. The preimage B̃ of B will then contain two crossings c1

and c2, which are the preimage of c under p. Changing c converts L to the unlink;
therefore changing c1 and c2 must convert B̃ to the unlink, since the preimage under
p of a circle in C×{0} not containing the origin is a pair of circles. �

To illustrate the application of this method, let L be the link L10a7 shown
in Figure 11. The link has two components, namely the red trivial knot A and
the blue figure-eight knot B, with lk(A, B) = 0. If L can be converted to the
unlink by changing a single crossing, then both strands must belong to the knotted
component B. So suppose that L is converted to the unlink by a single crossing
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Figure 12. L10a7 when the trivial component is 0×R.

Figure 13. Diagram of B̃.

change involving B only. After isotopy, assume that A is 0×R, as depicted in
Figure 12.

The preimage of B under the map p is the union of B and its rotated image,
glued together to form the covering link B̃, as in Figure 13. It consists of two
stevedore knots — each with unknotting number 1 — with linking number 2 when
oriented as shown.

Following Proposition 2, u(B̃) ≥ 4, contradicting Proposition 8. Therefore,
u(L)≥ 2, and L has unlinking number 2, as it can be converted to the trivial link
with two components by changing the two crossings indicated in Figure 14.

3. Table of unlinking numbers

Table 1 contains all prime, nonsplit links with crossing number 10 and at least two
components, together with the unlinking number u(L) of each link and a proposition
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Figure 14. One possible way to unlink L10a7.

that gives a lower bound that realises u(L). With the exception of L10n32 and
L10n34, the table is complete.

3.1. Unknown cases. Although the methods in this paper were not sufficient to
determine the unlinking numbers of two of the links in the table, they still provide
partial information. In the following, p is the number of positive crossings and n is
the number of negative crossings that we change:

• L10n32 has u(L)≥ 1 and we conjecture that u(L)= 2.

• L10n34 has u(L) ≥ 2 by Proposition 4 and we conjecture that u(L) = 3;
the cases p = 0, n = 2 and p = 1, n = 1 for any choice of orientation are
obstructed by Lemma 6 and Proposition 7, respectively.

L10n32 L10n34

Figure 15. Showing a set of crossing changes that unlink the two
remaining links.
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link L u(L) Prop.

L10a1 2 4b
L10a2 2 3
L10a3 2 8, 2
L10a4 2 4b
L10a5 2 4b
L10a6 2 4b
L10a7 2 8, 2
L10a8 3 7
L10a9 2 3
L10a10 2 4b
L10a11 3 2
L10a12 3 2
L10a13 3 2
L10a14 2 4b
L10a15 3 2
L10a16 3 2
L10a17 3 7
L10a18 2 2
L10a19 2 4b
L10a20 2 4b
L10a21 2 4b
L10a22 2 3
L10a23 3 7
L10a24 3 7
L10a25 3 2
L10a26 3 2
L10a27 2 3
L10a28 1 2
L10a29 1 2
L10a30 3 2
L10a31 2 4b
L10a32 2 8, 7
L10a33 3 2
L10a34 1 2
L10a35 2 2
L10a36 1 2
L10a37 3 2
L10a38 4 2
L10a39 2 2
L10a40 3 2
L10a41 2 4b
L10a42 2 2
L10a43 4 2
L10a44 4 2
L10a45 3 2
L10a46 4 2
L10a47 3 2

link L u(L) Prop.

L10a48 2 2
L10a49 4 2
L10a50 3 2
L10a51 1 2
L10a52 2 3
L10a53 1 2
L10a54 3 5
L10a55 2 4b
L10a56 2 4b
L10a57 2 2
L10a58 4 2
L10a59 2 2
L10a60 2 2
L10a61 2 2
L10a62 3 3
L10a63 3 5
L10a64 2 3
L10a65 2 4b
L10a66 2 2
L10a67 4 2
L10a68 2 2
L10a69 2 2
L10a70 2 3
L10a71 2 4b
L10a72 4 2
L10a73 3 2
L10a74 4 2
L10a75 3 2
L10a76 2 2
L10a77 4 2
L10a78 4 2
L10a79 2 2
L10a80 2 2
L10a81 4 2
L10a82 3 5
L10a83 3 2
L10a84 2 2
L10a85 4 2
L10a86 2 2
L10a87 3 2
L10a88 2 2
L10a89 2 3
L10a90 2 4b
L10a91 2 4b
L10a92 2 2
L10a93 3 7
L10a94 4 2

link L u(L) Prop.

L10a95 1 2
L10a96 4 2
L10a97 4 2
L10a98 4 2
L10a99 3 3
L10a100 4 2
L10a101 4 2
L10a102 4 2
L10a103 1 3
L10a104 2 2
L10a105 4 2
L10a106 3 7
L10a107 4 2
L10a108 4 2
L10a109 2 2
L10a110 4 2
L10a111 2 4b
L10a112 2 4b
L10a113 3 7
L10a114 5 2
L10a115 5 2
L10a116 5 2
L10a117 5 2
L10a118 5 2
L10a119 5 2
L10a120 5 2
L10a121 5 2
L10a122 4 2
L10a123 4 2
L10a124 4 2
L10a125 4 2
L10a126 3 2
L10a127 3 4b
L10a128 3 2
L10a129 3 2
L10a130 4 2
L10a131 4 2
L10a132 4 2
L10a133 4 2
L10a134 4 2
L10a135 3 2
L10a136 2 2
L10a137 4 7
L10a138 4 7
L10a139 4 2
L10a140 2 4a
L10a141 3 7

Table 1. Unlinking numbers of prime, nonsplit links with crossing
number 10.
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link L u(L) Prop.

L10a142 5 2
L10a143 5 2
L10a144 5 2
L10a145 5 2
L10a146 5 2
L10a147 3 2
L10a148 3 2
L10a149 3 2
L10a150 3 2
L10a151 3 4b
L10a152 5 2
L10a153 5 2
L10a154 4 2
L10a155 4 2
L10a156 2 2
L10a157 4 7
L10a158 4 7
L10a159 5 2
L10a160 5 2
L10a161 5 2
L10a162 3 2
L10a163 3 4b
L10a164 5 2
L10a165 4 2
L10a166 5 2
L10a167 5 2
L10a168 5 2
L10a169 3 3
L10a170 4 2
L10a171 5 2
L10a172 5 2
L10a173 5 2
L10a174 5 2

L10n1 3 2
L10n2 1 2
L10n3 2 4b
L10n4 3 2
L10n5 2 3
L10n6 2 4b
L10n7 3 2
L10n8 2 4b
L10n9 1 2
L10n10 3 2
L10n11 1 2
L10n12 2 4b
L10n13 3 2
L10n14 1 2
L10n15 3 5
L10n16 2 2

link L u(L) Prop.

L10n17 3 2
L10n18 1 2
L10n19 3 2
L10n20 2 4b
L10n21 1 3
L10n22 1 2
L10n23 3 3
L10n24 2 4b
L10n25 3 2
L10n26 2 2
L10n27 2 2
L10n28 3 2
L10n29 3 2
L10n30 3 2
L10n31 3 2
L10n32 [1, 2] −

L10n33 2 4b
L10n34 [2, 3] 4b
L10n35 2 2
L10n36 2 2
L10n37 4 2
L10n38 4 2
L10n39 3 3
L10n40 2 2
L10n41 2 4b
L10n42 3 3
L10n43 2 2
L10n44 1 2
L10n45 2 2
L10n46 4 2
L10n47 4 2
L10n48 2 2
L10n49 4 2
L10n50 3 5
L10n51 4 2
L10n52 2 2
L10n53 3 2
L10n54 3 3
L10n55 4 2
L10n56 1 3
L10n57 1 4a
L10n58 2 2
L10n59 2 2
L10n60 4 2
L10n61 4 2
L10n62 3 3
L10n63 3 7
L10n64 2 3
L10n65 4 2

link L u(L) Prop.

L10n66 4 2
L10n67 4 2
L10n68 4 2
L10n69 4 2
L10n70 2 2
L10n71 4 2
L10n72 4 2
L10n73 2 2
L10n74 5 2
L10n75 5 2
L10n76 3 2
L10n77 5 2
L10n78 5 2
L10n79 3 2
L10n80 4 2
L10n81 5 2
L10n82 5 2
L10n83 3 2
L10n84 5 2
L10n85 3 2
L10n86 3 2
L10n87 5 2
L10n88 4 2
L10n89 4 2
L10n90 3 2
L10n91 4 2
L10n92 5 2
L10n93 5 2
L10n94 5 2
L10n95 5 2
L10n96 5 2
L10n97 5 2
L10n98 5 2
L10n99 5 2
L10n100 3 2
L10n101 5 2
L10n102 5 2
L10n103 3 2
L10n104 5 2
L10n105 5 2
L10n106 4 2
L10n107 2 2
L10n108 5 2
L10n109 5 2
L10n110 5 2
L10n111 5 2
L10n112 5 2
L10n113 5 2

Table 1 cont.
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their associated graded algebras

Justin Hoffmeier and Jiyoon Lee

(Communicated by Vadim Ponomarenko)

We study a class of local rings and a local adaptation of the homogeneous property
for graded rings. While the rings of interest satisfy the property in the local case,
we show that their associated graded k-algebras do not satisfy the property in the
graded case.

1. Introduction and preliminaries

Let Q = k[[X1, X2, . . . , Xn]] denote the power series ring in n variables over the
field k. Let J be an ideal in Q. For an element b ∈ J, the initial form of b
is the homogeneous finite sum of lowest-degree terms of b, denoted by b∗. Let
Qg
= k[X1, X2, . . . , Xn] denote the polynomial ring in n variables over the field k.

The initial ideal of J is the ideal in Qg generated by all of the initial forms of J
and is denoted by In(J ). That is,

In(J )=
{∑m

i=1 ai b
∗

i

∣∣ ai ∈ Qg, bi ∈ J, 1≤ i ≤ m
}
.

Computations in In(J ) are not always straightforward. The following example is
intended to help illustrate some of the nuances of In(J ).

Example 1.1. Let Q = k[[X, Y ]] and J = (x2
+ y3, xy). Since

(x2
+ y3)(−x2 y+ x4 y5

+ x13
+ · · · ) and xy(x3

+ xy3
− x5 y4

+ · · · )

are in J, we have that the initial form of their sum

(−x4 y+ x4 y+ x2 y4
− x2 y4

+ x6 y5
− x6 y5

+ x4 y8
+ x15

+ x13 y3
+ · · · )∗ = x4 y8

is in In(J ).

Describing In(J ) is not as simple as finding the initial forms of the generators
of J . The next example is adapted from [Eisenbud 1995], although similar examples
can be found in several other texts.
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Example 1.2. Let Q = k[[X, Y ]] and J = (x2
+ y3, xy). Then (x2

+ y3)∗ = x2 and
(xy)∗ = xy, but In(J )= (x2, y4, xy). In Lemma 2.5, we provide a method to prove
this fact for a more general class of rings.

Let R be a commutative local ring with maximal ideal m and residue field k. By
the Cohen structure theorem, the completion of any local ring can be written as a
quotient of a regular local ring by an ideal. Hence, if R is a complete local ring
then R = Q/J, where J ⊆ (X1, X2, . . . , Xn)

2.

Definition 1.3. Let R be a complete local ring with a minimal Cohen presentation
R = Q/J, where J = ( f1, f2, . . . , fl) with fi ∈ Q for 1≤ i ≤ l. If f ∗i has degree t
for each i then R is t-homogeneous.

In [Hoffmeier and Şega 2017] the authors give a more general version of the
above definition. They go on to show that knowing a ring is t-homogeneous is
helpful for identifying various homological properties. Indeed, Theorem 2.5 of
that paper establishes that the t-homogeneous property plays an important role
connecting these homological traits of local rings.

Let J = ( f1, f2, . . . , fl)⊆ Qg be the ideal generated by polynomials fi in Qg for
1≤ i ≤ l. If each of the fi is homogeneous of degree t then the quotient R = Qg/J
is a t-homogeneous graded k-algebra.

The associated graded ring of R with respect to the maximal ideal is the direct sum

Rg
=

⊕
i≥0

mi/mi+1.

This notation is consistent with Qg. That is, for the local ring Q=k[[X1, X2, . . . , Xn]],
we have Qg

= k[X1, X2, . . . , Xn]. Furthermore, if R = Q/J then Rg
= Qg/ In(J ).

We now state [Hoffmeier and Şega 2017, Lemma 1.3], which also provides
further motivation for the terminology given in Definition 1.3.

Lemma 1.4. Let R be a complete local ring. If Rg is a t-homogeneous k-algebra,
then R is a t-homogeneous local ring.

Hoffmeier and Şega [2017, Remark 1.4] also provide a counterexample to show
that the converse of the lemma does not hold. We now reproduce this example.

Example 1.5. Let Q = k[[X, Y ]], J = (x2
+ y3, xy), and R = Q/J. Then R is

2-homogeneous. However, Rg
= Qg/ In(J ) = k[X, Y ]/(x2, y4, xy), which is not

2-homogeneous.

It is significant that the converse of Lemma 1.4 does not hold. Otherwise, the
t-homogeneous property of a local ring R would depend only on its associated
graded k-algebra Rg, making the connections between the homological properties
of R alluded to above (stated in [Hoffmeier and Şega 2017, Theorem 2.5]) also
related to Rg. The main goal of this note is to identify a larger class of rings for
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which the converse of the lemma fails, which consequently further distinguishes
the homological nature of local rings from properties of their associated graded
k-algebras. We achieve this in the next section by generalizing Example 1.5.

Further motivation for our result is the fact that Example 1.5 is stated without
proof in [Hoffmeier and Şega 2017] and is therefore further explained by the proof
of our more general result.

Remark 1.6. Connections between a local ring and its associated graded algebra
have been well documented throughout the literature of commutative algebra.
For example, if Rg is Cohen–Macaulay then R is Cohen–Macaulay and if Rg is
Gorenstein then R is Gorenstein; see, e.g., [Achilles and Avramov 1982]. The text
[Bruns and Herzog 1993] also states several of these results and is a good reference
for other topics that appear in this note. In his survey on the subject, Fröberg [1987]
states that “A local ring is at least as nice as its associated graded ring.” Our results
provide another example that makes the inequality Fröberg alludes to strict.

2. Unassociated t-homogeneous local rings

In this section we prove our main result. We begin with a definition.

Definition 2.1. Let R be a t-homogeneous local ring. If Rg is not a t-homogeneous
graded k-algebra then we say that R is unassociated t-homogeneous.

Theorem 2.2. Let J = (x2
+ yt, xy)⊆ Q = k[[X, Y ]] with t ≥ 3 and set R = Q/J.

Then R is unassociated 2-homogeneous.

Remark 2.3. Note that by setting t = 3 in Theorem 2.2, we recover the result in
Example 1.5.

We now provide two lemmas which will be used in the proof of the theorem.

Lemma 2.4. Let J = (x2
+ yt, xy) ⊆ Q = k[[X, Y ]] with t ≥ 3. Then yt is not

in In(J ).

Proof. Suppose yt
∈ In(J ). Then

yt
=

m∑
i=1

ai b∗i ,

where ai ∈ Qg, bi ∈ J, and 1 ≤ i ≤ m. For each i , let bi = ci (x2
+ yt)+ di (xy)

with ci , di ∈ Q. Hence,

yt
=

m∑
i=1

ai (ci (x2
+ yt)+ di (xy))∗.

Since the sum equals yt, the terms of the sum that are factors of xy either cancel or
are dropped by taking the lowest-degree terms. Therefore,

yt
=

m∑
i=1

ai (ci (x2
+ yt))∗.
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Since t ≥ 3, we have (ci (x2
+ yt))∗ = c∗i x2 for each i , where c∗i is the finite sum of

lowest-degree terms of ci . Hence

yt
=

m∑
i=1

ai c∗i x2,

which is a contradiction. �

Lemma 2.5. Let J = (x2
+ yt, xy) ⊆ Q = k[[X, Y ]] as in Lemma 2.4. Then

In(J )= (x2, yt+1, xy).

Proof. First, we show that (x2, yt+1, xy) ⊆ In(J ). It is sufficient to show that
x2, yt+1, xy ∈ In(J ), which is clear since

x2
= (x2)∗, xy = (xy)∗, yt+1

= (y(x2
+ yt)− x(xy))∗.

Next, we show that In(J )⊆ (x2, yt+1, xy). Let g ∈ In(J ). Then

g = a1 F∗1 + a2 F∗2 + · · ·+ an F∗n ,

where ai ∈ k[X, Y ] and Fi ∈ J for 1≤ i ≤ n. Therefore, it suffices to show if F ∈ J
then F∗ ∈ (x2, yt+1, xy). Let α, β ∈ k[[X, Y ]] such that F =α(x2

+ yt)+βxy. Then

F∗ = (αx2
+αyt

+βxy)∗ = ax2
+ byt

+ cxy

for some a, b, c ∈ k[X, Y ]. If b = 0 then F∗ = ax2
+ cxy ∈ (x2, yt+1, xy).

Assume b 6= 0. Since F∗ is homogeneous, b is homogeneous and may be
written as b = pxn

+ qy, where p ∈ k, q ∈ k[X, Y ], and n is a nonnegative integer.
Therefore,

F∗ = ax2
+ cxy+ pxn yt

+ qyt+1.

If p = 0 then we again have the needed form.
Assume p 6= 0 and consider two cases for n.

Case (i): Assume n ≥ 1. Then pxn yt
= pxn−1 yt−1(xy). Hence,

F∗ = ax2
+ qyt+1

+ (c+ pxn−1 yt−1)xy

has the needed form.

Case (ii): Assume n = 0. Since we have already shown (x2, yt+1, xy)⊆ In(J ), we
have

F∗− ax2
− qyt+1

− cxy = pxn yt
∈ In(J ).

Since n = 0 and p−1
∈ k we have yt

∈ In(J ), which contradicts Lemma 2.4.
Therefore, case (ii) does not occur. �

Remark 2.6. A common approach to working with In(J ) is to invoke the use of
Gröbner bases. However, we opt for the more elementary method presented above.

We are now ready to prove the theorem.
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Proof of Theorem 2.2. Since R is artinian, it is complete. Since (x2
+ yt)∗ = x2

and (xy)∗ = xy, we know R is 2-homogeneous. As noted above,

Rg
= Qg/ In(J ).

By Lemma 2.5, In(J ) = (x2, yt+1, xy). Hence, Rg is not a graded k-algebra and
the theorem follows. �
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