\bullet
 involve

 a journal of mathematicsEnumerating spherical n-links
Madeleine Burkhart and Joel Foisy

Enumerating spherical n-links

Madeleine Burkhart and Joel Foisy
(Communicated by Jim Hoste)

Abstract

We investigate spherical links: that is, disjoint embeddings of 1 -spheres and 0 -spheres in the 2 -sphere, where the notion of a split link is analogous to the usual concept. In the quest to enumerate distinct nonsplit n-links for arbitrary n, we must consider when it is possible for an embedding of circles and an even number of points to form a nonsplit link. The main result is a set of necessary and sufficient conditions for such an embedding. The final section includes tables of the distinct embeddings that yield nonsplit n-links for $4 \leq n \leq 8$.

1. Introduction

The enumeration of links in 3-space is well-studied [Hoste 2005]. However, there has not been much study of a planar/spherical analog outside the confines of its appearance in graphs [Archdeacon and Sagols 2002]. We aim to get the ball rolling on spherical links.

An n-link \mathcal{L} in the 2 -sphere is a disjoint collection of q embedded 1 -spheres and $n-q$ embedded 0 -spheres. Two links are equivalent if there is a spherical isotopy taking one to the other. Throughout this paper we use standard notation for a k-sphere: S^{k}. When speaking of spherical links, it does not make topological sense to call 0-spheres "components", since an entire S^{0} is not connected. Henceforth we will refer to an S^{1} or an S^{0} as a piece of an n-link. We will call a spherical embedding of 1 -spheres a nesting. Note that when we refer to nestings and nests in this paper, we are working with entities distinct from those in [Archdeacon and Sagols 2002].

We must now consider what constitutes a split spherical link. Note that the following definition only makes sense after we have chosen which pairs of points form 0 -spheres: An n-link \mathcal{L} is split if there exists an embedding ϕ of S^{1} in $S^{2}-\mathcal{L}$ such that each component of $S^{2}-\phi\left(S^{1}\right)$ contains at least one piece of \mathcal{L} and each piece of \mathcal{L} is entirely contained in one such component. Otherwise, \mathcal{L} is nonsplit.

[^0]

Figure 1. A nonsplit 2-link.

Figure 2. A 3-link with two circles and a 3-link with one circle.

Although there is only one type of nonsplit spherical 2-link, when we look at n-linking for $n>2$, we can have different numbers of disjoint 1 -spheres and 0 -spheres. For example, we could have the two types of nonsplit spherical 3 -links as in Figure 2.

We will find that the enumeration of n-link-types becomes more richly complex as n increases. Before finding all n-links for $n \leq 8$ in Section 3, we lay down the necessary and sufficient conditions for any spherical embedding of q circles and 2ℓ points to form a nonsplit ($q+\ell$)-link (given appropriate S^{0} identifications). When considering such links, it will be helpful not only to think about nestings with points, but also to associate a weighted tree \mathcal{T}. To construct \mathcal{T}, first consider the nesting \mathcal{N}. If we identify a vertex on each circle, this embedding is a plane graph of disjoint loops, so the dual graph will be a tree in which each vertex is an open component of $S^{2}-\mathcal{N}$. To account for embedded points, we give each vertex a weight equal to the number of points in the corresponding region.

The weighted tree \mathcal{T} corresponds to a nesting with unpaired points, but we want to work with links; we will need to consider what happens to the tree after we make S^{0} identifications. To make an identification, we will choose two vertices that each have weight at least 1 , add an edge between them, and reduce their weights each by one (Figure 3).

Figure 3. A nesting with points and its corresponding tree as we make an S^{0} identification.

Figure 4. The vertex v corresponds with the region of the splitting circle.
If we do this until each vertex has weight 0 , the resulting multigraph $G_{\mathcal{T}}$ will represent a link (unique if we distinguish the original tree edges from the S^{0} identification edges). How can we tell from the graph if the link is split? Certainly a loop in the graph represents a split S^{0}. Any other type of split link, in which both components of $S^{2}-\phi\left(S^{1}\right)$ (as in the split definition) have some positive number of circles, occurs if and only if there is a cut vertex in the multigraph (Figure 4).

We have now built up enough background to state our main result in dual ways.
Theorem 1.1. Suppose we have a weighted tree \mathcal{T} with q edges and total weight 2ℓ. In the corresponding embedding of q circles (with nesting \mathcal{N}) and 2ℓ points, it is possible to identify 0 -spheres so that we have a nonsplit spherical $(q+\ell)$-link if and only if all of the following conditions are satisfied:
(1) Each leaf has weight at least one. That is, we must embed at least one point in each simply connected region of $S^{2}-\mathcal{N}$.
(2) No vertex v is assigned a weight greater than $\ell-\operatorname{deg}(v)+1$. That is, we can embed no more than $\ell-\kappa+1$ points in a region of $S^{2}-\mathcal{N}$ that has fundamental group $\mathbb{Z} * \cdots * \mathbb{Z}$, where \mathbb{Z} appears $\kappa-1$ times.
(3) Given any vertex of degree κ, the other vertices have total weight summing to at least $2(\kappa-1)$. In other words, given a region as in (2), we must embed at least $2(\kappa-1)$ points in the remaining regions.

With this result, we can tell which embeddings of n (1 and 0)-spheres will form a nonsplit n-link. However, enumeration will require distinguishing links from one another on the sphere, which we only address for $n \leq 8$ in this paper.

Future directions

All the enumeration in this paper was done by hand; code will probably be necessary to enumerate spherical n-links for $n \geq 9$. As there is a one-to-one correspondence between nestings and unlabeled trees, much of the code will probably be similar to what is used in the problem of enumerating unlabeled trees (see [Harary 1969; Sloane 2006]).

While our results regard embeddings in S^{2}, it would be interesting to see how tabulations differ on different surfaces; for example, while a spherical embedding
yields a correspondence between nestings and unlabeled trees, in the plane the correspondence is between nestings and rooted trees.

Our necessary and sufficient conditions depend on "appropriate" S^{0} identifications. What happens if we make the worst possible S^{0} identifications; that is, given a nesting with an even number of disjointly embedded points, what is the minimal nonsplit n-link among all possible S^{0} pairings?

We could seek to generalize our result in a combinatorial manner; instead of looking at 0 -spheres (i.e., pairs of points), we could look at triples, quadruples, or λ-tuples of points.

Because of the Jordan-Brouwer separation theorem [Guillemin and Pollack 1974], our results generalize to higher dimensions. The same necessary and sufficient conditions and link enumerations apply to embeddings of k-spheres and 0 -spheres in S^{k+1}, since the dual weighted tree construction will still be well-defined. Perhaps this result has applications. It would also be interesting to investigate enumerating other types of higher-dimensional linking with spheres of different dimensions.

2. Proof of Theorem 1.1

In the following lemmas, we will switch between thinking about nestings and weighted trees. The following concepts will be useful when working with nestings.

Suppose we have a nesting \mathcal{N}. If we single out an open region in $S^{2}-\mathcal{N}$ there will be some number of embedded circles that form holes in the region. We will call each such circle, along with all pieces in its interior, a nest (see Figure 5).

Suppose we have a nesting \mathcal{N} and single out an open region R. Let each nest relative to R have a corresponding vertex. We add an edge between vertices if there is an S^{0} identification "connecting" the nests. We will denote any graph resulting from this process as H_{R}.

Lemma 2.1. The conditions of Theorem 1.1 are necessary for a $(q+\ell)$-link.
Proof. Condition (1) is obvious; if a leaf v has weight 0 , no matter how we construct $G_{\mathcal{T}}$ from \mathcal{T}, the vertex v will still have degree 1 and so the resulting graph cannot be 2 -connected. Now suppose we single out a region R. The number κ of nests relative to R is equal to the number of vertices in H_{R}. To ensure a nonsplit link, we must make S^{0} identifications so that H_{R} is connected; minimally, we will thus

Figure 5. There are three nests relative to the region R.

Figure 6. A simple κ-nesting.
need $(\kappa-1) 0$-spheres and thus $2(\kappa-1)$ points in the non- R regions. This proves the necessity of (3). Condition (2) follows: since we need $2(\kappa-1)$ points among the non- R regions to connect them and since we are avoiding split 0 -spheres, R cannot have over half of the remaining $2 \ell-2(\kappa-1)$ points.

We now prove sufficiency in a specific base case before proving it in general. In this proof we will primarily refer to nestings rather than weighted trees. We define a simple κ-nesting to be an embedding of $q 1$-spheres in S^{2} that can achieve the arrangement of simple nests as in Figure 6 through spherical isotopy. The corresponding tree is a (possibly topologically nonreduced) star.

Given a simple nesting \mathcal{N}, we will call the κ simply connected regions of $S^{2}-\mathcal{N}$ innermost (corresponding to leaves). We call the region with fundamental group $\mathbb{Z} * \cdots * \mathbb{Z}$ (where \mathbb{Z} appears $\kappa-1$ times) outermost. Any other region (though there need not be any regions beyond the innermost and outermost ones) in a simple κ-nesting is annular, with fundamental group \mathbb{Z}. When we refer to nests in a simple nesting, we will always work relative to the outermost region, denoting H_{R} as just H.

Lemma 2.2. The conditions in Theorem 1.1 are sufficient for a nonsplit $(q+\ell)$-link in a simple κ-nesting \mathcal{N}.

Proof. We will first find a way to link the circles and then the 0 -spheres. Given that we use exactly $2(\kappa-1)$ points in the former and that no innermost or annular region has more than $\ell-\kappa+1$ (i.e., more than half of the) unpaired points after the process, the latter will follow easily. Because we want H to be connected while only matching $(\kappa-1) 0$-spheres, it is imperative to avoid cycles during the construction. We now state our algorithm for linking all q circles and $2(\kappa-1)$ of the 2ℓ points given an embedding that follows the conditions of Theorem 1.1:
(1) Pick a region R with the most unpaired points; in case of ties, let R be in a nest N_{R} with the most total unpaired points. Pair one point from R (the selector) with a point (the selected) in another nest. If possible, let the selected point come from as-yet unchosen innermost region, making sure such a pairing does not induce a cycle in H. If our choice of R leads inevitably to either a cycle or a pairing that does not include an as-yet unchosen innermost region when such a thing exists, we adjust our choice of our selector region R_{1} to be in a different nest-component (i.e., a collection of nests whose vertices in
H are in a different component from the vertex corresponding to N_{R}). Let R_{1} have the most unpaired points of the regions in different nest-components from N_{R}, preferably in a nest with the most total points. Then pair a selector point from R_{1} with a point in an as-yet unchosen innermost region.
(2) Mark off this S^{0} so the points are disregarded for the rest of the algorithm.
(3) Repeat steps $1-2$ until $(\kappa-2) 0$-spheres have been paired off.
(4) If each of the $(\kappa-2) 0$-spheres contains a point from an annular region, match a point each from the two remaining innermost regions for the last S^{0}. If not, follow steps $1-2$ for the last S^{0}.
In this algorithm, we form exactly $(\kappa-1) 0$-spheres, so it remains to prove:
(a) that we are indeed allowed to choose points in the first step without inducing cycles given only the conditions in the theorem,
(b) that the algorithm results in a nonsplit ($q+\kappa-1$)-link, and
(c) that no innermost or annular region is left at the end of the construction with more than $\ell-\kappa+1$ unpaired points.
(a) At some point in the algorithm, let R_{0} be our initial choice for R in Step (1) and let the vertex v represent R_{0} 's nest in H. Suppose we have not yet had to switch R. If an innermost region I in a nest whose vertex is disconnected from v does not yet have a matched point, we can match a point from R_{0} with one from I without inducing a cycle. Now suppose that every innermost region in \mathcal{N} has matched points. Because of the rules for choosing the initial R in each step, every nest-component will have extra points; we can use one such point in a distinct nest-component to pair with one of the R_{0} 's without inducing a cycle.

Now suppose we are in the remaining situation: The nests with vertices in components disconnected from v each have matched innermost regions, but at least one nest (with corresponding vertex u) in v 's connected component C in H has no matched points in its innermost region. Note that u and v are not necessarily distinct, but we will not have to deal with this contingency until we prove (c).

Consider the nesting corresponding to C. Because we still have an unmatched innermost region, all prior matchings had their selected points in distinct innermost regions. Thus, since C is a tree (being connected with no cycles) and the nest corresponding to u has an unmatched innermost region, the rest of the nests corresponding to C 's non- u vertices must have matched innermost regions. In fact, since we assumed all the non- C nests had matched innermost regions, the u-nest is the only one without a match in all of \mathcal{N}. Ergo when we switch R, we will not have to do it again for the rest of the construction. Note also that when we switch the selector region, we have only one choice for the region of the selected point: it must be a point in the innermost region of the u-nest.

Figure 7. A simplified diagram of the situation when we have to switch R.

In addition, since the C-nesting has extra points and the nest-component containing R_{1}, which may no longer have extra points after deposing R_{0}, is now matched with the C-nesting, we can proceed as usual: all the remaining nest-components have extra points. Thus it is possible to follow our construction given the conditions of Theorem 1.1.
(b) The somewhat strict stipulations in the algorithm have a great payoff: since H has $\kappa-1$ edges and no cycles, it is a tree, and thus connected. Since we also make sure that every innermost region has a point matched with one in another nest, it follows immediately that all the circles are linked nontrivially.
(c) We will consider four cases to prove that no innermost or annular region is left with more than $\ell-\kappa+1$ unpaired points. Before delving in, however, we make note that since we have already paired $2(\kappa-1)$ of the 2ℓ points, we will be left with $2 \ell-2 \kappa+2$ unpaired points; a region is left with more than $\ell-\kappa+1$ unpaired points after the algorithm if and only if it has two or more unpaired points than any other region in \mathcal{N} :
(i) Suppose we finish the algorithm with an innermost region I having more than $\ell-\kappa+1$ points left over and we never had to switch R. Since I ends with at least two more points than any other region, since the algorithm only matches a point at a time from any one region, and since I never had its " R " status revoked for the "special case" stipulations in the construction, I must have been R at each step. When we add in the $\kappa-1$ points we matched in I, we find that I must have started with more than ℓ points, a contradiction.
(ii) Suppose we finish the algorithm with an annular region A having more than $\ell-\kappa+1$ points left over and we never had to switch R. This case and its corresponding argument are an analog to those of (i) except for the stipulation in Step (4) of the construction; no matter, for when we add the $\kappa-2$ matched points to A 's total, we find that A must have started with more than $\ell-1$ points, another contradiction.
(iii) Now suppose we have to switch R at some point in the algorithm and, letting R_{0}, v, u, and C be as above, v is distinct from u. Let m be the number of unpaired points in R_{0} at this step. Since the u-nest has an unmatched innermost region, by the rules of the algorithm, it could never have been a selected nest. But since u is connected to v, the u-nest must have had an annular selector region A that at some prior step in the algorithm had a number of unpaired points greater than or equal to R_{0} 's then-number of unpaired points. It follows that R_{0} and A (and any other appropriate regions) traded off being R according to the usual rules, implying that m must be no more than one greater than the number of points in A.

When we apply the switch, the number of unmatched points in A and in R_{0} remains the same. If the construction is not yet finished, we can continue in the usual way (the stipulation in Step (4) will not apply since we have already matched all the innermost regions), with R_{0}, A, and any other appropriate regions trading off as R. However, no matter what, we will not have an end situation in which a region has at least two more points than any other region. Thus, no annular or innermost region is left with more than $\ell-\kappa+1$ points.
(iv) Lastly, suppose we have to switch R at some point in the algorithm and $v=u$. Let m be as in (iii). We can assume that m is strictly greater than the number of points in any other region; if there were equality, we wouldn't risk ending the algorithm with m having two more points than any other region. Note that there is at least one innermost region I in each nest-component (distinct from the C-nesting) that trades off being R with R_{0} until the R switching step. Hence, m is exactly one greater than the number of points in at least one other region at the R switching step. We can narrow our focus to the case where there is only one component distinct from C. If there were not, in the step after switching R, a point in R_{0} would pair with a point in another component (which has a region with $m-1$ points), thus preventing R_{0} from finishing the algorithm with two more points than any other region.

In the case of only two components, the R switching step is the last step of the construction. Thus, we must show that $m \leq \ell-\kappa+1$. Consider the situation at the beginning of the R switching step. Because the v-nest still has an unmatched innermost region, it has strictly more than m points. Thus, by the rules of choosing R in case of ties, the nest containing I must have some annular region with a points, where $a \geq 1$. Figure 8 illustrates the situation. At this stage we need at least $m+(m-1)+a+1+2(\kappa-2)=2 m+a+2(\kappa-2)$ of the 2ℓ total points. Now suppose that $m \geq \ell-\kappa+2$. Then we have at least $2(\ell-\kappa+2)+a+2(\kappa-2)=2 \ell+a$ points. But since $a \geq 1$, we have reached a contradiction. Thus no region in this case is left with more than $\ell-\kappa+1$ points after the construction.

It now only remains to show that we can pair up the unmatched points so that there are no split 0 -spheres. To do so, we use the following algorithm:

Figure 8. The situation before switching R when $v=u$.
(1) Pick two regions A and B, each having a number of points greater than or equal to that of any other region in $S^{2}-\mathcal{N}$.
(2) Form an S^{0} from a point in A and a point in B.
(3) If there are still unpaired points, return to the first step. If not, we are done.

Suppose that we have followed through with this algorithm but still have at least one split S^{0} in some region \mathcal{R}. Note that \mathcal{R} is the only region left with unpaired points; if there were others we could continue with the algorithm. In addition, if we run the algorithm backwards, one of the two most recently matched points must have come from \mathcal{R}. In fact, this is true at each step: since \mathcal{R} has at least two more points than any other region at the end of each step, it must have been one of the regions with the most points at the beginning of any step. Thus, if we run the algorithm all the way back ($\ell-\kappa+1$ steps), counting the number of points in \mathcal{R} along the way, we find that \mathcal{R} must have started this second algorithm with at least $\ell-\kappa+2$ points, a contradiction.

Thus it is possible to find a nonsplit $(\ell+q)$-link in a simple κ-nesting given the conditions of Theorem 1.1.

We can now show sufficiency for any nesting with points.

Lemma 2.3. The conditions of Theorem 1.1 are sufficient for a $(q+\ell)$-link

Proof. We will use induction on the number of vertices in the weighted tree. Lemma 2.2 covered the base case, so assume that the conditions of the theorem are sufficient for a $(q-1+\ell)$-link (i.e., on any tree with q vertices). Let \mathcal{T}_{0} be a weighted tree with $q+1$ vertices that follows the conditions of Theorem 1.1.

Let v_{0} be a leaf of \mathcal{T}_{0} with weight μ_{1} and let u_{0} be the vertex adjacent to v_{0}, with weight μ_{2}. Now suppose we delete v_{0} from \mathcal{T}_{0} and absorb its weight into u_{0}. From this we get a new weighted tree \mathcal{T}_{1}, where $u_{1} \in V\left(\mathcal{T}_{1}\right)$ used to be u_{0}. Note that $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{0}\right)-1$. Obviously this move preserves the first condition of Theorem 1.1 in \mathcal{T}_{1}. Suppose first that the move preserves the second condition: u_{1} 's weight, $\mu_{1}+\mu_{2}$, is less than or equal to $\ell-\operatorname{deg}\left(u_{1}\right)+1=\ell-\operatorname{deg}\left(u_{0}\right)+2$.

We first aim to show that \mathcal{T}_{1} follows the third condition given that it follows the second. Let $\mu_{3}=2 \ell-\left(\mu_{1}+\mu_{2}\right)$. We want to show that $\mu_{3} \geq 2\left(\operatorname{deg}\left(u_{1}\right)-1\right)=$
$2\left(\operatorname{deg}\left(u_{0}\right)-2\right)$. Because \mathcal{T}_{0} follows the rules, we have

$$
\begin{equation*}
\mu_{1}+\mu_{3} \geq 2\left(\operatorname{deg}\left(u_{0}\right)-1\right), \tag{1}
\end{equation*}
$$

and because of our assumption on \mathcal{T}_{1},

$$
\begin{equation*}
\mu_{1}+\mu_{2} \leq \ell-\operatorname{deg}\left(u_{0}\right)+2 . \tag{2}
\end{equation*}
$$

By the bound given by (2) and the definition of μ_{3}, we have $\mu_{3} \geq \ell+\operatorname{deg}\left(u_{0}\right)-2$, so if $\ell \geq \operatorname{deg}\left(u_{0}\right)-2$, we're in the clear. Henceforth assume that $\ell \leq \operatorname{deg}\left(u_{0}\right)-3$. From (1), we have $\mu_{3} \geq 2\left(\operatorname{deg}\left(u_{0}\right)-1\right)-\mu_{1}$. Using the upper bound on μ_{1} from (2) and the one on ℓ, we obtain

$$
\begin{aligned}
\mu_{3} & \geq 2\left(\operatorname{deg}\left(u_{0}\right)-1\right)-\left(\ell-\operatorname{deg}\left(u_{0}\right)+2-\mu_{2}\right) \\
& =2\left(\operatorname{deg}\left(u_{0}\right)-2\right)-\ell+\operatorname{deg}\left(u_{0}\right)+\mu_{2} \\
& \geq 2\left(\operatorname{deg}\left(u_{0}\right)-2\right)-\left(\operatorname{deg}\left(u_{0}\right)-3\right)+\operatorname{deg}\left(u_{0}\right)+\mu_{2} \\
& =2\left(\operatorname{deg}\left(u_{0}\right)-2\right)+3+\mu_{2} \\
& >2\left(\operatorname{deg}\left(u_{0}\right)-2\right),
\end{aligned}
$$

which we sought.
We have thus shown that if we choose a v_{0} to delete such that \mathcal{T}_{1} follows the second condition, it will follow all the conditions. Thus, we can use the inductive assumption to add edges to \mathcal{T}_{1} using the weights so that the resulting multigraph $G_{\mathcal{T}_{1}}$ is 2 -connected and contains no loops. When we add v_{0} back (along with edge $v_{0} u_{0}$), we transfer μ_{1} of u_{1} 's added edges to v_{0}. This operation will certainly not create any loops. We now show that it preserves 2 -connectivity. Consider any vertex w that is not v_{0} or u_{0} : the operation preserves the two internally disjoint paths between any two vertices that are not v_{0} or u_{0}, so if we were to delete w, all the other non- $\left(u_{0}\right.$ or v_{0}) vertices would remain connected. But u_{0} and v_{0} would also be connected to the rest of the graph since they are connected to each other and at least one other non- w vertex. Now suppose we delete u_{0} from \mathcal{T}_{0}. Again, all the non- v_{0} vertices will still be connected. But v_{0} will also be connected to the rest of the graph since it is adjacent to at least one non- u_{0} vertex. Lastly, suppose we delete v_{0} : the rest of the graph is still connected by the \mathcal{T}_{1} edges. Thus, the multigraph $G_{\mathcal{T}_{0}}$ induced by $G_{\mathcal{T}_{1}}$ is 2 -connected and without loops and thus determines a nonsplit planar $(q+\ell)$-link

It now only remains to show that we can pick a v_{0} to remove such that u_{1} has weight less than or equal to $\ell-\operatorname{deg}\left(u_{1}\right)+1$. Suppose we cannot find such a v_{0}. Let λ be the number of leaves in \mathcal{T}_{0} and let $\kappa=\max \left\{\operatorname{deg}(v): v \in V\left(\mathcal{T}_{0}\right)\right\}$. Since we have already shown the result for simple nestings in Lemma 2.2 , we can assume $\kappa \leq \lambda-1$, that $\lambda \geq 4$, and that there are at least two u_{0} s we could have depending on our choice of v_{0}. Also, since any u_{0} has weight less than or equal to $\ell-\operatorname{deg}\left(u_{0}\right)+1$ and the corresponding u_{1} has weight greater than or equal to $\ell-\operatorname{deg}\left(u_{0}\right)+3$, each leaf must
have weight at least 2 . Thus the total weight of \mathcal{T}_{0} is at least $2(\ell-\kappa+3)+2(\lambda-2) \geq$ $2 \ell-2 \kappa+6+2(\kappa-1)=2 \ell+4$, a contradiction. Thus we are able to choose a "nice" v_{0} such that the inductive hypothesis holds and is inherited by the larger tree.

3. Enumeration

We mentioned in the Introduction that there is only one nonsplit spherical 2-link and there are two types of nonsplit spherical 3-links. We have now proven which embeddings will form nonsplit links given appropriate S^{0} identifications. However, enumeration encompasses even more complications: we must determine whether an embedding is unique up to spherical isotopy. In addition, we have a couple different ways to count links: we can simply count the allowable embeddings or we can count how many ways we can identify 0 -spheres appropriately within an embedding (Figure 9). In the link diagrams found in the online supplement, if there is more than one allowable S^{0} identification for an embedding, we will write how many total identifications there are next to its image. Note that there are four distinct nonsplit 4-links; 11 distinct embeddings and 12 distinct 5-links; 32 distinct embeddings and 39 total 6 -links; 105 total embeddings and 158 total 7 -links; and 354 embeddings and 7238 -links.

To show rigorously how many allowable S^{0} pairings there are in an embedding, one fact is particularly helpful: The number of S^{0} identifications between two regions R_{1} and R_{2} is greater than or equal to $p\left(R_{1}\right)+p\left(R_{2}\right)-m$, where $p(R)$ is the number of unmatched points in R and m is half the number of unmatched points left in a nesting. This fact is easily proven. Let $r=p\left(R_{1}\right)+p\left(R_{2}\right)$. If $r \leq m$, the claim is trivially true. Suppose $r>m$. Then there are not enough points in the rest of the nesting to fully match with points in R_{1} and R_{2} without inducing split 0 -spheres; we must match a point in R_{1} with one in R_{2}. Now r has decreased by two and m has decreased by one. If $r-2>m-1$, we again match a point from R_{1} with one from R_{2}. We must iterate k times, where $r-2(k-1)>m-(k-1)$ and $r-2 k \leq m-k$: that is when $k=r-m$, which we sought.

The above allows us to reduce larger cases to smaller cases. We also use commonsense techniques, such as choosing a region that can be distinguished from others (usually one with one point) to determine exhaustively the matching possibilities or utilizing symmetry without loss of generality.

Figure 9. This is the same embedding, but there are three different 6-links here.

Acknowledgements

Thanks to the rest of the Topological Graph Theory group members: Andrew Castillo, Jonathan Doane, and Cristopher Negron. The authors owe gratitude to Dr. Ada Chan for her insight on split links and cut vertices and Dr. Joanna EllisMonaghan for her insight on planar links and rooted trees. This research was conducted through the SUNY Potsdam/Clarkson University REU, with funding from the National Science Foundation under Grant No. DMA-1262737 and the National Security Administration under Grant No. H98230-14-1-0141.

References

[Archdeacon and Sagols 2002] D. Archdeacon and F. Sagols, "Nesting points in the sphere", Discrete Math. 244:1-3 (2002), 5-16. MR Zbl
[Guillemin and Pollack 1974] V. Guillemin and A. Pollack, Differential topology, Printice-Hall, Englewood Cliffs, NJ, 1974. MR Zbl
[Harary 1969] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969. MR Zbl
[Hoste 2005] J. Hoste, "The enumeration and classification of knots and links", pp. 209-232 in Handbook of knot theory, edited by W. Menasco and M. Thistlethwaite, Elsevier, Amsterdam, 2005. MR Zbl
[Sloane 2006] N. J. A. Sloane, "Number of trees with n unlabeled nodes", 2006, available at http:// oeis.org/A000055.

Received: 2015-01-15 Revised: 2016-01-30 Accepted: 2016-12-05
burkhm2@uw.edu Mathematics Department, University of Washington, Seattle, WA, United States
foisyjs@potsdam.edu
Department of Mathematics, SUNY Potsdam, Potsdam, NY, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 /$ year for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2018 vol. 11 no. 2

Finding cycles in the k-th power digraphs over the integers modulo a prime 181
Greg Dresden and Wenda Tu
Enumerating spherical n-links 195
Madeleine Burkhart and Joel Foisy
Double bubbles in hyperbolic surfaces 207
Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
What is odd about binary Parseval frames?219
Zachery J. Baker, Bernhard G. Bodmann, Micah G. Bullock, Samantha N. Branum and Jacob E. McLaney
Numbers and the heights of their happiness 235
May Mei and Andrew Read-McFarland
The truncated and supplemented Pascal matrix and applications 243
Michael Hua, Steven B. Damelin, Jeffrey Sun and Mingchao Yu
Hexatonic systems and dual groups in mathematical music theory 253
Cameron Berry and Thomas M. Fiore
On computable classes of equidistant sets: finite focal sets 271
Csaba Vincze, Adrienn Varga, Márk Oláh, László Fórián and SÁNDOR LÔRINC
Zero divisor graphs of commutative graded rings 283
Katherine Cooper and Brian Johnson
The behavior of a population interaction-diffusion equation in its subcritical regime 297
Mitchell G. Davis, David J. Wollkind, Richard A. Cangelosi and Bonni J. Kealy-Dichone
Forbidden subgraphs of coloring graphs 311
Francisco Alvarado, Ashley Butts, Lauren Farquhar and Heather M. Russell
Computing indicators of Radford algebras 325
Hao Hu, Xinyi Hu, Linhong Wang and Xingting Wang
Unlinking numbers of links with crossing number 10 335
Lavinia Bulai
On a connection between local rings and their associated graded algebras 355Justin Hoffmeier and Jiyoon Lee

[^0]: MSC2010: primary 05 C 30 ; secondary $05 \mathrm{C} 10,57 \mathrm{M} 15$.
 Keywords: combinatorics, topological graph theory, linking, enumeration.

