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We investigate spherical links: that is, disjoint embeddings of 1-spheres and
0-spheres in the 2-sphere, where the notion of a split link is analogous to the
usual concept. In the quest to enumerate distinct nonsplit n-links for arbitrary n,
we must consider when it is possible for an embedding of circles and an even
number of points to form a nonsplit link. The main result is a set of necessary
and sufficient conditions for such an embedding. The final section includes tables
of the distinct embeddings that yield nonsplit n-links for 4≤ n ≤ 8.

1. Introduction

The enumeration of links in 3-space is well-studied [Hoste 2005]. However, there
has not been much study of a planar/spherical analog outside the confines of its
appearance in graphs [Archdeacon and Sagols 2002]. We aim to get the ball rolling
on spherical links.

An n-link L in the 2-sphere is a disjoint collection of q embedded 1-spheres
and n − q embedded 0-spheres. Two links are equivalent if there is a spherical
isotopy taking one to the other. Throughout this paper we use standard notation for
a k-sphere: Sk. When speaking of spherical links, it does not make topological sense
to call 0-spheres “components”, since an entire S0 is not connected. Henceforth
we will refer to an S1 or an S0 as a piece of an n-link. We will call a spherical
embedding of 1-spheres a nesting. Note that when we refer to nestings and nests
in this paper, we are working with entities distinct from those in [Archdeacon and
Sagols 2002].

We must now consider what constitutes a split spherical link. Note that the
following definition only makes sense after we have chosen which pairs of points
form 0-spheres: An n-link L is split if there exists an embedding φ of S1 in S2

−L
such that each component of S2

−φ(S1) contains at least one piece of L and each
piece of L is entirely contained in one such component. Otherwise, L is nonsplit.
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Figure 1. A nonsplit 2-link.

Figure 2. A 3-link with two circles and a 3-link with one circle.

Although there is only one type of nonsplit spherical 2-link, when we look
at n-linking for n > 2, we can have different numbers of disjoint 1-spheres and
0-spheres. For example, we could have the two types of nonsplit spherical 3-links
as in Figure 2.

We will find that the enumeration of n-link-types becomes more richly complex
as n increases. Before finding all n-links for n ≤ 8 in Section 3, we lay down
the necessary and sufficient conditions for any spherical embedding of q circles
and 2` points to form a nonsplit (q+`)-link (given appropriate S0 identifications).
When considering such links, it will be helpful not only to think about nestings
with points, but also to associate a weighted tree T . To construct T , first consider
the nesting N. If we identify a vertex on each circle, this embedding is a plane
graph of disjoint loops, so the dual graph will be a tree in which each vertex is an
open component of S2

−N. To account for embedded points, we give each vertex
a weight equal to the number of points in the corresponding region.

The weighted tree T corresponds to a nesting with unpaired points, but we want
to work with links; we will need to consider what happens to the tree after we make
S0 identifications. To make an identification, we will choose two vertices that each
have weight at least 1, add an edge between them, and reduce their weights each by
one (Figure 3).

3 1

1 0

1 2 3 0

1 0

0 2

Figure 3. A nesting with points and its corresponding tree as we
make an S0 identification.
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v

Figure 4. The vertex v corresponds with the region of the splitting circle.

If we do this until each vertex has weight 0, the resulting multigraph GT will
represent a link (unique if we distinguish the original tree edges from the S0

identification edges). How can we tell from the graph if the link is split? Certainly
a loop in the graph represents a split S0. Any other type of split link, in which both
components of S2

−φ(S1) (as in the split definition) have some positive number of
circles, occurs if and only if there is a cut vertex in the multigraph (Figure 4).

We have now built up enough background to state our main result in dual ways.

Theorem 1.1. Suppose we have a weighted tree T with q edges and total weight 2`.
In the corresponding embedding of q circles (with nesting N ) and 2` points, it is
possible to identify 0-spheres so that we have a nonsplit spherical (q+`)-link if and
only if all of the following conditions are satisfied:

(1) Each leaf has weight at least one. That is, we must embed at least one point in
each simply connected region of S2

−N.

(2) No vertex v is assigned a weight greater than `− deg(v)+ 1. That is, we
can embed no more than `− κ + 1 points in a region of S2

−N that has
fundamental group Z ∗ · · · ∗Z, where Z appears κ − 1 times.

(3) Given any vertex of degree κ , the other vertices have total weight summing to
at least 2(κ − 1). In other words, given a region as in (2), we must embed at
least 2(κ − 1) points in the remaining regions.

With this result, we can tell which embeddings of n (1 and 0)-spheres will form
a nonsplit n-link. However, enumeration will require distinguishing links from one
another on the sphere, which we only address for n ≤ 8 in this paper.

Future directions

All the enumeration in this paper was done by hand; code will probably be necessary
to enumerate spherical n-links for n ≥ 9. As there is a one-to-one correspondence
between nestings and unlabeled trees, much of the code will probably be similar
to what is used in the problem of enumerating unlabeled trees (see [Harary 1969;
Sloane 2006]).

While our results regard embeddings in S2, it would be interesting to see how
tabulations differ on different surfaces; for example, while a spherical embedding
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yields a correspondence between nestings and unlabeled trees, in the plane the
correspondence is between nestings and rooted trees.

Our necessary and sufficient conditions depend on “appropriate” S0 identifica-
tions. What happens if we make the worst possible S0 identifications; that is, given
a nesting with an even number of disjointly embedded points, what is the minimal
nonsplit n-link among all possible S0 pairings?

We could seek to generalize our result in a combinatorial manner; instead of
looking at 0-spheres (i.e., pairs of points), we could look at triples, quadruples, or
λ-tuples of points.

Because of the Jordan–Brouwer separation theorem [Guillemin and Pollack 1974],
our results generalize to higher dimensions. The same necessary and sufficient
conditions and link enumerations apply to embeddings of k-spheres and 0-spheres
in Sk+1, since the dual weighted tree construction will still be well-defined. Perhaps
this result has applications. It would also be interesting to investigate enumerating
other types of higher-dimensional linking with spheres of different dimensions.

2. Proof of Theorem 1.1

In the following lemmas, we will switch between thinking about nestings and
weighted trees. The following concepts will be useful when working with nestings.

Suppose we have a nesting N. If we single out an open region in S2
−N there

will be some number of embedded circles that form holes in the region. We will
call each such circle, along with all pieces in its interior, a nest (see Figure 5).

Suppose we have a nesting N and single out an open region R. Let each nest
relative to R have a corresponding vertex. We add an edge between vertices if there
is an S0 identification “connecting” the nests. We will denote any graph resulting
from this process as HR .

Lemma 2.1. The conditions of Theorem 1.1 are necessary for a (q+`)-link.

Proof. Condition (1) is obvious; if a leaf v has weight 0, no matter how we construct
GT from T , the vertex v will still have degree 1 and so the resulting graph cannot
be 2-connected. Now suppose we single out a region R. The number κ of nests
relative to R is equal to the number of vertices in HR . To ensure a nonsplit link,
we must make S0 identifications so that HR is connected; minimally, we will thus

R

Figure 5. There are three nests relative to the region R.
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Figure 6. A simple κ-nesting.

need (κ − 1) 0-spheres and thus 2(κ − 1) points in the non-R regions. This proves
the necessity of (3). Condition (2) follows: since we need 2(κ − 1) points among
the non-R regions to connect them and since we are avoiding split 0-spheres, R
cannot have over half of the remaining 2`− 2(κ − 1) points. �

We now prove sufficiency in a specific base case before proving it in general.
In this proof we will primarily refer to nestings rather than weighted trees. We
define a simple κ-nesting to be an embedding of q 1-spheres in S2 that can achieve
the arrangement of simple nests as in Figure 6 through spherical isotopy. The
corresponding tree is a (possibly topologically nonreduced) star.

Given a simple nesting N , we will call the κ simply connected regions of S2
−N

innermost (corresponding to leaves). We call the region with fundamental group
Z ∗ · · · ∗Z (where Z appears κ − 1 times) outermost. Any other region (though
there need not be any regions beyond the innermost and outermost ones) in a simple
κ-nesting is annular, with fundamental group Z. When we refer to nests in a simple
nesting, we will always work relative to the outermost region, denoting HR as just H .

Lemma 2.2. The conditions in Theorem 1.1 are sufficient for a nonsplit (q+`)-link
in a simple κ-nesting N.

Proof. We will first find a way to link the circles and then the 0-spheres. Given
that we use exactly 2(κ − 1) points in the former and that no innermost or annular
region has more than `− κ + 1 (i.e., more than half of the) unpaired points after
the process, the latter will follow easily. Because we want H to be connected
while only matching (κ − 1) 0-spheres, it is imperative to avoid cycles during the
construction. We now state our algorithm for linking all q circles and 2(κ − 1) of
the 2` points given an embedding that follows the conditions of Theorem 1.1:

(1) Pick a region R with the most unpaired points; in case of ties, let R be in
a nest NR with the most total unpaired points. Pair one point from R (the
selector) with a point (the selected) in another nest. If possible, let the selected
point come from as-yet unchosen innermost region, making sure such a pairing
does not induce a cycle in H . If our choice of R leads inevitably to either a
cycle or a pairing that does not include an as-yet unchosen innermost region
when such a thing exists, we adjust our choice of our selector region R1 to
be in a different nest-component (i.e., a collection of nests whose vertices in
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H are in a different component from the vertex corresponding to NR). Let
R1 have the most unpaired points of the regions in different nest-components
from NR , preferably in a nest with the most total points. Then pair a selector
point from R1 with a point in an as-yet unchosen innermost region.

(2) Mark off this S0 so the points are disregarded for the rest of the algorithm.

(3) Repeat steps 1–2 until (κ − 2) 0-spheres have been paired off.

(4) If each of the (κ−2) 0-spheres contains a point from an annular region, match
a point each from the two remaining innermost regions for the last S0. If not,
follow steps 1–2 for the last S0.

In this algorithm, we form exactly (κ − 1) 0-spheres, so it remains to prove:

(a) that we are indeed allowed to choose points in the first step without inducing
cycles given only the conditions in the theorem,

(b) that the algorithm results in a nonsplit (q+κ−1)-link, and

(c) that no innermost or annular region is left at the end of the construction with
more than `− κ + 1 unpaired points.

(a) At some point in the algorithm, let R0 be our initial choice for R in Step (1)
and let the vertex v represent R0’s nest in H . Suppose we have not yet had to
switch R. If an innermost region I in a nest whose vertex is disconnected from v

does not yet have a matched point, we can match a point from R0 with one from
I without inducing a cycle. Now suppose that every innermost region in N has
matched points. Because of the rules for choosing the initial R in each step, every
nest-component will have extra points; we can use one such point in a distinct
nest-component to pair with one of the R0’s without inducing a cycle.

Now suppose we are in the remaining situation: The nests with vertices in
components disconnected from v each have matched innermost regions, but at least
one nest (with corresponding vertex u) in v’s connected component C in H has
no matched points in its innermost region. Note that u and v are not necessarily
distinct, but we will not have to deal with this contingency until we prove (c).

Consider the nesting corresponding to C . Because we still have an unmatched
innermost region, all prior matchings had their selected points in distinct innermost
regions. Thus, since C is a tree (being connected with no cycles) and the nest
corresponding to u has an unmatched innermost region, the rest of the nests
corresponding to C’s non-u vertices must have matched innermost regions. In
fact, since we assumed all the non-C nests had matched innermost regions, the
u-nest is the only one without a match in all of N. Ergo when we switch R, we
will not have to do it again for the rest of the construction. Note also that when we
switch the selector region, we have only one choice for the region of the selected
point: it must be a point in the innermost region of the u-nest.
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ν-nest

u-nest

R0

Figure 7. A simplified diagram of the situation when we have to
switch R.

In addition, since the C-nesting has extra points and the nest-component contain-
ing R1, which may no longer have extra points after deposing R0, is now matched
with the C-nesting, we can proceed as usual: all the remaining nest-components
have extra points. Thus it is possible to follow our construction given the conditions
of Theorem 1.1.

(b) The somewhat strict stipulations in the algorithm have a great payoff: since H
has κ − 1 edges and no cycles, it is a tree, and thus connected. Since we also make
sure that every innermost region has a point matched with one in another nest, it
follows immediately that all the circles are linked nontrivially.

(c) We will consider four cases to prove that no innermost or annular region is left
with more than `− κ + 1 unpaired points. Before delving in, however, we make
note that since we have already paired 2(κ − 1) of the 2` points, we will be left
with 2`−2κ+2 unpaired points; a region is left with more than `−κ+1 unpaired
points after the algorithm if and only if it has two or more unpaired points than any
other region in N :

(i) Suppose we finish the algorithm with an innermost region I having more than
`− κ + 1 points left over and we never had to switch R. Since I ends with at least
two more points than any other region, since the algorithm only matches a point
at a time from any one region, and since I never had its “R” status revoked for
the “special case” stipulations in the construction, I must have been R at each step.
When we add in the κ− 1 points we matched in I , we find that I must have started
with more than ` points, a contradiction.

(ii) Suppose we finish the algorithm with an annular region A having more than
`−κ+1 points left over and we never had to switch R. This case and its correspond-
ing argument are an analog to those of (i) except for the stipulation in Step (4) of
the construction; no matter, for when we add the κ − 2 matched points to A’s total,
we find that A must have started with more than `−1 points, another contradiction.
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(iii) Now suppose we have to switch R at some point in the algorithm and, letting
R0, v, u, and C be as above, v is distinct from u. Let m be the number of unpaired
points in R0 at this step. Since the u-nest has an unmatched innermost region, by
the rules of the algorithm, it could never have been a selected nest. But since u is
connected to v, the u-nest must have had an annular selector region A that at some
prior step in the algorithm had a number of unpaired points greater than or equal
to R0’s then-number of unpaired points. It follows that R0 and A (and any other
appropriate regions) traded off being R according to the usual rules, implying that
m must be no more than one greater than the number of points in A.

When we apply the switch, the number of unmatched points in A and in R0

remains the same. If the construction is not yet finished, we can continue in the
usual way (the stipulation in Step (4) will not apply since we have already matched
all the innermost regions), with R0, A, and any other appropriate regions trading
off as R. However, no matter what, we will not have an end situation in which
a region has at least two more points than any other region. Thus, no annular or
innermost region is left with more than `− κ + 1 points.

(iv) Lastly, suppose we have to switch R at some point in the algorithm and v = u.
Let m be as in (iii). We can assume that m is strictly greater than the number
of points in any other region; if there were equality, we wouldn’t risk ending the
algorithm with m having two more points than any other region. Note that there is
at least one innermost region I in each nest-component (distinct from the C-nesting)
that trades off being R with R0 until the R switching step. Hence, m is exactly one
greater than the number of points in at least one other region at the R switching step.
We can narrow our focus to the case where there is only one component distinct
from C . If there were not, in the step after switching R, a point in R0 would pair with
a point in another component (which has a region with m−1 points), thus preventing
R0 from finishing the algorithm with two more points than any other region.

In the case of only two components, the R switching step is the last step of the
construction. Thus, we must show that m ≤ `− κ + 1. Consider the situation at
the beginning of the R switching step. Because the v-nest still has an unmatched
innermost region, it has strictly more than m points. Thus, by the rules of choosing
R in case of ties, the nest containing I must have some annular region with a
points, where a ≥ 1. Figure 8 illustrates the situation. At this stage we need at least
m+ (m− 1)+ a+ 1+ 2(κ − 2)= 2m+ a+ 2(κ − 2) of the 2` total points. Now
suppose that m≥ `−κ+2. Then we have at least 2(`−κ+2)+a+2(κ−2)= 2`+a
points. But since a ≥ 1, we have reached a contradiction. Thus no region in this
case is left with more than `− κ + 1 points after the construction.

It now only remains to show that we can pair up the unmatched points so that
there are no split 0-spheres. To do so, we use the following algorithm:
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m− 1 a ≥ 1 m

ν-nest

Figure 8. The situation before switching R when v = u.

(1) Pick two regions A and B, each having a number of points greater than or
equal to that of any other region in S2

−N.

(2) Form an S0 from a point in A and a point in B.

(3) If there are still unpaired points, return to the first step. If not, we are done.

Suppose that we have followed through with this algorithm but still have at least
one split S0 in some region R. Note that R is the only region left with unpaired
points; if there were others we could continue with the algorithm. In addition, if
we run the algorithm backwards, one of the two most recently matched points must
have come from R. In fact, this is true at each step: since R has at least two more
points than any other region at the end of each step, it must have been one of the
regions with the most points at the beginning of any step. Thus, if we run the
algorithm all the way back (`− κ + 1 steps), counting the number of points in R
along the way, we find that R must have started this second algorithm with at least
`− κ + 2 points, a contradiction.

Thus it is possible to find a nonsplit (`+q)-link in a simple κ-nesting given the
conditions of Theorem 1.1. �

We can now show sufficiency for any nesting with points.

Lemma 2.3. The conditions of Theorem 1.1 are sufficient for a (q+`)-link

Proof. We will use induction on the number of vertices in the weighted tree.
Lemma 2.2 covered the base case, so assume that the conditions of the theorem
are sufficient for a (q−1+`)-link (i.e., on any tree with q vertices). Let T0 be a
weighted tree with q + 1 vertices that follows the conditions of Theorem 1.1.

Let v0 be a leaf of T0 with weight µ1 and let u0 be the vertex adjacent to v0,
with weight µ2. Now suppose we delete v0 from T0 and absorb its weight into u0.
From this we get a new weighted tree T1, where u1 ∈ V (T1) used to be u0. Note
that deg(u1)= deg(u0)− 1. Obviously this move preserves the first condition of
Theorem 1.1 in T1. Suppose first that the move preserves the second condition: u1’s
weight, µ1+µ2, is less than or equal to `− deg(u1)+ 1= `− deg(u0)+ 2.

We first aim to show that T1 follows the third condition given that it follows the
second. Let µ3 = 2`− (µ1+µ2). We want to show that µ3 ≥ 2(deg(u1)− 1) =
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2(deg(u0)− 2). Because T0 follows the rules, we have

µ1+µ3 ≥ 2(deg(u0)− 1), (1)

and because of our assumption on T1,

µ1+µ2 ≤ `− deg(u0)+ 2. (2)

By the bound given by (2) and the definition of µ3, we have µ3 ≥ `+ deg(u0)− 2,
so if `≥ deg(u0)− 2, we’re in the clear. Henceforth assume that `≤ deg(u0)− 3.
From (1), we have µ3 ≥ 2(deg(u0)− 1)−µ1. Using the upper bound on µ1 from
(2) and the one on `, we obtain

µ3 ≥ 2(deg(u0)− 1)− (`− deg(u0)+ 2−µ2)

= 2(deg(u0)− 2)− `+ deg(u0)+µ2

≥ 2(deg(u0)− 2)− (deg(u0)− 3)+ deg(u0)+µ2

= 2(deg(u0)− 2)+ 3+µ2

> 2(deg(u0)− 2),

which we sought.
We have thus shown that if we choose a v0 to delete such that T1 follows the

second condition, it will follow all the conditions. Thus, we can use the inductive
assumption to add edges to T1 using the weights so that the resulting multigraph GT1

is 2-connected and contains no loops. When we add v0 back (along with edge v0u0),
we transfer µ1 of u1’s added edges to v0. This operation will certainly not create any
loops. We now show that it preserves 2-connectivity. Consider any vertex w that is
not v0 or u0: the operation preserves the two internally disjoint paths between any
two vertices that are not v0 or u0, so if we were to delete w, all the other non-(u0

or v0) vertices would remain connected. But u0 and v0 would also be connected
to the rest of the graph since they are connected to each other and at least one other
non-w vertex. Now suppose we delete u0 from T0. Again, all the non-v0 vertices
will still be connected. But v0 will also be connected to the rest of the graph since it
is adjacent to at least one non-u0 vertex. Lastly, suppose we delete v0: the rest of the
graph is still connected by the T1 edges. Thus, the multigraph GT0 induced by GT1

is 2-connected and without loops and thus determines a nonsplit planar (q+`)-link
It now only remains to show that we can pick a v0 to remove such that u1 has

weight less than or equal to `−deg(u1)+1. Suppose we cannot find such a v0. Let
λ be the number of leaves in T0 and let κ =max{deg(v) : v ∈ V (T0)}. Since we have
already shown the result for simple nestings in Lemma 2.2, we can assume κ ≤λ−1,
that λ≥ 4, and that there are at least two u0s we could have depending on our choice
of v0. Also, since any u0 has weight less than or equal to `− deg(u0)+ 1 and the
corresponding u1 has weight greater than or equal to `−deg(u0)+3, each leaf must
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have weight at least 2. Thus the total weight of T0 is at least 2(`−κ+3)+2(λ−2)≥
2`−2κ+6+2(κ−1)= 2`+4, a contradiction. Thus we are able to choose a “nice”
v0 such that the inductive hypothesis holds and is inherited by the larger tree. �

3. Enumeration

We mentioned in the Introduction that there is only one nonsplit spherical 2-link and
there are two types of nonsplit spherical 3-links. We have now proven which embed-
dings will form nonsplit links given appropriate S0 identifications. However, enumer-
ation encompasses even more complications: we must determine whether an embed-
ding is unique up to spherical isotopy. In addition, we have a couple different ways
to count links: we can simply count the allowable embeddings or we can count how
many ways we can identify 0-spheres appropriately within an embedding (Figure 9).
In the link diagrams found in the online supplement, if there is more than one allow-
able S0 identification for an embedding, we will write how many total identifications
there are next to its image. Note that there are four distinct nonsplit 4-links; 11 dis-
tinct embeddings and 12 distinct 5-links; 32 distinct embeddings and 39 total 6-links;
105 total embeddings and 158 total 7-links; and 354 embeddings and 723 8-links.

To show rigorously how many allowable S0 pairings there are in an embedding,
one fact is particularly helpful: The number of S0 identifications between two
regions R1 and R2 is greater than or equal to p(R1)+ p(R2)−m, where p(R) is
the number of unmatched points in R and m is half the number of unmatched points
left in a nesting. This fact is easily proven. Let r = p(R1)+ p(R2). If r ≤ m, the
claim is trivially true. Suppose r > m. Then there are not enough points in the
rest of the nesting to fully match with points in R1 and R2 without inducing split
0-spheres; we must match a point in R1 with one in R2. Now r has decreased by
two and m has decreased by one. If r − 2> m− 1, we again match a point from
R1 with one from R2. We must iterate k times, where r − 2(k− 1) > m− (k− 1)
and r − 2k ≤ m− k: that is when k = r −m, which we sought.

The above allows us to reduce larger cases to smaller cases. We also use common-
sense techniques, such as choosing a region that can be distinguished from others
(usually one with one point) to determine exhaustively the matching possibilities or
utilizing symmetry without loss of generality.

Figure 9. This is the same embedding, but there are three different
6-links here.

http://msp.org/involve/2018/11-2/involve-v11-n2-x02-LinkEmbeddings.pdf
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