\bullet
 in Olve

 a journal of mathematicsDouble bubbles in hyperbolic surfaces Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen

Double bubbles in hyperbolic surfaces

Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
(Communicated by Michael Dorff)

We seek the least-perimeter way to enclose and separate two prescribed areas in certain hyperbolic surfaces.

1. Introduction

The isoperimetric problem of enclosing a given area in a least-perimeter way has been investigated in various surfaces. The classical isoperimetric theorem in the plane asserts that the circle is the shortest curve to enclose a given area in the plane. While this result is widely known, the solution of the isoperimetric problem has proved to be elusive in surfaces aside from the plane. By 1999, the problem had been solved for a handful of Riemannian surfaces, namely, the Euclidean plane, a round sphere, a round projective plane, the hyperbolic plane, a circular cone, a circular cylinder, a flat torus or Klein bottle, and a general surface of revolution [Howards et al. 1999]. Adams and Morgan [1999] obtained further results in hyperbolic surfaces. The related problem of discovering the least perimeter needed to enclose and separate two given volumes has invited exploration as well.

Particular interest has been garnered by the double bubble conjecture. The double bubble conjecture states that three spherical caps meeting at $\frac{2 \pi}{3}$ angles (the "standard double bubble") is the least-perimeter way to enclose and separate two given volumes. This has been believed to be true since the nineteenth century, but it was first articulated as a conjecture by Joel Foisy [1991], an undergraduate student at Williams College, in his senior thesis, and it was proved in the planar case in [Foisy et al. 1993]. Joel Hass, Michael Hutchings, and Roger Schlafly [Hass et al. 1995] attacked the conjecture in the \mathbb{R}^{3} case using heavily computational methods, successfully resolving the problem for the case where the two volumes are equal. Finally, Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros [Hutchings et al. 2002] proved the double bubble conjecture for any ratio of two volumes in \mathbb{R}^{3}. Moreover, Andrew Cotton and David Freeman [2002] have

[^0]shown the conjecture to hold for the hyperbolic plane as well as the case of equal volumes in hyperbolic 3 -space. In certain hyperbolic surfaces however, the standard double bubble is not perimeter-minimizing. We study this problem, following the work on single bubbles by Adams and Morgan [1999].

Section 2 discusses the existence and regularity of perimeter-minimizing double bubbles. Section 3 considers n-punctured spheres. Proposition 3.6 identifies small perimeter-minimizing double bubbles as horocycles around cusps. Section 4 focuses on double bubbles on the thrice-punctured sphere. Conjecture 4.1 describes perimeter-minimizing double bubbles as horocycles for small areas and θ-curves for large areas. Proposition 4.2 shows that, for equal areas, θ-curves are shorter than horocycles for a specific range of areas through direct computations. Propositions 4.7-4.9 show necessary conditions on the topology of perimeter-minimizing double bubbles using inequalities obtained in Lemmas 4.3-4.5. Section 5 considers the once-punctured torus. Proposition 5.1 proves that for relatively small areas two horocycles around a cusp are shorter than a horocycle with a lens.

2. Existence and regularity

Definition 2.1. A double bubble on a surface consists of two disjoint open regions with piecewise smooth boundaries. The perimeter refers to the union of the boundaries or its length. We do not assume that each region, or that the perimeter, or that the entire bubble (the union of the regions and the perimeter) is connected. We call the bubble perimeter-minimizing or sometimes just minimizing if it minimizes perimeter for fixed area of each region.

Morgan [1994] examined existence and regularity for soap bubble clusters in \mathbb{R}^{2} and on compact Riemannian surfaces, and his results and proofs apply to geometrically finite hyperbolic surfaces.

Theorem 2.2 (existence and regularity). In a complete hyperbolic surface, there exists a least-perimeter double bubble, enclosing and separating two regions of prescribed areas. Its perimeter consists of curves of constant curvature meeting in threes at angles of $\frac{2 \pi}{3}$; all curves separating a specific pair of regions have the same curvature.

Proof. We explain the extension of Morgan [1994] to the noncompact case. If in a minimizing sequence a region goes out a cusp, its area goes to 0 and it may be discarded. If it goes out a flared end, it can be translated back inside a compact region.

We are assuming that the sum of the two areas is less than the area of the surface; the complement is a third region. It remains conjectural in general that each of the three regions is connected.

Figure 1. The thrice-punctured sphere can be obtained from the Poincaré disc (D) model of the hyperbolic plan by identifying the two ideal triangles as indicated: the purple side is already identified, blue is glued to blue, and red to red, according to the orientation given.

3. n-punctured spheres

The hyperbolic surfaces we will primarily focus on throughout this paper are n-punctured spheres, mainly because they are at once both simple (having cusps but no handles) and interesting. Proposition 3.5 gives the total area of an n-punctured sphere. Proposition 3.6 shows that for a certain range of areas, perimeter-minimizing double bubbles on an n-punctured sphere have disconnected boundary, a deviation from the topological properties of the standard double bubble.
Definition 3.1. An n-punctured sphere is constructed by doubling an ideal n-gon in hyperbolic 2 -space and identifying the boundary.

The n-punctured sphere admits a hyperbolic metric for $n \geq 3$, so we assume henceforth that $n \geq 3$. Figure 1 gives an example of this construction in the case of the thrice-punctured sphere.

We have the following helpful proposition on single bubbles on the n-punctured sphere.

Proposition 3.2 [Adams and Morgan 1999, Theorem 2.2]. For single bubbles on a punctured surface, least-perimeter P is less than or equal to area A with equality precisely for horocycles about cusps. Moreover, if $A<\pi$, then a minimizer consists of horocycles about an arbitrary collection of cusps.
Remark 3.3. Adams and Morgan [1999] further show that in the case of the thricepunctured sphere, the hypothesis of this proposition can be extended to $A \leq \pi$.

In the proofs of our results we will make use of the following well-known facts in this area.

Remark 3.4. A horocycle about a cusp has constant curvature 1 and its length is equal to the area of the cusp neighborhood.

Proposition 3.5. The total area of the n-punctured sphere is $2(n-2) \pi$.

Proof. The area of an ideal triangle in hyperbolic 2-space is π. Since an ideal n-gon can be triangulated into $n-2$ ideal triangles, the area of the ideal n-gon is $(n-2) \pi$. The n-punctured sphere is composed of two ideal n-gons glued together and thus has area $2(n-2) \pi$.

Proposition 3.6. Given $0<A_{1} \leq A_{2}<\pi-A_{1}$, the least-perimeter way to enclose and separate areas A_{1}, A_{2} on the n-punctured sphere is horocycles around cusps.

Proof. Assume to the contrary the perimeter is less than or equal to $A_{1}+A_{2}$ and the regions have common boundary. Then the shared boundary can be eliminated with the remaining boundary enclosing the single area $A_{1}+A_{2}$. By our assumption the length of the remaining boundary is strictly less than $A_{1}+A_{2}$. Since $A_{1}+A_{2}<\pi$, this is a contradiction of Proposition 3.2.

4. The thrice-punctured sphere

The thrice-punctured sphere is equipped with unique hyperbolic structure with area 2π and constant Gaussian curvature -1 . These features make the thricepunctured sphere an ideal surface on which to explore the properties of double bubbles. Conjecture 4.1 says that horocycles are perimeter-minimizing for small areas and that a θ-curve is perimeter-minimizing for large areas, with the transition point for equal areas given by Proposition 4.2. Proposition 4.8 shows that for double bubbles with connected perimeter, all three regions must contain a cusp. Proposition 4.9 further restricts the topology.

Conjecture 4.1. Given two areas $0<A_{1} \leq A_{2} \leq 2 \pi-A_{1}-A_{2}$, a perimeterminimizing double bubble on the thrice-punctured sphere consists of
(1) horocycles around cusps if A_{1} is relatively small,
(2) a θ-curve with each region containing one cusp (unique up to the three-fold symmetry) if A_{1} is relatively large (see Figure 2).

Figure 2. θ-curves as pictured are conjectured to minimize perimeter for relatively large pairs of areas.

Proposition 4.2. There exists a constant $A_{0} \approx 1.7038$ such that given $0<A_{1}=$ $A_{2} \leq \frac{2 \pi}{3}$, the symmetric θ-curve enclosing areas A_{1}, A_{2} is shorter than horocycles (of length $A_{1}+A_{2}$) if and only if $A_{1}=A_{2}>A_{0}$.
Proof. Let $H=\{x+y i \in \mathbb{C} \mid y>0\}$ with the metric $d s=\sqrt{d x^{2}+d y^{2}} / y$; this is the upper half-plane model of hyperbolic space. The length of a parametrized curve $\sigma:[a, b] \rightarrow H$ is given by

$$
\text { length }=\int_{a}^{b} \frac{\left|\sigma^{\prime}(t)\right|}{y(t)} d t
$$

The area of a region R is given by

$$
\text { area }=\iint_{R} \frac{1}{y} d x d y
$$

We consider the following construction in H. The thrice-punctured sphere can be considered as the quotient of two ideal triangles H (the edges of these triangles are shown in blue in Figure 3 with the edges e and f being identified with e^{\prime} and f^{\prime} as shown). For computational ease we choose the radii of the semicircles f and f^{\prime} to be 1 .

Given $A_{1}=A_{2}=\frac{2 \pi}{3}$, consider the pink θ-curve ϕ of Figure 3, composed of three geodesics which each contain a cusp and meet at angles of $\frac{2 \pi}{3}$. In the upper half-plane this curve consists of four circular arcs of radius 2 and angle $\frac{\pi}{6}$ and two vertical segments. Each of the arcs is centered at a vertex of the ideal triangle and runs from a vertical edge toward the center, while the two vertical segments run from the intersections of the arcs to the edges f and f^{\prime}.

By symmetry this curve divides the thrice-punctured sphere into three equal parts each having area $\frac{2 \pi}{3}$. Due to symmetry the length of ϕ is $6 l$, where l is the length of just one of the vertical segments. Computing the length of the segment from $(1, \sqrt{3})$ to $(1,1)$ using the formula given we obtain $l=\ln \sqrt{3}-\ln 1=\frac{1}{2} \ln 3$. Thus the length of ϕ is $3 \ln 3$.

For $A_{1}=A_{2}=\frac{2 \pi}{3}$, the θ-curve has length $3 \ln 3<\frac{4 \pi}{3}=A_{1}+A_{2}$, while for $A_{1}=A_{2}<\pi$, the horocycles of length $A_{1}+A_{2}$ are minimizing by Proposition 3.6. Moreover, as $A_{1}=A_{2}$ decreases, the symmetric θ-curve gets longer and the horocycles get shorter. Therefore there is a constant $\pi<A_{0}<\frac{2 \pi}{3}$ such that the θ-curve is shorter if and only if $A_{1}=A_{2}>A_{0}$.

Using Mathematica we were able to find an approximate value of A_{0}. For $A_{1}=A_{2}<\frac{2 \pi}{3}$, we consider the same construction as for ϕ, but shift it downwards a euclidean distance of p to the red curve in Figure 3. This is the only possible θ-curve enclosing A_{1} and A_{2} which satisfies the regularity and constant curvature conditions of a perimeter-minimizing double bubble. By symmetry, the length is given by adding four times the length of one arc (we take the one centered at $(0, p)$) to two

Figure 3. A θ-curve on a thrice-punctured sphere in the upper half-plane allows us to parametrize the area and perimeter of the θ-curve for equal areas.
times the length of one vertical segment (we take the one starting at $(1,1)$). Using the standard parametrizations for these curves and the length formula given we obtain

$$
\operatorname{Perimeter}(p)=4 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sin x-\frac{p}{2}} d x-2 \ln (\sqrt{3}-p)
$$

The area enclosed by the red curve is given by taking four times area of the region between the red arc and the first half of f. Applying the given formula for computing area we have
$\operatorname{Area}(p)=4 \int_{0}^{1} \int_{\sqrt{1-(x-1)^{2}}}^{\sqrt{4-x^{2}}-p} \frac{1}{y} d y d x=4 \int_{0}^{1}-\frac{1}{\sqrt{4-x^{2}}-p}+\frac{1}{1-(x-1)^{2}} d x$.
Given these parametrizations of area and perimeter, we can plot the perimeter against the area as in Figure 4. Further computations via Mathematica show that a θ-curve is more efficient than horocycles for areas greater than about 3.4076/2.

Lemma 4.3. In the hyperbolic plane, for a disc of area A and perimeter P the following statements hold:
(1) If $A \leq \pi$, then $P \geq 2.2 A$.
(2) If $A \leq \frac{\pi}{2}$, then $P \geq 3 A$.
(3) If $A \leq \frac{4 \pi}{9}$, then $P \geq \sqrt{10}$.
(4) If $A \leq \frac{4 \pi}{15}$, then $P \geq 4 A$.
(5) If $A<8 \pi /(9+3 \sqrt{13})$, then $P>\frac{4 \pi}{3}$.

Figure 4. The θ-curve is shorter than horocycles for equal areas greater than about 1.7.

Proof. Set $c=P / A$. If we parametrize area and perimeter of such a disc using the hyperbolic radius, s, then

$$
c=\frac{2 \pi \sinh s}{4 \pi \sinh ^{2} \frac{s}{2}}=\operatorname{coth} \frac{s}{2}
$$

Notice that coth $\frac{s}{2}$ is decreasing with s, whereas $A=4 \pi \sinh ^{2} \frac{s}{2}$ is increasing with s. Therefore coth $\frac{s}{2}$ is bounded below by its value at the hyperbolic radius corresponding to the largest A. Suppose $A \leq \pi$. We solve $A \leq 4 \pi \sinh ^{2} \frac{s}{2}$ to find $s \leq \cosh ^{-1} \frac{3}{2}$. Hence $c \leq \operatorname{coth}\left(\frac{1}{2} \cosh ^{-1}\left(\frac{3}{2}\right)\right) \approx 2.22$. Thus $P=c A \geq 2.2 A$. Therefore, the first statement holds. Statements (2)-(4) are shown by the same method.

To show (5), we suppose that $A>8 \pi /(9+3 \sqrt{13})$. Since $P(A)=\sqrt{A^{2}+4 \pi A}$ is strictly increasing for all positive A, we have that for $A>8 \pi /(9+3 \sqrt{13})$,

$$
P>\sqrt{\left(\frac{8 \pi}{9+3 \sqrt{13}}\right)^{2}+4 \pi \frac{8 \pi}{9+3 \sqrt{13}}}=\frac{4 \pi}{3} .
$$

Remark 4.4. In Lemma 4.3(1)-(4) both inequalities of each statement may be made strict and the statements will still hold. The method of proof is the same.

Lemma 4.5. For two regions on the thrice-punctured sphere with areas A_{1} and A_{2} such that $A_{1}, A_{2} \leq A_{3}=2 \pi-A_{1}-A_{2}$, we have that $A_{1}, A_{2} \leq \pi$.

Proof. If this was not true, the total area $A_{1}+A_{2}+A_{3}$ would exceed 2π, which is the area of the thrice-punctured sphere (Proposition 3.5).

Lemma 4.6. Given a double bubble with regions of areas $0<A_{1}, A_{2} \leq 2 \pi-$ $A_{1}-A_{2}$ and perimeters P_{i}, the total perimeter P satisfies $P \geq A_{1}+\frac{1}{2} P_{2}$.

Proof. Denote the area and perimeter of the complementary region by A_{3} and P_{3}. By Lemma 4.5, $A_{1} \leq \pi$. Thus Proposition 3.2 implies that $P_{1} \geq A_{1}$. If $A_{3}<\pi$, then

$$
P_{3} \geq A_{3}=2 \pi-A_{1}-A_{2} \geq\left(2 A_{1}+A_{2}\right)-A_{1}-A_{2}=A_{1} .
$$

If $A_{3}>\pi$, then

$$
P_{3} \geq 2 \pi-A_{3}=2 \pi-\left(2 \pi-A_{1}-A_{2}\right)=A_{1}+A_{2} \geq A_{1} .
$$

Therefore the total perimeter satisfies

$$
P=\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right) \geq \frac{1}{2}\left(2 A_{1}+P_{2}\right)=A_{1}+\frac{1}{2} P_{2} .
$$

Proposition 4.7. On a thrice-punctured sphere, a curve enclosing and separating regions R_{i} of perimeters P_{i} and areas $A_{1}, A_{2} \leq 2 \pi-A_{1}-A_{2}$ has total perimeter $P>A_{1}+A_{2}$ if R_{1} or R_{2} is a union of topological discs. In particular, it is not perimeter-minimizing.

Proof. Suppose R_{2} is the union of topological discs. Let P_{i} denote the perimeter of R_{i}. Since the disc is isoperimetric in the hyperbolic plane, P_{2} is greater than or equal to the perimeter of a hyperbolic disc of the same area. By Lemma 4.5, $A_{2} \leq \pi$. Thus, by Lemma 4.3(1), $P_{2} \geq 2.2 A_{2}$. By Lemma 4.6, the total perimeter P satisfies

$$
P \geq A_{1}+\frac{1}{2} P_{2}>A_{1}+\frac{1}{2}(2.2) A_{2}>A_{1}+A_{2} .
$$

Therefore it cannot be perimeter-minimizing, because horocycles on two separate cusps have perimeter $A_{1}+A_{2}$.

Proposition 4.8. In a perimeter-minimizing double bubble with connected perimeter containing regions R_{i} of perimeters P_{i} and areas $A_{1}, A_{2} \leq A_{3}=2 \pi-A_{1}-A_{2}$, all three regions contain a cusp.

Proof. Both regions must have a component which is not a topological disc; otherwise horocycles enclosing the same area would be shorter than the perimeter of our double bubble by Proposition 4.7, contradicting the fact that our bubble is perimeter-minimizing. These components of regions which aren't topological discs must contain cusps (they can't be annular regions since the perimeter is connected).

Suppose that R_{3} is the union of topological discs. Then P_{3} is greater than or equal to the perimeter of the hyperbolic disc of area A_{3}. Since $d P / d A$ of the hyperbolic disc is always positive and $A_{3} \geq \frac{2 \pi}{3}, P_{3}$ is greater than or equal to the perimeter of the hyperbolic disc of area $\frac{2 \pi}{3}$, which is $\frac{2 \sqrt{7} \pi}{3}$. Therefore we have $P>P_{3}>\frac{2 \sqrt{7} \pi}{3}>\frac{4 \pi}{3} \geq A_{1}+A_{2}$, a contradiction.
Proposition 4.9. Consider a double bubble enclosing areas $0<A_{1}, A_{2} \leq 2 \pi-$ $A_{1}-A_{2}$, consisting of four region components C_{i} of areas $A_{1}-a_{1}, a_{1}, a_{2}, A_{2}-a_{2}$, where $a_{1} \leq a_{2}$, and each C_{i} is adjacent only to C_{i-1} and C_{i+1} for $1<i<4$. Suppose

Figure 5. Lower bound on perimeter of four components of regions with two cusps.
that C_{1} and C_{4} have no common boundary and are each connected and contain cusps, and that the union of C_{2} and C_{3} (not necessarily connected) is the union of topological discs. Then the total perimeter satisfies $P>A_{1}+A_{2}$, and the double bubble is not perimeter-minimizing.
Proof. Suppose that $\left(\frac{\sqrt{10}}{2}-1\right) a_{2} \leq a_{1}$ and $\frac{4 \pi}{15} \leq a_{2}$. Then

$$
a_{1}+a_{2} \geq \frac{\sqrt{10}}{2} a_{2} \geq \frac{\sqrt{10}}{2} \frac{4 \pi}{15}>\frac{8 \pi}{3(3+\sqrt{13})}
$$

Therefore $a_{1}+a_{2}>8 \pi /(3(3+\sqrt{13}))$. We conclude that at least one of the following conditions must be satisfied:
(1) $8 \pi /(3(3+\sqrt{13}))<a_{1}+a_{2}$.
(2) $a_{1} \leq\left(\frac{\sqrt{10}}{2}-1\right) a_{2}$ and $a_{2}<\frac{4 \pi}{9}$.
(3) $a_{2}<\frac{4 \pi}{15}$.

Therefore it suffices to show $P>A_{1}+A_{2}$ for the three cases where at least one of these conditions is satisfied.

Case 1: Since the union of C_{2} and C_{3} is the union of topological discs with boundary and the disc is isoperimetric in the hyperbolic plane, the length of the boundary of their union is greater than the perimeter of a hyperbolic disc of area $a_{1}+a_{2}$. Therefore, by Lemma 4.3(5), $P>\frac{4 \pi}{3}>A_{1}+A_{2}$.

To show the remaining cases, we remove the unshared perimeter of C_{2} (see Figure 5) and consider the sum of P_{1} and the total perimeter of C_{3} and C_{4}. Since $A_{1}-a_{1} \leq A_{1} \leq \pi$ (Lemma 4.5), by Proposition 3.2, $P_{1} \geq A_{1}-a_{1}$. Since C_{3} is the union of topological discs, the total perimeter of C_{3} and C_{4} is bounded below by $A_{2}-a_{2}+\frac{1}{2} P_{3}$, by Lemma 4.6. Thus $P \geq A_{1}-a_{1}+A_{2}-a_{2}+\frac{1}{2} P_{3}$.
Case 2: Since $a_{2}<\frac{4 \pi}{9}$, by Lemma 4.3(2) we have $P_{3}>\sqrt{10} a_{2}$; thus

$$
P \geq A_{1}-a_{1}+A_{2}-a_{2}+\frac{1}{2} P_{3}>A_{2}-a_{2}+A_{1}-a_{1}+\frac{\sqrt{10}}{2} a_{2}
$$

Since $a_{1} \leq\left(\frac{\sqrt{10}}{2}-1\right) a_{2}$, we have

$$
\begin{aligned}
P & >A_{2}-a_{2}+A_{1}-a_{1}+\left(\frac{\sqrt{10}}{2}-1\right) a_{2}+a_{2} \\
& \geq A_{2}-a_{2}+A_{1}-a_{1}+a_{1}+a_{2}=A_{1}+A_{2}
\end{aligned}
$$

Case 3: By Lemma 4.3(3), we have $P_{3}>4 a_{2}$; thus

$$
\begin{aligned}
P & \geq A_{2}-a_{2}+A_{1}-a_{1}+\frac{1}{2} P_{3}>A_{2}-a_{2}+A_{1}-a_{1}+2 a_{2} \\
& \geq A_{2}-a_{2}+A_{1}-a_{1}+a_{2}+a_{1}=A_{1}+A_{2} .
\end{aligned}
$$

We conclude that $P>A_{1}+A_{2}$. Hence it is not perimeter-minimizing, as horocycles on separate cusps have perimeter $A_{1}+A_{2}$.

5. Once-punctured surfaces

Some of the methods employed in Section 4, can be applied to other hyperbolic surfaces of constant Gaussian curvature -1 that share some features of the thricepunctured sphere, such as having area of 2π and at least one cusp, but lack its fixed hyperbolic structure. For example, a once punctured torus has many hyperbolic structures, yet all have area 2π. Proposition 5.1 shows that for relatively small areas on such a surface, two horocycles have less perimeter than one horocycle with a lens.

Proposition 5.1. Given two areas $0<A_{1}, A_{2} \leq \frac{4 \pi}{15}$ on a punctured surface of area 2π, the union of two horocycles about the cusp enclosing and separating A_{1} and A_{2} is shorter than a horocycle with a lens.

Proof. Without loss of generality suppose that A_{1} is not on the cusp. Since $A_{1} \leq \pi$ (Lemma 4.5), by Proposition 3.2, our surface has the same isoperimetric profile for single bubbles as the thrice-punctured sphere. Thus Lemma 4.6 holds, and the total perimeter, P, of our enclosure satisfies the inequality $P \geq A_{2}+\frac{1}{2} P_{1}$. By Lemma 4.3(4), $P_{1} \geq 4 A_{1}$ for $A_{1} \geq \frac{4 \pi}{15}$. Thus $P \geq A_{2}+2 A_{1}$.

Acknowledgements

We would like to thank the National Science Foundation and Williams College for supporting the SMALL Research Experience for Undergraduates. Additionally we thank the Mathematical Association of America and Williams College for support of our trip to speak at MathFest 2014.

References

[Adams and Morgan 1999] C. Adams and F. Morgan, "Isoperimetric curves on hyperbolic surfaces", Proc. Amer. Math. Soc. 127:5 (1999), 1347-1356. MR Zbl
[Cotton and Freeman 2002] A. Cotton and D. Freeman, "The double bubble problem in spherical space and hyperbolic space", Int. J. Math. Math. Sci. 32:11 (2002), 641-699. MR Zbl
[Foisy 1991] J. Foisy, "Soap bubble clusters in \mathbb{R}^{2} and $\mathbb{R}^{3 "}$, undergraduate thesis, 1991.
[Foisy et al. 1993] J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba, "The standard double soap bubble in \mathbb{R}^{2} uniquely minimizes perimeter", Pacific J. Math. 159:1 (1993), 47-59. MR Zbl
[Hass et al. 1995] J. Hass, M. Hutchings, and R. Schlafly, "The double bubble conjecture", Electron. Res. Announc. Amer. Math. Soc. 1:3 (1995), 98-102. MR Zbl
[Howards et al. 1999] H. Howards, M. Hutchings, and F. Morgan, "The isoperimetric problem on surfaces", Amer. Math. Monthly 106:5 (1999), 430-439. MR Zbl
[Hutchings et al. 2002] M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, "Proof of the double bubble conjecture", Ann. of Math. (2) 155:2 (2002), 459-489. MR Zbl
[Morgan 1994] F. Morgan, "Soap bubbles in \mathbb{R}^{2} and in surfaces", Pacific J. Math. 165:2 (1994), 347-361. MR Zbl

Received: 2015-05-15 Revised: 2016-05-28 Accepted: 2016-05-31
wbb1@williams.edu Department of Mathematics and Statistics, Williams College, Williamstown, MA, United States
bcb02011@mymail.pomona.edu
aloving@hawaii.edu
setammen@uga.edu
Department of Mathematics, Pomona College, Claremont, CA, United States

Alyssa Loving, Department of Mathematics, University of Hawaii at Hilo, Hilo, HI, United States

Department of Mathematics, University of Georgia, Athens, GA, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 /$ year for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2018 vol. 11 no. 2

Finding cycles in the k-th power digraphs over the integers modulo a prime 181
Greg Dresden and Wenda Tu
Enumerating spherical n-links 195
Madeleine Burkhart and Joel Foisy
Double bubbles in hyperbolic surfaces 207
Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
What is odd about binary Parseval frames?219
Zachery J. Baker, Bernhard G. Bodmann, Micah G. Bullock, Samantha N. Branum and Jacob E. McLaney
Numbers and the heights of their happiness 235
May Mei and Andrew Read-McFarland
The truncated and supplemented Pascal matrix and applications 243
Michael Hua, Steven B. Damelin, Jeffrey Sun and Mingchao Yu
Hexatonic systems and dual groups in mathematical music theory 253
Cameron Berry and Thomas M. Fiore
On computable classes of equidistant sets: finite focal sets 271
Csaba Vincze, Adrienn Varga, Márk Oláh, László Fórián and SÁNDOR LÔRINC
Zero divisor graphs of commutative graded rings 283
Katherine Cooper and Brian Johnson
The behavior of a population interaction-diffusion equation in its subcritical regime 297
Mitchell G. Davis, David J. Wollkind, Richard A. Cangelosi and Bonni J. Kealy-Dichone
Forbidden subgraphs of coloring graphs 311
Francisco Alvarado, Ashley Butts, Lauren Farquhar and Heather M. Russell
Computing indicators of Radford algebras 325
Hao Hu, Xinyi Hu, Linhong Wang and Xingting Wang
Unlinking numbers of links with crossing number 10 335
Lavinia Bulai
On a connection between local rings and their associated graded algebras 355Justin Hoffmeier and Jiyoon Lee

[^0]: MSC2010: primary 49Q10; secondary 51 M 25.
 Keywords: hyperbolic, isoperimetric, bubbles, perimeter-minimizing.

