\bullet
 involve

 a journal of mathematicsNumbers and the heights of their happiness
May Mei and Andrew Read-McFarland

Numbers and the heights of their happiness

May Mei and Andrew Read-McFarland
(Communicated by Kenneth S. Berenhaut)

A generalized happy function, $S_{e, b}$ maps a positive integer to the sum of its base b digits raised to the e-th power. We say that x is a base- b, e-power, height- h, u-attracted number if h is the smallest positive integer such that $S_{e, b}^{h}(x)=u$. Happy numbers are then base-10, 2-power, 1-attracted numbers of any height. Let $\sigma_{h, e, b}(u)$ denote the smallest height- h, u-attracted number for a fixed base b and exponent e and let $g(e)$ denote the smallest number such that every integer can be written as $x_{1}^{e}+x_{2}^{e}+\cdots+x_{g(e)}^{e}$ for some nonnegative integers $x_{1}, x_{2}, \ldots, x_{g(e)}$. We prove that if $p_{e, b}$ is the smallest nonnegative integer such that $b^{p_{e, b}}>g(e)$,

$$
d=\left\lceil\frac{g(e)+1}{1-\left(\frac{b-2}{b-1}\right)^{e}}+e+p_{e, b}\right\rceil,
$$

and $\sigma_{h, e, b}(u) \geq b^{d}$, then $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$.

1. Introduction

Let $S_{e, b}$ be the function that maps a positive base- b integer to the sum of its digits raised to the e-th power, where e is a positive integer. That is, for $x=\sum_{i=0}^{n-1} a_{i} b^{i}$, with $0 \leq a_{i} \leq b-1$ for all i,

$$
S_{e, b}\left(\sum_{i=0}^{n-1} a_{i} b^{i}\right)=\sum_{i=0}^{n-1} a_{i}^{e}
$$

If $S_{e, b}^{h}(x)=1$ for some integer h, then x is said to be an e-power, b-happy number. Guy [2004] gave the smallest 2-power, 10-happy numbers of heights 0 through 6 and asked if 78999 is the smallest height- 7 happy number. Grundman and Teeple [2003] answered Guy, giving the smallest 2-power, 10-happy numbers of heights 0 through 10, and 3-power, 10-happy numbers of heights 0 through 8 . From Grundman and Teeple's work, one can extract an algorithm for finding the smallest happy number of height $h+1$ if the smallest happy number of height h is known. The main results of this paper are Theorems 3.1 and 3.3 , which jointly imply that once

[^0]the smallest height- $(h+1)$, u-attracted, base- b number is sufficiently large, applying $S_{e, b}$ to that number will yield the smallest height- h, u-attracted, base- b number. The results of this paper hold not only for happy numbers (i.e., 1-attracted), but more generally for u-attracted numbers. Moreover, our results hold for all bases and exponents.

Definition 1.1. For a fixed base b, exponent e, and positive integer u, we say that a positive integer x is u-attracted if $S_{e, b}^{n}(x)=u$ for some nonnegative integer n. If h is the smallest nonnegative integer so that $S_{e, b}^{h}(x)=u$ then x is a height h, u-attracted number. (As a convention, $S_{e, b}^{0}(x)=x$.)

Definition 1.2. For a fixed base b, exponent e, positive integer u, and nonnegative integer h, let $\sigma_{h, e, b}(u)$ denote the smallest height- h, u-attracted number, that is, the smallest positive integer k with the property that $S_{e, b}^{h}(k)=u$ and $S_{e, b}^{n}(k) \neq u$ for $n<h$. Similarly, for positive h, let $\tau_{h, e, b}(u)$ denote the second smallest height- h, u-attracted number, that is, $S_{e, b}^{h}(l)=u, S_{e, b}^{n}(l) \neq u$ for $n<h$, and $\sigma_{h, e, b}(u)<l$.

Some of the following proofs rely upon knowing the smallest integer x such that for a given e, every integer is expressible as the sum of at most x many integers raised to the e-th power. We define $g(e)$ for this purpose.

Definition 1.3. For a fixed positive integer e, let $g(e)$ denote the smallest integer such that every nonnegative integer is expressible as $x_{1}^{e}+x_{2}^{e}+\cdots+x_{g(e)}^{e}$, where $x_{1}, x_{2}, \ldots, x_{g(e)}$ are all nonnegative integers.

This is the well-known Waring's problem. Many surveys about the history of this problem exist; see for instance [Vaughan and Wooley 2002].

For the entirety of this paper, we assume that the base $b \geq 2$ is an integer, the exponent $e \geq 1$ is an integer, the height h is a nonnegative integer, the attractor u is a positive integer, and that x denotes a positive integer. Additionally, when we say $\lceil x\rceil=y$ we mean that y is the smallest integer such that $y \geq x$, and similarly, if $\lfloor x\rfloor=y$, then y is the largest integer such that $y \leq x$.

2. Mapping attracted numbers

In this section, we establish in Theorem 2.2 a criterion, depending on $g(e)$ that ensures that $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$ for a fixed base b, exponent e, height h, and integer u.

Lemma 2.1. Fix a base b, exponent e, and attractor u. The smallest positive integer x such that $S_{e, b}(x)=u$ has n digits, where

$$
\frac{u}{(b-1)^{e}} \leq n \leq \frac{u}{(b-1)^{e}}+g(e)
$$

Proof. Since the maximum value of the image of each digit under $S_{e, b}$ is $(b-1)^{e}$, $u /(b-1)^{e}$ is a lower bound for the number of digits of x. Let q and r be the quotient and remainder of u divided by $(b-1)^{e}$, respectively; that is, q is a nonnegative integer, $0 \leq r<(b-1)^{e}$, and $u=q(b-1)^{e}+r$. Let $x_{1}, \ldots, x_{g(e)}$ be integers such that $x_{1}^{e}+\cdots+x_{g(e)}^{e}=r$. Since $r<(b-1)^{e}$, we have $x_{1}, \ldots, x_{g(e)}<b-1$ and so they are valid digits in base b. Without loss of generality, $x_{1} \leq x_{2} \leq \cdots \leq x_{g(e)}$. Let y be the positive integer formed by the digits $x_{1}, x_{2}, \ldots, x_{g(e)}$ followed by q digits, each of which is $b-1$. Since x is minimal, it follows that $x \leq y$. So n, the number of digits of x, must be less than or equal to the number of digits of y, which is $\left\lfloor u /(b-1)^{e}\right\rfloor+g(e)$.

Theorem 2.2. Fix a base b, exponent e, positive height h, and attractor u. If

$$
\begin{equation*}
\frac{\sigma_{h, e, b}(u)}{(b-1)^{e}}+g(e) \leq \frac{\tau_{h, e, b}(u)}{(b-1)^{e}} \tag{1}
\end{equation*}
$$

then $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$.
Proof. Let x be the smallest integer such that $S_{e, b}(x)=\sigma_{h, e, b}(u)$. Let z be a height- h, u-attracted number that is greater than $\sigma_{h, e, b}(u)$ (recall that $\tau_{h, e, b}$ is the smallest such number) and y any integer such that $S_{e, b}(y)=z$. That is, y is a height- $(h+1)$, u-attracted number whose image is not $\sigma_{h, e, b}(u)$. Let n be the number of digits of x and m be the number of digits of y. We will show that $x<y$. By Lemma 2.1,

$$
n \leq \frac{\sigma_{h, e, b}(u)}{(b-1)^{e}}+g(e) \quad \text { and } \quad \frac{\tau_{h, e, b}(u)}{(b-1)^{e}} \leq \frac{z}{(b-1)^{e}} \leq m
$$

By the hypothesis (1), this gives $n \leq m$. If $n<m$, then $x<y$, so let us suppose that $n=m$. It must then be the case that

$$
\frac{\sigma_{h, e, b}(u)}{(b-1)^{e}}+g(e)=\frac{z}{(b-1)^{e}}
$$

Since $S_{e, b}(y)=z$ and y has $m=z /(b-1)^{e}$ digits, y is the concatenation of m digits, each of which is $b-1$. Since $x \neq y$ (as they have different images under $S_{e, b}$) and x and y have the same number of digits, at least one digit of x is not $b-1$. Thus, $x<y$. Hence x is less than every other height- $(h+1), u$-attracted number, and so $x=\sigma_{h+1, e, b}(u)$. Since $S_{e, b}(x)=\sigma_{h, e, b}(u)$, we have $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$.

From [Grundman and Teeple 2003], it is known that $\sigma_{7,2,10}=78999$ and $\tau_{7,2,10}(1)=79899$.

Question 2.3. Under what conditions is $\tau_{h, e, b}(u)$ a permutation of the digits of $\sigma_{h, e, b}(u)$?

3. Large \boldsymbol{u}-attracted numbers

In this section, we prove Theorems 3.1 and 3.3, which imply that once $\sigma_{h, e, b}(u)$ is sufficiently large, $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$.
Theorem 3.1. Fix a base b, exponent e, positive height h, and attractor u. Let δ be a positive integer, and let

$$
d=\frac{g(e)+1}{1-\left(\frac{b-2}{b-1}\right)^{e}}+\delta .
$$

If $\sigma_{h, e, b}(u)$ has at least d digits, then the base-b expansion of $\sigma_{h, e, b}$ is of the form

$$
\sigma_{h, e, b}(u)=\sum_{i=0}^{n-1} a_{i} b^{i}
$$

with $a_{0}, \ldots, a_{\delta}=b-1$. More informally, the rightmost $\delta+1$ digits of $\sigma_{h, e, b}(u)$ are all $b-1$.

Proof. In this proof, we will show that if $\sigma_{h, e, b}$ has "too many" digits which are not equal to $b-1$, we can construct a smaller number with the same image as $\sigma_{h, e, b}$. This contradicts the definition of $\sigma_{h, e, b}$.

One can verify $\sigma_{1, e, b}(1)=10$ (in base b) for all e, b and that this is the only number of the form $\sigma_{h, e, b}$ with a 0 digit. However, 10 is a two-digit number and $d>2$ for integers $e>1$. Thus, using the base- b expansion from the statement of the theorem, $a_{i+1} \leq a_{i}$ for $0 \leq i<n-1$ (its digits must appear in increasing order from left to right) and none of its digits can be 0 since $\sigma_{h, e, b}(u)$ is the least height- h, u-attracted number.

In the case $a_{i}=b-1$ for all i, this theorem is trivially true. Otherwise, let us construct z, the sum of the image of the digits which are not equal to $b-1$. In the case that some digits of $\sigma_{h, e, b,}(u)$ are $b-1$ and some are not, define an integer parameter $k \geq 2$ to be such that $a_{k-1}<b-1$ and for all $i<k-1, a_{i}=b-1$. That is, the k-th place is the first (from the right) in which a digit that is not $b-1$ appears. Hence,

$$
\sigma_{h, e, b}(u)=\sum_{i=k-1}^{n-1} a_{i} b^{i}+\sum_{i=0}^{k-2}(b-1) b^{i} .
$$

Let $y=S_{e, b}\left(\sigma_{h, e, b}(u)\right)$ and let $z=y-(k-1)(b-1)^{e}$, that is,

$$
z=\sum_{i=k-1}^{n-1} a_{i}^{e}
$$

In the case that no digits of $\sigma_{h, e, b}$ are $b-1$, set $k=1$ and let $z=\sum_{i=0}^{n-1} a_{i}^{e}$. We proceed to show that if $k \leq \delta+1$, we can construct a number smaller than $\sigma_{h, e, b}$ with the same image as $\sigma_{h, e, b}$, a contradiction. Let $n^{\prime}=n-(k-1)$ and
let $m=\left\lfloor z /(b-1)^{e}\right\rfloor$. Since z is the sum of n^{\prime} many terms of the form a_{i}^{e}, where $a_{i} \leq b-2$ for all i, we have $n^{\prime} \geq z /(b-2)^{e}$. Thus,

$$
\frac{(b-2)^{e}}{(b-1)^{e}} n^{\prime} \geq \frac{z}{(b-1)^{e}} \geq m .
$$

So,

$$
\left(\frac{b-2}{b-1}\right)^{e} n^{\prime}+g(e)+1 \geq m+g(e)+1 .
$$

By the definition of d,

$$
d-\delta=\frac{g(e)+1}{1-\left(\frac{b-2}{b-1}\right)^{e}},
$$

and since $k \leq \delta+1$,

$$
d-(k-1) \geq \frac{g(e)+1}{1-\left(\frac{b-2}{b-1}\right)^{e}} .
$$

Thus,

$$
(d-(k-1))\left(1-\left(\frac{b-2}{b-1}\right)^{e}\right) \geq g(e)+1 .
$$

And since $n^{\prime} \geq d-(k-1)$ and $1-\left(\frac{b-2}{b-1}\right)^{e}>0$, we have

$$
n^{\prime}\left(1-\left(\frac{b-2}{b-1}\right)^{e}\right) \geq g(e)+1
$$

and hence

$$
n^{\prime} \geq g(e)+1+n^{\prime}\left(\frac{b-2}{b-1}\right)^{e} \geq m+g(e)+1 .
$$

Therefore, $n^{\prime} \geq m+g(e)+1$.
Let r be the remainder of y divided by $(b-1)^{e}$; that is, $y=q(b-1)^{e}+r$, where $q \geq 0$ and $(b-1)^{e}>r \geq 0$. From the definition of m, we have $q=m+(k-1)$. Let $x_{1}, x_{2}, \ldots, x_{g(e)}$ be integers less than $b-1$ so that $x_{1}^{e}+x_{2}^{e}+\cdots+x_{g(e)}^{e}=r$. There are such x_{j} since $g(e)$ is defined so that such integers exist, and all integers must be less than $b-1$ since $r<(b-1)^{e}$. Without loss of generality, $x_{1} \leq x_{2} \leq \cdots \leq x_{g(e)}$. Let x be a base- b number with digits $x_{1}, \ldots, x_{g(e)}$ followed by $m+(k-1)$ many $b-1$ digits.

Hence, $S_{e, b}(x)=y$, and x has at most $g(e)+m+(k-1)$ digits. Since $n^{\prime}=$ $n-(k-1)$, we know $n \geq g(e)+1+m+(k-1)$. However, this means that x has fewer digits than $\sigma_{h, e, b}(u)$. This contradicts the fact that $\sigma_{h, e, b}(u)$ is the smallest height- h, u-attracted integer, and hence, $k>\delta+1$.

For ease of notation, we define a constant $p_{e, b}$.
Definition 3.2. For a fixed exponent e and base b, let $p_{e, b}$ be the smallest integer such that $b^{p_{e, b}}>g(e)$.

Theorem 3.3. Fix a base b, exponent e, positive height h, and attractor u. If $\sigma_{h, e, b}(u)=\sum_{i=0}^{n-1} a_{i} b^{i}$, where $a_{0}, \ldots, a_{e+p_{e, b}}=b-1$, then $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=$ $\sigma_{h, e, b}(u)$.

Proof. Let $\sigma_{h, e, b}(u)$ be such that $a_{0}, \ldots, a_{k}=b-1$, where $k \geq e+p_{e, b}$. Define $c_{j}=\sigma_{h, e, b}(u)+j$ for $1 \leq j<g(e)(b-1)^{e}$. We will show that c_{1} through $c_{g(e)(b-1)^{e}-1}$ are not height- h, u-attracted numbers.

If $b>2$, using the definition of $p_{e, b}$ we get

$$
j<g(e)(b-1)^{e}<b^{p_{e, b}}(b-1)^{e}<b^{p_{e, b}} b^{e}=b^{e+p_{e, b}} .
$$

Since $\sigma_{h, e, b}$ has at least $e+p_{e, b}+1$ trailing digits equal to $b-1$, we know c_{1} has at least $e+p_{e, b}+1$ trailing zeros. Since $j<b^{e+p_{e, b}}$, we know j has at most $e+p_{e, b}$ many digits. Hence c_{j} has at least one digit which is zero for $1 \leq j<g(e)(b-1)^{e}$. Let c_{j}^{\prime} be formed by removing the all zero digits of c_{j}. We claim that $c_{j}^{\prime}<\sigma_{h, e, b}(u)$. Recall that n denotes the number of digits of $\sigma_{h, e, b}(u)$. If $a_{i} \neq b-1$ for some i, then $n \geq e+p_{e, b}+2$ and c_{j} has n digits for all j. Thus, c_{j}^{\prime} has at most $n-1$ digits and hence $c_{j}^{\prime}<\sigma_{h, e, b}$. If $a_{i}=b-1$ for all i, then $\sigma_{h, e, b}(u)=b^{n}-1$ and $c_{1}=b^{n}=b^{e+p_{e, b}+1}$, which means that $c_{j}<b^{e+p_{e, b}+1}+b^{e+p_{e, b}}$. Thus c_{j}^{\prime} has at most n digits, while the leading digit of $\sigma_{h, e, b}$ is $b-1$, but the leading digit of c_{j}^{\prime} is 1 , and since $b \neq 2, c_{j}^{\prime}<\sigma_{h, e, b}$.

This leaves only the case that $b=2$. In this case,

$$
j<g(e)(2-1)^{e}=g(e)<2^{p_{e, 2}} .
$$

Since the only allowable digits are 0 and 1 , and we argued in the proof of Theorem 3.1 that $\sigma_{h, e, b}$ does not have any digits that are equal to zero, $\sigma_{h, e, 2}=2^{n+1}-1$ for some $n \geq e+p_{e, 2}$, so $2^{n+1} \leq c_{j}<2^{n+1}+2^{p_{e, 2}}$ for all j. Since $n \geq e+p_{e, 2}$ and e is at least $1, c_{j}$ has at least two digits that are equal to 0 . Again, let c_{j}^{\prime} be formed by removing the all zero digits of c_{j}. Then c_{j}^{\prime} has fewer than n digits and hence $c_{j}^{\prime}<\sigma_{h, e, 2}$.

So, if any c_{j} are height- h, u-attracted numbers, then c_{j}^{\prime} is a smaller height- h, u-attracted number than $\sigma_{h, e, b}(u)$, contradicting the definition of $\sigma_{h, e, b}(u)$. Hence, $\tau_{h, e, b}(u) \geq g(e)(b-1)^{e}+\sigma_{h, e, b}(u)$. Therefore, by Theorem 2.2, $S_{e, b}\left(\sigma_{h+1, e, b}\right)=$ $\sigma_{h, e, b}$.

Corollary 3.4. Fix a base band exponent e. Let

$$
d=\left\lceil\frac{g(e)+1}{1-\left(\frac{b-2}{b-1}\right)^{e}}+e+p_{e, b}\right\rceil \text {. }
$$

If $\sigma_{h, e, b}(u) \geq b^{d}$, then $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$.
Proof. Since $\sigma_{h, e, b}(u) \geq b^{d}$, we know $\sigma_{h, e, b}(u)$ must have at least $d-1$ digits. Hence, by Theorem 3.1, $\sigma_{h, e, b}(u)=\sum_{i=0}^{n-1} a_{i} b^{i}$, where for $i \leq e+p_{e, b}$, we have $a_{i}=b-1$. Therefore, by Theorem 3.3, $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}(u)$.

Corollary 3.4 gives a bound b^{d} for $\sigma_{h, e, b}(u)$ (in terms of e and b) so that if $\sigma_{h, e, b}(u) \geq b^{d}$, then $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}$. This leads to the natural question:

Question 3.5. Is there a bound β for h (in terms of e and b) so that if $h \geq \beta$, $S_{e, b}\left(\sigma_{h+1, e, b}(u)\right)=\sigma_{h, e, b}$?

Acknowledgements

This work was supported by a Bowen Summer Research Assistantship from Denison University. The authors also thank the referee for helpful suggestions. Finally, the authors would like to acknowledge the Research Experiences for Undergraduate Faculty program.

References

[Grundman and Teeple 2003] H. G. Grundman and E. A. Teeple, "Heights of happy numbers and cubic happy numbers", Fibonacci Quart. 41:4 (2003), 301-306. MR Zbl
[Guy 2004] R. K. Guy, Unsolved problems in number theory, 3rd ed., Springer, 2004. MR Zbl
[Vaughan and Wooley 2002] R. C. Vaughan and T. D. Wooley, "Waring's problem: a survey", pp. 301-340 in Number theory for the millennium, III (Urbana, IL, 2000), edited by M. A. Bennett et al., A K Peters, Natick, MA, 2002. MR Zbl

Received: 2015-11-04 Revised: 2017-04-05 Accepted: 2017-05-09

meim@denison.edu	Department of Mathematics \& Computer Science, Denison University, Granville, OH, United States
readmc_a1@denison.edu	Department of Mathematics \& Computer Science, Denison University, Granville, OH, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 /$ year for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2018 vol. 11 no. 2

Finding cycles in the k-th power digraphs over the integers modulo a prime 181
Greg Dresden and Wenda Tu
Enumerating spherical n-links 195
Madeleine Burkhart and Joel Foisy
Double bubbles in hyperbolic surfaces 207
Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
What is odd about binary Parseval frames?219
Zachery J. Baker, Bernhard G. Bodmann, Micah G. Bullock, Samantha N. Branum and Jacob E. McLaney
Numbers and the heights of their happiness 235
May Mei and Andrew Read-McFarland
The truncated and supplemented Pascal matrix and applications 243
Michael Hua, Steven B. Damelin, Jeffrey Sun and Mingchao Yu
Hexatonic systems and dual groups in mathematical music theory 253
Cameron Berry and Thomas M. Fiore
On computable classes of equidistant sets: finite focal sets 271
Csaba Vincze, Adrienn Varga, Márk Oláh, László Fórián and SÁNDOR LÔRINC
Zero divisor graphs of commutative graded rings 283
Katherine Cooper and Brian Johnson
The behavior of a population interaction-diffusion equation in its subcritical regime 297
Mitchell G. Davis, David J. Wollkind, Richard A. Cangelosi and Bonni J. Kealy-Dichone
Forbidden subgraphs of coloring graphs 311
Francisco Alvarado, Ashley Butts, Lauren Farquhar and Heather M. Russell
Computing indicators of Radford algebras 325
Hao Hu, Xinyi Hu, Linhong Wang and Xingting Wang
Unlinking numbers of links with crossing number 10 335
Lavinia Bulai
On a connection between local rings and their associated graded algebras 355Justin Hoffmeier and Jiyoon Lee

[^0]: MSC2010: 11A99, 11A63.
 Keywords: happy numbers, integer sequences, iteration, integer functions.

