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In this paper, we introduce the k× n (with k ≤ n) truncated, supplemented Pascal
matrix, which has the property that any k columns form a linearly independent set.
This property is also present in Reed–Solomon codes; however, Reed–Solomon
codes are completely dense, whereas the truncated, supplemented Pascal matrix
has multiple zeros. If the maximum distance separable code conjecture is correct,
then our matrix has the maximal number of columns (with the aforementioned
property) that the conjecture allows. This matrix has applications in coding,
network coding, and matroid theory.

1. Introduction

Finite field linear algebra is an import branch of linear algebra. Instead of using the
infinite field R, it uses linearly independent vectors consisting of a finite number of
elements, which can be represented by a finite number of bits. It has thus motivated
many practical coding techniques, such as Reed–Solomon codes [1960] and linear
network coding [Li et al. 2003; Ho et al. 2006]. It is also closely related to structural
matroid theory through matroid representability [Oxley 2011; Oxley et al. 1996;
El Rouayheb et al. 2010; Yu et al. 2014].

One of the most important problems in finite field linear algebra is finding the
size of the largest set of vectors over a k-dimensional finite field such that every
subset of k vectors is linearly independent [Ball 2012; Ball and De Beule 2012].
From a matrix perspective, the problem is described as:

Problem 1.1. Consider a finite field Fq , where q = ph, for p a prime and h a
nonnegative integer. Given a positive integer k, what is the largest integer n such
that there exists a k × n matrix H over Fq , in which every set of k columns is
linearly independent?
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Such a matrix, upon its existence, could be the generator matrix of an [n, k]
maximum distance separable (MDS) code [Lin and Costello 2004], which can
correct up to d = n − k bits of erasures or t = d/2 bits of errors. We will thus
refer to H as an MDS matrix. Its existence also determines the representability
of uniform matroids, which we will discuss in detail in Section 4C. The maximal
value of n, according to the MDS conjecture, is q + 1, unless q = 2h and k = 3
or k = q − 1, in which case n ≤ q + 2. This conjecture has been recently proved
for any q = p in [Ball 2012; Ball and De Beule 2012], but a complete proof of it
remains open.

Therefore, it is crucial to understand the construction of k×(q+1)MDS matrices.
In coding theory literature, many construction algorithms have been proposed to
meet certain coding requirements. However, their computational complexity is
not necessarily satisfactory. On one hand, multiplications and additions over large
finite fields are required in the matrix construction. On the other hand, the resultant
MDS matrix may have low sparsity (or high density), which is measured by the
number of zeros in the matrix. Low sparsity can be translated into higher encoding
and decoding complexity. It is an open question how these algorithms can be
generalized and provide new insights into related fields, such as network coding
theory and matroid theory.

In this paper, we investigate the above problems by first proposing in Section 2 a
new type of MDS matrix called a supplemented Pascal matrix. A supplemented
Pascal matrix can be generated by additions and, in particular, without multipli-
cations. It also has guaranteed number of zero entries for high sparsity. We will
prove that a supplemented Pascal matrix is an MDS matrix in Section 3. We will
then extend our results into a general code construction framework in Section 4A,
and then discuss its applications to network coding theory and matroid theory in
Sections 4B and 4C, respectively.

2. Definitions

For clarity we should first label the elements of a finite field. Henceforth, let p
be a prime and h be a nonnegative integer. A finite field Fq contains q = ph

elements, each represented by a polynomial g(x)=
∑h−1

i=0 βi x i, whose coefficients
are {βi }

h−1
i=0 ∈ [0, p − 1]. The elements g(x) take on distinct values between 0

and q − 1 at x = p, which can be used as an intuitive index of the elements.
Specifically, we define a index function σq(n):

Definition 2.1. For any integer n ∈ [0, q − 1], σq(n) is the element of Fq whose
polynomial coefficients satisfy

∑h−1
i=0 βi pi

= n.

For example, given q = 23, we have σq(0)= 0, σq(1)= 1, and σq(5)= x2
+ 1.
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Based on σq(n), we define a finite field binomial polynomial fm,q(n):

fm,q(n)=


1= [σq(n)]m, m = 0,
m∏

i=1

σq(n)− σq(i − 1)
σq(i)

, m > 0,
(1)

where {m, n} ∈ [0, q − 1] are nonnegative integers. Intuitively, fm,q(n) is a polyno-
mial in σq(n) of degree m.

Based on fm,q(n), we introduce the key matrix in this paper, called the Pascal
matrix:

Definition 2.2. Define the matrix Pq over Fq as the q × q matrix with elements
Pq(m, n)= fm,q(n):

Pq =


f0,q(0) f0,q(1) · · · f0,q(q − 1)
f1,q(0) f1,q(1) · · · f1,q(q − 1)
...

...
. . .

...

fq−1,q(0) fq−1,q(1) · · · fq−1,q(q − 1)

. (2)

Note that fm,q(n) = 0 for m > n and so Pq is an upper-triangular Pascal matrix.
For brevity, we simply call it the Pascal matrix.

Note that the matrix index starts from 0.

Example 2.3. When q = 22
= 4, we have

P4 =


1 1 1 1
0 1 x x+1
0 0 1 x+1
0 0 0 1

.
Our considered matrix Pq is named after Pascal because its entries are binomial

coefficients, which is the same as the traditional Pascal matrix, except that the field
applied here is Fq , as opposed to Z≥0 in the traditional case. Indeed, when q = p,
the matrix Pp is equal to the traditional Pascal matrix modulo p.

Example 2.4. When q = p = 5, the traditional Pascal matrix P5,T and our Pascal
matrix P5 are given by

P5,T =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 and P5 =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 1
0 0 0 1 4
0 0 0 0 1

.
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Indeed, the construction of the Pascal matrix over Fp shares the same additive
formula as the traditional Pascal matrix. Explicitly, Pp(m, n)= Pp(m−1,m−1)+
Pp(m, n− 1) for every pair of {m, n} ∈ [1, q − 1] (note that addition is modulo p).
This idea appears in Section 4B.

Definition 2.5. The truncated Pascal matrix Pq,k is the Pascal matrix Pq truncated
to the first k rows.

Example 2.6. Consider the matrix P5 given in Example 2.4. The truncated Pascal
matrix P5,2 is given by

P5,2 =

[
1 1 1 1 1
0 1 2 3 4

]
.

Definition 2.7. A supplemented Pascal matrix, denoted by Hq,k , is a truncated
Pascal matrix Pq,k appended with a column vector sk , which has a one in the bottom
entry and zeros everywhere else:

Hq,k =

Uq,k

∣∣∣∣∣∣∣∣∣
0
...

0
1

. (3)

Example 2.8. Supplementing the matrix P5,2 in Example 2.6 gives

H5,2 =

[
1 1 1 1 1 0
0 1 2 3 4 1

]
.

Our supplemented Pascal matrix has a desirable property, namely:

Theorem 2.9. Any k columns of Hq,k are linearly independent.

3. Proof of Theorem 2.9

We will first prove the following property of Pq,k , and then prove that Hq,k preserves
this property.

Lemma 3.1 (truncation lemma). Any k columns of Pq,k are linearly independent.

Proof. We first note that Pq (and thus Pq,k) has the important property that all the
entries in the m-th row (recall m begins at 0) are defined by the same polynomial
fm,q(n), which is a polynomial in σq(n) of degree m. Recall also that Pq (and thus
Pq,k) is upper-triangular. Indeed, we have that fm,q(n) has m roots in Fq (counting
multiplicity). Consequently, the first m entries of the m-th row are all zeros.

Given a truncated Pascal matrix Pq,k , suppose there exist k distinct values of
n such that the columns {n0, n1, . . . , nk−1} of Pq,k constitute a linearly dependent



THE TRUNCATED AND SUPPLEMENTED PASCAL MATRIX AND APPLICATIONS 247

set. In other words, there exists a k× k submatrix M of Pq,k ,

M =


f0,q(n0) f1,q(n1) · · · f1,q(nk−1)

f1,q(n0) f2,q(n1) · · · f2,q(nk−1)
...

...
. . .

...

fk−1,q(n0) fk−1,q(n1) · · · fk−1,q(nk−1)

, (4)

whose rank is smaller than k.
If this is the case, then there must exist a nonzero vector [a0, a1, . . . , ak−1] ∈ Fq

such that aM = z, where z = [z0, z1, . . . , zk−1] = [0, 0, . . . , 0]:

[a0, a1, . . . , ak−1]M = [0, 0, . . . , 0].

Recall that the m-th row of Pq,k (and thus M) is defined by fm,q(n). Correspond-
ingly, z is defined by

f ′q(n),
k−1∑
m=0

αm fm,q(n),

where 0= z(i)= f ′q(ni )= 0 for all i ∈ [0, k− 1]. We also note that the degree of
f ′q(n) is at most k− 1, because the highest degree of its summands is the degree of
fk−1,q(n) with a value of k− 1.

Therefore if the columns {n0, n1, . . . , nk−1} of Pq,k constitute a linearly depen-
dent set, then we will obtain a polynomial f ′q(n) such that
• its degree is at most k− 1;

• it has k roots, whose values are {σq(n0), σq(n1), . . . , σq(nk−1)}.

However, with a degree of at most k−1, f ′q(n) can only have at most k−1 roots
unless f ′q(n)= 0, which is not the case because a is nonzero. Hence, f ′q(n) does
not exist, and thus our hypothesis is invalid. Therefore, every k columns of Pq,k

are linearly independent. Thus Lemma 3.1 is proved. �

Since Hq,k is constructed by appending sk to Pq,k , to prove Theorem 2.9 we
only need to prove that any k− 1 columns of Pq,k and sk together never constitute
a linearly dependent set. To see this, we can simply use sk to linearly cancel the
first q entries in the last row of Hq,k . This will transform Hq,k from (3) into

H ′q,k =


0

Pq,k−1 0
...

0 · · · 0 1

, (5)

which indicates that sk is orthogonal to all the other columns of H ′q,k . Then, by
applying the truncation lemma to Pq,k−1, we know that every k− 1 out of the first
q columns of H ′q,k are linearly independent. Adding sk to them will yield a linearly
independent set of k. Theorem 2.9 is thus proved.
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4. Applications

4A. Coding theory. The truncation lemma can be immediately generalized to any
appropriately defined k× n matrix over Fq that satisfies (1) n ≤ q , and (2) the m-th
row (m ∈ [0, k − 1]) is defined by a polynomial of degree m. For example, by
setting fm,q(n)= σq(n)m−1, we can obtain a k× n matrix over Fq such that every
set of k columns is a linearly independent set. Indeed, this matrix is the generator
matrix G of an [n, k] Reed–Solomon code:

σq(1)0 σq(2)0 · · · σq(n)0

σq(1) σq(2) · · · σq(n)
σq(1)2 σq(2)2 · · · σq(n)2
...

...
. . .

...

σq(1)k−1 σq(2)k−1
· · · σq(n)k−1

.

Then by appending sk , we can obtain an [n+1, k] extended Reed–Solomon code.
Therefore, our polynomial approach is a general approach of constructing nontrivial
[n, k] MDS codes. It also indicates that the maximum length of any MDS code is
at least q + 1 for any k 6 q. This result is in agreement with the MDS conjecture
[Ball 2012; Ball and De Beule 2012].

Among all the possible constructions, the supplemented Pascal matrix Hq,k

enjoys a high sparsity, which is the number of zeros in the matrix. Higher sparsity
is advantageous, because it generally leads to easier encoding/decoding. However,
the sparsity has an upper bound. In the following lemma, we will prove that Hq,k

approximates this bound with a factor of 1
2 :

Lemma 4.1 (matrix sparsity). The number of zeros in the supplemented Pascal
matrix Hq,k is 1

2 of the maximum sparsity of any [n, k] code.

Proof. Since any k×k submatrix of G has a rank of k, there is no all-zero row in this
matrix. Hence, there are at most k−1 zeros in each row of G, and at most k2

−k zeros
in total. Recall that in Hq,k the m-th row has m+1 zeros for m ∈ [0, k− 2] and the
(k−1)-th row has k−1 zeros. The total number of zeros is 1

2(k
2
+ k− 2). �

4B. Network coding theory. Network coding (NC) is a class of packet-based cod-
ing techniques. Consider a block of K ≥ 1 data packets {xk}

K−1
k=0 , each containing

L bits of information. NC treats these data packets as K variables, and sends in the
u-th (u ∈ Z≥0) transmission a linear combination yu of all of them:

yu =

K−1∑
k=0

αk,u xk, (6)

where coefficients {αk,u}
K−1
k=0 are elements of a finite field Fq .
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Ideally, NC is able to allow any receiver that has received any K coded packets
to decode all the K data packets by solving a set of K linear equations. To this end,
the associated coefficient matrix C , where

C =


α0,0 α0,1 · · ·

α1,0 α1,1 · · ·
...

...

αK−1,0 αK−1,1 · · ·

, (7)

must satisfy that every set of K columns of it is a linearly independent set. Once
this condition is met, NC is able to achieve the optimal throughput in wireless
broadcast scenarios [Yu et al. 2014].

However, it is highly nontrivial to meet this condition, which hinders the imple-
mentation of NC. First, to guarantee the linear independence, the sender chooses co-
efficients randomly from a sufficiently large Fq [Lucani et al. 2009; Heide et al. 2009]
or regularly collects receiver feedback to make online coding decisions [Fragouli
et al. 2007]. While a large Fq incurs heavy computational loads, collecting feedback
could be expensive or even impossible in certain circumstances, such as time-
division-duplex satellite communications [Lucani et al. 2009]. Second, to enable the
decoding, coding coefficients must be attached to each coded packet, which consti-
tute dK log2 qe bits of overhead in each transmission. When q is large and L is small,
the throughput loss due to the overhead may overwhelm all the other benefits of NC.

These practical shortages of NC can be easily overcome by the proposed supple-
mented Pascal matrix. By choosing a sufficiently large p and letting C = Hp,K ,
we obtain an NC that is both computational friendly (only operations modulo p)
and feedback-free. Moreover, for the receivers to retrieve the coding coefficients,
the sender only needs to attach the index u to the u-th packet, rather than attaching
the complete coefficients. Furthermore, the additive formula for Pascal matrix may
enable efficient progressive coding/decoding algorithms, which could be our future
research direction.

4C. Matroid theory. A matroid M= (E, I ) is a finite collection of elements called
the ground set, E , paired with its comprehensive set of independent subsets, I. A
uniform matroid U k

n has |E | = n and the property that any subset of size k of E is an
element of I and no subset of size k+1 is in I. U k

n is called q-representable if there
is a k× n matrix such that every k columns of it are linearly independent over Fq .

Corollary 4.2 (representability of uniform matroid). Any uniform matroid U k
n that

satisfies n 6 q + 1 is q-representable by any n columns of Hq,k . �

It is known that any uniform matroid U k
n that satisfies n6q+1 is q-representable

[Oxley 2011; Ball 2015; Reed and Solomon 1960]; one can obtain another con-
struction from Reed–Solomon codes. Hq,k is just another, sparse example.
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5. Conclusion

In this paper, we proposed the supplemented Pascal matrix, whose first k rows
are an MDS matrix over Fq for any prime power q and positive integer k 6 q.
Our construction can be potentially generalized to a framework that enables low-
complexity MDS code constructions and encoding/decoding as well. Our matrix
can overcome some practical shortages of network coding and, thus, enables high-
performance wireless network coded packet broadcast. Our matrix is in agreement
with existing results on the representability of uniform matroids, while also providing
new insights into this topic. In the future, we intend to study Pascal-based network
coding algorithms. We are also interested in applying our results to other fields
such as projective geometry and graph theory.
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