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(Communicated by Joseph A. Gallian)

Motivated by the music-theoretical work of Richard Cohn and David Clampitt on
late-nineteenth century harmony, we mathematically prove that the PL-group of a
hexatonic cycle is dual (in the sense of Lewin) to its T /I -stabilizer. Our points of
departure are Cohn’s notions of maximal smoothness and hexatonic cycle, and
the symmetry group of the 12-gon; we do not make use of the duality between the
T /I -group and PLR-group. We also discuss how some ideas in the present paper
could be used in the proof of T /I -PLR duality by Crans, Fiore, and Satyendra
(Amer. Math. Monthly 116:6 (2009), 479–495).

1. Introduction: hexatonic cycles and associated dual groups

Why did late nineteenth century composers, such as Franck, Liszt, Mahler, and
Wagner, continue to favor consonant triads over other tone collections, while
simultaneously moving away from the diatonic scale and classical tonality?

Richard Cohn [1996] proposed an answer, independent of acoustic consonance:
major and minor triads are preferred because they can form maximally smooth
cycles. Consider for instance the following sequence of consonant triads, called a
hexatonic cycle by Cohn:

E[, e[, B, b,G, g, E[. (1)

We have indicated major chords with capital letters and minor chords with lowercase
letters. Although the motion from a major chord to its parallel minor, e.g., E[ to e[,
B to b, and G to g, is distinctly nondiatonic, this sequence has cogent properties
of importance to late-Romantic composers, as axiomatized in Cohn’s notion of
maximally smooth cycle [1996, page 15]:
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• It is a cycle in the sense that the first and last chords are the same but all others
are different. A cycle is required to contain more than three chords.

• All of the chords are in one “set class”; in this case each chord is a consonant
triad.

• Every transition is maximally smooth in the sense that two notes stay the same
while the third moves by the smallest possible interval: a semitone.

Cohn considered movement along this sequence transformationally as an action
by a cyclic group of order 6. Additionally, David Clampitt [1998] considered
movement along this sequence via P and L , and also via certain rotations and
reflections. As usual, we denote by P the “parallel” transformation that sends a
major or minor chord to its parallel minor or major chord, respectively. We denote
by L the “leading tone exchange” transformation, which moves the root of a major
chord down a semitone and the fifth of a minor chord up a semitone, so the L sends
consonant triads e[ to B, and b to G, and g to E[. The hexatonic cycle (1) is then
positioned in the network

E[ P // e[ L // B
P // b

L // G
P // g

L

jj (2)

with alternating P and L transformations between the nodes.
Wagner’s Grail motive in Parsifal can be interpreted in terms of network (2),

as proposed by David Clampitt [1998]. A small part of Clampitt’s analysis of
the first four chords is pictured in Figure 1. Clampitt includes the final D[ chord,
which lies outside of the hexatonic cycle (1), in his interpretation via a conjugation-
modulation applied to a certain subsystem. A third interpretation, in addition to the
cyclic one of Cohn [1996, Example 5] and the PL-interpretation in Figure 1, was
also proposed by Clampitt, this time in terms of the transpositions and inversions
{T0, T4, T8, I1, I5, I9}. Clampitt observes that this group and the PL-group form dual
groups in the sense of Lewin [1987], via their actions on the hexatonic set of chords
in (1). The perceptual basis of all three groups is explained in [Clampitt 1998].

The contribution of the present article is to directly prove that the PL-group
and the group {T0, T4, T8, I1, I5, I9} in Clampitt’s article are dual groups acting
on (1). Our points of departure are the hexatonic cycle (1), the standard action of
the dihedral group of order 24 on the 12-gon, and the Orbit-Stabilizer Theorem.
We do not use the duality of the T /I -group and PLR-group. Some arguments in
Section 3 are similar to arguments of Crans, Fiore, and Satyendra [Crans et al.
2009], but there are important differences; see Remark 3.10.

Just how special are the consonant triads with regard to the maximal smoothness
property? According to [Cohn 1996], only six categories of tone collections support
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near the end of the opera, shown in Example 1. After Parsifal has taken 
the Grail from the shrine and kneels before it, the Grail gradually begins 
to glow with a soft light ("Allmfihliche sanfte Erleuchtung des Grales").1 
The chromatic-enharmonic 'Grail' motive creates a harmonic disturbance 
within a larger tonal context. The motion in Act III, mm. 1098-1100, from 
Eb major to Db major takes place within a plagal I-V-IV-I progression in 
Ab major, (the tonality of the opera as a whole), beginning with the arrival 
on Ab in m. 1088 (after which the diatonic form of 'Grail' appears), and 
ending in m. 1102 with the plagal cadence.2 A hexatonic analysis applies 
to mm. 1098-99, preceding the completion of what Lewin (1984, 346) 
refers to as "the 'modulation' from V to IV." Example 1 reproduces Cohn's 
Example 5, with Figure 1 below it showing his interpretation of the pas- 
sage, with a slight notational adjustment. Where Cohn labels his trans- 
formations T1 and T3, I label the same transformations R1 and R3, since I 
prefer to reserve Ti for the transpositions of the usual TN/IN group of oper- 
ations. The upper and lower case letters refer to major and minor triads, 
respectively. I will give a sketch of Cohn's analytical framework with ref- 
erence to this example. 

The triadic space asserted by Cohn arises from a formal property that 
harmonic triads share with pentatonic and diatonic sets, and with sets that 
are the complements of harmonic triads. All of these set classes have the 
ability to support maximally smooth cycles. Two pitch-class sets are in a 
maximally smooth relation if there exists a pitch-class transposition or 
inversion mapping one set to the other that leaves all but one pitch class 
of a set invariant and moves the remaining pitch class by interval class 1. 
It should be clear that this definition is symmetric: X and Y are in the rela- 
tion if and only if Y and X are in the relation. Under this definition, for 
example, pairs of sets from set class 3-2, e.g., { C, Db, E } and { C, D, Eb }, 
are related in a maximally smooth way. A maximally smooth cycle is a 
cycle embracing at least three distinct sets such that adjacent sets in the 
cycle are in a maximally smooth relation, that is, an ordered set of pitch- 
class sets each of which is in a maximally smooth relation with both the 
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Example 1. Wagner, Parsifal, Act 3, mm. 1098-1100 
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E[ P L P //

P

66b
L // G

P L P // e[

Figure 1. Top: Grail motive from Wagner, Parsifal, Act 3, measures
1098–1100, reproduced from [Clampitt 1998, Example 1]. Bottom:
First four chords of the Grail motive in a hexatonic PL-network of
Clampitt. Notice that the bottom arrow is the composite of the three
top arrows, and goes in the opposite direction of the bottom arrow
of diagram (2).

maximally smooth cycles: singletons, consonant triads, pentatonic sets, diatonic
sets, complements of consonant triads, and 11-note sets. Clearly the singletons
and 11-note sets do not give musically significant cycles. The pentatonic sets
and the diatonic sets each support only one long cycle, which exhausts all 12 of
their respective exemplars. The consonant triads and their complements, on the
other hand, support short cycles that do not exhaust all of their transpositions and
inversions. The maximally smooth cycles of consonant triads are enumerated as
sets as follows:

{E[, e[, B, b,G, g}, (3)

{E, e,C, c, A[, a[}, (4)

{F, f,C], c], A, a}, (5)

{F], f ], D, d, B[, b[}. (6)

These are the four hexatonic cycles of Cohn [1996, page 17]. They (and their
reverses and complements) are the only short maximally smooth cycles that exist
in the Western chromatic scale.

2. Mathematical and musical preliminaries: standard dihedral group action
on consonant triads and the Orbit-Stabilizer Theorem

We quickly recall the standard preliminaries about consonant triads, transposition,
inversion, P, L , and the Orbit-Stabilizer Theorem. A good introduction to this very
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major triads minor triads

C = 〈0, 4, 7〉 〈0, 8, 5〉 = f
C]= D[= 〈1, 5, 8〉 〈1, 9, 6〉 = f ]= g[

D = 〈2, 6, 9〉 〈2, 10, 7〉 = g
D]= E[= 〈3, 7, 10〉 〈3, 11, 8〉 = g]= a[

E = 〈4, 8, 11〉 〈4, 0, 9〉 = a
F = 〈5, 9, 0〉 〈5, 1, 10〉 = a]= b[

F]= G[= 〈6, 10, 1〉 〈6, 2, 11〉 = b
G = 〈7, 11, 2〉 〈7, 3, 0〉 = c

G]= A[= 〈8, 0, 3〉 〈8, 4, 1〉 = c]= d[
A = 〈9, 1, 4〉 〈9, 5, 2〉 = d

A]= B[= 〈10, 2, 5〉 〈10, 6, 3〉 = d]= e[
B = 〈11, 3, 6〉 〈11, 7, 4〉 = e

Table 1. The set of consonant triads, denoted Triads, as displayed
on page 483 of [Crans et al. 2009].

well-known background material is [Crans et al. 2009]. Since this background has
been treated in many places, we merely rapidly introduce the notation and indicate
a few sources.

Consonant triads. We encode pitch classes using the standard Z12 model, where
C = 0, C]= D[= 1, and so on, up to B = 11. Via this bijection we freely refer to
elements of Z12 as pitch classes. Major chords are indicated as ordered 3-tuples in
Z12 of the form 〈x, x + 4, x + 7〉, where x ranges through Z12. Minor chords are
indicated as 3-tuples 〈x + 7, x + 3, x〉 with x ∈ Z12. We choose these orderings to
make simple formulas for P and L; this is not a restriction for applications, as the
framework was extended in [Fiore et al. 2013a] to allow any orderings. We call
the set of 24 major and minor triads Triads, this is the set of consonant triads. The
letter names are indicated in Table 1.

Transposition and inversion, and P and L. The 12-tone operations transposition
Tn : Z12→ Z12 and inversion In : Z12→ Z12 are given by

Tn(x)= x + n and In(x)=−x + n

for n ∈ Z12. These 24 operations are the symmetries of the regular 12-gon, when
we consider 0 through 11 as arranged on the face of a clock. In the music-theory
tradition, this group is called the T /I -group (the “/” does not indicate any kind of
quotient). The unique reflection of the 12-gon which interchanges m and n is Im+n ,
as can be verified by direct computation.



HEXATONIC SYSTEMS AND DUAL GROUPS IN MATHEMATICAL MUSIC THEORY 257

Many composers, for instance Schoenberg, Berg, and Webern, utilized these
mod 12 transpositions and inversions. These functions and their compositional uses
have been thoroughly explored by composers, music theorists, and mathematicians;
see for example [Babbitt 1955; Forte 1973; Fripertinger and Lackner 2015; Hook
2007; Hook and Peck 2015; McCartin 1998; Mead 2015; Morris 1987; 1991; 2001;
2015; Rahn 1987]. Indeed, the three recent papers [Fripertinger and Lackner 2015;
Mead 2015; Morris 2015] together contain over 100 references.

We consider these bijective functions on Z12 also as bijective functions on Triads
via their componentwise evaluation on consonant triads:

Tn〈x1, x2, x3〉= 〈Tnx1,Tnx2,Tnx3〉 and In〈x1, x2, x3〉= 〈Inx1, Inx2, Inx3〉. (7)

Also on the set Triads of consonant triads (with the indicated ordering), but not
on the level of individual pitch classes, we have the bijective functions P and L
defined by

P〈x1, x2, x3〉 = Ix1+x3〈x1, x2, x3〉 and L〈x1, x2, x3〉 = Ix2+x3〈x1, x2, x3〉. (8)

As remarked above, P stands for “parallel” and L stands for “leading tone ex-
change”.

We consider Tn , In , P, and L as elements of the symmetric group Sym(Triads).

Proposition 2.1. The bijections P and L commute with Tn and In as elements of
the symmetric group Sym(Triads).

Proof. This is a straightforward computation using equations (7) and (8). This
computation has been discussed in broader contexts in [Fiore et al. 2013b] and
[Fiore and Satyendra 2005]. �

Orbit-Stabilizer Theorem. Suppose S is a set with a left group action by a group G
(all group actions in this paper are left group actions). Recall that the orbit of an
element Y ∈ S is

orbit of Y := {gY | g ∈ G}.

The stabilizer group of an element Y ∈ S is

GY := {g ∈ G | gY = Y }.

Theorem 2.2 (Orbit-Stabilizer Theorem). Let G be a group with an action on a
set S. Neither G nor S is assumed to be finite. Then the assignment

G/GY → orbit of Y,

gGY 7→ gY,

is a bijection. In particular, if G is finite, then each orbit is finite, and

|G|/|GY | = |orbit of Y |. (9)
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Simple transitivity. A group action of a group G on a set S is said to be simply
transitive if for any Y, Z ∈ S there is a unique g ∈ G such that gY = Z . Informally,
we also say the group G is simply transitive if the sole action under consideration
is simply transitive.

Proposition 2.3. (1) An action of a group G on a set S is simply transitive if and
only if it is transitive and every stabilizer GY is trivial.

(2) Suppose G is a finite group that acts on a set S. Then G is simply transitive if
and only if any two of the following three hold:

(a) G is transitive.
(b) Every stabilizer GY is trivial.
(c) G and S have the same cardinality.

In this case, the third condition also holds.
Another way to read this “if and only if” statement is: assuming G is finite

and any one of the conditions holds, G is simply transitive if and only if another
one of the conditions holds.

(3) Suppose a (not necessarily finite) group H1 acts simply transitively on a set S,
and a subgroup H2 of H1 acts transitively on S via its subaction. Then H1=H2.

Proof. (1) If the action is simply transitive, then it acts transitively and for each
Y ∈ S, there is only one g ∈ G with gY = Y, and hence each GY is trivial.

Suppose G acts transitively and for every Y ∈ S, the group GY is trivial. Suppose
Y, Z ∈ S and g1, g2 ∈ G satisfy g1Y = Z and g2Y = Z . Then Y = g−1

2 Z and
g−1

2 g1Y = Y, so g−1
2 g1 ∈ GY = {e}, and finally g1 = g2.

(2) We first prove that any two of the conditions implies the third and implies
simple transitivity.

(a)(b)⇒ (c): G is simply transitive by (1), and equation (9) says |G|/1= |S|, so
|G| = |S| and (c) holds.

(b)(c)⇒ (a): Equation (9) says |S| = |G|/1= |orbit of Y |, so S = orbit of Y, and
G is transitive and (a) holds, so G is simply transitive by (1).

(a)(c)⇒ (b): Equation (9) says |G|/|GY | = |G|, so |GY | = 1 and (b) holds, and
G is simply transitive by (1).

Now that we have shown any two of the conditions implies the third and simple
transitivity, we want to see that simply transitivity implies all three conditions.
From (1), simple transitivity implies (a) and (b), and we have already seen (a) and
(b) imply (c).

(3) Suppose H1 properly contains H2, and h1 ∈ H1\H2. Fix a Y ∈ S and define
Z := h1Y. Then by the transitivity of H2, there is an h2 ∈ H2 such that Z = h2Y.
But by the simple transitivity of H1, we must have h1 = h2, a contradiction. �
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3. Main theorem: Hexatonic Duality

We next review the notion of dual groups, and then turn to the main result,
Theorem 3.9 on hexatonic duality. Recall that subgroups G and H of Sym(S)
are dual in the sense of Lewin [1987, page 253] if each acts simply transitively on S
and each is the centralizer of the other.1 Recall the centralizer of G in Sym(S) is

C(G)= {σ ∈ Sym(S) | σg = gσ for all g ∈ G}.

Before turning to the main result, we prove two simultaneous redundancies in
the notion of dual groups: instead of requiring the two groups to centralize each
other, it is sufficient to merely require that they commute, and instead of requiring
H to act simply transitively, it is sufficient to merely require H acts transitively.

Proposition 3.1. Let S be a (not necessarily finite) set. Suppose G ≤ Sym(S) acts
simply transitively on S and H ≤ Sym(S) acts transitively on S. Suppose G and H
commute in the sense that gh = hg for all g ∈ G and h ∈ H. Then G and H are
dual groups. In particular, H also acts simply transitively and G and H centralize
one another.

Proof. We would like to first conclude from the simple transitivity of G, the
transitivity of H, and the commutativity of G and H, that the centralizer C(G) acts
simply transitively on S.

We claim C(G) acts simply transitively on S. It acts transitively, as C(G)⊇ H
and H acts transitively. So, it suffices by Proposition 2.3(1) to prove that, for each
s ∈ S, the only element of C(G) that fixes s is the identity. Let σ be an element of
C(G) that fixes s, and g any element of G. Then,

σ s=s =⇒ g(σ s)=g(s) =⇒ (gσ)s=(gs) =⇒ (σg)s=(gs) =⇒ σ(gs)=(gs).

1Lewin [1987, page 253] gave a more general situation that gives rise to examples of dual groups
in the sense defined above, though he did not formally make this definition. He starts with a group
G, there called STRANS, assumed to act simply transitively on a set S, and then makes three claims
without proof: (1) the centralizer C(G) in Sym(S) acts simply transitively on S (the centralizer
C(G) is called STRANS′ there); (2) the double centralizer C(C(G)) is contained in G, so actually
C(C(G))= G; and (3) the two generalized interval systems with transposition groups G and C(G)
respectively have interval-preserving transformation groups, precisely C(G) and G respectively. See
Proposition 3.2 for a proof of statements (1) and (2). Statement (3) is a consequence of the first
two statements in combination with COMM-SIMP duality, which was stated on page 101 of [Lewin
1995] and partially proved in [Lewin 1987, Theorem 3.4.10]. For a review of COMM-SIMP duality
and another proof, see [Fiore and Satyendra 2005, Section 2 and Appendix]. For the equivalence
of generalized interval systems and simply transitive group actions, see pages 157–159 of Lewin’s
monograph. The equivalence on the level of categories was proved by Fiore, Noll and Satyendra
[Fiore et al. 2013b, page 10]. The undergraduate research project of Sternberg [2006] worked out
some of the details of Lewin’s simply transitive group action associated to a generalized interval
system and investigated the Fugue in F from Hindemith’s Ludus Tonalis.
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So, not only does σ fix s, but σ also fixes (gs) for every g ∈ G. That is to say,
σ = IdS , and C(G) acts simply transitively on S.

Now we have the transitive subgroup H contained in the simply transitive group
C(G) by the assumed commutativity, so by Proposition 2.3(3), H = C(G), and H
also acts simply transitively.

To obtain C(H)= G, we use the newly achieved simple transitivity of H and
repeat the argument with the roles of G and H reversed. �

We may now use a result of Dixon and Mortimer to prove a statement of Lewin
[1987, page 253], as suggested by Julian Hook, Robert Peck, and Thomas Noll.
Parts (1) and (2) of the following proposition were stated by Lewin.

Proposition 3.2. Let S be a (not necessarily finite) set. Suppose G ≤ Sym(S) acts
simply transitively on S. Then:

(1) The centralizer C(G) in Sym(S) acts simply transitively on S.

(2) The centralizer of the centralizer C(C(G)) is equal to G.

(3) Define H := C(G). Then G and H are dual groups.

Proof. (1) This follows immediately from [Dixon and Mortimer 1996, Theo-
rem 4.2A(i) and (ii), page 109]. There semiregular means point stabilizers are
trivial and regular means simply transitive.

(2) Since C(G) is simply transitive, we can apply Dixon and Mortimer’s result to
C(G) to get that the double centralizer C(C(G)) simply transitive. But C(C(G))
contains the simply transitive group G, so C(C(G))= G by Proposition 2.3(3).

(3) This follows directly from the preceding two by definition. �

We now turn to the discussion of our main result.
Let Hex be the set of chords in the hexatonic cycle (1) and Hex the set of

underlying pitch classes of its chords; that is,

Hex := {E[, e[, B, b,G, g}, Hex := {2, 3, 6, 7, 10, 11}.

Our goal is to prove that the restriction of the PL-group to Hex and the restriction
of {T0, T4, T8, I1, I5, I9} to Hex are dual groups, and that each is dihedral of order 6.
The strategy is to separately prove the unrestricted groups act simply transitively
and are dihedral, and then finally to show that the restricted groups centralize each
other. We begin with a characterization of the consonant triads contained in Hex.

Lemma 3.3. The only consonant triads of Table 1 contained in Hex as subsets are
the elements of Hex.

Proof. We first identify the available perfect fifths in Hex (pairs with difference 7),
and then check if the corresponding major/minor thirds are in Hex.
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Figure 2. The solid circles represent the subset Hex of Z12. The
symmetry of the subset makes apparent that the only rotations
which preserve Hex are T0, T4, and T8. The geometric locations of
the solid circles also imply that the reflections across the dashed
lines are the only reflections which preserve Hex.

The only pairs of the form 〈x, x + 7〉 are 〈3, 10〉, 〈7, 2〉, and 〈11, 6〉, and we see
that x + 4 is contained in Hex in each case; that is, 7, 11, and 3 are in Hex. Thus
we have the three major chords E[, G, and B, and no others.

The only pairs of the form 〈x+7, x〉 = 〈y, y+5〉 are 〈2, 7〉, 〈6, 11〉, and 〈10, 3〉,
and we see that x + 3= y+ 8 is contained in Hex in each case; that is, 10, 2, and 6
are in Hex. Thus we have the three minor chords g, b, and e[, and no others. �

Proposition 3.4. (1) The only elements of the T /I -group that preserve Hex as a
set are {T0, T4, T8, I1, I5, I9}, so they form a group, which we will denote by H.

(2) H := {T0, T4, T8, I1, I5, I9} is dihedral of order 6.

Proof. (1) If an element of the T /I -group preserves Hex as a set, then it must
also preserve the collection Hex of underlying pitch classes as a set. Geometric
inspection of the plot of Hex in Figure 2 reveals that the only rotations that preserve
Hex are T0, T4, and T8.

Again looking at Figure 2, we see that the three reflections which interchange
2↔ 3 or 6↔ 7 or 10↔ 11 preserve Hex. By a comment on page 256, these are

I2+3 = I5, I6+7 = I1, I10+11 = I9.

No other reflections preserve Hex, as we can see geometrically from its limited
reflection symmetry.

Since H := {T0, T4, T8, I1, I5, I9} is a setwise stabilizer of Hex, it is a group.
From Lemma 3.3 we see that {T0, T4, T8, I1, I5, I9} must also stabilize the chord

collection Hex as a set. No other transpositions or inversions stabilize Hex by the
argument at the outset of this proof.
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(2) The only noncommutative group of order 6 is the symmetric group on three
elements, denoted Sym(3), which is isomorphic to the dihedral group of order 6.
The group under consideration is noncommutative, because T4 I1(x)=−x+5 while
I1T4(x)=−x − 3. �

Proposition 3.5. The setwise stabilizer H acts simply transitively on Hex.

Proof. The H -orbit of E[ is all of Hex, as the following diagram shows.

E[ e[

G E[

T0

__

T4oo

T8
��

I1

??

I5 //

I9
��

g

B b

We have |H | = 6= |orbit of Y | so the Orbit-Stabilizer Theorem

|H |/|HY | = |orbit of Y |

implies |HY | = 1. See Proposition 2.3(2). �

Next we can investigate the subgroup of Sym(Triads) generated by P and L ,
which is called the PL-group.

Proposition 3.6. The subgroup 〈P, L〉 of Sym(Triads) is dihedral of order 6.

Proof. We first observe that P and L are involutions; that is, P2
= IdTriads and

L2
= IdTriads. A musical justification comes from the definitions of “parallel” and

“leading tone exchange”. Direct computations of P2 and L2 using the formulas
in (8) provide a mathematical justification.

Since P and L are involutions, every nontrivial element of 〈P, L〉 can be ex-
pressed as an alternating word in the letters P and L . The six functions IdTriads,
P, L P, P L P, L P L P, and P L P L P are all distinct by evaluating at E[ using the
following diagram from the Introduction.

E[ P // e[ L // B
P // b

L // G
P // g

L

jj (10)

From diagram (10) we also see that (L P)3(E[)= E[, and for any Y ∈ {E[, B,G},
(L P)3(Y )= Y. Similarly, by reading the diagram backwards (recall P and L are
involutions), we see (L P)3(Y ) = Y for any minor triad Y ∈ {e[, b, g}. We have
similar PL-diagrams and considerations for the cycles in (4), (5), and (6), and



HEXATONIC SYSTEMS AND DUAL GROUPS IN MATHEMATICAL MUSIC THEORY 263

therefore (L P)3 = IdTriads on the entire set Triads of consonant triads. Another way
to see that (L P)3 = IdTriads is to combine the observation (L P)3(E[)= E[ from
diagram (10) with Proposition 2.1 and the fact that Triads is the T /I -orbit of E[.

We next show via a word-theoretic argument that 〈P, L〉 consists only of the
six functions IdTriads, P, L P, P L P, L P L P, and P L P L P discussed above. From
(L P)3 = IdTriads, we express PL in terms of L P. Namely,

(L P)3=IdTriads =⇒ (L P)3(P L)=(P L) =⇒ (L P)2=P L .

Consider any alternating word in P and L . If the rightmost letter is P, then we
can use (L P)3 = IdTriads to achieve an equality with one of the six functions we
already have. If the rightmost letter is L , then we replace each PL by (L P)2 and
use L2

= IdTriads if L L results on the far left. Then we have an equal function
with rightmost letter P, which we can then reduce to one of the six above using
(L P)3 = IdTriads, as we did in the first case of rightmost letter P. Thus 〈P, L〉 =
{IdTriads, P, L P, P L P, L P L P, P L P L P}.

This group is noncommutative, as P L 6= L P; hence it is isomorphic to Sym(3),
the only noncommutative group of order 6. But Sym(3) is dihedral of order 6.

Instead of the previous paragraph, we can show 〈P, L〉 is dihedral of order 6
using a presentation. Let t := L and s := L P; then s3

= e, t2
= e, and tst = s−1.

The dihedral group of order 6 is the largest group with elements s and t such that
s3
= e, t2

= e, and tst = s−1. But we observed from diagram (10) that 〈P, L〉 has
at least six distinct elements. Hence, 〈P, L〉 is dihedral of order 6. �

Proposition 3.7. The PL-group 〈P, L〉 acts simply transitively on Hex.

Proof. From diagram (10) we see that 〈P, L〉 acts transitively on Hex. Since 〈P, L〉
and Hex have the same cardinality, the Orbit-Stabilizer Theorem implies that every
stabilizer must be trivial. See Proposition 2.3(2). �

Lemma 3.8. Let S be a set and suppose G ≤ Sym(S). Suppose G acts simply
transitively on an orbit S, and G is the restriction of G to the orbit S. Then the
restriction homomorphism G → G is an isomorphism, and G also acts simply
transitively.

Proof. Suppose g ∈ G has restriction ḡ with ḡ s̄ = s̄ for all s̄ ∈ S. Then g also has
gs̄= s̄ for all s̄ ∈ S, so g= IdS by simple transitivity, and the kernel of the surjective
homomorphism G→ G is trivial. The transitivity of G is clear: for any s̄, t̄ ∈ S
there exists g ∈ G such that gs̄ = t̄ , so also ḡ s̄ = t̄ with ḡ ∈ G. The uniqueness of
ḡ ∈ G is also clear: if h̄ ∈ G also satisfies h̄ s̄ = t̄ , then so do g and h, so g = h by
the simple transitivity of G acting on S, so ḡ = h̄. �

Theorem 3.9 (Hexatonic Duality). The restrictions of the PL-group and the group
H = {T0, T4, T8, I1, I5, I9} to Hex are dual groups in Sym(Hex), and both are
dihedral of order 6.
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Proof. Let G be the restriction of the PL-group to Hex, and let H be the restriction
of H = {T0, T4, T8, I1, I5, I9} to Hex.

We already know that G and H are dihedral of order 6 by Propositions 3.4
and 3.6 and Lemma 3.8.

We also already know that G and H each act simply transitively on Hex by
Propositions 3.5 and 3.6 and Lemma 3.8. We even already know that the groups
G and H commute by Proposition 2.1. Finally, Proposition 3.1 guarantees that G
and H centralize one another. �

Remark 3.10 (Comparison with the proof strategy of Crans, Fiore, and Satyendra).
There are several differences between the proof strategy of hexatonic duality in the
present Theorem 3.9 and the proof strategy of T /I -PLR duality in Theorem 6.1
of [Crans et al. 2009]. In the present paper, we first proved that the concerned
groups act simply transitively, and determined their structure, and only then showed
that the groups exactly centralize each other. In [Crans et al. 2009], on the other
hand, the determination of the size of the PLR-group was postponed until after
the centralizer C(T /I ) was seen to act simply, i.e., that each stabilizer C(T /I )Y is
trivial. Then, from these trivial stabilizers, the Orbit-Stabilizer Theorem, the earlier
observation that 24≤ |PLR-group|, and the consequence

24≤ |PLR-group| ≤ |C(T /I )| ≤ |orbit of Y | ≤ 24

on page 492, the authors of [Crans et al. 2009] simultaneously conclude that the
PLR-group has 24 elements and is the centralizer of T /I .

A slight simplification of the aforementioned inequality would be an argument
like the one in the present paper: observe that the PLR-group acts transitively on
the 24 consonant triads because of the Cohn LR-sequence, recalled on page 487 of
[Crans et al. 2009]; then C(T /I ) must act transitively as it contains the PLR-group,
and then the Orbit-Stabilizer Theorem and the trivial stabilizers imply that |C(T /I )|
must be 24, so the PLR-group also has 24 elements. Also, instead of postponing
the proof that the PLR-group has exactly 24 elements from Theorem 5.1 of [Crans
et al. 2009] until the aforementioned inequality in Theorem 6.1, one could do a
word-theoretic argument in Theorem 5.1 to see that the PLR-group has exactly
24 elements, similar to the present argument in Proposition 3.6.

Remark 3.11. For an explicit computation of the four hexatonic cycles as orbits of
the PL-group, see [Oshita 2009], which was also an undergraduate research project
with the second author of the present article. That preprint includes a sketch that
〈P, L〉 ∼= Sym(3).

Remark 3.12 (Alternative derivation using the Sub Dual Group Theorem). Hexa-
tonic Duality, Theorem 3.9, can also be proved using the Sub Dual Group Theorem
of Fiore and Noll [2011, Theorem 3.1], if one assumes already the duality of the
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k kHex k Hk−1
= dual group to PL-group on kHex

IdTriads {E[, e[, B, b,G, g} H = {T0, T4, T8, I1, I5, I9}

T1 {E, e,C, c, A[, a[} {T0, T4, T8, I3, I7, I11}

T2 {F, f,C], c], A, a} {T0, T4, T8, I5, I9, I1}

T3 {F], f ], D, d, B[, b[} {T0, T4, T8, I7, I11, I3}

Table 2. The four hexatonic cycles as PL-orbits and the respective
dual groups determined as conjugations of H via the Sub Dual
Group Theorem of Fiore and Noll.

T /I -group and PLR-group (maximal smoothness is not discussed in that paper).
In Section 3.1 of the same paper, they apply the Sub Dual Group Theorem to the
construction of dual groups on the hexatonic cycles. The method is to select G0

to be the PL-group, select s0 = E[, and compute S0 := G0s0 = Hex, and then the
dual group will consist of the restriction of those elements of the T /I -group that
map E[ into S0.

Notice that in the present paper, on the other hand, we first determined which
transpositions and inversions preserve Hex in Proposition 3.4, and then proved
duality, whereas the application of the Sub Dual Group Theorem of Fiore and Noll
starts with the PL-group and determines from it the dual group as (the restrictions
of) those elements of the T /I -group that map E[ into S0. Notice also, in the present
paper we determined that the PL-group and its dual H are dihedral of order 6,
but that the Sub Dual Group Theorem of Fiore and Noll does not specify which
group structure is present. In any case, Clampitt [1998] explicitly wrote down all
6 elements of each group in permutation cycle notation.

The present paper is complementary to the work [Fiore and Noll 2011] in that
we work very closely with the specific details of the groups and sets involved to
determine one pair of dual groups in an illustrative way, rather than appealing to a
computationally and conceptually convenient theorem. Fiore and Noll, however,
also use their Corollary 3.3 to compute the other hexatonic duals via conjugation,
as summarized in Table 2.

The application of the Sub Dual Group Theorem to construct dual groups on
octatonic systems is also treated in [Fiore and Noll 2011], and utilized in [Fiore
et al. 2013b].

Remark 3.13 (Other sources on group actions). Music-theoretical group actions
on chords have been considered by many, many authors over the past century. In
addition to the selected references of Babbitt, Forte, and Morris above, we also
mention the expansive and influential work of Mazzola [1985; 1990; 2002] and
numerous collaborators. Moreover, issue 42:2 of the Journal of Music Theory from
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1998 is illuminating obligatory reading on groups in neo-Riemannian theory. That
issue contains Clampitt’s article [1998], which is the inspiration for the present
paper. Clough’s article [1998] in that issue illustrates the dihedral group of order 6
and its recombinations with certain centralizer elements in terms of two concentric
equilateral triangles (but it does not treat hexatonic systems and duality). The
dihedral group of order 6 is a warm-up for his treatment of recombinations of the
Schritt-Wechsel group with the T /I -group, which are both dihedral of order 24.
Peck’s article [2010] studies centralizers where the requirement of simple transitivity
is relaxed in various ways, covering many examples from music theory. Peck
determines the structure of centralizers in several cases.

Remark 3.14 (Discussion of local diatonic containment of hexatonic cycles). No
hexatonic cycle is contained entirely in a single diatonic set, as one can see from
any of the cycles (3)–(6). However, one can consider a sequence of diatonic sets
that changes along with the hexatonic cycle and contains each respective triad, as
in [Douthett 2008, Table 4.7]. After transposing and reversing Douthett’s table, we
see a sequence of diatonic sets such that each diatonic set contains the respective
triad of (3).

triad E[ e[ B b G g

in scale E[-major D[-major B-major A-major G-major F-major

This sequence of diatonic sets (indicated via major scales) descends by a whole
step each time, so is as evenly distributed as possible.

Other diatonic set sequences also contain the hexatonic cycle, though unfortu-
nately there is no maximally smooth cycle of diatonic sets that does the job (recall
that the diatonic sets can only form a cycle of length 12). But it is possible to have
a maximally smooth sequence of diatonic sets that covers four hexatonic triads. We
list all possible diatonic sets containing the respective hexatonic chords.2

triad E[ e[ B b G g

E[ G[ B D G B[
in major scales B[ D[ F] A D F

A[ B E G C E[

2Recall that major chords only occur with roots on major scale degrees 1, 4, and 5, so we determine
in the table the scales containing a given major triad by considering the root, a perfect fourth below the
root, and a perfect fifth below the root. Minor chords can only occur with roots on major scale degrees
2, 3, and 6, so we determine in the table the scales containing a given minor triad by considering
a major sixth below the root, a whole step below the root, and a major third below the root. This
inconsistent major/minor ordering allows us to see (at vertical dividing lines) all three maximally
smooth transitions from diatonic sets containing a given a minor triad to a diatonic set containing its
subsequent major in a hexatonic cycle.
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Vertical dividing lines indicate maximally smooth transitions between consecutive
diatonic sets. As indicated by these dividing lines, the transition from a minor
triad to its subsequent major in a hexatonic cycle via L is contained in three
maximally smooth transitions of diatonic sets. On the other hand, the transition
from a major triad to its subsequent minor in a hexatonic cycle via P is contained
in only one maximally smooth transition of diatonic sets, as indicated by the bold
letters. Altogether, we can trace three maximally smooth chains of four major scales
that contain part of the hexatonic cycle (3):

B− E − A− D,

G−C − F − B[,

E[− A[− D[− F].

Local containment of hexatonic cycles in diatonic chains has ramifications for
music analysis. Jason Yust [2013; 2015] proposed to include diatonic contexts
into analyses involving PL-cycles or PR-cycles, and he provides analytical tools to
do so.

4. Conclusion

We began this article with Cohn’s proposal that the maximal smoothness of con-
sonant triads is a key factor for their privileged status in late-nineteenth century
music. Indeed, consonant triads and their complements are the only tone collections
that accommodate short maximally smooth cycles. The four maximally smooth
cycles of consonant triads, the so-called hexatonic cycles of Cohn, can be described
transformationally as alternating applications of the neo-Riemannian “parallel” and
“leading tone exchange” transformations. Cohn interpreted Wagner’s Grail motive in
terms of a cyclic group action on the hexatonic cycle Hex, whereas Clampitt used the
PL-group and the transposition-inversion subgroup we called H in Proposition 3.4.
In the present article, we proved the Lewinian duality between these latter two
groups, which was discussed by Clampitt [1998].

For perspective, we mention that simply transitive group actions correspond to the
generalized interval systems of Lewin; see the very influential original source [Lewin
1987], or see [Fiore et al. 2013b, Section 2] for an explanation of some aspects. Dual
groups correspond to dual generalized interval systems: the transpositions of one
system are the interval-preserving bijections of the other. Clampitt [1998] explained
the coherent perceptual basis of the three generalized interval systems associated
to the three group actions on Hex by Cohn’s cyclic group, the PL-group, and the
H group. He employed the coherence of generalized interval systems to incorporate
the final D[ of the Grail motive into his interpretation via a conjugation-modulation
of a subsystem.
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