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The equidistant set of two nonempty subsets K and L in the Euclidean plane is
the set of all points that have the same distance from K and L . Since the classical
conics can be also given in this way, equidistant sets can be considered as one
of their generalizations: K and L are called the focal sets. The points of an
equidistant set are difficult to determine in general because there are no simple
formulas to compute the distance between a point and a set. As a simplification
of the general problem, we are going to investigate equidistant sets with finite
focal sets. The main result is the characterization of the equidistant points in
terms of computable constants and parametrization. The process is presented by
a Maple algorithm. Its motivation is a kind of continuity property of equidistant
sets. Therefore we can approximate the equidistant points of K and L with the
equidistant points of finite subsets Kn and Ln . Such an approximation can be
applied to the computer simulation, as some examples show in the last section.

1. Introduction: notation and preliminaries

Let K ⊂ R2 be a subset in the Euclidean coordinate plane. The distance between a
point (x, y) and K is measured by the usual infimum formula:

d((x, y), K ) := inf{d((x, y), (a, b)) | (a, b) ∈ K }.

Let us define the equidistant set of K and L ⊂ R2 as the set of all points that have
the same distance from K and L:

{K=L} := {(x, y) ∈ R2
| d((x, y), K )= d((x, y), L)}.

The equidistant sets can be considered as a kind of generalization of conics [Ponce
and Santibáñez 2014]: K and L are called the focal sets. Equidistant sets are often
called midsets. Their investigations were started by Wilker [1975] and Loveland
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[1976]. For another generalization of the classical conics and their applications, see,
e.g., [Erdős and Vincze 1958; Melzak and Forsyth 1977] for polyellipses and their
applications, and [Gross and Strempel 1998; Nagy and Vincze 2010; Vincze and
Nagy 2011; 2012]. “We find equidistant sets as conventionally defined frontiers
in territorial domain controversies: for instance, the United Nations Convention
on the Law of the Sea (Article 15) establishes that, in absence of any previous
agreement, the delimitation of the territorial sea between countries occurs exactly
on the median line every point of which is equidistant of the nearest points to each
country”; for the citation, see [Ponce and Santibáñez 2014].

Let R > 0 be a positive real number. The parallel body of a set K ⊂ R2 with
radius R is the union of the closed disks with radius R centered at the points of K.
The infimum of the positive numbers such that L is a subset of the parallel body
of K with radius R and vice versa is called the Hausdorff distance of K and L . It
is well known that the Hausdorff metric makes the family of nonempty closed and
bounded (i.e., compact) subsets in the plane a complete metric space; for the details,
see, e.g., [Lay 1982; Vincze 2013]. In what follows we are going to characterize
the equidistant points of finite focal sets in terms of computable constants and
parametrization. The process will be presented by a Maple algorithm. Its motivation
is the continuity property of equidistant sets in the sense of the following theorem.

Theorem 1 [Ponce and Santibáñez 2014, Theorem 11]. If K and L are disjoint
compact subsets in the plane, and Kn→ K and Ln→ L are convergent sequences
of nonempty compact subsets with respect to the Hausdorff metric then for any
R > 0 we have

{Kn = Ln} ∩ D(R)→ {K = L} ∩ D(R),

where D(R) denotes the closed disk with radius R centered at the origin.

Since any compact subset can be approximated by finite subsets with respect to
the Hausdorff metric, we can approximate the equidistant points of K and L with
the equidistant points of finite subsets Kn and Ln . Such an approximation can be
applied to the computer simulation as an alternative to the error estimation process
for quasiequidistant points suggested by [Ponce and Santibáñez 2014, §4.2].

2. The main result

Let K, L ⊂R2 be nonempty finite disjoint subsets in the Euclidean coordinate plane:

K := {(ai , bi ) | i = 1, . . . , p} and L := {(ck, dk) | k = 1, . . . , q},

where p and q are positive integers. Since we have only finitely many lines
determined by the points of K ∪ L we can use the following technical condition
without loss of generality:
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(H) Each line determined by the points of K ∪ L has a slope different from zero;
i.e., there are no horizontal “focal lines”.

Indeed, an infinitesimal rotation about the origin provides the configuration we need
to satisfy condition (H). On the other hand, the inverse rotation takes the equidistant
points of the rotated sets into the equidistant points of the original ones. Let

Ki :=
{
(x, y) ∈ R2 ∣∣ d((x, y), K )= d((x, y), (ai , bi ))

}
(i = 1, . . . , p).

It is clear that
Ki =

⋂
j=1,...,m

j 6=i

Fi j ,

where the closed half-planes Fi j (i 6= j ) are determined by the perpendicular bisector

(ai − aj )x + (bi − bj )y =
a2

i − a2
j

2
+

b2
i − b2

j

2
(1)

of the segment (ai , bi ) and (aj , bj ) such that (ai , bi ) ∈ Fi j . For any index i , the
set Ki is closed and convex as the intersection of finitely many closed half-planes.
It is nonempty because (ai , bi ) ∈ Ki . Since Ki ∩ K j (i 6= j) is a subset of the
perpendicular bisector (1) of the corresponding focal points in K , we can conclude
that int Ki ∩ int K j =∅ for any i 6= j . Finally,

R2
=

p⋃
i=1

Ki ;

i.e., we have a partitioning of the plane into (nonempty, closed and convex) regions
with pairwise disjoint interiors based on the distance to points in a specific subset.
It is called the Voronoi decomposition.

Exercise 1. Prove that Ki is bounded if and only if (ai , bi ) is in the interior of the
convex hull of K.

The Voronoi decomposition of the plane with respect to the points of K means
that the plane is divided into (nonempty, closed and convex) regions with pairwise
disjoint interiors such that the distance of (x, y) ∈ Ki to the focal set K can be
measured as the distance of (x, y) ∈ Ki to (ai , bi ) ∈ K. In terms of inequalities,

Ki : (ai − aj )x + (bi − bj )y ≥
a2

i − a2
j

2
+

b2
i − b2

j

2
, (2)

where j runs from 1 to p but i 6= j . Using condition (H) we can reformulate the
system of inequalities as

Ki : y ≥ αi j x +βi j (bi − bj > 0),

y ≤ αi j x +βi j (bi − bj < 0),
(3)
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where

αi j =−
ai − aj

bi − bj
, βi j =

1
bi − bj

(a2
i − a2

j

2
+

b2
i − b2

j

2

)
and i 6= j.

In a similar way consider the Voronoi decomposition of the plane with respect to
the points of L:

Lk :=
{
(x, y) ∈ R2 ∣∣ d((x, y), L)= d((x, y), (ck, dk))

}
(k = 1, . . . , q),

Lk =
⋂

l=1,...,q
l 6=k

Fkl,

where the closed half-planes Fkl (k 6= l) are determined by the perpendicular bisector

(ck − cl)x + (dk − dl)y =
c2

k − c2
l

2
+

d2
k − d2

l

2
(4)

of the segment (ck, dk) and (cl, dl) such that (ck, dk) ∈ Fkl ,

R2
=

q⋃
k=1

Lk .

In terms of inequalities,

Lk : (ck − cl)x + (dk − dl)y ≥
c2

k − c2
l

2
+

d2
k − d2

l

2
, (5)

where l runs from 1 to q but k 6= l. Using condition (H) we can reformulate the
system of inequalities as

Lk : y ≥ γkl x + δkl (dk − dl > 0),

y ≤ γkl x + δkl (dk − dl < 0),
(6)

where

γkl =−
ck − cl

dk − dl
, δkl =

1
dk − dl

(
c2

k − c2
l

2
+

d2
k − d2

l

2

)
and k 6= l.

Lemma 1. The set of equidistant points is equal to the union of
p⋃

i=1

q⋃
k=1

(Ki ∩ Lk ∩ lik),

where

lik : (ai − ck)x + (bi − dk)y =
a2

i − c2
k

2
+

b2
i − d2

k

2
(7)

is the perpendicular bisector of (ai , bi ) and (ck, dk).
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In what follows we characterize the sets of the form Ki ∩ Lk ∩ lik in terms of
a system of linear inequalities. According to condition (H), equation (7) of the
perpendicular bisector lik can be written in the form

lik : y = µik x + νik, (8)
where

µik := −
ai − ck

bi − dk
and νik =

1
bi − dk

(
a2

i − c2
k

2
+

b2
i − d2

k

2

)
. (9)

This means by (3) and (6) that

Ki ∩ Lk ∩ lik : µik x + νik ≥ αi j x +βi j (bi − bj > 0),

µik x + νik ≤ αi j x +βi j (bi − bj < 0),

µik x + νik ≥ γkl x + δkl (dk − dl > 0),

µik x + νik ≤ γkl x + δkl (dk − dl < 0),

(10)

where j runs from 1 to p but j 6= i and l runs from 1 to q but l 6= k. It can
be easily seen that the number of inequalities is p+ q − 2 for any fixed pair of
indices (i, k) and the equidistant set is the union of finitely many polygonal chains
determined by inequalities of type (10). To reduce the number of possible cases,
we formulate necessary and sufficient conditions for the solvability of system (10).
Let us introduce the following set of indices:

P+ik := { j | (bi − bj )(µik −αi j ) > 0},

P−ik := { j | (bi − bj )(µik −αi j ) < 0},

P0+
ik := { j | bi − bj > 0 and µik −αi j = 0},

P0−
ik := { j | bi − bj < 0 and µik −αi j = 0},

Q+ik := {l | (dk − dl)(µik − γkl) > 0},

Q−ik := {l | (dk − dl)(µik − γkl) < 0},

Q0+
ik := {l | dk − dl > 0 and µik − γkl = 0},

Q0−
ik := {l | dk − dl < 0 and µik − γkl = 0}.

(11)

Then we have that (x, y) ∈ Ki ∩ Lk ∩ lik if and only if the following conditions are
satisfied:

x ≥
βi j − νik

µik −αi j
( j ∈ P+ik ) and x ≥

δkl − νik

µik − γkl
(l ∈ Q+ik), (12)

x ≤
βi j − νik

µik −αi j
( j ∈ P−ik ) and x ≤

δkl − νik

µik − γkl
(l ∈ Q−ik), (13)
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νik ≥ βi j ( j ∈ P0+
ik ) and νik ≥ δkl (l ∈ Q0+

ik ), (14)

νik ≤ βi j ( j ∈ P0−
ik ) and νik ≤ δkl (l ∈ Q0−

ik ). (15)

Therefore we can formulate the sufficient and necessary conditions in terms of the
following constants:

mK
ik :=

{
−∞ if P+ik =∅,
sup j∈P+ik

(βi j − νik)/(µik −αi j ) otherwise,
(16)

mL
ik :=

{
−∞ if Q+ik =∅,
supl∈Q+ik

(δkl − νik)/(µik − γkl) otherwise,
(17)

M K
ik :=

{
∞ if P−ik =∅,
inf j∈P−ik

(βi j − νik)/(µik −αi j ) otherwise,
(18)

M L
ik :=

{
∞ if Q−ik =∅,
infl∈Q−ik

(δkl − νik)/(µik − γkl) otherwise,
(19)

r K
ik :=

{
−∞ if P0+

ik =∅,
sup j∈P0+

ik
βi j otherwise,

(20)

r L
ik :=

{
−∞ if Q0+

ik =∅,
supl∈Q0+

ik
δkl otherwise,

(21)

RK
ik :=

{
∞ if P0−

ik =∅,
inf j∈P0−

ik
βi j otherwise,

(22)

RL
ik :=

{
∞ if Q0−

ik =∅,
infl∈Q0−

ik
δkl otherwise,

(23)

mik := sup{mK
ik,mL

ik}, Mik := inf{M K
ik ,M L

ik}, (24)

rik := sup{r K
ik , r

L
ik}, Rik := inf{RK

ik , RL
ik}. (25)

Theorem 2. If K and L are disjoint finite subsets satisfying condition (H) then for
any pair (i, k) of indices, Ki ∩ Lk contains equidistant points if and only if

mik ≤ Mik and rik ≤ νik ≤ Rik .

The parametrization of the line segment of the equidistant points in Ki ∩ Lk is

y = µik x + νik (mik ≤ x ≤ Mik).

Proof. It is clear that in the case where

mik ≤ Mik and rik ≤ νik ≤ Rik,

conditions (12)–(15) are satisfied for any mik ≤ x ≤ Mik . �
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3. A Maple algorithm

Our algorithm, available in the online supplement, is implemented in Maple. The
input data are the lists of K and L containing the points of the focal sets, respectively.
K [i][1] and K [i][2] denote the coordinates of the i-th point in the focal set K for
each i ∈ {1, 2, . . . , p}, and L[k][1] and L[k][2] denote the coordinates of the k-th
point in the focal set L for each k∈{1, 2, . . . , q}. The main procedure equidistant
creates a plot of the equidistant set with focal sets K and L . The Maple command
LinearUnivariateSystem produces the solution of system (10).

The procedure equidistant_ini takes the lists K and L as input and returns
the following six objects as output:

• a is a list containing the slopes a[i][ j] := αi j for each i, j ∈ {1, 2, . . . , p} and
i 6= j , while a[i][ j] = 0 when i = j .

• g is a list containing the slopes g[k][l] := γkl for each k, l ∈ {1, 2, . . . , q} and
k 6= l, while g[k][l] = 0 when k = l.

• b is a list containing the constants b[i][ j] := βi j for each i, j ∈ {1, 2, . . . , p}
and i 6= j , while b[i][ j] = 0 when i = j .

• d is a list containing the constants d[k][l] := δkl for each k, l ∈ {1, 2, . . . , q}
and k 6= l, while d[k][l] = 0 when k = l.

• m is a list containing the slopes m[i][k] := µik for each i ∈ {1, 2, . . . , p} and
k ∈ {1, 2, . . . , q}.

• n is a list containing the constants n[i][k] := νik for each i ∈ {1, 2, . . . , p} and
k ∈ {1, 2, . . . , q}.

The procedure xmaxmin returns the maximal and the minimal values of the first
coordinates of the points in the focal sets K and L , respectively. They appear in
the range option of the “plot” command.

The procedure equidistant_system creates the system of inequalities (10)
for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2, . . . , q}. In the input data, a, g, b, d,m, n
are the objects created by equidistant_ini.

The procedure inequality_range defines the ranges for the next procedure,
equidistant_grafikon. The equidistant set can be considered as the graph of a
piecewise linear, continuous real function. The domain of such a function can be
split into a finite number of disjoint intervals such that the function is linear over
each interval. The procedure defines the endpoints of such intervals. The operands
of the local variable T containing the solution of a linear univariate system of
inequalities are of the forms c1 < x and x < c2. If T has at least (and, consequently,
exactly) two operands of the forms c1 < x and x < c2, respectively, then we have
both lower and upper bounds for the solution. Otherwise we have only a lower or

http://msp.org/involve/2018/11-2/involve-v11-n2-x08-Maple_algorithm_and_examples.pdf
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Figure 1. Examples 1 (left) and 2 (right).

an upper bound of the form c1 < x or x < c2. In the case of c1 < x , we choose the
variable of numeric type as the lower bound for the range: c1. The upper bound for
the range is defined as the maximum of c1+ 1 and xmax+ 1.

The procedure equidistant_ grafikon generates the list of plots of the graph
of the linear functions, which represent the equidistant set with focal sets K and L .
In the input data, m, n are created by equidistant_ini and S is a list containing
the list of ranges created by inequality_range.

3.1. Examples. We present some examples generated by the algorithm above. The
code for Examples 1, 2, and 4 can be found in the online supplement.

Example 1. The focal set K contains the points of a regular 10-gon inscribed in
the unit circle; it is rotated by a small angle 0.1 to satisfy condition (H). The focal
set L contains the points (1, 4), (2, 3), (3, 2), (4, 1) and (5, 0). They are lying on
the same line segment y =−x + 5 (0≤ x ≤ 5). See Figure 1.

Example 2. This case, shown in Figure 1, illustrates what happens when increasing
the number of the focal points in Example 1.

The limit shape is a parabolic arc,

r(ϕ)=
1+ 5/

√
2

1+ cos
(
ϕ− 1

4π
) , (26)

provided that the polar angle belongs to the interval

− arcsin 12
√

2
26+5

√
2
≤ ϕ ≤

π

2
+ arcsin 12

√
2

26+5
√

2

because the line segment can be substituted by the entire line without changing the
equidistancy in this region. Otherwise we have hyperbolic arcs because the distance
to the line segment reduces to the distance from one of its endpoints.

http://msp.org/involve/2018/11-2/involve-v11-n2-x08-Maple_algorithm_and_examples.pdf
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Figure 2. The asymptotic ends.

The asymptotic “ends”, shown in Figure 2, are the bisectors of the points
P(0, 5), T2 and Q(5, 0), T4, where T2, T4 denote the touching points of the tangent
lines passing through P and Q in the second and the fourth quadrants, respectively.
For the asymptotic behavior of the equidistant sets, see [Ponce and Santibáñez 2014,
Theorem 12].

Example 3. The focal set K contains the points (−2, 1), (−1, 1.3), (0, 0), (1,−2),
(2,−2.2), (3, 1.5) and (4, 3.5) and the focal set L consists of (1, 2), (−1, 3), (2, 4)
and (3, 5); see Figure 3.

Example 4. The focal set K contains the points of a regular 7-gon inscribed in the
circle of radius 1

3 centered at the origin; it is also rotated by a small angle 0.1 to

Figure 3. Example 3.
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Figure 4. Examples 4 (left) and 5 (right).

satisfy condition (H). The focal set L is a singleton containing the origin. In the
same way any regular n-gon can be given as an equidistant set. See Figure 4.

Example 5. In this case, shown in Figure 4, we can see a disconnected case with
focal sets K containing the points (−1, 1), (1,−1) and L containing the points
(−3,−3), (0, 0), (3, 3), respectively.

3.2. Concluding remarks. The application of the algorithm for more complicated
focal sets is based on the continuity properties of the equidistant sets; see Section 1
and also [Ponce and Santibáñez 2014, Theorem 11].

Examples 1 and 2 represent the approximation of the equidistant set to a circle and
a segment as focal sets. The Hausdorff distance can be estimated by comparing the
polar distance of the equidistant points and the points of the limit shape as follows;
see (26). First, get the polar coordinates of the vertex points of the approximating
equidistant set. Since it is a polygonal chain, we have finitely many data depending
on the number of the focal points: (ri , ϕi ), where i <∞. By (26) we can compute
the exact polar distance r(ϕi ) belonging to the polar angle ϕi on the limit parabola.
Taking

D1 :=maxi |r(ϕi )− ri |,

we have an upper bound for the Hausdorff distance between the approximating
equidistant set and the polygonal chain inscribed in the limit parabola with vertices of
the polar angles ϕi . Indeed, if the polar body of a segment contains the endpoints of
another one then it contains the entire line segment too. To estimate the Hausdorff
distance of the inscribed polygonal chain and the parabolic arc, it is natural to
consider the triangles 4i formed by adjacent vertices Vi and Vi+1 of the polygonal
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chain and the intersection of the tangent lines to the arc at Vi and Vi+1. If mi

denotes the height of the 4i belonging to the i-th side of the polygonal chain then
its maximum D2 gives an upper bound for the Hausdorff distance between the
inscribed polygonal chain and the parabolic arc. Using the triangle inequality, the
sum D := D1 + D2 is an upper bound for the Hausdorff distance between the
estimating polygonal chain and the limit parabola.

In the same way, we can approximate the equidistant set to a pair of convex
polytopes (the convex hulls of finite sets of points). Taking finitely many convex
combinations of the vertices, one can produce finite focal sets to apply the algorithm.
In case of general compact subsets we can use their intersections with a sequence
of nested grids.

As the limit shape we have a circle by increasing the number of the vertices of
the inscribed regular polygon (the focal set K ) in Example 4. On the other hand,
Example 4 shows a way of presenting regular polygons as equidistant sets. It has
an important theoretical consequence in view of Weiszfeld’s problem. E. Vázsonyi,
also known as E. Weiszfeld, posed the problem of approximating convex plane
curves with so-called polyellipses, all of whose points have the same sum of
distances from finitely many focal points in the plane. It is the additive version of
the approximation of plane curves by polynomial lemniscates, all of whose points
have the same product of distances from finitely many focal points in the plane.
P. Erdős and I. Vincze [1958] proved that the approximation of a regular triangle
with polyellipses has an absolute error even if the number of focuses is increased
to the infinity; see also [Varga and Vincze 2008]. This means that the idea of
polyellipses gives an essentially different generalization of the classical conics.
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283Zero divisor graphs of commutative graded rings
KATHERINE COOPER AND BRIAN JOHNSON

297The behavior of a population interaction-diffusion equation in its subcritical regime
MITCHELL G. DAVIS, DAVID J. WOLLKIND, RICHARD A. CANGELOSI

AND BONNI J. KEALY-DICHONE

311Forbidden subgraphs of coloring graphs
FRANCISCO ALVARADO, ASHLEY BUTTS, LAUREN FARQUHAR AND

HEATHER M. RUSSELL

325Computing indicators of Radford algebras
HAO HU, XINYI HU, LINHONG WANG AND XINGTING WANG

335Unlinking numbers of links with crossing number 10
LAVINIA BULAI

355On a connection between local rings and their associated graded algebras
JUSTIN HOFFMEIER AND JIYOON LEE

1944-4176(2018)11:2;1-7

involve
2018

vol.11,
no.2


	1. Introduction: notation and preliminaries
	2. The main result
	3. A Maple algorithm
	3.1. Examples
	3.2. Concluding remarks

	Acknowledgements
	References
	
	

