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We study a natural generalization of the zero divisor graph introduced by Anderson
and Livingston to commutative rings graded by abelian groups, considering only
homogeneous zero divisors. We develop a basic theory for graded zero divisor
graphs and present many examples. Finally, we examine classes of graphs that
are realizable as graded zero divisor graphs and close with some open questions.

1. Introduction

Zero divisor graphs of commutative rings have been well-studied since their in-
troduction by Beck [1988], and there have also been many generalizations, from
noncommutative rings to semigroups. Anderson and Livingston [1999] began
studying the graph created from just the nonzero zero divisors. We focus on a gener-
alization of their graph to graded rings. In this way we are able to realize significantly
more graphs as graded zero divisor graphs. While the class of realizable graphs is
expanded, some of the same restrictions still exist in the graded case. For other types
of graphs associated to graded rings, see [Khosh-Ahang and Nazari-Moghadam
2016]. For examples of other graphs associated to commutative rings, see [Anderson
and Badawi 2012; Ashrafi et al. 2010; Badawi 2014; 2015; Behboodi and Rakeei
2011]. For more examples in the commutative case and characterizations based on
numbers of zero divisors, among other things, see [Anderson and Badawi 2008].

In Section 2 we summarize the basic notation, terminology, and necessary facts
for graded rings. We also define the graded zero divisor graph and give some basic
examples.

Section 3 contains the basic properties and theory of graded zero divisor graphs.
As mentioned, many of the familiar properties from the nongraded case hold true
in the graded case: the graded zero divisor graph is connected with diameter less
than or equal to 3, the girth is less than or equal to 4 (when finite), and the graph is
finite if and only if the ring is finite.
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The final section is devoted to realizability of various graphs and classes of
graphs. We show that all but one of the connected graphs on four vertices are
realizable as graded zero divisor graphs, and we completely classify the connected
graphs on five vertices. Further, we show that every star, complete, and complete
bipartite graph is realizable, a marked difference from the nongraded case. We also
include some interesting open questions.

Throughout the paper, all rings are assumed to be commutative with identity,
and G will always represent an abelian group.

2. Preliminaries

We now summarize some basic language and notation relating to rings graded by
abelian groups as well as zero divisor graphs associated with such rings. For more
details on graded commutative rings, the reader is referred to [Johnson 2012]. For
a more general treatment, see [Năstăsescu and Van Oystaeyen 2004].

Graded rings. Let G be an abelian group. A G-graded ring R is a ring R with a
family of subgroups fRg jg 2Gg of R such that RD

L
g2G Rg (as abelian groups)

and RgRh �RgCh for all g; h 2G. At times, we may refer simply to the “graded
ring R” if G is understood. If r 2R then there exist unique elements rg 2Rg for each
g 2G, all but finitely many of which are zero, such that r D

P
g2G rg . If r D rg for

some g2G then r is called G-homogeneous of degree g (or simply “homogeneous”).
An ideal I � R is G-homogeneous (again, “homogeneous” when appropriate)
provided I D

L
g2G Ig for some family of subgroups fIg j g 2Gg. Equivalently,

we only need know that I has a generating set consisting of homogeneous elements.
When defining some basic ring-theoretic properties in terms of only homogeneous

elements, we incorporate the grading group to simplify language and avoid confu-
sion. For example, a G-graded ring R is called a G-field (respectively, G-domain)
if every nonzero G-homogeneous element of R is a unit (respectively, not a zero
divisor). Note that when we refer to a property holding under the trivial grading, or
0-grading, we will not write “R is a 0-field,” but rather “R is a field.”

The following lemma is interesting on its own. It says that to decompose a
graded ring as a (graded) direct product, it is enough to write the ring as a direct
product of subrings. We use it later in our analysis of realizable graphs.

Lemma 2.1. Suppose R is a G-graded ring, and R D S � T for subrings S and
T of R. Then S and T are G-graded subrings of R, and R is the (graded) direct
product of S and T.

Proof. As above, suppose R D S � T. Define Sg WD fs 2 S j .s; 0/ 2 Rgg and
Tg WD ft 2 T j .0; t/ 2 Rgg. This defines a G-grading on S and T, and so it only
remains to be shown that R is their graded direct product.

By Remark 1.2.3 in [Năstăsescu and Van Oystaeyen 2004], we are done. �



ZERO DIVISOR GRAPHS OF COMMUTATIVE GRADED RINGS 285

x xCx2

xCx3

xCx4

xCx2Cx3

xCx2Cx4

xCx2Cx3Cx4

xCx3Cx4

x2x2Cx3

x2Cx4

x2Cx3Cx4

x3

x3Cx4

x4

Figure 1. �.R/.

Zero divisor graphs. Let R be a G-graded ring, and let Z�G.R/ denote the collec-
tion of nonzero G-homogeneous zero divisors. Define the G-graded zero divisor
graph (or just the “graded zero divisor graph” if G is understood) �G.R/ to be the
graph whose vertices are the elements of Z�G.R/ and which has an edge between
distinct elements x; y 2Z�G.R/ provided xy D 0. It is worth mentioning that one
could eliminate the restriction that x and y be distinct; the only change is that the
graphs now might have loops. However, the graph theory becomes significantly
more complicated. See [Vietri 2015] for examples of classifications involving loops.

As in the case of 0-fields, for example, when we consider a trivial grading, we
use Z.R/, Z�.R/, and �.R/ rather than include the subscript 0.

One interesting result of studying a graded version of zero divisor graphs is that
the same ring may have different gradings, leading to distinct graphs from the same
underlying ring.

Example 2.2. Let R D Z2ŒX�=.X5/ and use x to denote the image of X in the
quotient.

(1) Consider R under a trivial grading. That is, suppose the degree of every element
is 0 (so G could be any abelian group, in fact). Since all elements of R are homoge-
neous, this is the same as the usual zero divisor graph �.R/, as shown in Figure 1.

(2) Now consider R as a Z2-graded ring under the assignment induced by deg.x/D1,
so the degree of xi is i .mod 2/. This restricts the number of homogeneous elements
and homogeneous zero divisors, as shown in Figure 2. For example, x2C x4 is
homogeneous, but x2C x3 is not.

(3) Finally, consider R as a Z-graded ring under the assignment induced by
deg.x/ D 1, so the degree of xi is i . This further restricts the number of ho-
mogeneous zero divisors, as seen in Figure 3. In fact, the only homogeneous zero
divisors are elements of the form xi , for i D 1; 2; 3; 4.
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It is worth mentioning that the gradings on the first two rings can be induced
from the third ring. In general, given a G-graded ring R and a subgroup H of G,
there is a natural grading of R by the quotient G=H, obtained by setting RgCH DL

h2H RgCh. For instance, to obtain the Z2-grading of R from the Z-grading, we
take GDZ and H D 2Z, whereas to obtain the trivial grading, we take GDH DZ.

3. Basic properties

Many of the basic properties of �.R/ described by Anderson and Livingston [1999]
have analogues for �G.R/. For example, they show that the zero divisor graph
is finite if and only if R is finite or a domain. With modifications we can use a
similar proof, combined with the following lemma, to prove a corresponding result
for graded rings.

Lemma 3.1. If ZG.R/ is finite, then for every x 2Z�G.R/, ann.x/ is finite.

Proof. Let I D ann.x/. As x is homogeneous, I is homogeneous, and thus
I D

L
g2G Ig . Further, Ig �ZG.R/ for every g 2G, so Ig D 0 for all but finitely

many g 2G and each nonzero Ig is finite. Since there are finitely many nonzero Ig ,
say Ig1

; : : : ; Igk
, we have jI j D

ˇ̌Lk
iD1 Igi

ˇ̌
D
Qk

iD1 jIgi
j. Therefore jI j<1. �
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Theorem 3.2. Let R be a commutative ring. Then j�G.R/j is finite if and only if R

is a G-domain or R is finite.

Proof. Suppose R is not a G-domain and jZ�G.R/j is finite. Then there exist
nonzero homogeneous x; y 2R with xy D 0. Let I D ann.x/. By Lemma 3.1, I

is finite. Also, ry 2 I for all r 2 R. If R is infinite, then there exists i 2 I with
B D fr 2 R j ry D ig infinite. For any r; s 2 B , we have .r � s/y D 0, so ann.y/

is infinite, contradicting Lemma 3.1. Thus R must be finite. �
Because there is no “graded” version of the ring being finite, we get an interesting

corollary.

Corollary 3.3. If 1� jZ�G.R/j<1, then 1� jZ�.R/j<1.

Proof. Suppose 1� jZ�G.R/j<1. If jZ�.R/jD1, then R is not finite. Therefore,
R must be a G-domain, so jZ�G.R/j D 0, a contradiction. If jZ�G.R/j � 1, clearly
jZ�.R/j � 1. �
Note. The converse of Corollary 3.3 is also true for the upper bounds, but fails
when the lower bound 1 is added, as the following example shows.

Example 3.4. Consider

R WD
Z3ŒX�

.X2� 1/
D Z3˚Z3x;

where x is the image of X in the quotient ring. This has a natural grading by Z2,
where deg.xi /D i .mod 2/. One easily verifies that this grading makes R a Z2-field.
However, .xC 1/.x� 1/D x2� 1D 0, so jZ�G.R/j D 0, yet jZ�.R/j � 1.

Another obvious consequence of the finiteness result above is that we can assume
a ring with a finite graded zero divisor graph is graded by a finitely generated group.
Moreover, it can be shown that the grading group can be chosen to be finite. For
example, if such a ring R is graded by Z, say R D

L
n2Z Rn, we can form the

quotient group G D Z=kZ, where k D maxfm� ` j Rm ¤ 0 and R` ¤ 0g. This
argument can be extended to any finitely generated group by applying it in each
component of the free part of the grading group as necessary.

Other well known facts about zero divisor graphs concern connectedness, diame-
ter, and girth. None of these theorems change in the graded setting.

Theorem 3.5. Let G be an abelian group and R a G-graded ring. Then �G.R/ is
connected and diam.�G.R//� 3.

Proof. The proof given in [Anderson and Livingston 1999, Theorem 2.3] can be
used if one simply adds that each zero divisor chosen is homogeneous. �

Similarly, the following well-known result can be obtained by modifying the
proof given by Axtell, Coykendall, and Stickles [Axtell et al. 2005], insisting that
each choice of a zero divisor is homogeneous.
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Theorem 3.6. Suppose G is an abelian group and R is a G-graded ring. If �G.R/

contains a cycle, then the girth of �G.R/ is less than or equal to 4.

Some of the previous facts can also be obtained by results on zero divisor graphs
of semigroups found in [DeMeyer et al. 2002]. Indeed, the homogeneous elements
(together with 0) in a ring are closed under the ring multiplication.

4. Realizability of Graphs

There has been ample study on which graphs are realizable as zero divisor graphs of
commutative rings; for example, see [Axtell et al. 2009; LaGrange 2008; Redmond
2007]. Certainly, any graph realizable as �.R/ for a ring R is realizable as �G.R/

for the same ring under a trivial grading (by any group G). It turns out that there are
significantly more graphs realizable as graded zero divisor graphs. We begin with
graphs on four vertices, but every connected graph on one, two, or three vertices is
realizable as the (nongraded) zero divisor graph of a commutative ring. Therefore,
there is nothing to show in the graded case for these.

Connected graphs on four vertices. Anderson and Livingston [1999] indicate that
of the six connected graphs on four vertices, only those shown in Figure 4 may be
realized as �.R/. Their proofs that the other three graphs seen in Figure 5 are not
realizable all have a similar flavor. One uses the fact that certain sums or products
must be annihilated by another element in the graph, and therefore must also be
vertices in the zero divisor graph. This breaks down (often) in the graded case. Even
though all of the vertices represent homogeneous elements and the sum of elements
may still be annihilated, unless we know that both (homogeneous) elements are of
the same degree, this sum no longer needs to be another vertex in the graded zero
divisor graph.

For zero divisor graphs of graded rings, the three graphs in Figure 4 are still
realizable, but we can also produce two more.

The graph on the left in Figure 5 is realized using the ring Z2ŒX; Y �=.XY; X2; Y 4/

under the Z2˚Z4-grading defined by deg.x/D.1 .mod 2/;0 .mod 4// and deg.y/D

.0 .mod 2/;1 .mod 4//, where x and y represent the images of X and Y in the
quotient.

Figure 4. The three connected graphs on four vertices realizable as �.R/.
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Figure 5. Two additional graphs realizable as �G.R/ (left, middle)
and an unrealizable (right) connected graph on four vertices.

The graph in the middle is realized with the ring Z2ŒX�=.X5/ under the Z-grading
defined by deg.x/D 1, where x is the image of X in the quotient. We could also
obtain the same graph using a Z5-grading and setting deg.xi /D i .mod 5/.

The final graph on the right in Figure 5 remains unrealizable as �G.R/ for any
group G. It can be proven that each of the four zero divisors must be (homogeneous)
of the same degree, and thus the proof provided by Anderson and Livingston can
be used.

Connected graphs on five vertices. An interesting fact is that while there are 21
connected graphs on five vertices, there are still only three of these graphs realizable
as �.R/. This can be proved using a mix of results from [Anderson and Livingston
1999] and direct analysis of adding and/or multiplying certain zero divisors together
to reach a contradiction; alternatively, this is shown in [Redmond 2003]. These
three graphs and the rings used to construct them are shown in Figure 6. Here, F4

represents a finite field with four elements.
As before, we are able to construct more of these graphs in the graded setting

(in addition to those in Figure 6). Figure 7 summarizes the additional graphs we
are able to realize, while Table 1 summarizes the grading used on each ring. In the
table we use x and y to denote the images of X and Y in factor rings, while ei

denotes the i-th basis vector, which has a 1 .mod n/ (for the appropriate n) in the
i -th position and 0s elsewhere.

Not every connected graph on five vertices is realizable as a graded zero divisor
graph. Figure 8 contains the graphs unrealizable as graded zero divisor graphs.

G2 D �.Z2 �Z5/ G3 D �.Z2 �Z4/ G11 D �.Z3 � F4/

Figure 6. Connected graphs on five vertices realizable as (non-
graded) zero divisor graphs.
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G5 G8 G9 G13

G14 G15 G16 G17

G18 G19 G20 G21

Figure 7. Additional connected graphs on five vertices realizable
as graded zero divisor graphs.

graph ring group grading

G5
Z3ŒX�

.X2/
�Z2 Z2 deg..x; 0//D1 .mod 2/

G8
Z2ŒX�

..XC1/2X2/
Z2 deg.xi /D i .mod 2/

G9
Z2ŒX�

.X2/
�

Z2ŒY �

.Y 2/
Z2 deg..x; 0//Ddeg..0; y//D1 .mod 2/

G13
Z2ŒX�

.X6/
Z6 deg.x/D1 .mod 6/

G14
Z2ŒX�

.X3/
�Z3 Z3 deg..x; 0//D1 .mod 3/

G15
Z2ŒX;Y �

.X3;Y 2/
Z3˚Z2 deg.x/D e1, deg.y/D e2

G16
Z2ŒX;Y �

.XY;X2;Y 4/
Z4 deg.x/Ddeg.y/D1 .mod 4/

G17
Z2ŒX;Y �

.X;Y /2 �Z2 Z2 deg..x; 0//Ddeg..y; 0//D1 .mod 2/

G18
Z2ŒX;Y �

.XY;X3�Y 3/
Z3˚Z3 deg.x/D e1, deg.y/D e2

G19
Z2ŒX;Y �

.XY 2;X2;Y 4/
Z2˚Z4 deg.x/D e1, deg.y/D e2

G20
Z2ŒX;Y �

.XY;X3;Y 3/
Z3 deg.x/D1 .mod 3/, deg.y/D0

G21
Z2ŒX1;X2;:::;X5�

.Xi Xj ji;j2f1;2;:::;5g/
.Z2/5 deg.xi /D ei

Table 1. Rings and their gradings used to construct the graphs in Figure 7.
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G1 G4 G6

G7 G10 G12

Figure 8. Connected graphs on five vertices unrealizable as a
graded zero divisor graph.

Some can be eliminated easily, based on girth or diameter considerations, such as G1

and G4. To eliminate others, we used techniques similar to the nongraded case, with
some modifications. To indicate the complications that arise, we provide an example.

Example 4.1. To show the graph G10 is unrealizable, label the vertices a, b, c, d ,
and e so that a is the vertex at the top, continuing in alphabetical order clockwise.

From relations in the graph, we get that bc, bd , ce, and de must be (nonzero)
zero divisors. It is easily shown that each of these products must be equal to a.
This implies b; e 2Rg and c; d 2Rh for some g; h 2G; that is, these elements are
homogeneous of the same degree. Clearly, b � e 2 Rg and b � e ¤ 0. Similarly,
c � d 2 Rh and c � d ¤ 0. As each of these differences is annihilated by a, we
have b� e; c � d 2Z�G.R/.

We now simply exhaust all possibilities for b� e and c � d . If b� e D b, then
e D 0, a contradiction. If b � e D e, then cb � ce D ce, so that a � a D a, a
contradiction. Similarly, we reach contradictions if c � d 2 fc; dg. This gives
b� e 2 fa; c; dg and c � d 2 fa; b; eg.

Suppose b�eD a. Then b; e; a 2Rg . Thus, if c�d 2 fa; b; eg, then c; d 2Rg ,
and the following statement holds:

.�/ All five vertices are of the same degree, and deD a (for example) implies this
is degree 0. This implies �G.R/D �.R0/, but we know this graph cannot be
realized as the usual zero divisor graph of any ring.

Now suppose b � e D c. Then b; e; c; d 2 Rg . If c � d D a, then .�/ applies
again. If c�d D b, then c�d � e D c, so d D�e. This contradicts (for example)
the fact that ce ¤ 0. We obtain a similar contradiction if c � d D e.

Finally, suppose b � e D d . Then b; e; c; d 2 Rg . Again, if c � d D a, .�/

applies. If c � d D b, then c � d � e D d , so bc � bd � be D bd gives us aD 0,
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a contradiction. If c � d D e, then b � cC d D d , so b D c, a contradiction. It
follows that G10 cannot be realized as �G.R/.

Complete graphs. A central result of Anderson and Livingston [1999, Theorem 2.5]
in their classification of realizable complete graphs (and in their classification of
realizable star graphs, in fact) states that �.R/ has a vertex adjacent to every other
vertex if and only if R Š Z2 �A, where A is an integral domain, or Z.R/ is an
annihilator ideal (and hence is prime). We prove a similar result in Theorem 4.3,
using the following lemma.

Lemma 4.2. Suppose R is a G-graded ring and a 2R is homogeneous. If ann.a/

is maximal among annihilators of homogeneous elements, then ann.a/ is G-prime.

Proof. Suppose x and y are homogeneous and xy 2 ann.a/, but x … ann.a/. We
have xa¤ 0, but xyaD 0. Thus y 2 ann.xa/. However, ann.xa/� ann.a/ implies
ann.xa/D ann.a/. This implies y 2 ann.a/, and thus ann.a/ is a G-prime ideal. �

Because ZG.R/ is very often not an ideal in the graded setting, we will end up
considering .ZG.R//, the ideal generated by the homogeneous zero divisors, in the
theorem below.

Theorem 4.3. Suppose R is a G-graded ring. Then there is a vertex of �G.R/

adjacent to every other vertex if and only if R Š Z2 � A, where Z2 and A are
G-graded and A is a G-domain, or .ZG.R//D ann.x/ for some nonzero homoge-
neous x 2R.

Proof. (() If .ZG.R// D ann.x/, then x is adjacent to every other vertex. If
RŠZ2�A, where A is a G-domain, then .1; 0/ is adjacent to everything in Z�G.R/,
except .1; 0/.

()) Suppose .ZG.R// ¤ ann.x/ for all nonzero homogeneous x 2 R. Also,
suppose there exists a such that 0¤a2ZG.R/ with a adjacent to every other vertex.

If a 2 ann.a/, then ax D 0 for all x 2ZG.R/. This implies .ZG.R//� ann.a/.
Also, ann.a/ is homogeneous, so every homogeneous generator of ann.a/ is in
ZG.R/. Thus ann.a/� .ZG.R//. So ann.a/D .ZG.R//, a contradiction. There-
fore a … ann.a/.

We claim ann.a/ is maximal among those ann.x/ such that x is homogeneous.
To see this, note that a is adjacent to every other homogeneous zero divisor, yet
a … ann.a/.

By Lemma 4.2, ann.a/ is G-prime. Since a is a zero divisor, a2 is also a
homogeneous zero divisor. But a … ann.a/, so a2¤ 0. If a2¤ a, then a2 2 ann.a/,
but ann.a/ is G-prime, so a 2 ann.a/, a contradiction. Therefore a2 D a; that is,
a is a nontrivial (homogeneous) idempotent of degree 0.

By Lemma 2.1, R D S � T (as graded rings). Without loss of generality, let
aD .1; 0/. Then RD Z2 �A, where A is a G-domain. �
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As we have seen in the examples above, we can construct graded zero divisor
graphs that are complete for both four and five vertices. This already contrasts with
the nongraded case, as Anderson and Livingston [1999, Theorem 2.10] show that
only complete graphs on pn�1 vertices, where p is prime and n� 1, are realizable
as the zero divisor graph of a ring. In fact, in the graded case, we can realize every
complete graph as a graded zero divisor graph. While we assume the graph is finite,
the proof can easily be extended to infinite complete graphs.

Theorem 4.4. A complete graph of any size is realizable as �G.R/ for some abelian
group G and G-graded ring R.

Proof. Consider Kn, the complete graph on n vertices, where n � 1. Define the
ring S to be Z2ŒX1; : : : ; Xn�, where the Xi are indeterminates. This has an obvious
grading by the group G WD Zn, where we define the degree of Xi to be ei , the i -th
basis vector in G (which has a 1 in the i -th position and 0s elsewhere).

Let I D .XiXj j i; j 2 f1; : : : ; ng/ be the ideal generated by all products of
two (not necessarily distinct) variables. As each generator is homogeneous, I is a
homogeneous ideal, and R WD S=I is also a G-graded ring.

One can now verify that �G.R/ D Kn by noting that the only homogeneous
elements in R are the images of the Xi , all of which annihilate each other. �

Star graphs and complete bipartite graphs. Another well-studied class of graphs
is the class of star graphs. A star graph is the complete bipartite graph K1;k for
some k � 0. Except for the case k D 0, it can be thought of as having one vertex
adjacent to all other vertices with no additional edges. Anderson and Livingston
[1999, Theorem 2.13] completely characterized which star graphs are realizable
for finite commutative rings. Star graphs were also studied by Coykendall, Sather-
Wagstaff, Sheppardson, and Spiroff [Coykendall et al. 2012], but they focused on a
different construction introduced by Mulay [2002], based on equivalence classes of
zero divisors, denoted by �E .R/.

For nongraded rings, it is only possible to realize the star graphs with pn vertices,
where p is a prime and n� 0. As with complete graphs, we can construct all (finite)
star graphs in the graded setting. The following theorem is an obvious corollary of
Theorem 4.6, and we omit the proof.

Theorem 4.5. A star graph of any (finite) size is realizable as �G.R/ for some
abelian group G and G-graded ring R.

Not only can we realize all star graphs as graded zero divisor graphs, we can
also realize every complete bipartite graph.

Theorem 4.6. A complete bipartite graph of any (finite) size is realizable as �G.R/

for some abelian group G and G-graded ring R.
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Proof. Consider the graph Km;n and the rings defined by S DZ2ŒX�=.Xm�1/ and
T D Z2ŒY �=.Y n � 1/. Use x and y, respectively, to denote the images of X and
Y in S and T. Define LD lcm.m; n/. Set G D ZL and define ZL-gradings on S

and T , respectively, by setting deg.x/D L
m

and deg.y/D L
n

. It is a straightforward
exercise to show that each of these rings is now a ZL-field under its respective
grading.

Form the graded direct product R WD S �T (where Ri D Si �Ti ). Notice that
every nonzero element of R of the form .s; 0/ or .0; t/, where s 2 S and t 2 T are
homogeneous, is a vertex in �G.R/. Also, each such element .s; 0/ is adjacent
to each element .0; t/. Further, we claim these are the only vertices and edges
in �G.R/. To see this, suppose .s1; t1/ and .s2; t2/ are two elements of Z�G.R/.
Because S and T are ZL-fields, and the si and ti must be homogeneous, we can
only have

.s1; t1/.s2; t2/D .0; 0/

when the elements on the left are of the form .s1; 0/ and .0; t2/ or .0; t1/ and
.s2; 0/. �

Open questions.

Question 4.7. Notice that for the constructions above, each ring is graded by a
different abelian group. Another interesting question to consider is whether this
is necessary. For example, for a fixed group G, can we still realize all complete
graphs? If not, which graphs can we realize for a specific group?

Question 4.8. Theorem 4.3 is a step toward characterizing the graded rings that
give rise to graded zero divisor graphs that are stars or complete graphs. A further
avenue of study would be to determine if one can classify, completely or in part,
the (graded) rings that give rise to star and/or complete graphs.

Question 4.9. Is there a generalization, in part or whole, of Theorem 4.6 to n-partite
graphs? For example, Akbari, Maimani, and Yassemi [Akbari et al. 2003, Theorem
3.1] determine the rings whose zero divisor graphs are n-partite. They show, in
particular, that if n � 3, at most one partitioning subset of �.R/ can have more
than one vertex. As a contrast, graph G18 in Figure 7 shows that in the graded case
we can construct a complete 3-partite graph with more than one partitioning subset
having size greater than 1.
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