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A model interaction-diffusion equation for population density originally analyzed
through terms of third-order in its supercritical parameter range is extended
through terms of fifth-order to examine the behavior in its subcritical regime.
It is shown that under the proper conditions the two subcritical cases behave
in exactly the same manner as the two supercritical ones unlike the outcome
for the truncated system. Further, there also exists a region of metastability
allowing for the possibility of population outbreaks. These results are then used
to offer an explanation for the occurrence of isolated vegetative patches and sparse
homogeneous distributions in the relevant ecological parameter range where there
is subcriticality for a plant-groundwater model system, as opposed to periodic pat-
terns and dense homogeneous distributions occurring in its supercritical regime.

1. Introduction and formulation of the problem

Consider the following interaction-diffusion partial differential equation boundary
value problem for N = N (s, τ )≡ population density, where s ≡ one-dimensional
spatial variable and τ ≡ time:

∂N
∂τ
= D0

∂2 N
∂s2 + R0 Ner

(
N − Ne

Ne

)
, 0< s < L , (1-1a)

N (0, τ )= N (L , τ )= Ne, (1-1b)
with

r(θ)= θ +αθ3
+ γ θ5

+ O(θ7). (1-1c)
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Here, D0 ≡ dispersal constant, R0 ≡ interaction rate, Ne ≡ equilibrium population
density, and L ≡ territory size, while α and γ represent dimensionless interaction
coefficients. Note that

N (s, τ )≡ Ne (1-2)

is an exact solution to boundary value problem (1-1).
Introducing the nondimensional variables and parameter

z =
πs
L
, t =

D0π
2τ

L2 , θ(z, t)=
N (s, τ )− Ne

Ne
, β =

R0L2

D0π2 , (1-3)

our original problem transforms into

∂θ

∂t
−
∂2θ

∂z2 = βr(θ), 0< z < π, (1-4a)

θ(0, t)= θ(π, t)= 0. (1-4b)

Note that the exact solution (1-2) to the dimensional problem corresponds to

θ(z, t)≡ 0 (1-5)

for our dimensionless one (1-4).
This is an extension to fifth-order of a model equation introduced by Wollkind

et al. [1994] to illustrate the Stuart–Watson method of weakly nonlinear stability
analysis of prototype reaction-diffusion equations. Asymptotic analyses of this
sort are very useful for predicting pattern formation in such nonlinear systems.
That analysis requires the expansion of θ in powers of an unknown function A(t)
with spatially dependent coefficients. The pattern-formational aspect of this system
can be predicted from the long-time behavior of that amplitude function, which is
governed by its Landau ordinary differential equation

d A
dt
∼ σ A− a1 A3

− a3 A5
= F(A), (1-6)

where σ is the growth rate of linear stability theory and a1,3 are the Landau constants.
That long-time behavior is crucially dependent upon the signs of these Landau
constants. Wollkind et al. [1994] concentrated on the special case for which
r(θ) = sin (θ), employed by Matkowsky [1970] to develop his two-time method
of weakly nonlinear stability theory, since their main concern was to compare
the results obtained from the application of the Stuart–Watson method with those
he deduced. Then a1 > 0, identically (see below), and it is only necessary to
include terms through third-order in r(θ) to make pattern formation predictions for
this problem. In that event, there are two solutions of the truncated system: the
first, a homogeneous one that is stable for σ < 0 and the second, a supercritical
re-equilibrated pattern forming one that exists and is stable for σ > 0. These results
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can be directly applied to our problem for its generalized r(θ) in the parameter
range where a1 > 0. In the range where a1 < 0 and there is so-called subcriticality,
the solutions to the truncated problem can grow without bound, and one must take
the fifth-order terms into account in order to determine the long-time behavior of
the system. Then we shall show that, if there is a parameter range over which the
other Landau constant a3 satisfies a3 > 0, the pattern formation properties of our
system can be ascertained without having to resort to considering even higher-order
terms in r(θ). That requires the development of a formula for this Landau constant
and an examination of its sign as a function of α and γ .

2. The Stuart–Watson method of nonlinear stability theory

Toward that end, we seek a Stuart–Watson expansion for the solution of our model
equation of the form [Wollkind et al. 1994]

θ(z, t)∼ A(t) sin (z)+ A3(t)[θ31 sin (z)+ θ33 sin (3z)]
+ A5(t)[θ51 sin (z)+ θ53 sin (3z)+ θ55 sin (5z)]. (2-1)

Note that the spatial terms in expansion (2-1) satisfy our boundary conditions (1-4b)
at z = 0 and π , identically. Then, expanding r(θ) in powers of A(t), employing
the relevant trigonometric identities for the resulting products of sine functions
contained in its coefficients, and making use of the Landau amplitude equation
(1-6), we obtain a series of problems, one for each term appearing explicitly in our
expansion of the form An(t) sin (mz), given by

A(t) sin (z) : σ + 1= β,

A3(t) sin (z) : 3σθ31− a1+ θ31 = β
(
θ31+

3
4α
)
,

A3(t) sin (3z) : 3σθ33+ 9θ33 = β
(
θ33−

1
4α
)
,

A5(t) sin (z) : 5σθ51− a3− 3a1θ31+ θ51 = β
(
θ51+

9
4αθ31−

3
4αθ33+

5
8γ
)
.

Although there are also two other A5(t) problems, they have not been cataloged
above since only the one proportional to sin (z) which involves a3 is required for
our purposes. Here, while σ and the θnm are being considered as functions of β,
the coefficients a1,3 are assumed to be independent of that bifurcation parameter
and hence the use of the terminology Landau constants. That assumption is critical
for their determination as solvability conditions, which is developed below.

We now solve these problems sequentially. Then, from the ones not involving
these Landau constants, we obtain in a straightforward manner that

σ(β)= β − 1, (2-2a)
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and
θ33(β)=−

αβ

8(β + 3)
, (2-2b)

while the other two problems yield

2σ(β)θ31(β)= a1+
3
4αβ (2-2c)

and

4σ(β)θ51(β)= a3+ 3θ31(β)
(
a1+

3
4αβ

)
−

3
4αβθ33(β)+

5
8γβ. (2-2d)

(i) Assuming that θ31(β) is well behaved at the critical bifurcation value of β = 1
and taking the limit of this first relation as β→1, while noting that σ(β)=β−1→0
in this limit, we obtain the solvability condition

a1 =−
3
4α (2-3a)

and, upon substitution of this back into (2-2c), the solution

θ31(β)≡ θ31 =
3
8α. (2-3b)

Hence, we can deduce that

a1 > 0 for α < 0 and a1 < 0 for α > 0. (2-4)

Thus, as mentioned earlier,

r(θ)= sin (θ)= θ − 1
6θ

3
+ O(θ5) =⇒ α=−1

6 =⇒ a1=
1
8 . (2-5)

Now, in this case, defining

ε2
=
σ(β)

a1
or β = 1+ 1

8ε
2 (2-6a)

and introducing the rescaled variables

η = σ t, A(η)=
A(t)
ε

(2-6b)

into the truncated amplitude equation

d A
dt
= σ A− a1 A3

+ O(A5), (2-6c)

we obtain
dA
dη
=A−A3

+ O(ε2), (2-6d)

which justifies that truncation procedure. Now multiplying the truncated amplitude
equation by A(t) and rewriting it as

1
2

d A2

dt
= σ A2

− a1 A4
= σ A2

(
1−

A2

σ/a1

)
= f3(A2), (2-7)
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1

2 3

4

1 2
d dt
[
A

2 (
t)
]

supercritical re-equilibration
a1=−3α/4> 0, σ =β−1> 0

A2
e = σ/a1

A2(t)

a1< 0, σ > 0

unstable
A2(t)

a1> 0, σ < 0

stable
A2(t)

subcritical instability
a1< 0, σ < 0

A2
e = σ/a1

A2(t)

Figure 1. Plots of f3(A2) for the third-order truncated amplitude
equation with σ =β−1 and a1=−

3
4α. Here the circled numbers

correspond to the quadrants in the αβ-space of Figure 5 with
horizontal axis β = 1 and vertical axis α= 0.

we can easily deduce its long-time behavior by means of the four phase-plane plots of

1
2

d A2

dt
= f3(A2)

that constitute Figure 1, which catalogs the four qualitatively different cases corre-
sponding to the possibility of σ and a1 being either positive or negative. These serve
as graphical representations of the cases discussed in Section 1 for the truncated
version of our amplitude equation.

In particular, for the supercritical re-equilibration case of σ, a1 > 0, we have

lim
t→∞

A(t)= Ae = ε, (2-8a)

and hence
lim

t→∞
θ(z, t)∼ θe(z)= δ sin (z) as δ→ 0 (2-8b)

since

lim
t→∞

θ(z, t)= ε sin (z)+ ε3
[θ31 sin (z)+ θ33(β) sin (3z)] + O(ε5)

= (ε+ θ31ε
3) sin (z)+ ε3θ33(1) sin (3z)+ O(ε5)

= δ sin (z)+ 1
192δ

3 sin (3z)+ O(δ5)∼ δ sin (z) as δ→ 0, (2-8c)
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θ

δ

π/2 π
z

θ = θe(z)= δ sin(z)

Figure 2. Plot of the arch solution θe(z) for 0≤ z ≤ π .

where δ = ε+ ε3θ31 > 0. This equilibrium state, plotted in Figure 2, is an arch-
type pattern formed from one-cycle of a sine curve with its maximum amplitude δ
occurring at z = 1

2π .

(ii) We next proceed to analyze the second Landau constant relation (2-2d) involving
a3 and θ51 in an analogous manner to that just employed to evaluate a1 and θ31.
Thus, assuming θ51(β) to be well behaved at β = 1 and taking the limit of this
relation as β→ 1, we obtain the solvability condition

a3 =−
5
8γ − 3θ31

(
a1+

3
4α
)
+

3
4αθ33(1)=− 5

8γ −
3

128α
2 (2-9a)

and, upon substitution of this back into (2-2d), the solution

θ51(β)=
5
32γ +

9
16αθ31+

3α2(4β + 3)
512(β + 3)

. (2-9b)

Observe that, by virtue of the value of a1, we have a3 is independent of θ31. Also
observe that, unlike this quantity, θ51 is a function of β. Finally note, in addition,
should we have assumed that the Stuart–Watson expansion for θ(z, t) and the Landau
equation for d A/dt contained even powers of A(t), then the solvability conditions
and solutions for their coefficients would have shown them to be zero. Hence our
implicit assumption that these quantities only contained odd powers was made
without loss of generality and follows as a direct consequence of the form of r(θ).

Having determined its coefficients, we shall examine the truncated amplitude
equation (1-6) through terms of fifth-order, i.e.,

d A
dt
= F(A), (2-10)

and defer until after this examination has been completed a justification for that
truncation. We seek conditions under which the inclusion of fifth-order terms will
re-equilibrate the growing solutions predicted through third-order when a1 < 0.
Hence we assume a parameter range in which a1 < 0 or α > 0. Further, anticipating
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f(
A

2 )
=

1 2
d

A
2

dt
4a 4b 1

A2(t) A2(t) A2(t)

σ < σ−1 < 0 σ−1 < σ < 0 σ > 0

A−2
e A+2

e A+2
e

Figure 3. Plots of f (A2) for the fifth-order truncated amplitude
equation with a1 < 0; a3 > 0; and σ < σ−1 = −a2

1/(4a3) < 0,
σ−1 < σ < 0, and σ > 0, respectively. Here, the circled numbers
correspond to the quadrants in the αβ-space of Figure 5.

our results to be demonstrated below, we assume that a3 > 0, while, as always,
σ ∈ R. This equation has three equilibrium points

A(t)≡ Ae such that F(Ae)= 0 (2-11a)
satisfying either

Ae = 0 or 2a3 A±e
2
=±

√
a2

1 + 4a3σ − a1. (2-11b)

Observe that, since they must be real and positive, A+e
2 exists for σ ≥ σ−1 =

−a2
1/(4a3), while A−e

2 only exists for σ−1 ≤ σ < 0. Multiplying our truncated
amplitude equation (2-10) by A(t), we obtain

1
2

d A2

dt
= σ A2

− a1 A4
− a3 A6

= A2(A−e
2
− A2)(A2

− A+e
2
)= f (A2). (2-12)

Then we can determine the global stability properties of these equilibrium points by
plotting 1

2 d A2/dt = f (A2) for σ <σ−1< 0, σ−1<σ < 0, and σ > 0, respectively,
in the three phase-plane plots of Figure 3. From that figure, we can see that 0 is
globally stable for σ <σ−1< 0, A+e

2 is globally stable for σ > 0, and in the overlap
region where either can be stable, depending on initial conditions, 0 is stable for
0< A2(0) < A−e

2 and A+e
2 is stable for A2(0) > A−e

2, while A−e
2, which only exists

in that bistability region, is not stable there.
To justify this truncation procedure we consider our Landau equation in the form

d A
dt
= F(A)+ O(A7), (2-13)

define ε2
=−a1, assume a3=O(1) as ε→0, and let σ =O(ε4). Then A+e

2
=O(ε2),

which implies that A+e = O(ε). Note, α= 10−2 and γ =−2 yield Landau constants
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γ

a3 > 0

γ =− 3α2

80

α

Figure 4. Plot of the region in the αγ -plane, where a3 > 0.

satisfying these conditions. Now, analogous to our approach at third order, we
introduce the rescaled variables

η = σ t, A(η)= A(t)/A+e , where A,
dA
dη
= O(1) as ε→ 0. (2-14)

Since
d A
dt
= σ A+e

dA
dη
= O(ε5), σ A = σ A+e A= O(ε5),

a1 A3
= a1 A+e

3A3
= O(ε5), a3 A5

= a3 A+e
5A5
= O(ε5),

while O(A7)= O(A+e
7A7)= O(ε7)

(2-15)

under these conditions, this justifies our truncation procedure at fifth order.
Finally, when σ > 0, we have the same type of equilibrium solution as depicted

in Figure 2, except in this case

δ= ε0+θ31(1)ε3
0+θ51(1)ε5

0, where A+e = A0ε= ε0 with A0= O(1) as ε→ 0.
(2-16)

This result depends upon

a3 > 0 =⇒ γ <− 3
80α

2. (2-17)

Recall that, in addition, we have already taken α> 0 to guarantee that a1=−
3
4α< 0.

That region is plotted in the fourth quadrant of the αγ -plane of Figure 4. In this
context, note from Figure 3 that, unlike the situation depicted in Figure 1 for α > 0,
all the solutions remain bounded when the fifth-order terms in r(θ) are retained.

3. Bifurcation diagram, ecological interpretations, and conclusions

Should there exist a parameter range in a dynamical systems model of a given
phenomenon for which the third-order Landau constant a1 satisfies a1 < 0 and
hence the bifurcation is subcritical, the weakly nonlinear stability analysis must
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be pushed to fifth order as originally pointed out by DiPrima et al. [1971]. This
has been standard operating procedure particularly over the last five years when
practitioners of the Palermo nonlinear stability theory group began considering
fifth-order terms in the Landau equation during their investigation of subcritical
bifurcation for a variety of two-component reaction-diffusion systems [Gambino
et al. 2010; 2012; Tulumello et al. 2014]. By necessity, such calculations are long
and technically complicated. Thus, when surveying the theory, there is some merit
in introducing a simple model equation that preserves all the salient features of a
more complex system but considerably reduces the labor involved in determining
the Landau constants. This was our rationale for considering the generalized
Matkowsky equation under investigation. That was also the rationale for Drazin and
Reid’s [1981] employment of their nondimensionalized version of the Matkowsky
equation in order to develop weakly nonlinear theory relevant to hydrodynamic
stability. Matkowsky [1970] regarded his problem as a mathematical model for
temperature distribution in a finite bar with a nonlinear source term, the ends of
which were maintained at the ambient, while Drazin and Reid [1981] offered their
corresponding version as a phenomenological model of parallel flow in a channel.
Hence, they both envisioned their instabilities to be rate-driven by considering the
bifurcation parameter β ∼ R0. For ecological applications, it is often more relevant
to envision these instabilities to be territory-size driven by considering β ∼ L2

and then the instability criterion describes the evolution of spatially heterogeneous
structure in a specific domain.

Given that the fifth-order extensions referenced above primarily concentrated
only on the subcritical regime, we begin this section by synthesizing our fifth-order
results of Figure 3 valid for a1<0 or, equivalently, α>0, and a3>0 or, equivalently,
3α2
+ 80γ < 0, with those valid for a1 > 0 or, equivalently, α < 0, and a3 > 0, as

well. Note, that under these conditions, A+e
2
> 0 for σ > 0 and A−e

2
< 0, identically.

If we plot a figure analogous to the supercritical cases of Figure 1, it is obvious that
the qualitative morphological behavior of those cases is preserved at fifth order with
the only change being now A2

e = A+e
2. We accomplish this synthesis by means of

Figure 5, a bifurcation diagram in αβ-space, where the relevant regions associated
with these predicted morphological identifications are represented graphically. Since
those results also depend on the behavior of σ , while σ = 0 and σ = σ−1 are the
critical loci for that quantity in this regard, it is necessary for us to generate loci
equivalent to them in αβ-space. In this context, using our previous solvability
conditions and definitions, we can deduce the following equivalences:

σ =β − 1= 0 ⇐⇒ β = 1,

σ =β − 1= σ−1=−
a2

1

4a3
=

18α2

3α2+ 80γ
⇐⇒ β = 1+

18α2

3α2+ 80γ
,

(3-1)
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β

1

12

3

4a

4b

σ = 0

σ = σ−1

0 α0
α

Figure 5. Bifurcation diagram in αβ-space with σ−1=−a2
1/(4a3),

σ = β − 1, a1 = −
3
4α, and a3 = −

5
8γ −

3
128α

2 > 0, where the
circled numbers correspond to the quadrants denoted in Figures 1
and 3.

quadrant 1 2 3 4a 4b

stable equilibrium point A+e
2 A+e

2 0 0 0
A+e

2

Table 1. Stable equilibrium points for A2 in the quadrants of Figure 5.

which are plotted in Figure 5. Here, that first locus is a horizontal line parallel
to the α-axis which divides our αβ-space into the four quadrants formed by it
and the β-axis, while the second is a concave downward decreasing curve having
a horizontal tangent at its β-intercept of 1 and an α-intercept of α0 > 0, where
α2

0 =−
80
21γ , which separates the fourth quadrant of that space into two parts. From

an examination of the modification of the supercritical cases of Figure 1 described
above and the subcritical cases of Figure 3, we construct Table 1 cataloging the
stable equilibrium points for A2 in each of the quadrants of Figure 5.

Note that these fifth-order results for our model equation are much more self-
consistent than those obtained in the case of its third-order truncation, in that, the
behavior for the subcritical quadrants 1 and 4a now exactly resemble the behavior
for the supercritical quadrants 2 and 3, respectively. In the subcritical quadrant 4b,
we have what biologists refer to as metastability, in that, the 0 equilibrium point is
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quadrant 1 2 3 4a 4b

stable pattern arch arch dense hom. sparse hom. sparse hom.
arch

Table 2. Morphological stability predictions for Table 1.

N

Nc
N = Ne(α)= e−αNc

α

Figure 6. Plot of the population equilibrium density Ne versus α.

stable to initially small disturbances, but the model will switch to the equilibrium
point A+e

2 for sufficiently large ones. The existence of such a region of metastability
allows our model equation to exhibit outbreak behavior wherein the maximum
population level increases several-fold upon a sufficient initial perturbation in
amplitude.

Returning to our original dimensional formulation (1-1), the fact that A2
= 0

represents a globally stable equilibrium point implies that

lim
τ→∞

N (s, τ )= Ne. (3-2)

Hence this solution represents a homogeneous population. In many actual biological
systems, such as the interaction-diffusion plant-groundwater one employed by
Chaiya et al. [2015] to model vegetative pattern formation in a flat arid environment,
the homogeneous patterns in the subcritical parameter range correspond to rela-
tively sparse distributions, while most of those patterns in the supercritical range
correspond to much denser distributions, where the threshold between these two
types of distributions occurs at some Nc. We can induce this sort of behavior in our
model equation by adopting the relationship

Ne = Ne(α)= Nce−α, (3-3)

which is plotted in Figure 6. Then from this relation and Table 1 in conjunction
with Figure 2, we can deduce the stable pattern predictions given in Table 2 for the
quadrants of Figure 5.
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In [Chaiya et al. 2015], it was conjectured that the region of parameter space
of subcriticality, where a1 < 0, corresponded to isolated vegetative patches when
σ > 0 and low-density homogeneous distributions when σ < 0, as opposed to
the occurrence of periodic patterns for σ > 0 and high-density homogeneous
distributions when σ < 0, where a1 > 0, which were already predicted by their
rhombic-planform two-dimensional nonlinear stability analysis. Such isolated
patches are a compromise between periodic patterns and homogeneous stable states
that are sparse enough to resemble bare ground. They then associated equilibrium
points 0 and A+e

2 of quadrants 1 and 4 of Table 1 with the sparse homogeneous
state and the isolated patch, respectively, that would occur in a postulated fifth-
order extension, should a3 > 0 for this parameter range. Our fifth-order results
summarized in Table 2 represent the first step in a conclusive demonstration of the
validity of this conjecture.

We conclude by noting that although these results are only strictly asymptotically
valid in a neighborhood of the marginal stability curve β = 1, Boonkorkuea et al.
[2010], by comparing their theoretical predictions of this sort with existing numerical
simulations of vegetative pattern formation for a model evolution equation, recently
showed that the former can often be extrapolated to those regions of parameter
space relatively far from the marginal curve. These theoretical predictions also
associated that region of parameter space, where numerical simulation generated
isolated patches, with σ > 0 and a1 < 0.

Finally, we close by offering, for the sake of definiteness, a closed-form repre-
sentation of r(θ), composed of combinations of common functions that produce
Landau constants consistent in sign with our subcriticality assumptions. Recall the
following Maclaurin polynomials truncated through terms of fifth order:

sinh (z)∼ z+ 1
6 z3
+

1
120 z5 and arctan (z)∼ z− 1

3 z3
+

1
5 z5. (3-4)

Then

4 sinh
( 1

2θ
)
∼ 4

( 1
2θ +

1
48θ

3
+

1
3840θ

5)
= 2θ + 1

12θ
3
+

1
960θ

5,

2 arctan
( 1

2θ
)
∼ 2

( 1
2θ −

1
24θ

3
+

1
160θ

5)
= θ − 1

12θ
3
+

1
80θ

5.
(3-5)

Now, defining r(θ) to be the difference between these two functions, we obtain

α = 1
6 > 0, γ =− 11

960 such that 80γ + 3α2
=−

11
12 +

1
12 =−

5
6 < 0. (3-6)
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