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We investigate the unlinking numbers of 10-crossing links. We make use of various
link invariants and explore their behaviour when crossings are changed. The
methods we describe have been used previously to compute unlinking numbers of
links with crossing number at most 9. Ultimately, we find the unlinking numbers
of all but two of the 287 prime, nonsplit links with crossing number 10.

1. Introduction

A knot can be thought of as a knotted piece of string with cross-section a single
point and ends glued together to form a closed curve. A link is a collection of
knots, each knot representing a component of the link. A sublink of a link is the
disjoint union of some of its components. Formally, a knot is a smooth isotopy
class of embeddings of S1 in R3 or S3. Similarly, a link is a smooth isotopy class
of embeddings of a disjoint union of one or more circles in R3 or S3. A smooth
isotopy is a smooth map F : S1

t · · · t S1
×[0, 1] → R3 together with a family of

embeddings ft : S1
t· · ·tS1

→R3 such that ft(x)= F(x, t) for all x ∈ S1
t· · ·tS1

and t ∈ [0, 1]. A link is trivial if it is isotopic to the disjoint union of finitely many
circles in a plane.

A link is oriented if each of its components is assigned an orientation. There
are 2n ways to orient a link with n components, by adding an arrow on each knot,
pointing in one of two possible directions. A projection of a link onto a plane
together with a set of instructions on under-crossings and over-crossings that suffice
to reconstruct the original link is referred to as a link diagram. We assume the
projection is injective, except for some double points. If the crossings are such that
one goes under and over alternately when travelling along each component from an
arbitrary point back to itself, then the link diagram is said to be alternating. This
property is illustrated in Figure 1. A link is alternating if it admits an alternating
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Figure 1. The horizontal strand goes alternately over and under
the vertical strands.

diagram. A split link is a link that has a projection as a disconnected diagram.
Otherwise, if every diagram of the link is connected, the link is said to be nonsplit.
A link L is called nonprime if it admits a diagram which is divided into two subsets
by a straight line in the plane which intersects the diagram in two points, and such
that one does not obtain a diagram of L by replacing either of the subsets by an
embedded line segment. A link is prime if it is not nonprime.

The crossing number of a link is the minimal number of crossings in any of its
diagrams. The operation of swapping the two strands that form a crossing such that
an under-crossing becomes the over-crossing and vice versa is known as changing
a crossing. With a sensible choice of crossing changes, one can obtain the trivial
link from any given diagram. The unlinking number is the minimal number of
crossings one has to change in order to obtain the trivial link, where the minimum
is taken over all diagrams of the link. In general, unlinking numbers are difficult
to determine. In this paper we investigate the unlinking number of each of the
287 prime, nonsplit links with crossing number 10 and at least 2 components by
finding constraints on the values it can take. Methods developed by Borodzik,
Friedl and Powell [Borodzik et al. 2016], Kauffman and Taylor [1976], Kawauchi
[2014], Kohn [1993], Murasugi [1965] and Nagel and Owens [2015] give us lower
bounds, whereas upper bounds follow from experiment. Of the links we looked at,
the unlinking numbers of two are still unknown and require new techniques to be
developed. Good references for basics of knot theory are [Adams 2004; Cromwell
2004; Lickorish 1997; Livingston 1993].

In Section 2 we describe various techniques that can be used to produce lower
bounds on unlinking numbers. In Section 3 we give a table of the 10-crossing links
and their unlinking numbers, with the exception of two links. For each of these
links, we indicate in the table the technique with which the claimed lower bound is
produced.

2. Lower bounds on unlinking numbers

All the methods we will use throughout this paper to compute unlinking numbers of
links with crossing number 10 have previously been used to find unlinking numbers
of links with crossing number 9 or less.
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We begin with a lemma about real symmetric matrices. The signature sign A of
a real symmetric matrix A is the number of positive eigenvalues minus the number
of negative eigenvalues, counted with multiplicities. The nullity of a matrix is the
dimension of its kernel.

Lemma 1. Let A be an n× n real symmetric matrix. Suppose that the matrix B
is identical to A, apart from one diagonal entry, say bi i 6= ai i , where bi i ∈ R, for
some i ∈ {1, . . . , n}. It follows that:

(i) The nullity of B differs from the nullity of A by at most 1.

(ii) If A and B have the same nullity and bi i > ai i , then the signature of B and the
signature of A are related by either sign B = sign A or sign B = sign A+ 2.

(iii) If A and B have different nullities and bi i > ai i , then sign B = sign A+ 1.

Sketch of proof. (i) The rank of the matrix A is the dimension of its column space,
which in turn is equal to the number of linearly independent columns. By changing
the diagonal entry ai i for some i ∈ {1, . . . , n}, the column i will also change; hence
the rank of A increases by 1, stays the same, or decreases by 1. However, the
change has no effect on the size of A. From the rank-nullity theorem it follows
that, as the rank changes, the nullity of A will either decrease by 1, stay the same
or increase by 1.

(ii)–(iii) The key fact is that by reordering the basis, one can arrange for the leading
principal minors of A to form a sequence d1, . . . , dk, 0, . . . , 0, where dk 6=0 and k is
the rank of A; furthermore, if di = 0 then di−1di+1 < 0. This may be done in such a
way that the diagonal entry bi i in which B differs from A is either i = k or i = k+1.
Note that the number of sign changes in this sequence is equal to the number of
negative eigenvalues of A. See also the proof of Theorem 4 in [Jones 1950]. �

2.1. Linking number. Let D be a diagram of the oriented link L , and c a crossing.
There are two possible configurations near c, as illustrated in Figure 2. The crossing
on the left is said to be positive, whereas the crossing on the right is negative. Let

ε(c)=
{

1 if c is a positive crossing,
−1 if c is a negative crossing,

positive negativepositive negative

Figure 2. Crossing type in an oriented link.
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and let L1 and L2 be disjoint sublinks of L such that L = L1 t L2. In the diagram
of L , a crossing may be classified according to the origin of the two strands that
form it: L1 with itself, L2 with itself, or L1 with L2. The linking number of L1 and
L2 is defined as

lkD(L1, L2)=
1
2

∑
c∈π(L1)∩π(L2)

ε(c),

where π(L i ) is the projection of L i to the diagram D, and we write c∈π(L1)∩π(L2)

if one of the strands in the crossing belongs to L1 and the other to L2. Once an
orientation is fixed, the linking number does not depend on the choice of diagram,
so we can refer to it as lk(L1, L2). Thus the linking number is an invariant of the
link and the chosen sublinks, and a measure of the number of times one sublink
winds around the other.

Proposition 2 [Kohn 1993, Theorem 1]. Let L = L1 t L2 be an oriented link in R3,
where L1 and L2 are disjoint sublinks of L. Then the unlinking number of L satisfies

u(L)≥ u(L1)+ u(L2)+ |lk(L1, L2)|,

where lk(L1, L2) is the linking number of L1 and L2.

Proof. Consider some crossing in a diagram D of the link L . If both strands belong
to the sublink L1, then changing the crossing will affect neither the sublink L2

nor the linking number of L1 and L2. Similarly, if both strands belong to L2, then
changing the crossing will affect neither L1 nor the linking number of the sublinks.
However, if one strand belongs to L1 and the other to L2, then changing the crossing
will have no effect on the two sublinks, but the linking number will change by 1. Let
us now consider an unlinking sequence that realises u(L). The number of crossing
changes between L1 and L2 is then bounded below by |lk(L1, L2)|, and the number
of crossing changes completely in L1 or completely in L2 is bounded below by
u(L1) and u(L2) respectively, thus proving the inequality. �

To illustrate the application of this method, consider the link L10n96, oriented
as in Figure 3. Let the sublinks L1 and L2 both be Hopf links — red with blue,
and green with purple, respectively. The linking number of L1 and L2 is 3, and it
follows from an easy application of Proposition 2 that the unlinking number of a
Hopf link is 1, so that u(L10n96)≥ 5. Therefore, the link has unlinking number 5,
as it can be converted to the trivial link with four components by changing the five
crossings indicated in the figure.

2.2. Link signature. For the next method, let us begin by describing a formula
for the signature of a link. Consider a diagram of the link L with chessboard
shading, so that no two adjacent regions share the same colour. Assign an incidence
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Figure 3. One possible way to unlink L10n96.

number ι(c) to each crossing in the diagram, by letting

ι(c)=
{

1 if c is a right-handed crossing,
−1 if c is a left-handed crossing.

Handedness is illustrated in Figure 4. Note that this is defined using the shading,
and is independent of orientation. Let the n+ 1 unshaded regions in the diagram
of L be R0, R1, . . . , Rn . Construct the square matrix G ′ = (gi j ), with entries

gi j=


−
∑
ι(c) if i 6= j, summing over crossings c incident to both Ri and Rj ,

−

k=n∑
k=0,k 6=i

gik if i= j.

After deleting the zeroth row and column of G ′, another matrix is obtained,
namely the symmetric square integer Goeritz matrix G of the chessboard-shaded
link diagram. Let us now orient the link and consider a crossing c in its diagram.
If we discard information on under-crossing and over-crossing, then there are two

right-handed left-handed

right-handed left-handed

Figure 4. Crossings in a chessboard-shaded diagram.



340 LAVINIA BULAI

type I type II

type I type II

Figure 5. Crossings in an oriented chessboard-shaded diagram.

possible configurations near c, type I and type II, as illustrated in Figure 5. Define

µ=
∑

type II

ι(c),

where the sum is taken over all crossings of type II in the diagram of the link. Then
the signature of the link is given by

σ(L)= sign G−µ, (∗)

where sign G is the signature of the Goeritz matrix of the diagram. This definition
of signature is due to Gordon and Litherland [1978], who proved it to be equivalent
to an older definition using Seifert surfaces. Signature is a link invariant — once an
orientation is fixed, the signature remains constant under isotopy. This was proved
in [Trotter 1962] for knots and in [Murasugi 1965] for links.

Proposition 3 [Murasugi 1965, Theorem 10.1; Cochran and Lickorish 1986, Corol-
lary 3.9]. Let L be an oriented link in R3. Then the unlinking number of L satisfies

u(L)≥ 1
2 |σ(L)|,

where σ(L) is the signature of the link.

Proof. Consider the trivial link with k components and the standard diagram
consisting of k nonnested circles with no crossings. For one choice of shading, the
corresponding Goeritz matrix G of this link is the zero matrix with k− 1 rows and
columns, which has sign G = 0. Since there are no crossings in this diagram of
the link, we have µ = 0. It follows from (∗) that the signature of the trivial link
is 0, irrespective of the number of components. Now, given an oriented link L with
diagram D, we aim to obtain the trivial link by changing crossings in D. At each
step, let c denote the crossing to be changed, and choose the chessboard colouring
of the diagram that makes c a double point of type I. Also, relabel the white regions
so that c is adjacent to R0 and Rn . In the matrix G ′ of the link, the effect of the
crossing change amounts to changing entries g00, g0n , gn0 and gnn . Therefore, the
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Figure 6. One possible way to unlink L10a99.

new Goeritz matrix of the link is identical to the original one, except for the diagonal
entry gnn . By Lemma 1, sign G changes by at most 2. Since c is a double point of
type I, changing the crossing will not affect µ. It follows from (∗) that σ(L), in
turn, changes by at most 2. The link is eventually converted to the trivial link, so
that its signature changes by at most twice the unlinking number throughout the
process, which implies that |σ(L)| ≤ 2u(L), or equivalently, u(L)≥ 1

2 |σ(L)|. �

To illustrate the application of this method, consider the link L10a99. Using (∗),
one may show that the link has signature −5 when oriented as in Figure 6, so that
u(L10a99)≥3. Therefore, the link has unlinking number 3, as it can be converted to
the trivial link with 2 components by changing the 3 crossings indicated in the figure.

2.3. Link determinant and link nullity. The determinant of a link is defined to be
the determinant of its Goeritz matrix. Similarly, the nullity of a link is equal to the
nullity of its Goeritz matrix, provided that a connected diagram is considered.

Proposition 4 [Kauffman and Taylor 1976, Corollary 3.21; Kawauchi 2014, Corol-
lary 4.3; Nagel and Owens 2015, Lemma 2.4]. Let L be a link in R3, with k
components, nullity η(L) and determinant det L. Let u(L) be the unlinking number
of L:

(a) Then
u(L)≥ k− 1− η(L).

(b) If u(L)≤ k− 1, then det L = 2k−1c2 for some c ∈ Z.

Proof. Consider the trivial link with k components and a connected diagram
consisting of k circles sitting in a row, with two crossings between each adjacent
pair of circles and no other crossings. For either choice of shading, the Goeritz
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Figure 7. One possible way to unlink L10a169.

matrix G of this link is the zero matrix with k− 1 rows and columns, which has
nullity k−1. Now, given a diagram of a link L with k components and nullity η(L),
construct the matrix G ′ as in Section 2.2 and change a crossing. As before, we can
arrange so that the change affects only one entry in the Goeritz matrix of L , namely
the bottom right element gnn . It follows from Lemma 1 that the nullity of the Goeritz
matrix will change by at most 1, and so too will the nullity of the link. Since L is
converted to the trivial link with u(L) crossing changes, its nullity cannot change
by more than the unlinking number, giving u(L)≥ |(k−1)−η(L)| ≥ k−1−η(L).
For a proof of part (b) see [Kawauchi 2014], where this statement is shown to
follow from a stronger condition involving multivariable Alexander polynomials,
or [Nagel and Owens 2015]. �

To illustrate the application of the method described in Proposition 4(a), consider
the link L10a169 with four components and nullity 0, so that u(L10a169) ≥ 3.
Therefore, the link has unlinking number 3, as it can be converted to the trivial link
with four components by changing the three crossings indicated in Figure 7.

For the method described in part (b), let L be the link L10n33, with k = 2
components and determinant det L = 48. Suppose that u(L) ≤ 1. Then by the
proposition, c2

= 24 for some c ∈ Z, a contradiction that gives u(L) > 1. Therefore,
the link has unlinking number 2, as it can be converted to the trivial link with two
components by changing the two crossings indicated in Figure 8.

Every n× n integer matrix M can be transformed by a finite sequence of row
and column operations into a diagonal matrix, whose diagonal entries form a
sequence {a1, a2, . . . , ar , 0, . . . , 0}, where ai is nonnegative and ai divides ai+1.
This diagonal matrix is independent of the sequence of row and column operations,
and is called the Smith normal form of M. The matrix M presents the quotient group
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Figure 8. One possible way to unlink L10n33.

Zn/MZn, which is cyclic if and only if the Smith normal form S of M satisfies
si i = 1 for i = 1, . . . , n− 1, and snn = det M.

Proposition 5 [Nagel and Owens 2015, Lemma 4.1]. Let L be a link with two
components in R3 and determinant det L such that its unlinking number satisfies
u(L) < 3. Suppose that the Goeritz matrix of L presents a finite cyclic group. Then
at least one of the following statements holds:

• det L is a multiple of 4, and the absolute value of at least one of the signatures
of L is 1.

• det L is a multiple of 16.

• det L = 2t2 for some t ∈ Z.

The proof of this proposition is based on a 4-dimensional manifold bounded by
the double branched cover Y of the link L . This gives constraints on the linking
form of Y, which in turn gives constraints on the determinant and signature of L .
For details see [Nagel and Owens 2015].

To illustrate the application of this method, let L be the link L10a54, with two
components and determinant 78. The Smith normal form of the Goeritz matrix G
of L is

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 78

,
so that G presents a finite cyclic group. The determinant of L is neither a multiple
of 4, nor a multiple of 16, nor twice the square of some t ∈ Z, so that u(L)≥ 3 by
Proposition 5. Therefore, the link has unlinking number 3, as it can be converted to
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Figure 9. One possible way to unlink L10a54.

the trivial link with two components by changing the three crossings indicated in
Figure 9.

The following lemma can be viewed as a signed refinement of Proposition 4(a).

Lemma 6 [Nagel and Owens 2015, Lemma 2.2]. If an oriented link L with k
components, signature σ(L) and nullity η(L) is converted to the trivial link by
changing p positive crossings and n negative crossings in some diagram D of the
link, then

p ≥
−σ(L)− η(L)+ k− 1

2
.

Proof. Let c be a positive crossing in the diagram of L , and choose the chessboard
colouring of D that makes c a double point of type I. In this situation, c has incidence
number ι(c) = −1. Let G be the Goeritz matrix of the diagram and suppose we
change the crossing c. As in the proof of Proposition 3, we are free to relabel the
white regions, so that the new Goeritz matrix of the link is identical to the original
one, except for one diagonal entry. After the change, c is still a double point of
type I, but its incidence number becomes ι(c)= 1. Therefore, the diagonal entry
that distinguishes between the two Goeritz matrices increases. By Lemma 1, if
the nullity of G stays the same, then the signature of G either stays the same or
increases by 2, and following (∗), so too does σ(L)+ η(L). If the nullity changes,
it can only be by 1, in which case Lemma 1 tells us that the signature of G increases
by 1, and consequently, σ(L)+η(L) stays the same or increases by 2. By a similar
argument, changing a negative crossing causes σ(L)+ η(L) to either stay constant
or decrease by 2. As we have seen previously, the signature and nullity of the trivial
link with k components add up to k− 1. The link L is eventually converted to the
trivial link, so that σ(L)+ η(L) increases by at most twice the number of positive
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Figure 10. One possible way to unlink L10a138.

crossings we change, giving (k− 1)− (σ (L)+ η(L))≤ 2p, or equivalently,

p ≥
−σ(L)− η(L)+ k− 1

2
. �

2.4. Lattice embeddings. Suppose that the set of vectors {a1, . . . , an} forms a
basis for Rn over R. These vectors span a lattice 3, which is the set of all linear
combinations {m1a1 + · · · +mn an} with mi ∈ Z, i = 1, . . . , n. Let {b1, . . . , bk}

be a set of vectors in 3. These vectors span a sublattice 3b ⊂ 3, which is the
set of all linear combinations {n1b1+ · · ·+ nk bk} with n j ∈ Z, j = 1, . . . , k. The
sublattice 3b of 3 is called primitive if for all v ∈3 and for all m ∈N, if mv ∈3b

then v ∈3b. Nagel and Owens gave an obstruction to equality in the lower bound
from Lemma 6, which we describe next.

Proposition 7 [Nagel and Owens 2015, Corollary 3]. Let L be an oriented non-
split alternating link, with k components and signature σ(L). Suppose L can be
converted to the trivial link by changing p = 1

2(−σ(L)+ k− 1) positive crossings
and n negative crossings in some diagram of L. Let m be the rank of the positive-
definite Goeritz matrix G associated to an alternating diagram of L , and define
l = m + 2(n + p)− k + 1. Then G admits a factorisation as AT A, where A is
an integer l ×m matrix. Moreover, there exist vectors vi for i = 1, . . . , p+ n in
(Col A)⊥ ⊂ Zl spanning a primitive sublattice of Zl such that vi · vj = 2δi j , where
δi j is the Kronecker delta.

The proof of Proposition 7 uses results of Gordon and Litherland [1978], as well
as the celebrated diagonalisation theorem of Donaldson [1987], and is based on a
generalisation of earlier work by Cochran and Lickorish [1986].

To illustrate the application of this method, let L be the link L10a138, with three
components, determinant 48 and nullity 0. By part (b) of Proposition 4, u(L) > 2,
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and we aim to obstruct it from being 3. When oriented as in Figure 10, the link has
signature −4. Suppose L can be converted to the trivial link by changing p positive
crossings and n negative crossings in some diagram. By Lemma 6, p ≥ 3. Thus
the only possibility if u(L) = 3 is to have p = 3 and n = 0, which we will show
cannot occur. Suppose p = 3 and n = 0. The positive-definite Goeritz matrix of the
chosen alternating diagram is

G =

 7 −1 −1
−1 3 −1
−1 −1 3

,
which has rank m = 3. Keeping the notation in Proposition 7, we have l = 7. For
any factorisation of G as AT A, where A is a 7× 3 integer matrix and AT is its
transpose, another may be obtained by interchanging the second and third columns
of A, permuting the rows of A, or multiplying a subset of the rows of A by −1. Up
to these symmetries, we are left with nine solutions:

−1 1 1
2 0 0
1 −1 1
−1 −1 1

0 0 0
0 0 0
0 0 0


,



−1 1 1
2 0 0
0 −1 1
0 −1 1
1 0 0
1 0 0
0 0 0


,



1 1 0
1 −1 1
−1 1 0
−1 0 1
−1 0 1

1 0 0
1 0 0


,



−1 1 1
1 −1 1
−1 −1 1

1 0 0
1 0 0
1 0 0
1 0 0


,



−2 1 0
1 0 1
−1 −1 1
−1 0 1

0 1 0
0 0 0
0 0 0


,



−2 1 0
1 1 0
0 −1 1
−1 0 1

0 0 1
1 0 0
0 0 0


,



2 0 0
1 −1 1
−1 0 1
−1 0 1

0 1 0
0 1 0
0 0 0


,



−2 1 0
−1 −1 1

0 1 0
0 0 1
0 0 1
1 0 0
1 0 0


,



2 0 0
0 −1 1
−1 1 0
−1 0 1

0 1 0
0 0 1
1 0 0


.

It is straightforward to check that for any matrix A in this list, there does not
exist a set of vectors {v1, v2, v3} in the orthogonal complement of the column space
of A such that vi · vj = 2δi j , so that u(L) ≥ 4 by Proposition 7. Therefore, the
link has unlinking number 4, as it can be converted to the trivial link with three
components by changing the four crossings indicated in Figure 10.

In general, the method based on Proposition 7 gives a somewhat involved algo-
rithm to obstruct equality in Lemma 6, leading to improved lower bounds on the
unlinking number. All possible factorisations of the Goeritz matrix can be found
by hand, but this can also be done using the command OrthogonalEmbeddings
provided by GAP [2015].
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Figure 11. Diagram of L10a7.

So far, five methods that give lower bounds on the unlinking number of a link —
alone or combined — have been described in Propositions 2, 3, 4, 5 and 7. The next
method was developed by Kohn [1993].

2.5. Covering links. Let p : C×R→ C×R be the map taking (z, t) to (z2, t).
Let L be a link with two components, say L = A t B, where A is the trivial knot
and lk(A, B)= 0. Assume, after isotopy in S3

= R3
∪ {∞} = C×R∪ {∞}, that A

is 0×R, and let B̃ be the preimage of B under p. We refer to B̃ as the covering
link of B under p.

Proposition 8 [Kohn 1993, Method 5]. Let L be a link with two components, say A
and B, such that A is the trivial knot and lk(A, B)= 0. If L is unlinked by a single
crossing change involving B only, then the unlinking number of B̃ is at most 2.

Sketch of proof. Suppose L can be converted to the trivial link by changing a single
crossing c, with both strands of c belonging to component B. We may isotope B
so that it lies near the plane C× {0} and its projection onto this plane contains
the unlinking crossing c. The preimage B̃ of B will then contain two crossings c1

and c2, which are the preimage of c under p. Changing c converts L to the unlink;
therefore changing c1 and c2 must convert B̃ to the unlink, since the preimage under
p of a circle in C×{0} not containing the origin is a pair of circles. �

To illustrate the application of this method, let L be the link L10a7 shown
in Figure 11. The link has two components, namely the red trivial knot A and
the blue figure-eight knot B, with lk(A, B) = 0. If L can be converted to the
unlink by changing a single crossing, then both strands must belong to the knotted
component B. So suppose that L is converted to the unlink by a single crossing
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Figure 12. L10a7 when the trivial component is 0×R.

Figure 13. Diagram of B̃.

change involving B only. After isotopy, assume that A is 0×R, as depicted in
Figure 12.

The preimage of B under the map p is the union of B and its rotated image,
glued together to form the covering link B̃, as in Figure 13. It consists of two
stevedore knots — each with unknotting number 1 — with linking number 2 when
oriented as shown.

Following Proposition 2, u(B̃) ≥ 4, contradicting Proposition 8. Therefore,
u(L)≥ 2, and L has unlinking number 2, as it can be converted to the trivial link
with two components by changing the two crossings indicated in Figure 14.

3. Table of unlinking numbers

Table 1 contains all prime, nonsplit links with crossing number 10 and at least two
components, together with the unlinking number u(L) of each link and a proposition
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Figure 14. One possible way to unlink L10a7.

that gives a lower bound that realises u(L). With the exception of L10n32 and
L10n34, the table is complete.

3.1. Unknown cases. Although the methods in this paper were not sufficient to
determine the unlinking numbers of two of the links in the table, they still provide
partial information. In the following, p is the number of positive crossings and n is
the number of negative crossings that we change:

• L10n32 has u(L)≥ 1 and we conjecture that u(L)= 2.

• L10n34 has u(L) ≥ 2 by Proposition 4 and we conjecture that u(L) = 3;
the cases p = 0, n = 2 and p = 1, n = 1 for any choice of orientation are
obstructed by Lemma 6 and Proposition 7, respectively.

L10n32 L10n34

Figure 15. Showing a set of crossing changes that unlink the two
remaining links.
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link L u(L) Prop.

L10a1 2 4b
L10a2 2 3
L10a3 2 8, 2
L10a4 2 4b
L10a5 2 4b
L10a6 2 4b
L10a7 2 8, 2
L10a8 3 7
L10a9 2 3
L10a10 2 4b
L10a11 3 2
L10a12 3 2
L10a13 3 2
L10a14 2 4b
L10a15 3 2
L10a16 3 2
L10a17 3 7
L10a18 2 2
L10a19 2 4b
L10a20 2 4b
L10a21 2 4b
L10a22 2 3
L10a23 3 7
L10a24 3 7
L10a25 3 2
L10a26 3 2
L10a27 2 3
L10a28 1 2
L10a29 1 2
L10a30 3 2
L10a31 2 4b
L10a32 2 8, 7
L10a33 3 2
L10a34 1 2
L10a35 2 2
L10a36 1 2
L10a37 3 2
L10a38 4 2
L10a39 2 2
L10a40 3 2
L10a41 2 4b
L10a42 2 2
L10a43 4 2
L10a44 4 2
L10a45 3 2
L10a46 4 2
L10a47 3 2

link L u(L) Prop.

L10a48 2 2
L10a49 4 2
L10a50 3 2
L10a51 1 2
L10a52 2 3
L10a53 1 2
L10a54 3 5
L10a55 2 4b
L10a56 2 4b
L10a57 2 2
L10a58 4 2
L10a59 2 2
L10a60 2 2
L10a61 2 2
L10a62 3 3
L10a63 3 5
L10a64 2 3
L10a65 2 4b
L10a66 2 2
L10a67 4 2
L10a68 2 2
L10a69 2 2
L10a70 2 3
L10a71 2 4b
L10a72 4 2
L10a73 3 2
L10a74 4 2
L10a75 3 2
L10a76 2 2
L10a77 4 2
L10a78 4 2
L10a79 2 2
L10a80 2 2
L10a81 4 2
L10a82 3 5
L10a83 3 2
L10a84 2 2
L10a85 4 2
L10a86 2 2
L10a87 3 2
L10a88 2 2
L10a89 2 3
L10a90 2 4b
L10a91 2 4b
L10a92 2 2
L10a93 3 7
L10a94 4 2

link L u(L) Prop.

L10a95 1 2
L10a96 4 2
L10a97 4 2
L10a98 4 2
L10a99 3 3

L10a100 4 2
L10a101 4 2
L10a102 4 2
L10a103 1 3
L10a104 2 2
L10a105 4 2
L10a106 3 7
L10a107 4 2
L10a108 4 2
L10a109 2 2
L10a110 4 2
L10a111 2 4b
L10a112 2 4b
L10a113 3 7
L10a114 5 2
L10a115 5 2
L10a116 5 2
L10a117 5 2
L10a118 5 2
L10a119 5 2
L10a120 5 2
L10a121 5 2
L10a122 4 2
L10a123 4 2
L10a124 4 2
L10a125 4 2
L10a126 3 2
L10a127 3 4b
L10a128 3 2
L10a129 3 2
L10a130 4 2
L10a131 4 2
L10a132 4 2
L10a133 4 2
L10a134 4 2
L10a135 3 2
L10a136 2 2
L10a137 4 7
L10a138 4 7
L10a139 4 2
L10a140 2 4a
L10a141 3 7

Table 1. Unlinking numbers of prime, nonsplit links with crossing
number 10.
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link L u(L) Prop.

L10a142 5 2
L10a143 5 2
L10a144 5 2
L10a145 5 2
L10a146 5 2
L10a147 3 2
L10a148 3 2
L10a149 3 2
L10a150 3 2
L10a151 3 4b
L10a152 5 2
L10a153 5 2
L10a154 4 2
L10a155 4 2
L10a156 2 2
L10a157 4 7
L10a158 4 7
L10a159 5 2
L10a160 5 2
L10a161 5 2
L10a162 3 2
L10a163 3 4b
L10a164 5 2
L10a165 4 2
L10a166 5 2
L10a167 5 2
L10a168 5 2
L10a169 3 3
L10a170 4 2
L10a171 5 2
L10a172 5 2
L10a173 5 2
L10a174 5 2

L10n1 3 2
L10n2 1 2
L10n3 2 4b
L10n4 3 2
L10n5 2 3
L10n6 2 4b
L10n7 3 2
L10n8 2 4b
L10n9 1 2
L10n10 3 2
L10n11 1 2
L10n12 2 4b
L10n13 3 2
L10n14 1 2
L10n15 3 5
L10n16 2 2

link L u(L) Prop.

L10n17 3 2
L10n18 1 2
L10n19 3 2
L10n20 2 4b
L10n21 1 3
L10n22 1 2
L10n23 3 3
L10n24 2 4b
L10n25 3 2
L10n26 2 2
L10n27 2 2
L10n28 3 2
L10n29 3 2
L10n30 3 2
L10n31 3 2
L10n32 [1, 2] −

L10n33 2 4b
L10n34 [2, 3] 4b
L10n35 2 2
L10n36 2 2
L10n37 4 2
L10n38 4 2
L10n39 3 3
L10n40 2 2
L10n41 2 4b
L10n42 3 3
L10n43 2 2
L10n44 1 2
L10n45 2 2
L10n46 4 2
L10n47 4 2
L10n48 2 2
L10n49 4 2
L10n50 3 5
L10n51 4 2
L10n52 2 2
L10n53 3 2
L10n54 3 3
L10n55 4 2
L10n56 1 3
L10n57 1 4a
L10n58 2 2
L10n59 2 2
L10n60 4 2
L10n61 4 2
L10n62 3 3
L10n63 3 7
L10n64 2 3
L10n65 4 2

link L u(L) Prop.

L10n66 4 2
L10n67 4 2
L10n68 4 2
L10n69 4 2
L10n70 2 2
L10n71 4 2
L10n72 4 2
L10n73 2 2
L10n74 5 2
L10n75 5 2
L10n76 3 2
L10n77 5 2
L10n78 5 2
L10n79 3 2
L10n80 4 2
L10n81 5 2
L10n82 5 2
L10n83 3 2
L10n84 5 2
L10n85 3 2
L10n86 3 2
L10n87 5 2
L10n88 4 2
L10n89 4 2
L10n90 3 2
L10n91 4 2
L10n92 5 2
L10n93 5 2
L10n94 5 2
L10n95 5 2
L10n96 5 2
L10n97 5 2
L10n98 5 2
L10n99 5 2

L10n100 3 2
L10n101 5 2
L10n102 5 2
L10n103 3 2
L10n104 5 2
L10n105 5 2
L10n106 4 2
L10n107 2 2
L10n108 5 2
L10n109 5 2
L10n110 5 2
L10n111 5 2
L10n112 5 2
L10n113 5 2

Table 1 cont.
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