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We study a class of local rings and a local adaptation of the homogeneous property
for graded rings. While the rings of interest satisfy the property in the local case,
we show that their associated graded k-algebras do not satisfy the property in the
graded case.

1. Introduction and preliminaries

Let Q = k[[X1, X2, . . . , Xn]] denote the power series ring in n variables over the
field k. Let J be an ideal in Q. For an element b ∈ J, the initial form of b
is the homogeneous finite sum of lowest-degree terms of b, denoted by b∗. Let
Qg
= k[X1, X2, . . . , Xn] denote the polynomial ring in n variables over the field k.

The initial ideal of J is the ideal in Qg generated by all of the initial forms of J
and is denoted by In(J ). That is,

In(J )=
{∑m

i=1 ai b
∗

i

∣∣ ai ∈ Qg, bi ∈ J, 1≤ i ≤ m
}
.

Computations in In(J ) are not always straightforward. The following example is
intended to help illustrate some of the nuances of In(J ).

Example 1.1. Let Q = k[[X, Y ]] and J = (x2
+ y3, xy). Since

(x2
+ y3)(−x2 y+ x4 y5

+ x13
+ · · · ) and xy(x3

+ xy3
− x5 y4

+ · · · )

are in J, we have that the initial form of their sum

(−x4 y+ x4 y+ x2 y4
− x2 y4

+ x6 y5
− x6 y5

+ x4 y8
+ x15

+ x13 y3
+ · · · )∗ = x4 y8

is in In(J ).

Describing In(J ) is not as simple as finding the initial forms of the generators
of J . The next example is adapted from [Eisenbud 1995], although similar examples
can be found in several other texts.
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Example 1.2. Let Q = k[[X, Y ]] and J = (x2
+ y3, xy). Then (x2

+ y3)∗ = x2 and
(xy)∗ = xy, but In(J )= (x2, y4, xy). In Lemma 2.5, we provide a method to prove
this fact for a more general class of rings.

Let R be a commutative local ring with maximal ideal m and residue field k. By
the Cohen structure theorem, the completion of any local ring can be written as a
quotient of a regular local ring by an ideal. Hence, if R is a complete local ring
then R = Q/J, where J ⊆ (X1, X2, . . . , Xn)

2.

Definition 1.3. Let R be a complete local ring with a minimal Cohen presentation
R = Q/J, where J = ( f1, f2, . . . , fl) with fi ∈ Q for 1≤ i ≤ l. If f ∗i has degree t
for each i then R is t-homogeneous.

In [Hoffmeier and Şega 2017] the authors give a more general version of the
above definition. They go on to show that knowing a ring is t-homogeneous is
helpful for identifying various homological properties. Indeed, Theorem 2.5 of
that paper establishes that the t-homogeneous property plays an important role
connecting these homological traits of local rings.

Let J = ( f1, f2, . . . , fl)⊆ Qg be the ideal generated by polynomials fi in Qg for
1≤ i ≤ l. If each of the fi is homogeneous of degree t then the quotient R = Qg/J
is a t-homogeneous graded k-algebra.

The associated graded ring of R with respect to the maximal ideal is the direct sum

Rg
=

⊕
i≥0

mi/mi+1.

This notation is consistent with Qg. That is, for the local ring Q=k[[X1, X2, . . . , Xn]],
we have Qg

= k[X1, X2, . . . , Xn]. Furthermore, if R = Q/J then Rg
= Qg/ In(J ).

We now state [Hoffmeier and Şega 2017, Lemma 1.3], which also provides
further motivation for the terminology given in Definition 1.3.

Lemma 1.4. Let R be a complete local ring. If Rg is a t-homogeneous k-algebra,
then R is a t-homogeneous local ring.

Hoffmeier and Şega [2017, Remark 1.4] also provide a counterexample to show
that the converse of the lemma does not hold. We now reproduce this example.

Example 1.5. Let Q = k[[X, Y ]], J = (x2
+ y3, xy), and R = Q/J. Then R is

2-homogeneous. However, Rg
= Qg/ In(J ) = k[X, Y ]/(x2, y4, xy), which is not

2-homogeneous.

It is significant that the converse of Lemma 1.4 does not hold. Otherwise, the
t-homogeneous property of a local ring R would depend only on its associated
graded k-algebra Rg, making the connections between the homological properties
of R alluded to above (stated in [Hoffmeier and Şega 2017, Theorem 2.5]) also
related to Rg. The main goal of this note is to identify a larger class of rings for
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which the converse of the lemma fails, which consequently further distinguishes
the homological nature of local rings from properties of their associated graded
k-algebras. We achieve this in the next section by generalizing Example 1.5.

Further motivation for our result is the fact that Example 1.5 is stated without
proof in [Hoffmeier and Şega 2017] and is therefore further explained by the proof
of our more general result.

Remark 1.6. Connections between a local ring and its associated graded algebra
have been well documented throughout the literature of commutative algebra.
For example, if Rg is Cohen–Macaulay then R is Cohen–Macaulay and if Rg is
Gorenstein then R is Gorenstein; see, e.g., [Achilles and Avramov 1982]. The text
[Bruns and Herzog 1993] also states several of these results and is a good reference
for other topics that appear in this note. In his survey on the subject, Fröberg [1987]
states that “A local ring is at least as nice as its associated graded ring.” Our results
provide another example that makes the inequality Fröberg alludes to strict.

2. Unassociated t-homogeneous local rings

In this section we prove our main result. We begin with a definition.

Definition 2.1. Let R be a t-homogeneous local ring. If Rg is not a t-homogeneous
graded k-algebra then we say that R is unassociated t-homogeneous.

Theorem 2.2. Let J = (x2
+ yt, xy)⊆ Q = k[[X, Y ]] with t ≥ 3 and set R = Q/J.

Then R is unassociated 2-homogeneous.

Remark 2.3. Note that by setting t = 3 in Theorem 2.2, we recover the result in
Example 1.5.

We now provide two lemmas which will be used in the proof of the theorem.

Lemma 2.4. Let J = (x2
+ yt, xy) ⊆ Q = k[[X, Y ]] with t ≥ 3. Then yt is not

in In(J ).

Proof. Suppose yt
∈ In(J ). Then

yt
=

m∑
i=1

ai b∗i ,

where ai ∈ Qg, bi ∈ J, and 1 ≤ i ≤ m. For each i , let bi = ci (x2
+ yt)+ di (xy)

with ci , di ∈ Q. Hence,

yt
=

m∑
i=1

ai (ci (x2
+ yt)+ di (xy))∗.

Since the sum equals yt, the terms of the sum that are factors of xy either cancel or
are dropped by taking the lowest-degree terms. Therefore,

yt
=

m∑
i=1

ai (ci (x2
+ yt))∗.
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Since t ≥ 3, we have (ci (x2
+ yt))∗ = c∗i x2 for each i , where c∗i is the finite sum of

lowest-degree terms of ci . Hence

yt
=

m∑
i=1

ai c∗i x2,

which is a contradiction. �

Lemma 2.5. Let J = (x2
+ yt, xy) ⊆ Q = k[[X, Y ]] as in Lemma 2.4. Then

In(J )= (x2, yt+1, xy).

Proof. First, we show that (x2, yt+1, xy) ⊆ In(J ). It is sufficient to show that
x2, yt+1, xy ∈ In(J ), which is clear since

x2
= (x2)∗, xy = (xy)∗, yt+1

= (y(x2
+ yt)− x(xy))∗.

Next, we show that In(J )⊆ (x2, yt+1, xy). Let g ∈ In(J ). Then

g = a1 F∗1 + a2 F∗2 + · · ·+ an F∗n ,

where ai ∈ k[X, Y ] and Fi ∈ J for 1≤ i ≤ n. Therefore, it suffices to show if F ∈ J
then F∗ ∈ (x2, yt+1, xy). Let α, β ∈ k[[X, Y ]] such that F =α(x2

+ yt)+βxy. Then

F∗ = (αx2
+αyt

+βxy)∗ = ax2
+ byt

+ cxy

for some a, b, c ∈ k[X, Y ]. If b = 0 then F∗ = ax2
+ cxy ∈ (x2, yt+1, xy).

Assume b 6= 0. Since F∗ is homogeneous, b is homogeneous and may be
written as b = pxn

+ qy, where p ∈ k, q ∈ k[X, Y ], and n is a nonnegative integer.
Therefore,

F∗ = ax2
+ cxy+ pxn yt

+ qyt+1.

If p = 0 then we again have the needed form.
Assume p 6= 0 and consider two cases for n.

Case (i): Assume n ≥ 1. Then pxn yt
= pxn−1 yt−1(xy). Hence,

F∗ = ax2
+ qyt+1

+ (c+ pxn−1 yt−1)xy

has the needed form.

Case (ii): Assume n = 0. Since we have already shown (x2, yt+1, xy)⊆ In(J ), we
have

F∗− ax2
− qyt+1

− cxy = pxn yt
∈ In(J ).

Since n = 0 and p−1
∈ k we have yt

∈ In(J ), which contradicts Lemma 2.4.
Therefore, case (ii) does not occur. �

Remark 2.6. A common approach to working with In(J ) is to invoke the use of
Gröbner bases. However, we opt for the more elementary method presented above.

We are now ready to prove the theorem.
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Proof of Theorem 2.2. Since R is artinian, it is complete. Since (x2
+ yt)∗ = x2

and (xy)∗ = xy, we know R is 2-homogeneous. As noted above,

Rg
= Qg/ In(J ).

By Lemma 2.5, In(J ) = (x2, yt+1, xy). Hence, Rg is not a graded k-algebra and
the theorem follows. �
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