Vol. 11, No. 2, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
Finding cycles in the $k$-th power digraphs over the integers modulo a prime

Greg Dresden and Wenda Tu

Vol. 11 (2018), No. 2, 181–194
Abstract

For p prime and k 2, let us define Gp(k) to be the digraph whose set of vertices is {0,1,2,,p 1} such that there is a directed edge from a vertex a to a vertex b if ak b mod p. We find a new way to decide if there is a cycle of a given length in a given graph Gp(k).

Keywords
digraphs, cycles, graph theory, number theory
Mathematical Subject Classification 2010
Primary: 05C20
Secondary: 11R04
Milestones
Received: 21 January 2014
Revised: 8 June 2017
Accepted: 21 June 2017
Published: 17 September 2017

Communicated by Kenneth S. Berenhaut
Authors
Greg Dresden
Department of Mathematics
Washington and Lee University
Lexington, VA
United States
Wenda Tu
Department of Statistics and Actuarial Science
University of Iowa
Iowa City, IA
United States