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A mathematical model of treatment of
cancer stem cells with immunotherapy

Zachary J. Abernathy and Gabrielle Epelle

(Communicated by Kenneth S. Berenhaut)

Using the work of Shelby Wilson and Doron Levy (2012), we develop a math-
ematical model to study the growth and responsiveness of cancerous tumors to
various immunotherapy treatments. We use numerical simulations and stability
analysis to predict long-term behavior of passive and aggressive tumors with a
range of antigenicities. For high antigenicity aggressive tumors, we show that
remission is only achieved after combination treatment with TGF-β inhibitors
and a peptide vaccine. Additionally, we show that combination treatment has
limited effectiveness on low antigenicity aggressive tumors and that using TGF-β
inhibition or vaccine treatment alone proves generally ineffective for all tumor
types considered. A key feature of our model is the identification of separate
cancer stem cell and tumor cell populations. Our model predicts that even
with combination treatment, failure to completely eliminate the cancer stem cell
population leads to cancer recurrence.

1. Introduction

Cancer is a leading cause of death in the world today. Although an enormous
amount of resources have been spent in search of a cure, much is still unknown
about the dynamics of how cancer cells are created and destroyed. The general
consensus is that cancer is caused by mutated cells, which are unable to die and
thus grow uncontrollably, and that cancer requires many mutations to transform
normal cells into cancer cells [Li and Neaves 2006]. However, another theory of
cancer development, which states that cancer arises from stem cells, is steadily
gaining recognition.
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1.1. Stem cells and cancer. The cancer stem cell hypothesis originated in 1855
when German pathologist Rudolf Virchow theorized that cancers arise from the
activation of inactive embryonic-like cells found in mature tissue [Huntly and
Gilliland 2005]. In 1994, John Dick’s lab showed the presence of leukemia-inducing
stem cells in the blood of mice with acute myeloid leukemia. In 2003 and 2004,
Michael Clarke’s and Peter Dirks’ labs showed the presence of cancer stem cells in
breast and brain cancer respectively [Li and Neaves 2006].

Cancer stem cells differ from other tumor cells in their potential for growth,
development and differentiation. Unlike other cells, cancer stem cells have the
ability to self-renew. A cancer stem cell divides to produce two daughter cells.
One daughter remains a stem cell while the other mutates and undergoes further
differentiation. Cancer stem cells also have a higher potential for proliferation and
a longer life span than other cells [Li and Neaves 2006].

1.2. Treatment of cancer stem cells. Another difference between cancer stem cells
and other tumor cell types is their resistance to radiation and chemotherapy. Al-
though these treatments are able to destroy the differentiated tumor cells, they are
relatively ineffective against cancer stem cells, which have mechanisms for repairing
DNA and resisting cytotoxic drugs [Deonarain et al. 2009]. Even if such treatments
cause the patient to go into remission, in many cases the cancer relapses months
or years later due to the presence of cancer stem cells [Cripe et al. 2009]. Further
complicating matters is the fact that chemotherapy and radiation have a greater
effect on normal cells than cancerous cells. Research shows that chemotherapy and
radiation cause normal hematopoietic stem cells, but not cancer stem cells, to un-
dergo senescence or premature aging. This gives the cancer cells a growth advantage
over normal cells, especially after several rounds of treatment [Jordan et al. 2006].

1.2.1. Immunotherapy. Immunotherapy is a form of treatment that aims to improve
the ability of the immune system to fight cancer cells [Stewart and Smyth 2011].
One of the major advantages of immunotherapy over traditional cancer treatments,
such as radiation and chemotherapy, is that the immune system is much more
discriminatory in its actions, targeting only cancer cells and leaving the majority
of the healthy tissues of the body unharmed [Joshi et al. 2009]. This lessens the
competitive advantage of cancer stem cells over normal stem cells after successive
rounds of treatment. Paul Ehrlich, an immunologist in the early 20th century,
was the first person to conceive the idea that the immune system is capable of
scanning for and eradicating the tumors that arise in our bodies before they become
clinically manifested [Malmberg 2004]. Although this idea was controversial at first,
experimental evidence has shown that when cancer cells proliferate to a detectable
number within the human body, the body’s immune system is activated into a
“search and destroy” mode. This spontaneous immune response is possible only if
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the cancer cells have unique surface markers called tumor specific antigens. Tumor
cells that possess these antigens are known as immunogenic cancers [Nani and
Freedman 2000]. The recognition of cancerous cells by the immune system is
called immune surveillance, and cancer progression occurs when this process fails
[Stewart and Smyth 2011].

1.2.2. TGF-β: an agent of both tumor suppression and progression. Transforming
growth factor-β (TGF-β) is a protein that acts as a strong inhibitor of cell growth
and an inducer of programmed cell death or apoptosis [Akhurst and Derynck 2001].
TGF-β is present in both normal and tumor cells. It plays a beneficial role in wound
healing, inflammation, and angiogenesis (i.e., new blood vessel formation) [Arciero
et al. 2004]. At early stages of tumorigenesis, for example, when the tumor is still
benign, TGF-β acts directly on cancer cells to suppress tumor growth [Akhurst
and Derynck 2001]. However, as time elapses, genetic changes allow TGF-β to
stimulate tumor progression by its activities on both the cancerous and nonmalignant
structural cell types of the tumor. Experimental evidence has shown that small
tumors produce little or no TGF-β, while large tumors produce large amounts of
TGF-β and rely heavily on its angiogenesis-promoting and immunosuppressive
effects.

The discovery of TGF-β’s immunosuppressive effects has led scientists to im-
plement new forms of treatment aimed to inhibit TGF-β production. Unfortunately,
several studies demonstrate that TGF-β inhibition alone is not enough to eliminate
tumors. For instance, in [Terabe et al. 2009], the authors examined whether the
inhibition of TGF-β can enhance immune responses caused by a peptide vaccine.
Their goal was to ascertain under which conditions this enhanced tumor response
slows down or stops tumor growth in mice. They found that treatment with only
anti-TGF-β had no impact on tumor growth, but anti-TGF-β did greatly enhance
the effects of the peptide vaccine. Shelby Wilson and Doron Levy [2012] then
developed a mathematical model in order to quantitatively study the results of
Terabe et al. Our model modifies the Wilson–Levy model in order to study the
effects of TGF-β inhibition and vaccine combination treatment on cancer stem
cells.

2. The Wilson–Levy model

We first present the original Wilson–Levy model for proper context. The model
follows the size of a tumor represented by T (t), the concentration of TGF-β
represented by G(t), the number of effector cells represented by E(t), the number
of regulatory T cells represented by R(t), and the number of additional T cells in a
vaccine represented by V (t). Note that we relabel the constant d from their paper
as d0 to avoid confusion with the differential operator. Wilson and Levy’s model
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[2012] is written as the following system of ordinary differential equations:

dT
dt
= a0T (1− c0T )− δ0

ET
1+ c1 B

− δ0T V, (1)

d B
dt
= a1

T 2

c2+ T 2 − d0 B, (2)

d E
dt
=

f ET
1+ c3TB

− r E − δ0 RE − δ1 E, (3)

d R
dt
= r E − δ1 R, (4)

dV
dt
= g(t)− δ1V. (5)

Equation (1) describes the growth rate of the tumor measured in mm2. The tumor
is assumed to grow logistically with a growth rate of a0 and a carrying capacity of
1/c0. The second term of (1) represents the rate at which the effector cells are able
to destroy tumor cells. The term 1+ c1 B represents the negative effect that TGF-β
production has on the effector cells’ ability to attack the tumor cells. The last term
represents the action of the vaccine on the tumor cells.

Equation (2) represents the rate of change in the concentration of TGF-β mea-
sured in ng/ml. The switch in the amount of TGF-β production between small and
large tumors is modeled by the first term in (2). The constant c2 represents the
tumor cell population at which the switch occurs and a1 is the maximum rate of
TGF-β production [Arciero et al. 2004]. The decay rate for TGF-β is given by d0.

Equation (3) represents the rate of change of the number of effector cells in the
system. The first term represents the rate at which effector cells are recruited to
attack the tumor. The expression 1+ c3TB represents the negative effect of both
TGF-β production and tumor growth on the effector cells’ ability to proliferate.
The constant f represents the tumor’s antigenicity and it measures the degree that
the tumor is able to stimulate an immune response. The number r represents the
rate at which effector cells differentiate into regulatory T cells. The effector cells
are also removed when interacting with regulatory T cells at a rate of δ0.

Equation (4) represents the number of regulatory T cells in the system. This
model assumes that only CD8+ effector cells become regulatory T cells.

Equation (5) represents the rate of change of the vaccine, which is modeled as an
addition of 5000 activated T cells at day 3. If the vaccine is given, g(t) is a constant
multiple of a Dirac delta function centered at t = 3, i.e., g(t)= g0δ(t − 3), where
g0 = 5000. If the vaccine is withheld, g(t) is identically 0. Finally, the effector
cells, regulatory T cells, and activated T cells in the vaccine are all assumed to
share a natural death rate of δ1.
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3. The modified model

We modify Wilson and Levy’s equations by modeling the rate of change of cancer
stem cells and tumor cells separately in order to better understand how the proposed
treatments affect each population. To highlight the role that TGF-β plays in tumor
growth and immunosuppression, we follow the example of [Arciero et al. 2004]
and choose to consider two scenarios of tumor development, namely:

• passive tumors that do not produce TGF-β,

• aggressive tumors that produce TGF-β.

3.1. Passive tumor model. In the passive tumor model, we follow the size of the
cancer stem cell population represented by C(t), the size of the tumorous cell
population represented by T (t), the number of effector cells represented by E(t),
and the number of T cells in the vaccine represented by V (t). Our model is written
as the following system of ordinary differential equations:

dC
dt
= kC

(
1−

C
M1

)
− hEC − hCV, (6)

dT
dt
= kC

C
M1

(
1−

T
M2

)
− hET − hT V − d1T, (7)

d E
dt
= f ET − r E − d3 E, (8)

dV
dt
= g(t)− d3V. (9)

Note that G = 0 in the passive tumor case, as these tumors do not produce TGF-β.
Equation (6) describes the growth rate of the cancer stem cells of the tumor, which
are assumed to follow logistic growth with a growth rate of k and a carrying capacity
of M1. The term hEC represents the rate at which effector cells attack the C stem
cells.

Equation (7) represents the growth rate of the tumor cells. The fraction of C stem
cells that differentiate into T tumor cells is represented by C/M1, and we assume
that the tumor cells are nondividing. Hence, if C < M1, then some of the stem cells
will produce more stem cells, while other stem cells will produce tumor cells. If
C = M1, then all of the stem cells will produce tumor cells. This behavior reflects
normal stem cell dynamics [Soltysova et al. 2005]. The carrying capacity of tumor
cells is given by M2, and we assume the tumor cells have a small natural death rate
of d1. The term hET represents the rate at which effector cells attack the tumor
cells. We assume that the effector cells are able to attack the C and T cells at the
same rate. Similarly, the terms hCV and hT V represent the detrimental effect that
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the vaccine has on both the C and T cells, and we assume that the vaccine is equally
effective against C and T cells.

Equations (8) and (9) model the effector cells and vaccine and follow directly
from equations (3) and (5), where we have ignored the contributions of regulatory
T cells as they only slightly increase the rate of decay of the effector cells and thus
do not greatly affect the dynamics of the model. We relabel the death rate of the
effector cells and vaccine as d3.

3.2. Aggressive tumor model. Our model of aggressive tumors is represented by
the following system of ordinary differential equations:

dC
dt
= kC

(
1−

C
M1

)
− h

EC
1+ c1 B

− hCV, (10)

dT
dt
= kC

C
M1

(
1−

T
M2

)
− h

ET
1+ c1 B

− hT V − d1T, (11)

d B
dt
= a

C2

c2+C2 − d2 B, (12)

d E
dt
=

f ET
1+ c3T B

− r E − d3 E, (13)

dV
dt
= g(t)− d3V. (14)

Equations (10), (11), (13) and (14) follow directly from the passive tumor model,
with the corresponding adjustments made to the interaction terms involving the
effector cells E in accordance with the Wilson–Levy model. Equation (12) repre-
sents the rate at which TGF-β is produced by the tumor. We assume that TGF-β is
only produced by cancer stem cells. There is a growing body of medical evidence
that shows the link between TGF-β production and cancer stem cells [Dreesen and
Brivanlou 2007; Tang et al. 2008; Mishra et al. 2005].

4. Simulations

In order to better understand the behavior of our models, we perform numerical
simulations using Mathematica 9’s NDSolve command. The code used will be
made available upon request. All of our simulations are measured in days. We
simulate the growth of four types of tumors, namely:

(1) low antigenicity passive tumors (LAPTs),

(2) high antigenicity passive tumors (HAPTs),

(3) low antigenicity aggressive tumors (LAATs),

(4) high antigenicity aggressive tumors (HAATs).
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value units description

k 0.18 days −1 tumor growth rate
h 10−5 #−1 days −1 vaccine/effector cell-induced tumor death rate

M1 40 mm2 cancer stem cell carrying capacity
M2 369 mm2 tumor cell carrying capacity
d1 10−9 days −1 death rate of tumor cells

f
low: 5·10−6

(mm2)−1days−1 tumor antigenicity
high: 0.05

r 0.01 days −1 effector cell removal rate to regulatory T cells
d3 10−5 days −1 vaccine/effector cell death rate
g0 5000 # days −1 additional T cells provided by vaccine

Table 1. Parameters for passive tumor model.

4.1. Simulation of the passive tumor model. Table 1 lists the values of the param-
eters used in the passive tumor model. All parameter values are taken from Wilson
and Levy with the exception of f and k, which are taken from Kirschner and Panetta,
and M1 and d1, which are estimated based on the expected low ratio of cancer
stem cells to tumor cells and slow natural death rate of tumor cells. A parameter
sensitivity analysis is conducted in Section 7 to assess sensitivity of the model to
these parameter values. Following the example of Wilson and Levy, we assume that
there are 100 effector T cells present at the initial time point in all cases except for
the high antigenicity passive tumors, in which we assume that there are 1000 effector
T cells present (see discussion below). We choose 0.7 and 3 mm2 as our initial stem
cell and tumor cell sizes, respectively. The simulations for passive tumor growth
with no treatment for both low and high antigenicities are presented in Figure 1.

In Figure 1, the graphs in the top row show the low antigenicity of the tumor
does not prompt a response from the effector cells, and thus both the C stem cells
and T tumor cells grow to their respective carrying capacities while the number of
E effector cells at the tumor site decays over time. In contrast, the graphs in the
bottom row of Figure 1 show the behavior of a passive tumor with high antigenicity.
In this case, the effector cells undergo an oscillatory response and begin to restrict
the tumor’s growth. There is biological evidence to support these oscillations in
cancers such as chronic myeloid leukemia [Kirschner and Panetta 1998]. While
both the C and T cell populations continue to persist, the effector cells reduce the
steady-state population size of each cancer cell type to very minute levels.

4.2. Simulation of the aggressive tumor model. We next present the behavior of
our aggressive tumor model for both low and high antigenicities. In Table 2, we in-
troduce the new parameter values used in the aggressive tumor model. As before, all
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Figure 1. Passive tumor simulations. The graphs in the top row
model a tumor with low antigenicity and those in the bottom row
model one with high antigenicity.

value units description

k 0.1946 days −1 tumor growth rate
M1 40 mm2 cancer stem cell carrying capacity
M2 369 mm2 tumor cell carrying capacity
h 10−5 #−1 days −1 vaccine/effector cell-induced tumor death rate
c1 100 ml/ng TGF-β inhibition of effector cell-induced tumor death
d1 10−9 days −1 death rate of tumor cells
a 0.3 days−1 ng/ml maximum rate of TGF-β production
c2 300 (mm2)2 steepness coefficient of TGF-β production
d2 7·10−4 days −1 rate of degradation of TGF-β

f
low: 5·10−6

(mm2)−1days−1 tumor antigenicity
high: 0.62

c3 300 ml/(ng mm2) tumor cell and TGF-β inhibition of effector cell
activation

r 0.01 #−1 effector cell removal rate to regulatory T cells
d3 10−5 days −1 vaccine/effector cell death rate
g0 5000 # days −1 additional T cells provided by vaccine

Table 2. Parameters for aggressive tumor model.
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Figure 2. Aggressive tumor simulations.

values are taken from Wilson and Levy (including the slightly higher tumor growth
rate k and antigenicity f ) with the exception of M1 and d1, which are estimated as
stated above. The initial conditions for the cancer stem cell, tumor cell, and effector
cell populations remain unchanged, and we use 0.0035 ng/ml as the initial concentra-
tion of TGF-β produced by the tumor. Figure 2 shows the results of our simulations
for the aggressive tumor model with no treatment. In Figure 2, top left, the C
cancer stem cells and T tumor cells grow uninterrupted to their carrying capacities
for both low and high antigenicity levels. Similarly, Figure 2, top right, shows the
concentration of TGF-β produced by the C stem cells steadily increases regardless of
antigenicity level. The only discernible difference with respect to antigenicity occurs
with the effector cell population in Figure 2, bottom, where an initial spike in the
number of effector cells is seen in the high antigenicity case. However, due to the in-
hibitory effect of TGF-β on the effector cell population, this increase is short-lasting
and the effector cell population decays over time, failing to halt tumor progression.

5. Treatment

Following the example of [Wilson and Levy 2012], we divide treatment into three
cases in order to test their relative effectiveness on both the C and T cells, namely:
• vaccine treatment,
• TGF-β inhibition,
• combination treatment.
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Figure 3. Vaccine treatment for LAPTs.

5.1. Treatment of passive tumors. Since passive tumors do not produce TGF-β,
we consider only vaccine treatment, which is modeled by the introduction of
5000 effector cells on day 3 of simulation. Figure 3 shows the results of the vaccine
treatment for a low antigenicity passive tumor.

The vaccine treatment is successful in reducing the final steady states of both the
cancer stem cells and tumor cells, but cannot clear the tumor entirely. The evolution
of the effector cell population is unaffected by the vaccine treatment, and the effector
cells decay as in Figure 1, top right. For high antigenicity passive tumors, the vaccine
treatment produces no noticeable difference in either the C , T , or E cell dynamics
over time, leading to simulations identical to those found in the graphs in the bottom
row of Figure 1. The large oscillatory response of the effector cells dominates any
contribution from the vaccine in diminishing the cancer cell populations.

5.2. Treatment of aggressive tumors. With the inclusion of TGF-β production by
cancer stem cells in aggressive tumors, we now have all three treatment options to
consider.

5.2.1. Vaccine treatment. We begin by repeating the vaccine treatment simulation
for low and high antigenicity aggressive tumors, shown in Figure 4.
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Figure 4. Vaccine treatment for LAATs and HAATs.



A MATHEMATICAL MODEL OF TREATMENT OF CANCER STEM CELLS 371

TGF-Β - No Treatment

TGF-Β - Inhibition

0 100 200 300 400
0

20

40

60

80

Time HdaysL

C
o
n
ce
n
tr
at
io
n
Hn
g
�m
lL

Figure 5. TGF-β Inhibition for LAATs and HAATs.

For both antigenicity levels, the steady states of the cancer stem cells and tumor
cells are diminished by the vaccine, similar to the vaccine treatment of the low
antigenicity passive tumor. No appreciable difference is observed in the effector
cells or TGF-β concentration of the aggressive tumor model under the vaccine. For
a more accurate comparison between the effects of treatment in Figures 3 and 4,
the size of the C cell population at day 400 for the low antigenicity passive tumor
is approximately 28.9 mm2 and for the low/high antigenicity aggressive tumor is
approximately 29.7 mm2. Similarly, the size of the T cell population at day 400
is 62.7 mm2 for the low antigenicity passive tumor and 70.1 mm2 for the low/high
antigenicity aggressive tumor.

5.2.2. TGF-β inhibition. As in [Wilson and Levy 2012], TGF-β inhibition is mod-
eled as an increase of c2 from 300 to 7000. For both low and high antigenicity
tumors, TGF-β inhibition has a nearly negligible effect on the final tumor size,
with the C and T cells growing to their carrying capacities as in Figure 2, top left.
While the treatment succeeds in slowing down TGF-β production by the tumor (see
Figure 5), it fails to lead to any measurable reduction in cancer growth.

As a final note, while the effector cells continue to decay normally for low
antigenicity tumors (as in Figure 2, bottom), the TGF-β inhibition induces a large
initial response of the effector cells for high antigenicity tumors (see Figure 6).
Nevertheless, the effector cells have little impact on tumor growth in this case.

5.2.3. Combination treatment. Again following [Wilson and Levy 2012], combi-
nation treatment is modeled by both the increase in c2 from 300 to 7000 and the
administration of the vaccine. For low antigenicity tumors, the combination treat-
ment reduces the C and T steady-state populations to the same levels as the vaccine
treatment alone, with no noticeable benefit from adding the TGF-β inhibition. For
high antigenicity tumors, on the other hand, the combination treatment is highly
effective, reducing both the C and T populations to nearly zero by approximately
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Figure 6. Effector cells under TGF-β inhibition for HAATs.
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Figure 7. Combination treatment for LAATs and HAATs.

day 30. However, the remission is temporary and both cancer cell populations start
growing again shortly before day 300 (see Figure 7).

In Figure 8, the effector cell population also displays new behavior under the
combination treatment for high antigenicity tumors. The treatment produces a
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Figure 8. Effector cells under combination treatment for HAATs.



A MATHEMATICAL MODEL OF TREATMENT OF CANCER STEM CELLS 373

TGF-Β - No Treatment

TGF-Β - Low Ant. Combo Treatment

TGF-Β - High Ant. Combo Treatment

0 100 200 300 400
0

20

40

60

80

Time HdaysL

C
o
n
ce
n
tr
at
io
n
Hn
g
�m
lL

Figure 9. TGF-β concentration under combination treatment for
LAATs and HAATs.

significant initial spike in effector cells, helping send the cancer into its temporary
remission. Once the cancer begins to recur around day 300, the effector cells produce
a second smaller response that is unable to slow the cancer’s growth. Finally, the
suppression of TGF-β production by the C cancer stem cells under combination
treatment is shown in Figure 9. For high antigenicity tumors in particular, the
concentration of TGF-β is greatly diminished for the first year of simulated time.

5.2.4. Summary of simulations. Table 3 provides a summary of the behavior of the
treatment outcomes on all four types of tumors. In general, our simulations reveal

no treatment vaccine TGF-β
inhibition

combination

LAPT
C , T cells grow
to CC; no E cell
response

(C, T ) =
(72%, 17%)
of CC at end

not applicable not applicable

HAPT
C , T cells reduced to minute
levels; E cells produce large
oscillatory response

not applicable not applicable

LAAT
C , T cells grow
to CC; no E cell
response

(C, T ) =
(74%, 19%)
of CC at end

C , T cells grow
to CC; no E cell
response

(C, T ) =
(74%, 19%)
of CC at end

HAAT

C , T cells grow
to CC; small
initial E cell
response

(C, T ) =
(74%, 19%)
of CC at end

C , T cells grow
to CC; large
initial E cell
response

C , T cells reduced to
nearly 0; recurrence by
day 300; very large
initial E cell response
with secondary response
when cancer recurs

Table 3. Summary of treatment outcomes for four types of tumors.
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that the vaccine treatment is overall more effective than TGF-β inhibition at com-
bating cancer growth. The cancer stem cells appear more resilient to the additional
effector cells provided by the vaccine, with a smaller reduction in carrying capacity
when compared with the tumor cells. Also, the largest effect of TGF-β inhibition is
seen when combined with the vaccine against high antigenicity aggressive tumors,
sending the cancer into remission for an extended period of time.

6. Stability analysis

6.1. Dimensionless models. To reduce the number of parameters in the model and
ease calculations, we follow the example of [Kirschner and Panetta 1998; Arciero
et al. 2004] and nondimensionalize our equations using the following scaling:

x =
C
M1
, y =

T
M2
, z = c1 B, w =

hE
r
, v =

d3V
g0
,

τ = kt, ρ =
r
k
, η =

hg0

kd3
, µ=

M1

M2
, α =

ac1

k
,

β =
c2

M2
1
, γ =

M2 f
k
, σ =

M2c3

c1
, δ1 =

d1

k
, δ2 =

d2

k
, δ3 =

d3

k
.

This results in the following scaled system of differential equations for the passive
tumor model:

dx
dτ
= x(1− x)− ρwx − ηxv, (15)

dy
dτ
= µx2(1− y)− ρwy− ηyv− δ1 y, (16)

dw
dτ
= γwy− ρw− δ3w, (17)

dv
dτ
= δ3δ(τ − 3k)− δ3v. (18)

Similarly, the scaled aggressive tumor model is given by:

dx
dτ
= x(1− x)− ρ

wx
1+ z

− ηxv, (19)

dy
dτ
= µx2(1− y)− ρ

wy
1+ z

− ηyv− δ1 y, (20)

dz
dτ
=

αx2

β + x2 − δ2z, (21)

dw
dτ
= γ

wy
1+ σ yz

− ρw− δ3w, (22)

dv
dτ
= δ3δ(τ − 3k)− δ3v. (23)
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6.2. Stability of passive tumor model. In order to assess the stability of the passive
tumor model, we first find equilibrium solutions by setting (15)–(18) equal to 0 and
solving the resulting nonlinear algebraic system of equations. Note that the long-
term behavior of the vaccine is clearly exponential decay to zero, so we set v = 0
for the remainder of the analysis to simplify the calculation of the other equilibrium
populations. Mathematica 9 produces five equilibrium points for the remaining x ,
y, and w populations, one of which contains a negative component and is thus not
biologically meaningful, and two interior equilibrium points whose closed form
is too complex to analyze. The other two equilibria that we are able to study are

P1 : (x, y, w)= (0, 0, 0),

P2 : (x, y, w)=
(

1,
µ

δ1+µ
, 0
)
.

Next, we calculate the Jacobian matrix with v = 0:∂ f/∂x ∂ f/∂y ∂ f/∂w
∂g/∂x ∂g/∂y ∂g/∂w
∂h/∂x ∂h/∂y ∂h/∂w

 ,
where

f (x, y, w)= x(1− x)− ρwx,

g(x, y, w)= µx2(1− y)− ρwy− δ1 y,

h(x, y, w)= γwy− ρw− δ3w.

By substituting each equilibrium point into the above Jacobian, a quick calculation
of the eigenvalues of the resulting matrix reveals that the origin P1 is always unstable,
while the second equilibrium point P2 is stable if and only if

ρ+ δ3 >
γµ

δ1+µ
. (24)

Biologically, this inequality indicates that if the removal rate of the effector cells
is too high relative to the tumor’s antigenicity and size, then the effector cells will
provide an insufficient response to halt tumor growth and will eventually decay to
zero. Testing the parameters for the passive tumor model in Table 1, we find that
for low antigenicity passive tumors,

ρ+ δ3 = 0.0556,
γµ

δ1+µ
= 0.01025.

Hence inequality (24) is satisfied and P2 is stable, supporting the behavior observed
in Figure 1, top row. On the other hand, for high antigenicity passive tumors we have

ρ+ δ3 = 0.0556,
γµ

δ1+µ
= 102.5.
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Thus P2 is unstable in this case. To further investigate the long-term behav-
ior of high antigenicity passive tumors, we may substitute the parameters from
Table 1 into the symbolically intractable interior equilibrium points. We find
that there is indeed a third positive equilibrium point P3, namely (x, y, w) =
(0.0683, 0.00054, 16.7705), corresponding to steady-state populations of C=2.732,
T = .2002, and E = 16770.5. Additionally, all three eigenvalues of the Jacobian
matrix for this equilibrium have negative real part, two of which come in a complex
conjugate pair. Hence P3 is stable, and the complex-valued eigenvalues provide
evidence for the oscillatory behavior seen in Figure 1, bottom row.

6.3. Stability of aggressive tumor model. Following the procedure of the previous
section, we set (19)–(23) equal to 0 to search for steady-state solutions of the
aggressive tumor model. Mathematica 9 returns seven equilibrium solutions, but
due to the highly nonlinear nature of the model, again only two permit a local
stability analysis:

A1 : (x, y, z, w)= (0, 0, 0, 0),

A2 : (x, y, z, w)=
(

1,
µ

δ1+µ
,

α

(1+β)δ2
, 0
)
.

The Jacobian matrix of the system with v = 0 now has the form
∂ f/∂x ∂ f/∂y ∂ f/∂z ∂ f/∂w
∂g/∂x ∂g/∂y ∂g/∂z ∂g/∂w
∂h/∂x ∂h/∂y ∂h/∂z ∂h/∂w
∂ j/∂x ∂ j/∂y ∂ j/∂z ∂ j/∂w

,
where

f (x, y, z, w)= x(1− x)− ρ
wx

1+ z
,

g(x, y, z, w)= µx2(1− y)− ρ
wy

1+ z
− δ1 y,

h(w, x, y, z)=
αx2

β + x2 − δ2z,

j (x, y, z, w)= γ
wy

1+ σ yz
− ρw− δ3w.

By calculating the eigenvalues of the Jacobian at each equilibrium point, it is
easily seen that the origin A1 is again unstable, while the second equilibrium point
A2 is stable if and only if

ρ+ δ3 >
(1+β)γµδ2

αµσ + (1+β)(δ1+µ)δ2
. (25)
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This inequality establishes a threshold for the removal rate of effector cells in terms
of tumor antigenicity, size, and TGF-β production that, if exceeded, results in
exponential decay of the effector cells and growth of the cancer stem cell and tumor
cell populations to their carrying capacities. Using the parameters found in Table 2
for the aggressive tumor model, a quick calculation as before reveals that inequality
(25) is satisfied for both low and high antigenicity aggressive tumors. Hence A2 is
stable in both cases, matching our earlier observations in Figure 2.

7. Sensitivity analysis

In order to assess the sensitivity of our model to changes in parameters, we conduct
a sensitivity analysis for combination treatment of high antigenicity aggressive
tumors. More specifically, we vary each parameter over a range of percentages
centered around a baseline for 365 simulated days while leaving all other parameters
fixed and observe the effects on the resulting T tumor cell population. The results
are presented in Figure 10. In contrast with the findings in [Wilson and Levy 2012],
while the antigenicity f ranked high among the most sensitive parameters, we find
that there are three more sensitive parameters: the cancer growth rate k, the initial
injection of T cells by the vaccine g0, and the carrying capacity of the cancer stem
cells M1. It will thus be crucial to obtain highly accurate biological estimates for
these parameters to increase the applicability of the model.
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Figure 10. Sensitivity analysis for HAATs. Baseline values: k =
0.1946, M1 = 40, M2 = 369, h = 10−5, c1 = 100, d1 = 10−9,
a = 0.3, c2 = 7000, d2 = 7 · 10−4, f = 0.62, c3 = 300, r = 0.01,
d3 = 10−5, g0 = 5000.
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Figure 11. Response of cancer stem cells to treatment.
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Figure 12. Response of tumor cells to treatment.

8. Results

Figures 11 and 12 show the relative effectiveness of the vaccine, TGF-β inhibi-
tion, and combination treatments against the C and T cell populations of a high
antigenicity aggressive tumor, respectively.

Although TGF-β inhibition moderately slows down tumor growth in both cases,
the C stem cells are able to reach their carrying capacity by approximately day 60,
while the T tumor cells reach their carrying capacity by day 250. Alternatively, in
the vaccine treatment case, the vaccine is able to reduce the tumor cell population
from its carrying capacity of 369 mm2 to 70.1 mm2 (a reduction of 81%), while it is
only able to reduce the stem cell population from its carrying capacity of 40 mm2 to
29.7 mm2 (a reduction of 16%). Although remission is achieved in our simulations
of combination treatment, from Figure 11 we can see that the stem cell population is
not completely destroyed and as a result, the cancer stem cells reemerge by day 250
and prompt renewed growth of the tumor cells by day 300. Our results agree with



A MATHEMATICAL MODEL OF TREATMENT OF CANCER STEM CELLS 379

C Cells

T Cells

0 200 400 600 800 1000

0

5

10

15

20

Time (days)

S
iz
e
o
f
T
u
m
o
r
(m
m
2
)

Figure 13. Cancer cells approaching limit cycle for HAPT.

studies that show that unless cancer treatment is specifically directed toward cancer
stem cells, the cancer can still recur, even if there is a significant reduction in tumor
size after treatment [Jordan et al. 2006].

Conversely, in our simulation of low antigenicity aggressive tumors we show
that although combination treatment succeeds in reducing the size of the tumor,
it is unable to eliminate either the C or T cell populations. Furthermore, in our
simulations of treatment of passive tumors, we find that the vaccine produces a
similar outcome for low antigenicity tumors. The effector cell response for high
antigenicity passive tumors is sufficient to significantly reduce final tumor size, and
the vaccine treatment produces no noticeable benefit for this type of tumor.

The oscillatory behavior seen in our passive tumor model deserves further men-
tion. In [Kirschner and Panetta 1998], the authors find that in the no treatment
case, as they increase tumor antigenicity, the long-term dynamics of their model
transition from a stable node to a stable limit cycle to a stable spiral. It is interesting
to observe that in our model, the progression of these dynamics as the antigenicity
increases occurs in a somewhat different manner. Keeping all other values in Table 1
fixed, for f < 2.71 · 10−5, the equilibrium point P2 is a stable node, as in Figure 1,
top row. Biologically speaking, this implies that extremely low antigenicity tumors
are able to effectively escape immunosurveillance and grow to carrying capacity.
For 2.71 · 10−5 < f < 1.13 · 10−4, P2 becomes unstable and one of the interior
equilibria becomes a stable node. Next, for 1.14 · 10−4 < f < 0.0856, the positive
interior equilibrium transitions to a stable spiral. Thus all cell populations begin to
oscillate, and the effector cells reduce the size of the tumor to nearly zero before the
oscillations eventually dampen out. Finally, for f > 0.0857, the interior equilibrium
becomes an unstable spiral and the cell populations oscillate without bound.

Moreover, for f > 0.0445, a stable limit cycle is created. Thus for the high
antigenicity value used in our passive tumor model, f = 0.05, the long-term
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Figure 14. Limit cycle in phase space for HAPT.

dynamics either result in damped or sustained oscillations, depending on the initial
conditions. For example, if we let f = 0.05 and the initial population of effector
cells satisfy E(0)= 100, then the cell populations indeed approach the stable limit
cycle. A plot of the cancer cell populations in this case is shown in Figure 13, and
the limit cycle in phase space is presented in Figure 14.

However, if E(0) = 1000, we find that the populations approach the interior
stable spiral. This behavior was demonstrated in Figure 1, bottom row, for our high
antigenicity passive tumors.

9. Discussion

The mathematical model presented in this paper describes the dynamics of cancer
stem cells, tumor cells, and effector cells under one or more treatment protocols
designed to elicit a larger than normal response from the body’s natural immune
system. The antigenicity of the tumor as well as the aggressiveness of the tumor via
TGF-β production play a crucial role in predicting the success of such techniques.
We find that a vaccine delivering additional effector cells is able to diminish the
size of highly antigenic tumors, and pairing the vaccine with a TGF-β inhibitor
can lead to at least temporary clearance of aggressive tumors. As expected, low
antigenic tumors are able to better evade immunosurveillance and persist in the
face of immunotherapy techniques, with aggressive tumors of this type being
particularly resistant to treatment. For these tumors, other treatment options such
as chemotherapy and radiation therapy should be explored.

Qualitatively, the behavior of our model for high antigenicity aggressive tumors
agrees with the results of the Wilson–Levy model, with remission only being
achieved after combination treatment. However, our model is additionally able to
show how each of the various treatments affect the cancer stem cell and tumor cell
populations individually. We show that the cancer stem cells are more resistant to
the vaccine and experience a smaller reduction in carrying capacity when compared
to the tumor cells. In addition the re-emergence of the tumor in all cases of
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treatment of high antigenicity aggressive tumors also agrees with the stability
analysis presented by Wilson and Levy [2012], which predicts that all treatment
scenarios will eventually lead to a nonzero tumor equilibrium.

Furthermore, our simulations of passive tumors agree strongly with the results of
Arciero et al., with low antigenic tumors escaping the immune response and growing
to carrying capacity, while increasing antigenicity leads to damped oscillations that
stabilize into a small persistent tumor. The behavior of aggressive tumors with
low and high antigenicity in both models is also similar. The Arciero et al. model
[2004] simulates siRNA treatment designed to suppress TGF-β expression in tumor
cells, and as with our TGF-β inhibition strategy, they find that such a strategy alone
is insufficient to clear aggressive tumors.

Future research will include further study of the global behavior of the model,
including stability analysis of internal equilibria and identification of the basins
of attraction for various equilibria and limit cycles. The parameters of the model
should additionally be fit to experimental data to obtain a more biologically realistic
time-scale for the dynamics predicted by the model. Lastly, the model suggests
that inclusion of treatment methods that specifically target cancer stem cells could
potentially lead to tumor clearance, even for aggressive low antigenic tumors. This
possibility warrants further research by both mathematicians and biologists alike.

References

[Akhurst and Derynck 2001] R. J. Akhurst and R. Derynck, “TGF-β signaling in cancer: a double-
edged sword”, Trends Cell Bio. 11:11 (2001), S44–S51.

[Arciero et al. 2004] J. C. Arciero, T. L. Jackson, and D. E. Kirschner, “A mathematical model of
tumor-immune evasion and siRNA treatment”, Discrete Contin. Dyn. Syst. Ser. B 4:1 (2004), 39–58.
MR Zbl

[Cripe et al. 2009] T. P. Cripe, P.-Y. Wang, P. Marcato, Y. Y. Mahller, and P. W. K. Lee, “Targeting
cancer-initiating cells with oncolytic viruses”, Molecular Therapy 17:10 (2009), 1677–1682.

[Deonarain et al. 2009] M. P. Deonarain, C. A. Kousparou, and A. A. Epenetos, “Antibodies targeting
cancer stem cells: a new paradigm in immunotherapy?”, Mabs 1:1 (2009), 12–25.

[Dreesen and Brivanlou 2007] O. Dreesen and A. H. Brivanlou, “Signaling pathways in cancer and
embryonic stem cells”, Stem Cell Rev. 3:1 (2007), 7–17.

[Huntly and Gilliland 2005] B. J. P. Huntly and D. G. Gilliland, “Leukaemia stem cells and the
evolution of cancer-stem-cell research”, Nat. Rev. Cancer 5:4 (2005), 311–321.

[Jordan et al. 2006] C. T. Jordan, M. L. Guzman, and M. Noble, “Cancer stem cells”, New Eng. J.
Med. 355:12 (2006), 1253–1261.

[Joshi et al. 2009] B. Joshi, X. Wang, S. Banerjee, H. Tian, A. Matzavinos, and M. A. J. Chaplain,
“On immunotherapies and cancer vaccination protocols: a mathematical modelling approach”, J.
Theor. Biol. 259:4 (2009), 820–827. MR

[Kirschner and Panetta 1998] D. Kirschner and J. C. Panetta, “Modeling immunotherapy of the
tumor-immune interaction”, J. Math. Biol. 37:3 (1998), 235–252. Zbl

http://dx.doi.org/10.1016/S0962-8924(01)02130-4
http://dx.doi.org/10.1016/S0962-8924(01)02130-4
http://aimsciences.org/journals/pdfs.jsp?paperID=392&mode=abstract
http://aimsciences.org/journals/pdfs.jsp?paperID=392&mode=abstract
http://msp.org/idx/mr/2028813
http://msp.org/idx/zbl/1083.37531
http://dx.doi.org/10.1038/mt.2009.193
http://dx.doi.org/10.1038/mt.2009.193
http://dx.doi.org/10.4161/mabs.1.1.7347
http://dx.doi.org/10.4161/mabs.1.1.7347
http://dx.doi.org/10.1007/s12015-007-0004-8
http://dx.doi.org/10.1007/s12015-007-0004-8
http://dx.doi.org/10.1038/nrc1592
http://dx.doi.org/10.1038/nrc1592
http://dx.doi.org/10.1056/NEJMra061808
http://dx.doi.org/10.1016/j.jtbi.2009.05.001
http://msp.org/idx/mr/2973200
http://dx.doi.org/10.1007/s002850050127
http://dx.doi.org/10.1007/s002850050127
http://msp.org/idx/zbl/0902.92012


382 ZACHARY J. ABERNATHY AND GABRIELLE EPELLE

[Li and Neaves 2006] L. Li and W. B. Neaves, “Normal stem cells and cancer stem cells: the niche
matters”, Cancer Res. 66:9 (2006), 4553–4557.

[Malmberg 2004] K.-J. Malmberg, “Effective immunotherapy against cancer”, Cancer Immunology,
Immunotherapy 53:10 (2004), 879–892.

[Mishra et al. 2005] L. Mishra, K. Shetty, Y. Tang, A. Stuart, and S. W. Byers, “The role of TGF-β
and Wnt signaling in gastrointestinal stem cells and cancer”, Oncogene 24:37 (2005), 5775–5789.

[Nani and Freedman 2000] F. Nani and H. I. Freedman, “A mathematical model of cancer treatment
by immunotherapy”, Math. Biosci. 163:2 (2000), 159–199. MR Zbl

[Soltysova et al. 2005] A. Soltysova, V. Altanerova, and C. Altaner, “Cancer stem cells”, Neoplasma
52:6 (2005), 435–440.

[Stewart and Smyth 2011] T. J. Stewart and M. J. Smyth, “Improving cancer immunotherapy by
targeting tumor-induced immune suppression”, Cancer Metastasis Rev. 30:1 (2011), 125–140.

[Tang et al. 2008] Y. Tang, K. Kitisin, W. Jogunoori, C. Li, C.-X. Deng, S. C. Mueller, H. W. Ressom,
A. Rashid, A. R. He, J. S. Mendelson, J. M. Jessup, K. Shetty, M. Zasloff, B. Mishra, E. P. Reddy, L.
Johnson, and L. Mishra, “Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and
IL-6 signaling”, Proc. Nat. Acad. Sci. 105:7 (2008), 2445–2450.

[Terabe et al. 2009] M. Terabe, E. Ambrosino, S. Takaku, J. J. O’Konek, D. Venzon, S. Lonning,
J. M. McPherson, and J. A. Berzofsky, “Synergistic enhancement of CD8+ T cell-mediated tumor
vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody”, Clin. Cancer Res.
15:21 (2009), 6560–6569.

[Wilson and Levy 2012] S. Wilson and D. Levy, “A mathematical model of the enhancement of tumor
vaccine efficacy by immunotherapy”, Bull. Math. Biol. 74:7 (2012), 1485–1500. MR Zbl

Received: 2014-09-02 Revised: 2016-04-21 Accepted: 2017-06-27

abernathyz@winthrop.edu Department of Mathematics, Winthrop University,
Rock Hill, SC, United States

epelleg2@winthrop.edu Department of Mathematics, Winthrop University,
Rock Hill, SC, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1158/0008-5472.CAN-05-3986
http://dx.doi.org/10.1158/0008-5472.CAN-05-3986
http://dx.doi.org/10.1007/s00262-004-0577-x
http://dx.doi.org/10.1038/sj.onc.1208924
http://dx.doi.org/10.1038/sj.onc.1208924
http://dx.doi.org/10.1016/S0025-5564(99)00058-9
http://dx.doi.org/10.1016/S0025-5564(99)00058-9
http://msp.org/idx/mr/1740581
http://msp.org/idx/zbl/0997.92024
https://www.ncbi.nlm.nih.gov/pubmed/16284686
http://dx.doi.org/10.1007/s10555-011-9280-5
http://dx.doi.org/10.1007/s10555-011-9280-5
http://dx.doi.org/10.1073/pnas.0705395105
http://dx.doi.org/10.1073/pnas.0705395105
http://dx.doi.org/10.1158/1078-0432.CCR-09-1066
http://dx.doi.org/10.1158/1078-0432.CCR-09-1066
http://dx.doi.org/10.1007/s11538-012-9722-4
http://dx.doi.org/10.1007/s11538-012-9722-4
http://msp.org/idx/mr/2930083
http://msp.org/idx/zbl/1251.92023
mailto:abernathyz@winthrop.edu
mailto:epelleg2@winthrop.edu
http://msp.org


msp
INVOLVE 11:3 (2018)

dx.doi.org/10.2140/involve.2018.11.383

RNA, local moves on plane trees,
and transpositions on tableaux

Laura Del Duca, Jennifer Tripp, Julianna Tymoczko and Judy Wang

(Communicated by Ann N. Trenk)

We define a collection of functions si on the set of plane trees (or standard Young
tableaux). The functions are adapted from transpositions in the representation
theory of the symmetric group and almost form a group action. They were
motivated by local moves in combinatorial biology, which are maps that represent
a certain unfolding and refolding of RNA strands. One main result of this study
identifies a subset of local moves that we call si -local moves, and proves that
si -local moves correspond to the maps si acting on standard Young tableaux. We
also prove that the graph of si -local moves is a connected, graded poset with unique
minimal and maximal elements. We then extend this discussion to functions sC

i
that mimic reflections in the Weyl group of type C. The corresponding graph
is no longer connected, but we prove it has two connected components, one of
symmetric plane trees and the other of asymmetric plane trees. We give open
questions and possible biological interpretations.

1. Introduction

This paper analyzes a combinatorial question inspired by biology, specifically the
mathematical structure of RNA. RNA has primary structure (a sequence of letters
A, U, C, and G), secondary structure (a partial matching of the letters in the primary
structure, indicating how the RNA strand has folded and bonded to itself), and a
tertiary structure (how this folding occurs in 3-dimensional space). All of these
structures contribute to the function of the RNA strand in ways that are still being
uncovered. While our mathematical model of RNA is motivated by biology, this
paper focuses on the model’s combinatorial properties rather its direct relationship
to biology.

MSC2010: 92E10, 05A05, 05C40.
Keywords: plane trees, RNA, Young tableaux, connected components, permutation.
The authors gratefully acknowledge helpful comments from the referee, and the National Science
Foundation (DMS–1143716) and Smith College for their support of the Center for Women in Mathe-
matics. Tymoczko was also partially supported by NSF grant DMS–1248171.

383

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2018.11-3
http://dx.doi.org/10.2140/involve.2018.11.383


384 LAURA DEL DUCA, JENNIFER TRIPP, JULIANNA TYMOCZKO AND JUDY WANG

There are many combinatorial models for the secondary structure of RNA,
including plane trees and standard Young tableaux of shape (n, n). We will compare
two important operations on these combinatorial objects, one from biological
applications and the other from representation theory.

The first operation is called a local move. Defined by Condon, Heitsch, and Hoos
(and in Definition 3.2), local moves model unfolding an RNA strand and refolding
it differently [Heitsch 2006]. Heitsch [ibid.] described key combinatorial statistics
of the graph whose vertices are plane trees on n edges and whose edges are local
moves; she also showed how this graph is related to other important graphs, like an
analogous graph whose vertices are noncrossing partitions.

The second operation comes from constructions of representations of the sym-
metric group Sn . One classical construction of representations of Sn uses Young
diagrams, which are staircase-shaped collections of boxes. The symmetric group acts
naturally on the set of all fillings of a Young diagram with the integers 1, 2, . . . , n
(without repeating numbers) just by permuting the numbers. It turns out that this
action on filled Young diagrams gives rise to irreducible representations of Sn; see,
e.g., [Fulton 1997; Sagan 2001] for more.

We restrict our attention to “standard” Young tableaux, which are fillings that
increase along both rows and columns. These tableaux are known to index bases
for the irreducible representations of Sn , as well as other quantities of combinatorial
interest. It is therefore natural to ask whether the symmetric group can be modified
to also act on standard Young tableaux. The answer is yes and no. In Section 2
we define a collection of maps that act on standard Young tableaux and agree as
much as possible with the action of the simple transpositions (i, i + 1) on arbitrary
fillings of Young diagrams. More precisely, the map corresponding to the simple
reflection (i, i + 1) simply exchanges i and i + 1 in the tableau when doing so
makes sense. The maps do not induce a group action of Sn because composition of
functions does not agree with multiplication in Sn . Thus these maps cannot directly
give information about Sn-representations. However, the maps are involutions,
as we confirm in Proposition 2.4. Moreover, similar maps arise in other parts of
combinatorial representation theory, including Vogan’s generalized tau invariants
[Vogan 1979; Housley et al. 2015].

We further restrict our study to the standard Young tableaux corresponding to the
partition (n, n). This partition is an especially important one in applications from
geometry [Fung 2003] to knot theory [Khovanov 2004], as well as the biological
applications discussed here. In Theorem 3.6 we prove that our maps actually
correspond to certain local moves, whose defining conditions are shown in Figure 3.
We call the local moves that arise in this way si -local moves.

Note that not all local moves correspond to the action of permutations of the
form (i, i+1). In particular the graph G A whose vertices are plane trees and whose
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edges correspond to si -local moves is different from the graph whose edges are all
local moves. The graph of all local moves is a connected graded poset for which the
cardinalities of the ranks form a symmetric, unimodal sequence; see, e.g., [Heitsch
2006]. Section 4 proves that the graph G A is still a

• connected (Proposition 4.1),

• graded poset (Proposition 4.6),

• with a unique minimal element and a unique maximal element (Proposition 4.8).

However, the grading of the graph of si -local moves does not coincide with that
of the graph of all local moves, nor does the graph of si -local moves satisfy the
symmetry of ranks that the graph of local moves does (see Remark 4.7).

Our si -local moves were constructed by analogy with the symmetric group Sn .
Thus we finish by extending the analogy to Weyl groups of other classical types,
which we can do by considering these groups as subgroups of Sn . Our main focus
is Weyl groups of type C , which give rise to type-C local moves. Like Heitsch for
local moves, we find that the plane tree model is particularly natural for type-C local
moves. Indeed we prove in Corollary 5.8 that the graph GC of plane trees under
type-C local moves contains exactly two connected components: one consisting of
symmetric plane trees and the other consisting of asymmetric plane trees.

We conclude with a brief discussion of extending si -local moves to types D
and B, as well as possible biological interpretations of all the local moves we
describe. We give open questions throughout the manuscript.

Throughout this manuscript Y denotes standard Young tableaux and T denotes
plane trees.

2. Maps on tableaux corresponding to simple transpositions

In this section we describe a set of involutions on the set of standard Young tableaux
of shape (n, n) that are indexed by simple reflections. Our maps are inspired by a
well-known Sn-action from classical representation theory that gives all irreducible
representations of the symmetric group. Our maps do not generate a group action,
as we show in Remark 2.6. However, because they are involutions, our maps induce
a graph whose vertices are the set of standard Young tableaux of shape (n, n) and
whose edges correspond to the image under each map. We define this graph in this
section. In subsequent sections we study combinatorial properties of the graph,
prove that these maps agree with operations on plane trees from combinatorial
biology, and discuss how to change the Lie type of our maps.

To begin we recall the definition of Young tableaux and sketch their relationship
to the representation theory of the symmetric group Sn .
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Definition 2.1. Let λ be a partition of n. A Young diagram of shape λ is a collection
of λ1 boxes in the top row, λ2 boxes in the second row, and so on, aligned on the
top and the left. A standard Young tableau Y of shape λ is a filling of the Young
diagram with the integers {1, 2, . . . , n} without repetition so that each row increases
left-to-right and each column increases top-to-bottom.

The Specht module for a partition λ is generated as a complex vector space
by vectors vT indexed by standard tableaux Y of shape λ. The dimension of the
irreducible representation of Sn corresponding to λ is also the number of standard
Young tableaux of shape λ. A reasonable question arises: is there an action of Sn

on standard Young tableaux under which the Young tableaux themselves can be
the basis for the irreducible representation? Sadly the answer is generally no: the
vectors vY in the Specht module are linear combinations of terms corresponding to
different fillings of λ. (See [Fulton 1997; Sagan 2001] for more.) The problem is
that Sn “should” act by permuting the entries of Y but permuting the entries of Y
usually doesn’t produce another standard tableau.

In the following family of maps, we modify the permutation action on all fillings
so that it produces standard tableaux. We define the maps on standard Young
tableaux for arbitrary partitions; in later sections we specialize to the case when
λ= (n, n) and the maps correspond to elements of S2n .

Definition 2.2. Suppose that Y is a standard Young tableau with n boxes and
si = (i, i + 1), where i = 1, . . . , n− 1, is a simple reflection. If i, i + 1 are not in
the same row or in the same column of Y then define si (Y ) to be the tableau with i
and i + 1 exchanged. If i, i + 1 are in the same row or in the same column of Y
then define si (Y ) to be Y. Define an arbitrary word si1si2 · · · sik (Y ) to be the tableau
obtained by composition of maps.

Others have considered an analogous action on 3-row tableaux [Housley et al.
2015] that comes from Vogan’s generalized tau invariant [1979].

The next result shows that these operations always give well-defined maps on
standard tableaux (of arbitrary but fixed shape).

Proposition 2.3. For each i = 1, . . . , n − 1, the map si is well-defined and the
image si (Y ) is a standard Young tableau of the same shape as Y.

Proof. By construction, si preserves the shape of Y. By definition, the boxes
containing i and i+1 inside the standard Young tableau Y have numbers less than i
to the left and above and have numbers greater than i + 1 to the right and below.
Hence if si exchanges i and i + 1 then the result si (Y ) is also a standard Young
tableau. �

Moreover, these maps have a convenient property.
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1 2
3 4

1 3
2 4

s1

s3

s2

s1

s3

Figure 1. Graph of si = (i, i + 1) on standard Young tableaux of
shape (2, 2).

Proposition 2.4. Definition 2.2 produces a well-defined involution on the set of
standard Young tableaux of shape λ.

Proof. We check that for all i we have s2
i = e using two cases:

(1) If i and i + 1 are in the same row then by definition si (Y ) = Y so the claim
holds.

(2) If i and i + 1 are in different rows then si swaps the positions of i and i + 1.
Applying si twice brings i and i + 1 back to their original positions. �

This leads us to construct a graph whose vertices are standard Young tableaux of
shape λ and whose edges describe the maps si . The edges are undirected precisely
because the maps si are involutions for each i .

Definition 2.5. Let Gλ= (V, E) be the edge-labeled graph whose vertices V are the
set of standard Young tableaux of shape λ. An edge labeled si connects tableaux Y
and Y ′ when si (Y )= Y ′. We call Gλ the graph of si -local moves for λ.

As an example, the graph G(2,2) corresponding to the partition (2, 2) is shown
in Figure 1.

Remark 2.6. Note that the maps si do not induce a group action of the symmetric
group on the standard Young tableaux even for the shape (n, n). For a counterexam-
ple, inspect Figure 1. On the one hand s2s3s2(Y )= Y for each standard tableau Y
of shape (2, 2). On the other hand s3s2s3(Y ) is the opposite tableau of shape (2, 2).
Since s2s3s2 = s3s2s3 in the symmetric group, we conclude that the maps si do not
define a group action.

Remark 2.7. We typically omit all edges corresponding to fixed points Y = si (Y )
(represented in Figure 1 as dashed self-edges) from our drawings of Gλ. In later
sections we restrict to the case λ= (n, n) and so omit λ from our notation. We will
also modify the maps si that define the edges, so we often write G A to denote the
graph with the precise edges in Definition 2.5 or write GC to denote the modified
graph in Section 5.

Question 2.8. In subsequent sections we analyze the graph G(n,n). What can be
said about the graph Gλ for arbitrary partitions?
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3. Sn-action and local moves on plane trees

This section relates the functions defined in the previous section to an operation on
plane trees called local moves. Condon, Heitsch, and Hoos defined local moves to
represent an unfolding-and-refolding process on a strand of RNA. Heitsch [2006]
then proved many combinatorial properties of a graph whose vertices are plane
trees and whose edges come from local moves, for instance that the graph is
symmetric and unimodal. In the same paper, she also showed that under one natural
modification to the edges, we obtain the graph whose vertices are noncrossing
partitions and whose edges come from Kreweras complementation.

We extend these results in a different direction, showing that many local moves
correspond naturally to the action of the maps si on standard Young tableaux.
Since we specialize to Young diagrams of shape (n, n), we also specialize to the
permutations S2n in this section.

We begin by recalling the definitions of plane trees and local moves.

Definition 3.1. A plane tree is a rooted tree whose subtrees at any vertex are linearly
ordered.

Our convention for a plane tree is that the root is at the top and that the subtrees
are linearly ordered from left to right. In figures, the root is drawn with an open
circle and ordinary vertices are drawn with solid circles.

Plane trees are related to Young diagrams, noncrossing matchings, and other
fundamental combinatorial objects that are also counted by Catalan numbers. To see
this, we interpret each edge of a plane tree with n edges as a pair of two half-edges,
each of which is indexed with one of the integers from 1 to 2n. The half-edges
are labeled in increasing order counterclockwise from the root. We write e(i, j)
to denote the edge whose left half-edge is labeled i and whose right half-edge is
labeled j . Given this setup, the half-edges i and j in the edge e(i, j) satisfy many
constraints, including i < j .

The next definition describes local moves, which are operations on plane trees that
are central to this paper. We denote the collection of plane trees with n edges by Tn .

Definition 3.2. A local move on a plane tree T ∈ Tn converts a pair of adjacent
edges in one of two ways:

(1) If i < i ′ < j ′ < j then replace e(i, j) and e(i ′, j ′) with e(i, i ′) and e( j ′, j).
This is a local move of type (1):

i ′ j ′

i j
type-(1) local move i

i′ j ′
j
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(2) If i < j < i ′ < j ′ then replace e(i, j) and e(i ′, j ′) with e(i, j ′) and e( j, i ′).
This is a local move of type (2):

i
j i ′

j ′

type-(2) local move

j i ′

i j ′

The following map provides a natural bijection between plane trees with n edges
and standard Young tableaux of shape (n, n).

Definition 3.3. Let Y(n,n) denote the set of standard Young tableaux of shape (n, n).
Define a map φ :Tn→Y(n,n) by the rule that for each T ∈Tn the Young tableau φ(T )
has the labels of the left half-edges of T on its top row and the labels of the right-
half-edges of T on its bottom row.

The following proposition confirms that the map φ is bijective. Both the image
and the domain are sets that are known to index the Catalan numbers [Stanley 1999,
Chapter 6, Problem 19(e) and (ww)]; we include the following proof to confirm
that the specific map φ is a direct bijection.

Proposition 3.4. The map φ : Tn→ Y(n,n) is a well-defined bijection.

Proof. The half-edges of a plane tree are labeled counterclockwise, so for each k
there are at least as many left half-edges i with i ≤ k as right half-edges j with
j ≤ k. Thus if i is above j in a column of the Young tableau φ(T ) then i < j . It
follows that φ is well-defined.

If φ(T )= φ(T ′) then both T and T ′ have the same set of left half-edges and the
same set of right half-edges. Since by definition every subtree of a plane tree is
linearly ordered, the indexing of the half-edges determines the plane tree. So φ is
injective.

The sets Tn and Y(n,n) have the same cardinality so the map φ is a bijection. �

In order to prove our main result, we need more precise information about the
fragments of a plane tree that correspond to the boxes filled with i and i + 1 in a
standard Young tableau. The next lemma compiles this information.

Lemma 3.5. Consider a standard Young tableau Y of shape (n, n) and its preimage
φ−1(Y ) under the bijection in Definition 3.3. The half-edges corresponding to i and
i + 1 are in one of the following relative positions:

(i) The numbers i and i + 1 are on the same row in Y if and only if i and i + 1
label left half-edges of φ−1(Y ) in one of the ways shown in Figure 2.

(ii) The numbers i and i + 1 are on opposite rows in Y if and only if in φ−1(Y )
either i and i+1 label a leaf (Figure 3, left) or the interior of a peak (Figure 3,
right).
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i + 1 j ′

i j

j ′ i

j i + 1

Figure 2. i and i + 1 are on the same row: i and i + 1 label left
half-edges (left) or i and i + 1 label right half-edges (right).

i i + 1

j j ′

j
i

i+1
j ′

Figure 3. i and i + 1 are on different rows: i and i + 1 are incident
to the same leaf (left) or i and i+1 label the interior of a peak (right).

i i + 1

Figure 4. i and i + 1 are on the same column.

(iii) The numbers i and i + 1 are on the same column in Y if and only if i and i + 1
label a leaf incident to the root in φ−1(Y ), shown in Figure 4.

In no case is there an additional half-edge incident to the vertex between i and i+1.

Proof. By convention, plane trees are labeled counterclockwise from the root.
Hence there can be no edges or half-edges on the vertex incident to both i and
i + 1. We think of each edge e(i, j) as having a left half-edge labeled i and a right
half-edge labeled j .

(i) Consider the case where the numbers i and i+1 are on the same row in Y. By the
definition of φ, the top row of the Young tableau has the labels on the left half-edges
of the corresponding plane tree, while the bottom row has the labels on the right
half-edges. Suppose i and i + 1 are on the top row of the Young tableau. Then i
and i + 1 are left half-edges and must be in the configuration shown in Figure 2,
left. Suppose i and i + 1 are on the bottom row of the Young tableau. Then i and
i + 1 are right half-edges and must be in the configuration shown in Figure 2, right.

(ii) Consider the case where the numbers i and i + 1 are on different rows in Y.
Suppose i is on the top row and i+1 is on the bottom row. Then i is a left half-edge
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i i + 1

j j ′ type-(1) local move

type-(2) local move

j
i

i+1
j ′

Figure 5. Edges of plane tree under local moves.

and i + 1 is a right half-edge. That means these two numbers will label the same
leaf in the tree, as shown in Figure 3, left. Now suppose i + 1 is in the top row
and i is in the bottom row of Y. Then i labels a right half-edge and i + 1 labels a
left half-edge. In a plane tree, this configuration must be a peak with i and i + 1
labeling the interior, as shown in Figure 3, right.

(iii) The numbers i and i+1 are on the same column of Y if and only if the first i−1
2

columns of Y form a standard Young tableau of size
( i−1

2 ,
i−1

2

)
and filled with the

numbers 1, 2, . . . , i − 1. By restricting φ to plane trees on i−1
2 edges we note that

the first i−1
2 edges of the plane tree φ−1(Y ) form a subtree with the same root as

φ−1(Y ). This is equivalent to saying that i − 1 labels the right half of an edge
incident to the root, which is true if and only if i and i + 1 label the half-edges of
a leaf incident to the root, as shown in Figure 4. �

In the next theorem we use Lemma 3.5 to show that if i and i+1 are in different
rows (but not in the same column) of a standard Young tableau then the action of
the map si on the tableau corresponds to a local move on the corresponding plane
tree. Henceforth the maps si vary from i = 1 to i = 2n−1 since there are 2n boxes
in the Young diagram.

Theorem 3.6. Consider a plane tree T and its image Y = φ(T ) under the bijection
in Definition 3.3. The half-edges in T labeled i and i + 1 are in one of the two
relative positions in Figure 3 if and only if the local move on edges with half-edges
j < i < i + 1< j ′ produces the plane tree φ−1(si (Y )).

Proof. Lemma 3.5 showed that i and i + 1 are on different rows and different
columns exactly when i and i+1 are in the configurations in Figure 3. In fact, local
moves exchange these two configurations because j < i < i + 1< j ′, as shown in
Figure 5.

Let T ′ denote the image of T under the allowed local move on half-edges
j < i < i + 1< j ′ and let Y ′ = φ(T ′). Comparing T and T ′ in Figure 5 shows that
i and i + 1 change from a left half-edge to a right half-edge or vice versa. Thus i
is on the opposite row in Y as it is in Y ′ and similarly for i + 1. By inspection of
Figure 5, both j and j ′ stay on the same respective halves of their shared edge in T
and T ′. By definition, a local move changes only the two edges involved in the local
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2 5

1 6

2
3 4

5
1 6

1
2
3 45

6

1 2 3
4 5 6

1 2 4
3 5 6

1 3 5
2 4 6

φ φφ

s1, s2, s4, s5

s3

type-(1) local move type-(1) local move

Figure 6. A local move that does not correspond to a permutation si .

move. Thus all other numbers remain on the same rows in the corresponding Young
tableau, and so every other integer is in the same row in Y as it is in Y ′. Finally i
and i + 1 are on opposite rows in Y by the hypotheses of the theorem together with
Lemma 3.5. Thus Y ′ = si (Y ).

Conversely suppose there is a local move involving the half-edges j< i< i+1< j ′.
The configurations in Figure 5 are the only possibilities listed in Lemma 3.5 that
satisfy these inequalities. The claim follows. �

Remark 3.7. Not every local move corresponds to one of the maps si . If i and i+1
are on the same row or column of a tableau then si fixes the tableau. Otherwise
si describes the local moves in Figure 5 . But when n > 2, a local move may be
described by a transposition between i and i + k with 1< k < 2n− i in the tableau.
Figure 6 gives an example. The original tableau Y has 1, 2, 3 along its top row, so
every transposition except s3 fixes Y. However, the associated plane tree has a local
move affecting the half-edges 1, 2, 5, 6 that corresponds to exchanging 2 and 5
in the tableau. The tableau resulting from this local move differs both from the
original tableau Y and from s3(Y ).

To avoid this ambiguity we have the following definition.

Definition 3.8. Suppose T is a plane tree with n edges whose associated standard
Young tableau is φ(T )= Y. An si -local move is a local move that is consistent with
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one of the maps si in the sense that the local move sends T to φ−1(si (Y )) for some
si with i = 1, 2, . . . , 2n− 1. An si -local move is trivial if si (Y )= Y.

We conclude this section with an open question.

Question 3.9. What other types of transpositions (i, j) can also be interpreted as
local moves on plane trees?

4. The graph of si -local moves in type A

Theorem 3.6 showed that the graph whose vertices are plane trees with n edges
and whose edges are si -local moves is isomorphic to the graph in Definition 2.5 for
the partition (n, n). Remark 3.7 demonstrated that this graph is a subgraph (proper
subgraph for n > 2) of the graph of plane trees under all local moves.

Heitsch [2006] studied the graph of plane trees under all local moves and com-
pared it to similar graphs for other combinatorial objects enumerated by Catalan
numbers. However, when we remove edges from these graphs, many of Heitsch’s
properties no longer hold. We explore the statistics of these modified graphs in this
section. We restrict our attention to the partition (n, n) and denote the graph from
Definition 2.5 by G A. We refer to G A as the graph of si -local moves in type A. Note
that the permutations whose corresponding maps si are defined on this partition are
in S2n rather than Sn . (In later sections we look at local moves corresponding to
other Weyl groups.)

We begin by proving that the graph of si -local moves is still connected in type A.

Proposition 4.1. The graph G A is connected.

Proof. We describe a way to construct a path between any two standard Young
tableaux Y and Y ′ that both have shape (n, n). If Y = Y ′ then the path is trivial.
We now induct on the minimum number i that lies on opposite rows in Y and Y ′.
Suppose that i is the smallest number whose row in Y is different from that in Y ′.
Suppose further that i , i +1, i +2, . . . , i + k are all on the same row and i + k+1
is on the opposite row in Y. (We allow k to be zero.)

We first prove that in Y the number i + k+ 1 is not in the same column as any
of i , i + 1, . . . , i + k. Indeed if i is on the bottom row then i + k + 1 must be in
a column to the right of i + k in order for Y to be standard. Now suppose that i
is on the top row of Y and thus on the bottom row of Y ′. In Y ′ we know that i is
directly below one of 1, 2, . . . , i − 1 in order for Y ′ to be standard. Both Y and Y ′

have 1, 2, . . . , i − 1 in the same positions, so Y has an empty box in the bottom
row below one of 1, 2, . . . , i − 1. This must be the box occupied by i + k+ 1.

Now consider the standard tableau si si+1si+2 · · · si+k−1si+k(Y ). It is connected
to Y in the graph G A by construction. The numbers 1, 2, . . . , i − 1 are in the same
positions in si si+1 · · · si+k(Y ) as in Y. Furthermore the number i occupies opposite



394 LAURA DEL DUCA, JENNIFER TRIPP, JULIANNA TYMOCZKO AND JUDY WANG

rows in si si+1 · · · si+k(Y ) and Y. Thus the first i numbers are on the same rows in
si si+1 · · · si+k(Y ) as in Y ′. If 1, 2, . . . , 2n− 1 are all on the same rows in Y as in
Y ′ then 2n must also be on the same row in Y and Y ′. (Indeed 2n is on the bottom
row for all standard tableaux.) By induction we can find a path from Y to Y ′ in G A

as desired. �

The graph of plane trees under local moves has the structure of a graded poset.
This is true for G A as well, but for a different rank function. The next two results
describe total distance and total number of descendants, two functions that rank G A.
Like Heitsch, we find that the language of plane trees characterizes the ranking
more naturally than tableaux. In particular, we show that si -local moves change
both the total distance and the total number of descendants by exactly 1.

Proposition 4.2. Fix a plane tree T with root v0:

• The total distance of the plane tree dT is defined as

dT =
∑

v∈V (T )

dist(v, v0).

• If T ′ is obtained from T by an si -local move of type (1) then dT − 1= dT ′ . If
T ′ is obtained from T by an si -local move of type (2) then dT + 1= dT ′ .

Proof. The proof follows by comparing the distances in the schematics in Figure 7.
An si -local move does not change the distance between the root and the vertices
in the subtrees a, b, c, d, and e, each of which can be empty. In the tree to the
left, the leaf between half-edges i and i + 1 has no descendants. Moreover, this
vertex is one edge farther from the root than both “ankles” of the tree to the right
are, changing the total distance by exactly 1. �

Proposition 4.3. Fix a plane tree T with root v0:

• The total number of descendants in T is defined as

desT =
∑

v∈V (T )

|{descendants of v}|.

• If T ′ is obtained from T by an si -local move of type (1) then desT −1= desT ′ .
If T ′ is obtained from T by an si -local move of type (2) then desT +1= desT ′ .

Proof. Consider again the schematic in Figure 7. The number of descendants of the
root, as well as all vertices in the subtrees a, b, c, d , e, remain the same after each
si -local move. However, the length-2 path to the left has a total of three descendants,
while the peak to the right has a total of only two. �

The previous proofs were similar in part because they turn out to count the same
quantities, as we prove next.



RNA, LOCAL MOVES ON PLANE TREES, AND TRANSPOSITIONS ON TABLEAUX 395

v0

i i+1

j j ′

a

b e

c d

type-(1) local move

type-(2) local move

v0

j
i

i+
1

j ′
a

b e

c d

Figure 7. Edges with subtrees under si -local moves.

Proposition 4.4. Let T be a plane tree with root v0. The total distance equals the
total number of descendants; namely

dT = desT .

Proof. Vertex v of plane tree T has distance k from the root exactly when the
unique path between v and the root has k+ 1 vertices on it. The k vertices on this
path other than v are precisely the vertices in T with v as a descendant. Thus each
vertex v contributes exactly k to dT and exactly k to desT. �

Remark 4.5. The notions of total distance and of total number of descendants can
be useful in different contexts. For one example, see the proof of Proposition 4.8.
For another example, note that each descendant in a plane tree corresponds to a
nesting of arcs in the associated noncrossing matching. Thus the total number of
descendants in a plane tree corresponds to the total number of nestings within a
noncrossing matching. (We do not discuss noncrossing matchings in detail in this
manuscript; for more, see, e.g., [Russell 2011; Russell and Tymoczko 2011].)

The next proposition is a direct result of the previous propositions.

Proposition 4.6. Both total distance and total number of descendants partition the
vertices of G A into the same subsets of plane trees.

Direct the graph G A according to the rule that each edge is directed T → T ′

if T ′ is obtained from T by a local move of type (1). This turns G A into a graded
poset. Moreover, we can impose a rank function ρ(T )= dT on this graded poset,
whose ranks are characterized by the subsets of plane trees with total distance k
(respectively total number of descendants k).

Proof. The first claim is an immediate corollary of the fact that dT = desT for each
plane tree T.
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The directed graph G A is acyclic, and thus a poset, because if T1→T2→· · ·→Tk

is any directed path then dT1 > dT2 > · · ·> dTk and so the endpoint cannot coincide
with the initial point of the path.

Finally a function is a rank function if the following two conditions are met:

(1) The function is compatible with the partial order; namely if there is a path
T1→ T2→ · · · → Tk then ρ(T1) > ρ(Tk). We just confirmed this for total
distance (respectively total number of descendants).

(2) If T1→ T2 is an edge in the graph then ρ(T1)=ρ(T2)+1. This is the content of
Proposition 4.2 (respectively Proposition 4.3 for total number of descendants).

The final claim follows by definition of the rank function. �

Remark 4.7. The graph G A does not satisfy the same kind of symmetries as the
graph for all local moves does. For instance, Heitsch proved that the number of
plane trees of rank k agrees with those of rank n − k + 1 for each k = 1, . . . , n.
That is clearly false here: for instance, the sequence of the number of tableaux of
shape (3, 3) of each rank in increasing order is (1, 2, 1, 1), as shown in Figure 8.
(Note too that this is not the same rank function that Heitsch uses, as our graded
poset has fewer edges than hers.)

However, we can prove the following.

Proposition 4.8. There is a unique element of maximal rank and a unique element
of minimal rank.

Proof. Consider the graph G A whose vertex set is the set Tn of plane trees with
n edges. If T is a plane tree in Tn then its root must have n descendants since any
other vertex in the graph is a descendant of the root. So the minimal total number
of descendants is n. This is achieved by the star graph in Figure 9, left.

The plane tree T is connected so there is at least one vertex of each possible
distance from the root. The path graph in Figure 9, right, has just one vertex at each
distance from the root and therefore maximizes the total distance. �

Corollary 4.9. For the partition (n, n), the number of ranks in the graded poset
obtained from G A and ranked by the total distance function dT is

(n+1
2

)
− n+ 1.

Proof. The total distance of the path graph is the binomial coefficient
(n+1

2

)
. The

total distance of the star graph is n. There is at least one plane tree of each rank
between these because G A is connected and each edge changes rank by exactly 1. �

Again we close with an open question.

Question 4.10. Is the rank sequence of G A unimodal for every n?
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Figure 8. Graded poset obtained from G A when n = 3.
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Figure 9. Minimal tree which is a star graph (left) and a maximal
tree which is a path graph (right) with associated Young tableaux.

5. The graph of si -local moves in type C

In our description of si -local moves so far, we relied on an analogy with the
generators of the symmetric group. We now extend the analogy to define maps sC

i
corresponding to the generators of the Weyl group of type C. Intuitively the Weyl
group of type C plays the same role for the complex symplectic group Sp(2n,C)

that the permutation matrices play for n× n invertible matrices GL(n,C). We will
represent the Weyl group of type C as a subgroup of the permutations in S2n using
generators that we describe below.

In this section we show that we can easily define maps sC
i on the standard tableaux

of shape (n, n) even when there are no analogous local moves on the corresponding
plane trees. Nonetheless, the geometry of the plane trees is the best way to describe
key properties of these maps. More precisely we prove that restricting to type-C
si -local moves identifies symmetry within the plane trees. The main theorem of
this section shows that within the graph whose vertices are plane trees and whose
edges are type-C si -local moves, there are precisely two connected components:
one composed of symmetric plane trees and one composed of asymmetric plane
trees.

We define functions analogous to the maps si for type C instead of type A.
The reader who is not familiar with Weyl groups can take this as a definition of
the Weyl group of type C. Like in our earlier treatment, the maps si and sC

i are
both permutations in S2n . However, note that in type A we have maps si for each
i ∈ {1, 2, . . . , 2n− 1}, while in type C we only have sC

i for i ∈ {1, 2, . . . , n}.
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Definition 5.1. The maps of type C are the involutions on standard tableaux defined
by

sC
1 = s1s2n−1 corresponding to the reflection (1, 2)(2n− 1, 2n),

sC
2 = s2s2n−2 corresponding to the reflection (2, 3)(2n− 2, 2n− 1),
...

sC
n−1 = sn−1sn+1 corresponding to the reflection (n− 1, n)(n+ 1, n+ 2),

sC
n = sn corresponding to the reflection (n, n+ 1).

Using the bijection φ :Tn→{standard Young tableaux of size (n, n)}we also define
maps sC

i on plane trees according to the rule

sC
i (T )= φ

−1(sC
i (φ(T ))).

Generally the simple reflections of type C exchange disjoint pairs of integers
according to the product si s2n−i of type-A reflections. However, note that sn

exchanges just the two integers n and n+1. It is the only simple reflection of type C
that exchanges integers between the sets {1, 2, . . . , n} and {n+ 1, n+ 2, . . . , 2n}.

Remark 5.2. Note that while we use terminology from earlier in the paper, the
maps sC

i are no longer local moves in the strict sense. Except for the case when i =n,
the maps sC

i = si s2n−i corresponding to the reflections (i, i +1)(2n− i, 2n− i +1)
are in fact pairs of si -local moves of type A. We can perform a pair of si -local
moves on a standard tableau Y simultaneously because the pairs of integers are
disjoint: if i and i+1 are in the same row or column then si does nothing; otherwise
si exchanges the positions of i and i + 1 leaving all the other numbers in their
original positions. The same dynamic holds for s2n−i with respect to 2n− i and
2n− i + 1. So the standard tableau sC

i (Y ) is always defined.
Our definition for the plane tree sC

i (T ) uses the action on the corresponding
tableau φ(T ). This is because often a pair of si -local moves that would act on a
plane tree is not defined on that plane tree. Figure 10 provides an example in which
the map sC

2 involves one nontrivial s2-local move and one trivial s6-local move. The
heuristic for determining sC

i (T ) directly is to perform all of the local moves si and
s2n−i that are nontrivial.

We stress that even though it appears unnatural to define local moves of type C
on plane trees (given that the constituent local moves of type A are not necessarily
well-defined), the maps sC

i characterize key geometric properties of the plane trees.
Indeed we think it is a theme of this field that different characterizations of standard
tableaux (plane trees, noncrossing matchings, etc.) provide valuable and often
complementary information.
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Figure 10. Map sC
2 involving a nontrivial s2-local move and a

trivial s6-local move.

The maps sC
i define a graph GC in the same way that the maps si defined a

graph G A.

Definition 5.3. The graph GC is the graph whose vertices are plane trees. An edge
connects plane trees T and T ′ precisely when T ′ = sC

i (T ) for a map sC
i . We call

GC the graph of plane trees under sC
i -local moves (read si -local moves of type C).

The following definition formalizes our notion of symmetric and asymmetric
plane trees.

Definition 5.4. Let T be a plane tree. We say that T is symmetric if and only if for
each edge e(i, j) in T the mirror image e(2n− j + 1, 2n− i + 1) is also an edge
in T. A plane tree is asymmetric if it is not symmetric.

We will prove that the graph of plane trees GC under the sC
i -local moves has two

connected components: one consisting of symmetric plane trees and one consisting
of asymmetric plane trees. Our proof uses several steps. First we show that no
connected component contains both a symmetric plane tree and an asymmetric
plane tree.

Lemma 5.5. Each connected component of GC consists either entirely of symmetric
plane trees or entirely of asymmetric plane trees.

Proof. We will show that if sC
i is a generator of the Weyl group of type C and

T is a symmetric plane tree then sC
i (T ) is also symmetric. It follows that the

connected component of GC containing any symmetric plane tree consists entirely
of other symmetric plane trees. Since every tree is either symmetric or asymmetric,
it follows further that the connected component of GC containing any asymmetric
plane tree must consist entirely of other asymmetric plane trees.

Given a subtree T ′ of symmetric plane tree T we call the edges in T that are
symmetric to T ′ the mirror image of T.
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Consider the half-edges labeled by i and i+1. A priori there are four possibilities:
they could both be left-half-edges, they could both be right-half-edges, they could
form a leaf, or they could form the interior of a peak.

Table 1 shows these four possibilities, the mirror image of these possibilities,
the sC

i -local move on the original and its mirror image in each case, and the mirror
image of the sC

i -local move on the original in each case. Note that in the first two
possibilities, i and i+1, as well as 2n− i and 2n− i+1, will stay in their respective
rows of the corresponding tableaux after the sC

i -local move, which consequently
does not alter the either T ′ or its mirror image. We inspect columns three and
five in Table 1 and observe that they are the same. So if two edges were part of a
symmetric tree before we perform an sC

i -local move on them, then they will still be
part of a symmetric tree after the sC

i -local move.
Since these are the only edges changed by the local move, all the other edges

will still satisfy the symmetry condition. We conclude that sC
i (T ) is symmetric

whenever T is symmetric. The result follows. �

Next we prove there is exactly one connected component of symmetric plane
trees in GC by showing that each symmetric plane tree can be transformed via
sC

i -local moves to one with the leaf e(1, 2) and then using induction.

Theorem 5.6. If T and T ′ are symmetric plane trees then there is a finite sequence
of sC

i -local moves that transforms T into T ′.

Proof. The proof is by induction on the total number n of edges in a plane tree.
There are two base cases. The case when n = 2 was addressed in Figure 1 since

sC
2 = s2 in that setting; it is reproduced in type-C notation in Figure 11, left. The

case when n = 3 has three symmetric plane trees as shown in Figure 11, right: the
top and the middle are connected by the edge sC

3 = s3, while the middle and the
bottom are connected by sC

2 = s2s4.
For the induction step, assume that any two symmetric plane trees with at most

n− 1 edges can be transformed into each other by a sequence of sC
i -local moves.

Now consider a symmetric plane tree with n edges.
First we show that there is a path of sC

i -local moves from each plane tree T to
a plane tree containing the edge e(1, 2). If T does not have the edge e(1, 2) then
it has the edge e(1, j) for some j ≥ 3. This means that 1 and 2 are both in the
top row of the tableau φ(T ). Let k be the first integer not in the top row of φ(T ).
Since φ(T ) has shape (n, n), we know that k ≤ n + 1. Proposition 4.1 showed
that the standard tableau s2s3 · · · sk−1(φ(T )) has 2 in the bottom row by way of
si -local moves of type A. We now confirm that sC

2 sC
3 · · · s

C
k−1 also moves 2 to the

bottom row. If k = n+ 1 then the top row of the tableau is filled with the integers
from 1 through n, and sC

k−1 = sn simply exchanges n and n + 1. For j ≤ n we
know that sC

2 sC
3 · · · s

C
j−1 permutes numbers within the disjoint sets {1, 2, . . . , j}
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T ′ mirror image of T ′
sC

i -local move sC
i -local mirror image of

on mirror image of T ′ move on T ′ sC
i -local move on T ′

i+1 j ′

i j

2n− j ′+1 2n−i

2n− j+1 2n−i+1

2n− j ′+1 2n−i

2n− j+1 2n−i+1
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i j

2n− j ′+1 2n−i
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j i

j ′ i+1
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i i+1

j j ′

2n−i 2n−i+1
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−
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1
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−

i
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−

i+
1
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−

j+
1

j
i

i+
1

j ′

2n
−

j′ +
1

2n
−

i

2n
−

i+
1

2n
−

j+
1

j
i

i+
1

j ′

2n
−

j′ +
1

2n
−

i

2n
−

i+
1

2n
−

j+
1

2n−i 2n−i+1

2n− j ′+1 2n− j+1

i i+1

j j ′

2n−i 2n−i+1

2n− j ′+1 2n− j+1

Table 1. Identical results from sC
i -local move on mirror image of

T ′ and mirror image of sC
i -local move on T ′.

and { j + 1, . . . , 2n} independently. So the tableau sC
2 sC

3 · · · s
C
k−1(φ(T )) has 2 on

the bottom row for all k ≤ n + 1. We therefore conclude that T is in the same
connected component of GC as a plane tree with the edge e(1, 2).

We next show that all symmetric plane trees are in the same connected component
of GC. Suppose T and T ′ are both symmetric plane trees. By the previous argument,
we can assume that they each contain the leaf e(1, 2) and hence by symmetry the
leaf e(2n− 1, 2n). Since these edges are both leaves, they can be erased without
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Figure 11. Type-C base cases n = 2 (left) and n = 3 (right) for
symmetric plane trees.

disconnecting the two trees. Consider the subtrees T1 and T ′1 consisting respectively
of all the edges of T and T ′ except e(1, 2) and e(2n − 1, 2n). The two subtrees
are still symmetric but have only n− 2 edges. By the inductive hypothesis we can
transform T1 into T ′1 with a sequence of sC

i -local moves, which also transforms T
into T ′. By induction the claim is proven. �

The proof for asymmetric plane trees is somewhat similar but more subtle.

Theorem 5.7. If T and T ′ are asymmetric plane trees then there is a finite sequence
of sC

i -local moves that transforms T into T ′.
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Proof. The proof is by induction on the total number of edges n in a plane tree.
The base cases for asymmetric plane trees occur when n = 3 and when n = 4.

There are two asymmetric plane trees with three edges, and these trees are related by
sC

2 = s2s4, as shown in Figure 12, left. There are eight asymmetric plane trees with
four edges, and these trees are related by the sC

i -local moves shown in Figure 12,
right.

For the induction step, let n ≥ 4 and assume that any two asymmetric plane
trees with at most n− 1 edges can be transformed into each other by a sequence of
sC

i -local moves.
Let T be an arbitrary asymmetric plane tree with n edges. We describe an

algorithm to obtain a sequence of sC
i -local moves from T to a plane tree with

only the edge e(1, 2n) incident to the root. (Note the special case of plane trees
with three edges, for which there are no asymmetric trees containing the edge
e(1, 2n)=e(1, 6).) Figure 13 gives a schematic of T with notation for the half-edges
j1 < j1+1< j2 < j2+1< · · ·< jk−1+1< jk and the possibly empty subtrees ai .

Since sC
j1 = s j1s2n− j1 , we can use an sC

j1-local move on edges e(1, j1) and
e( j1 + 1, j2) to form edges e(1, j2) and e( j1, j1 + 1). Repeat this process for
each jp with jp ≤ n.

We can continue this process for any edge e(1, j) with j >n as long as we are not
in the case of Figure 14. The problem in that case is that the local move that collapses
2n − jp and 2n − jp + 1 simultaneously triggers a type-(1) local move on half-
edges jp and jp+ 1 and reinserts a lower-indexed branch into the root. (Note that
jp<n<2n− jp by our convention on the labeling of the half-edges in the plane tree.)

To address the case in Figure 14, we apply the sequence sC
jp−1sC

j ′q−1
· · · sC

j ′2
sC

j ′1
of

sC
i -local moves. Since jp < n, the sequence of local moves permutes indices in the

sets { j ′1, . . . , jp} and {2n− jp+1, 2n− jp+2, . . . , 2n− j ′1+1} independently. Thus
after applying those sC

i -local moves, the tree contains both of the edges e(1, 2n− jp)

and e(2, jp + 1). Applying sC
jp

to that tree results in a plane tree with edge e(1, k)
for k ≥ 2n− jp + 2 as desired. Continuing this process, we obtain in all cases a
sequence of sC

i -local moves that transforms an arbitrary asymmetric plane tree to
one containing the edge e(1, 2n).

Finally we show that all asymmetric plane trees are in the same connected
component of GC. Suppose T and T ′ are both asymmetric plane trees with at least
four edges. By the previous argument, we can assume that they each contain the
edge e(1, 2n). Consider the subtrees T1 and T ′1 consisting of all the edges of T
and respectively T ′ except e(1, 2n). The two subtrees are still asymmetric but have
only n− 1 edges. By the inductive hypothesis we can transform T1 into T ′1 with
a sequence of sC

i -local moves, which also transforms T into T ′. By induction the
claim is proven. �

The main result is a simple corollary of the previous results.
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Figure 12. Type-C base cases n = 3 (left) and n = 4 (right) for
asymmetric plane trees.
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Figure 14. Problematic case.

Corollary 5.8. The graph GC has exactly two connected components: one con-
taining exactly the symmetric plane trees and the other containing exactly the
asymmetric plane trees.

Appendix A in the arXiv version of this paper gives examples of Corollary 5.8
for n = 5, 6, 7. The Mathematica notebook that generates these orbits is publicly
available online at http://github.com/jujuwoman/RNA-combinatorics.

http://github.com/jujuwoman/RNA-combinatorics


RNA, LOCAL MOVES ON PLANE TREES, AND TRANSPOSITIONS ON TABLEAUX 407

We conclude with a formula for the size of each connected component in GC,
namely the number of symmetric plane trees and the number of asymmetric plane
trees.

Proposition 5.9. Given Tn the number of symmetric plane trees is

r =
∑

m

∑
k1+k2+···+km+1=

n−m
2

m+1∏
j=1

Ck j ,

where m varies over odd numbers between 0 and n when n is odd and over even
numbers between 0 and n when n is even. The number of asymmetric plane trees is
Cn − r .

Proof. We use the fact that the total number of plane trees with n edges is the
Catalan number Cn =

1
n+1

(2n
n

)
.

Define the middle path graph of a symmetric plane tree in Tn to be the maximal
set of edges of the form e(i, 2n + 1− i) for some i with 1 ≤ i ≤ n. Let m be
the number of edges in the middle path graph of a symmetric plane tree. To be a
symmetric plane tree, any descendants to the left of a vertex in the middle path
graph have their mirror image to the right of the same vertex. Thus the set of all
symmetric plane trees can be constructed by all possible ways to attach plane trees
to the left of the middle path graph, together with the mirror images on the right.
There are m + 1 vertices in the middle path graph; suppose that for each i with
1 ≤ i ≤ m + 1 the i-th vertex from the root in the middle path graph has a plane
tree with ki edges to its left. The sum k1+ k2+ · · ·+ km+1 must satisfy

k1+ k2+ · · ·+ km+1 =
n−m

2

since there are n total edges in the tree, m edges on the middle path graph, and
another k1+k2+· · ·+km+1 edges in the mirror images of the subtrees to the left of
the middle path graph. By examining parity, we see that m varies over odd numbers
from 0 to n if n is odd and over even numbers from 0 to n if n is even. For any
such partition k1+ k2+· · ·+ km+1, we can independently take any of the Cki plane
trees on ki vertices to attach to the left of the i-th vertex on the middle path graph,
with its mirror image on the right. Thus the total number of symmetric plane trees
with n edges is ∑

m

∑
k1+k2+···+km+1=

n−m
2

m+1∏
j=1

Ck j

as desired. The number of asymmetric plane trees is simply the number of all plane
trees minus the number of symmetric plane trees. �
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Question 5.10. Do other properties of G A hold for the components of GC as well?
For instance, is each component of GC graded by a function with a straightforward
description?

6. Remarks on classical types B and D and possible biological
interpretations

We conclude this paper with remarks and questions in two directions. First we
discuss whether si -local moves could be reasonably extended to Weyl groups of
other classical Lie types. At the end we discuss speculative connections to biology.

Extending si -local moves combinatorially to other classical Lie types. There are
two other Weyl groups of classical types, namely the Weyl groups of type B and
type D. Both can be described as a subgroup of a sufficiently large permutation
group.

We think the Weyl group of type D is unlikely to extend fruitfully to the setting
of plane trees. The problem is that the generators of the Weyl group of type D
cannot be written as a product of disjoint simple transpositions (i, i + 1). Indeed,
one generator must contain a transposition like (n, n+ 2). Within the permutation
group, that transposition equals

(n, n+ 1)(n+ 1, n+ 2)(n, n+ 1)= (n+ 1, n+ 2)(n, n+ 1)(n+ 1, n+ 2).

However, the si -local moves do not form a group action; as we discussed in
Remark 2.6 there is no consistent way to define (n, n+ 2).

By contrast the Weyl group of type B may lead to meaningful biological and
combinatorial implications. The maps of type B are the involutions defined by

s B
1 = s1s2n corresponding to the reflection (1, 2)(2n, 2n+ 1),

s B
2 = s2s2n−1 corresponding to the reflection (2, 3)(2n− 1, 2n),
...

s B
n−1 = sn−1sn+2 corresponding to the reflection (n− 1, n)(n+ 2, n+ 3),

s B
n = sn corresponding to the reflection (n, n+ 2).

Note that s B
n is different from the other permutations, much like sC

n . (Also like the
Weyl group of type C , we only have s B

i for i ∈ {1, 2, . . . , n}.) Though it is not a
simple transposition, the fact that n+1 is fixed by all of the other generators s B

i means
that we can define an unambiguous action on standard tableaux of shape (n+ 1, n).
In this action, the map s B

n exchanges n and n+ 2 and the other maps s B
i act as the

corresponding product of type-A si -local moves.
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1
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3

1 3 4
2 5

Figure 15. Type-B model when n = 2.

The type-B involutions do not act on plane trees since plane trees must have an
even number of half-edges. However, they do act on objects like plane trees that
have n whole edges and an unpaired half-edge labeled n+ 1. This half-edge forms
a small loop or bulge between the half-edges labeled n and n+ 2. Figure 15 gives
an example. As with the maps s B

i on tableaux, the action on these modified plane
trees always fixes the bulge n+ 1.

We leave these investigations for future research, for instance in the following
questions.

Question 6.1. What are the orbits of the action of involutions s B
i ? What is a natural

collection of involutions to represent mutations on strands with several bulges
(namely fixing several integers)?

Speculative connections between Weyl groups of classical types and biology. We
extended local moves combinatorially from Sn to other Weyl groups of classical
types. We end with speculative comments and questions about whether the maps
we defined are observed in any biological contexts.

We begin with possible biological interpretations of type-C local moves. The
product of DNA transcription, messenger RNA (mRNA) carries genetic information
contained in DNA from the cell nucleus to the cytoplasm, where protein synthesis
takes place. During the normal process of translation, a ribosome reads an mRNA
strand from the 5′ end of the base sequence to the 3′ end, decoding three bases into
one amino acid molecule at a time. Whereas type-A local moves act by twisting
RNA strands at a particular location, we think of a type-C local move as exchanging
two triples of base pairs at some point in the translation process, a development
that may completely change the sequence of amino acids.

We conjecture that the type-C local moves may correspond to certain RNA
mutations. When i = n, the map sC

i replaces stacked bases with their Watson–Crick
complement; otherwise, the maps sC

i exchange adjacent sets of stacked bases while
preserving their bonds. Figure 16 illustrates an example of the twisting mechanism
when sC

2 is applied for n = 4. (Applying sC
4 in this example would exchange 4 and

5 instead.)
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...
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2 7
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sC
2 = s2s6

Figure 16. The map sC
i for an element of the Weyl group of type

C acting on RNA base pairs.

Like the Weyl group of type C , the elements of the Weyl group of type B
correspond to mutations on an RNA strand. But the type-B model is different
because the stacked bases now contain a bulge, namely the sequence of unmatched
nucleotides corresponding to the half-edge n+ 1.

Question 6.2. Are any processes like this observed biologically?
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Six variations on a theme: almost planar graphs
Max Lipton, Eoin Mackall, Thomas W. Mattman, Mike Pierce,
Samantha Robinson, Jeremy Thomas and Ilan Weinschelbaum

(Communicated by Joel Foisy)

A graph is apex if it can be made planar by deleting a vertex, that is, there exists v
such that G− v is planar. We also define several related notions; a graph is edge
apex if there exists e such that G − e is planar, and contraction apex if there
exists e such that G/e is planar. Additionally we define the analogues with a
universal quantifier: for all v, G − v is planar; for all e, G − e is planar; and
for all e, G/e is planar. The graph minor theorem of Robertson and Seymour
ensures that each of these six notions gives rise to a finite set of obstruction graphs.
For the three definitions with universal quantifiers we determine this set. For
the remaining properties, apex, edge apex, and contraction apex, we show there
are at least 36, 55, and 82 obstruction graphs respectively. We give two similar
approaches to almost nonplanar (there exists e such that G+e is nonplanar, and for
all e, G+e is nonplanar) and determine the corresponding minor minimal graphs.

1. Introduction

Kuratowski [1930] showed that the set of planar graphs is determined by two
obstructions.

Theorem 1.1 [Kuratowski 1930; Wagner 1937]. A graph is planar if and only if it
has neither K5 nor K3,3 as a minor.

We give the formulation in terms of minors due to Wagner [1937] to make the
connection with Robertson and Seymour’s [2004] graph minor theorem. We say H
is a minor of graph G if it can be obtained by contracting edges in a subgraph of G.
We can state the graph minor theorem as follows.

Theorem 1.2 [Robertson and Seymour 2004]. In any infinite set of graphs, there is
a pair such that one is a minor of the other.

MSC2010: primary 05C10; secondary 57M15.
Keywords: apex graphs, planar graphs, forbidden minors, obstruction set.
Research supported in part by an NSF REUT grant, as well as the Provost and Math Department of
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This has two useful consequences. We say G is minor minimal P (or MMP) if
G has property P but no proper minor does.

Corollary 1.3. For any graph property P, there is a corresponding finite set of
minor minimal P graphs.

Corollary 1.4. Let P be a graph property that is closed under taking minors. Then
there is a finite set of minor minimal non-P graphs S such that for any graph G,
G satisfies P if and only if G has no minor in S.

When P is minor closed, we say that S is the Kuratowski set for P. For example,
{K5, K3,3} is the Kuratowski set for planarity.

The graph minor theorem is not constructive, so there are only a few graph
properties P for which we know the finite set of MMP graphs. In particular, there
are several graph properties closely related to planarity for which this set is unknown.
Our goal in this paper is to investigate the minor minimal sets for the following
eight graph properties.

Definition 1.5. A planar graph is almost nonplanar (AN) if there exist two nonadja-
cent vertices such that adding an edge between the vertices yields a nonplanar graph.
A planar graph is completely almost nonplanar (CAN) if it is not complete and
adding an edge between any pair of nonadjacent vertices yields a nonplanar graph.

Let G − v denote the graph resulting from deletion of vertex v and its edges
in G, let G− e denote the graph resulting from the deletion of edge e in G, and let
G/e denote the graph resulting from the contraction of edge e in G.

Definition 1.6. A graph is not apex (NA) if, for all vertices v, G− v is nonplanar.
Similarly, a graph is not edge apex (NE) if, for all edges e, G− e is nonplanar and
not contraction apex (NC) if, for all edges e, G/e is nonplanar.

Definition 1.7. A graph G is incompletely apex (IA) if there is a vertex v such that
G − v is nonplanar, incompletely edge apex (IE) if there is an edge e such that
G − e is nonplanar, and incompletely contraction apex (IC) if there is an edge e
such that G/e is nonplanar.

We call these last three properties “incomplete” in contrast to their negations.
For example, we think of a graph as “completely” apex if G− v is planar for every
vertex v. Table 1 gives a summary of our eight definitions.

We summarize our results in Table 2. Four of the properties give Kuratowski
sets (as their negation generates a minor closed set) and with the exception of NA,
NE, and NC, we determine the finite set of MMP graphs. For the remaining three
properties we give a lower bound, which is simply the number of MMP graphs we
have found, so far.

Our paper is organized as follows. Below we conclude this introduction with a
survey of the literature and provide some preliminary notions used throughout the
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property definition

AN ∃e such that G+ e is nonplanar, where G is planar
CAN ∀e, G+ e is nonplanar, where G is planar, not complete
NA ∀v, G− v is nonplanar
NE ∀e, G− e is nonplanar
NC ∀e, G/e is nonplanar
IA ∃v such that G− v is nonplanar
IE ∃e such that G− e is nonplanar
IC ∃e such that G/e is nonplanar

Table 1. Comparison of the eight definitions.

graph property P AN CAN NA NE NC IA IE IC

Is (not P) minor closed? no no yes no no yes yes yes

number of MMP graphs 2 1 ≥ 36 ≥ 55 ≥ 82 2 5 7

Table 2. Results for the eight graph properties.

paper. In Section 2 we determine the MMAN and MMCAN graphs and show that
neither is a Kuratowski set. In Section 3 we give our classification of the MMIA,
MMIE, and MMIC graphs, all three of which we show are Kuratowski. In Section 4
we give an overview of the MMNA graphs, which is a Kuratowski set. We classify
graphs in this family of connectivity at most 1. For graphs of connectivity 2, with
{a, b} a 2-cut, we classify those for which ab ∈ E(G), as well as those for which
a component of G − a, b is nonplanar. We also prove that an MMNA graph has
connectivity at most 5. In total, we give explicit constructions for 36 MMNA graphs.
Finally, in Section 5 we discuss MMNE and MMNC graphs, first showing these are
not Kuratowski. We classify graphs of connectivity at most 1 in these two families
and discuss computer searches, complete through graphs of order 9 or size 19, that
yielded 55 MMNE and 82 MMNA graphs.

Apex graphs are well-studied, including results on MMNA graphs in [Ayala
2014; Barsotti and Mattman 2016; Pierce 2014]. Note that [Pierce 2014] reports
on a computer search that yields 157 MMNA graphs, including all graphs through
order 10 or size 21 and most of the 36 graphs we describe here. Different authors
have used terms like “almost planar” or “near planar” in various ways. Here is
how our definitions relate to others in the literature. Cabello and Mohar [2013]
say that a graph is near-planar if it can be obtained from a planar graph by adding
an edge. This corresponds to our definition of edge apex. Wagner [1967] defined
nearly planar (Fastplättbare), which corresponds to our idea of completely apex
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or not IA. Two further notions of almost planar are not directly related to the
properties we have defined. For Gubser [1996], a graph G is almost planar if for
every edge e, either G− e or G/e is planar. In characterizing graphs with no Kℵ0,
Diestel, Robertson, Seymour, and Thomas say a graph G is nearly planar if deleting
a bounded number of vertices makes G planar except for a subgraph of bounded
linear width sewn onto the unique cuff of S2

− 1; see [Diestel 2010, Section 12.4].
Finally, our notion of CAN is also known as maximally planar; see [Diestel 2010].

We conclude this introductory section with some notation and definitions, as
well as a lemma, used throughout. For us, graphs are simple (no loops or double
edges) and undirected. We use V (G) and E(G) to denote the vertices and edges
of a graph. The order of a graph is |V (G)| and |E(G)| is its size. We use δ(G) to
denote the minimum degree of all the vertices in G.

As mentioned earlier, G − v, G − e, and G/e denote the results of vertex
deletion, edge deletion, and edge contraction, respectively. For v,w ∈ V (G), the
graph G− v,w is the result of deleting two vertices and their edges. Similarly, for
e, f ∈ E(G), we define as G − e, f the result of deleting two edges and G/e, f
the result of contracting two edges. Note that the order of deletion or contraction
is arbitrary. Contracting an edge may result in a double edge. We will assume
that one of the doubled edges is deleted so that G/e is again a simple graph. We
use G1 tG2 to denote the disjoint union of two graphs and G1∪̇G2 for the union
identified on a single vertex. Similarly, G1∪̈G2 denotes the union of two graphs
identified on two vertices.

In light of Kuratowski’s theorem, we call K5 and K3,3 the Kuratowski graphs and
also refer to them as minor minimal nonplanar or MMNP. A Kuratowski subgraph
or K-subgraph of G is one homeomorphic to a Kuratowski graph. A cut set of
graph G is a set U ⊂ V (G) such that deleting the vertices of U and their edges
results in a disconnected graph. If |U | = k, we call U a k-cut. We say G has
connectivity k and write κ(G)= k if k is the largest integer such that |V (G)|> k
and G has no l-cut for l < k. In particular, κ(Kn)= n− 1.

We conclude this introduction with a useful lemma. In the case that κ(G)= 2,
we have G− a, b = G ′1 tG ′2, where {a, b} is a 2-cut. We will use Gi to denote the
induced subgraph on V (G ′i )∪{a, b}. In the literature, e.g., [Mohar and Thomassen
2001], the pair (G1,G2) is called a separation of order 2 (since |G1 ∩G2| = 2).

Lemma 1.8. If G is homeomorphic to K5 or K3,3 with cut set {a, b} such that
G− a, b = G ′1 tG ′2, then one of G1 and G2 is an a-b-path.

Proof. Since, κ(K5) = 4 and κ(K3,3) = 3, G must be a proper subdivision of
a Kuratowski graph and, since they disconnect the graph, a and b are vertices
on a subdivided edge of the underlying K5 or K3,3. This means that one of the
components is simply an a-b-path. �
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2. Almost nonplanar: MMAN and MMCAN graphs

In this section we classify the MMAN and MMCAN graphs. Let K5− e denote
the complete graph on five vertices with an edge deleted and K3,3− e the result of
deleting an edge in the complete bipartite graph K3,3. The unique MMCAN graph
is K5− e and there are two MMAN graphs, K5− e and K3,3− e. Neither of these
are Kuratowski sets, since, for example, K5 is a nonplanar graph (hence neither AN
nor CAN) that contains the MMAN and MMCAN graph K5− e as a minor.

Our classification of the minor minimal CAN graphs makes use of a theorem
due to Mader.

Theorem 2.1 [Mader 1998]. Any graph with n vertices and at least 3n− 5 edges
contains a subdivision of K5.

In [Diestel 2010], CAN is called maximally planar, and it is proved equivalent
to a graph admitting a plane triangulation in Proposition 4.2.8 of that text.

Theorem 2.2. Every plane triangulation with at least five vertices has K5− e as a
minor.

Proof. Let G be a plane triangulation on at least five vertices. By Euler’s formula,
|E(G)| = 3(|V (G)| − 2). Let G ′ be a nonplanar graph obtained by adding edge
ab to G. Then |E(G ′)| = |E(G)| + 1= 3|V (G)| − 5. By Mader’s theorem G ′ has
a subgraph H homeomorphic to K5. Note that we must have ab ∈ E(H), else H
would be planar. Since H is homeomorphic to K5, contracting appropriate edges
in H − ab will result in K5− e, showing that K5− e is a minor of G. �

Corollary 2.3. The only MMCAN graph is K5− e.

Theorem 2.4. The MMAN graphs are K5− e and K3,3− e.

Proof. First note that these two graphs are MMAN. Let G be AN and let ab be the
edge that is added to form the nonplanar G ′. By Kuratowski’s theorem G ′ contains a
subdivision H of K5 or K3,3 and ab ∈ E(H). By contracting edges, H gives K5−e
or K3,3− e as a minor of G. So G is MMAN only if it is one of these two. �

3. Incomplete properties: MMIA, MMIE, and MMIC graphs

In this section we classify the MMIA, MMIE, and MMIC graphs. Note that each is a
Kuratowski set since the corresponding “complete” property is minor closed. In the
case of the IA graphs, for example, suppose G is not IA and let H be a subgraph of G.
Then for any v ∈ V (H), the graph H−v is planar since it is a subgraph of the planar
graph G− v. Similarly if G is not IA, let H = G/ f for some f ∈ E(G). Then for
any v ∈V (H), the graph H−v is planar since it is a minor of the planar graph G−v.
This shows that the property not IA (also known as the completely apex property) is
minor closed. Similar arguments show that not IE and not IC are also minor closed.



418 LIPTON / MACKALL / MATTMAN / PIERCE / ROBINSON / THOMAS / WEINSCHELBAUM

We next show there are exactly two MMIA graphs, K1 t K5 and K1 t K3,3. We
begin by classifying the disconnected graphs.

Theorem 3.1. If G is not connected and MMIA, then G = K1 tG2, where G2 ∈

{K5, K3,3}.

Proof. Note that both K1tK5 and K1tK3,3 are MMIA. If G=G1tG2 is nonplanar
with neither component empty, then K5, or K3,3 is a minor of one of G1 and G2.
By minor minimality this means one of G1 and G2 is a Kuratowski graph, and,
again by minimality, the other component can have no nontrivial proper minors, so
must be simply a vertex. �

Theorem 3.2. There are no connected MMIA graphs.

Proof. Suppose instead that G is a connected MMIA graph. Then there is a vertex, v,
such that G− v is nonplanar. However, since G is connected, v must have at least
one edge, e. Since when deleting a vertex we also delete all of its edges, G − e
must be a proper, nonplanar minor of G. However, deleting v ∈ V (G− e) is again
nonplanar so that G− e is IA. This contradicts the property that G is MMIA and
therefore cannot happen. �

Corollary 3.3. There are two MMIA graphs: K1 t K5 and K1 t K3,3.

Next we show there are five MMIE graphs. We begin with the disconnected
examples. Note that if G has distinct edges e, e′ such that G− e, e′ is nonplanar,
then G is not MMIE. Indeed, G− e is an IE proper minor.

Theorem 3.4. If G is not connected and MMIE, then G = K2 tG2, where G2 ∈

{K5, K3,3}.

Proof. The proof is similar to that of Theorem 3.1, but now the planar component
is minor minimal among graphs with edges, so K2. �

Recall that G1∪̇G2 denotes the union of G1 and G2 with one vertex in common.

Theorem 3.5. If G is connected, MMIE, and has a cut vertex, then G = K2∪̇G2,
where G2 ∈ {K5, K3,3}.

Proof. Let G be a connected MMIE graph such that G−v=G ′1tG ′2. Let Gi denote
the induced subgraph on V (G ′i )∪ {v}. If both G1 and G2 are nonplanar, then G
would not be MMIE since, for example, there are two distinct edges e, e′ ∈ E(G2)

such that G− e, e′ contains G1 and is therefore nonplanar. If both subgraphs were
planar, then G would also be planar and therefore not MMIE. So one of G1 and
G2 is nonplanar, say G1, and the other, G2, is planar.

By minor minimality of G, the nonplanar G2 is, in fact, a Kuratowski graph, and
the planar G1 is minimal among graphs with edges, i.e., K2. �
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Theorem 3.6. If G is MMIE, then there is a unique edge e such that G − e is
nonplanar.

Proof. Assume, for the sake of contradiction, that there are e, e′ ∈ E(G) such that
e 6= e′ but G − e and G − e′ are nonplanar. If G − e is nonplanar, then there is a
subgraph of G− e, say H, with e /∈ E(H), that has a K5 or K3,3 minor. Likewise,
if G − e′ is nonplanar, then it has a nonplanar subgraph H ′ with e′ /∈ E(H ′). If
H ′ = H, then e′ = e. Otherwise, G−e, e′ would be nonplanar, contradicting that G
is MMIE. So H ′ 6= H. If e /∈ H ′, then G− e, e′ contains H ′ and will be nonplanar,
contradicting that G is MMIE.

So, e ∈ H ′ and, similarly, e′ ∈ H. If H and H ′ have empty intersection, then
let e1, e2 ∈ E(H ′). This means G − e1, e2 contains H and is nonplanar. This
contradicts that G is MMIE. So, H and H ′ have nonempty intersection. If their
intersection is nonplanar, then removing e and e′ will not change this intersection,
and G is not MMIE. If their intersection is planar, then there must be more than one
edge in H ′ that is not in H besides e. But, if H ′ has more edges besides e that are
not in H it would be possible to remove another edge, f 6= e, without changing H.
This means that G− f, e is nonplanar, and contradicts that G is MMIE.

Therefore, if G is MMIE, then there is a unique edge e such that G − e is
nonplanar. �

Recall that a K-subgraph is one homeomorphic to K5 or K3,3.

Theorem 3.7. If G is MMIE, then the edge e such that G− e is nonplanar is not
in a K-subgraph. Furthermore, G− e is K5 or K3,3.

Proof. Assume, for the sake of contradiction, that e is in a K-subgraph, H. Since no
graph homeomorphic to K5 or K3,3 is IE, G−e is planar unless G−e contains some
other K-subgraph, H ′. However, if G contains two K-subgraphs H and H ′ with
empty intersection, then G− e will leave H ′ unchanged. One could then remove a
second edge, f ∈ E(H), leaving H ′ unchanged so that G− e, f is nonplanar. This
means that G cannot be MMIE since G would have an IE minor G − e. So, H
and H ′ have nonempty intersection. But H 6= H ′ since e cannot be an edge in the
only K-subgraph, otherwise G− e is planar.

Next, observe that any proper subgraph of a K-subgraph is planar. This means that
for the K-subgraph, H ′, with H 6= H ′, there must be an edge, g 6= e, with g ∈ E(H ′)
and g /∈ E(H). Then G − g contains H and is nonplanar. This contradicts the
uniqueness of the edge e and shows e is not in a K-subgraph.

Following the same argument as above, G cannot contain more than one K-
subgraph. Indeed, if there were distinct K-subgraphs H and H ′, then either the
intersection is empty or it is not, and we achieve similar contradictions as in the
previous argument. So, G contains exactly one K-subgraph.
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Finally, the only possible K-subgraph contained in G, call it N, must contain all
edges besides e. If not, then there is an edge e′ 6= e such that G− e′ is nonplanar.
This contradicts the uniqueness of e. Also, the K-subgraph N in G − e must be
either K5 or K3,3. If not, then N would be a subdivision of either K5 or K3,3. But,
then there is a proper minor, G ′, of G, by contracting an edge, e1 ∈ E(N ), which
contains a K-subgraph as well. Provided e remains as an edge of G ′, the graph
G ′− e is nonplanar, contradicting that G is minor minimal. On the other hand, if
contracting e1 removes e, then there must be another edge e2 incident to e1, with
e2 ∈ E(N ), such that e is incident to both e1 and e2. Since N is a subdivision of
K5 or K3,3 and G/e1 is nonplanar, e1 and e2 must be in a path of N formed by
subdividing an edge of the underlying Kuratowski graph. Since e is incident to
both e1 and e2, there exists N ′, another K-subgraph of G with e ∈ E(N ′). This
contradicts that there is only one K-subgraph of G.

So, if G is MMIE then it is made up of either K5 or K3,3 and an edge that is not
in this K-subgraph. �

Aside from the disconnected and connectivity-1 examples above, a final way to
add an edge to a K-subgraph is the graph K3,3+ e of Figure 1, formed by adding
an edge to the bipartite graph K3,3.

Corollary 3.8. There are five MMIE graphs: K3,3+e and K2tG2, K2∪̇G2, where
G2 ∈ {K5, K3,3}.

Let K 5 and K 3,3 denote the graphs obtained from K5 and K3,3 by subdividing a
single edge, as in Figure 1. We denote as K3,3+ 2e the graph given by adding two
edges to K3,3, as in Figure 1.

b c

a

b c

aK 3,3 K 5

b c

a

b c

a

K3,3+ e K3,3+ 2e

Figure 1. MMIE and MMIC graphs.
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Theorem 3.9. There are seven MMIC graphs: K3,3 + 2e and K, K2 t K, and
K2∪̇K with K ∈ {K5, K3,3}.

Proof. Observe that these seven graphs are MMIC. If G is MMIC and disconnected,
then G is K2 t K, with K a Kuratowski graph. We omit the proof, which is similar
to that for MMIE. Note that the remaining five graphs are precisely the graphs that
result when a vertex of a Kuratowski graph is split.

Suppose G is MMIC and connected. Then there is an edge e such that G/e is
nonplanar. Since contracting an edge will not disconnect the graph, G/e is also
connected and has a K-subgraph H. If H is not a Kuratowski graph, then it has
K 5 or K 3,3 as a minor, contradicting G being minor minimal. Therefore, H is
Kuratowski.

If V (H) 6= V (G/e), then since G/e is connected, considering any vertex in
G/e beyond those in H, along with one of its edges, shows that G/e contains
K2 t K or K2∪̇K, with K Kuratowski, contradicting G being minor minimal. So,
V (H)= V (G/e).

Now G is obtained from G/e by a vertex split. The corresponding vertex split
on H gives rise to a graph H ′, which is one of the five graphs K3,3 + 2e, K, or
K2∪̇K. Since G is minor minimal, G = H ′ and is one of these five, and hence one
of the seven. �

4. MMNA graphs

In this section we describe several partial results toward a classification of the
MMNA graphs, with a focus on graph connectivity. In all, we describe 36 MMNA
graphs, including all those of connectivity at most 1 (κ(G)≤ 1). For graphs with
κ(G)= 2, where {a, b} is a 2-cut, we classify the MMNA graphs having ab∈ E(G),
as well as those for which a component of G − a, b is nonplanar. We also show
that κ(G)≤ 5 for MMNA graphs, which is a sharp bound. Since the family of apex
graphs is minor closed, the MMNA graphs are a Kuratowski set.

We first bound the minimum degree, δ(G), of an MMNA graph and then classify
the examples with κ(G)≤ 1.

Theorem 4.1. The minimum vertex degree in an MMNA graph is at least 3.

Proof. The addition or deletion of an isolated vertex or vertex of degree 1 in a planar
graph will again result in a planar graph. Similarly, contracting an edge adjacent to a
degree-2 vertex will not affect planarity. So if G is NA with δ(G)<3, then removing
a vertex of small degree will result in a NA graph; hence G is not MMNA. �

Theorem 4.2. There are three disconnected MMNA graphs: K5 t K5, K5 t K3,3,
and K3,3 t K3,3.
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Proof. First observe that these three graphs are all MMNA. On the other hand, if
G = G1 tG2 is MMNA, both components must be nonplanar. Otherwise if G1

is planar, then G2 must be NA and is a proper minor of G, contradicting G being
MMNA. So each component Gi has a K5 or K3,3 minor and G has one of the
three candidates as a minor. Since G is minor minimal, it must be one of the three
candidates. �

Theorem 4.3. There are no MMNA graphs of connectivity 1.

Proof. Suppose instead G is MMNA with cut vertex a. Then G− a = G ′1 tG ′2. If
both G ′1 and G ′2 are planar, then G−a is planar, contradicting that G is NA. If both
are nonplanar, then G has one of the disconnected MMNA graphs as a proper minor
and is not minor minimal. So, one of G ′1 and G ′2, say G ′1, is planar, and the other,
G ′2, is not. Let Gi denote the induced graph on V (G ′i )∪ {a}. If G1 is nonplanar,
then together with G ′2 this gives one of the three disconnected MMNA graphs as a
proper minor of G, contradicting that G is minor minimal. So G1 is planar. But
then G2 must be NA, which again contradicts G being minor minimal. �

We can also give an upper bound on the connectivity of an MMNA graph. We
first bound the minimum degree δ(G).

Theorem 4.4. If G is MMNA, then δ(G)≤ 5.

Proof. Suppose G is MMNA and, for a contradiction, that δ(G)≥ 6. Let D be the
largest integer so that there are two vertices a, b ∈ V (G) both of degree at least D.
Surely, D ≥ 6. We will argue that there are two vertices with degree at least D+ 2,
contradicting our choice of D. Let v = |V (G)| be the number of vertices of G.
There will be v−2 vertices of degree at least 6 and two vertices of degree at least D.
A lower bound on the number of edges of G is then (6(v−2)+2D)/2= 3v−6+D.

Since G is MMNA, we can form a planar graph by deleting an edge (to get a
proper minor) and then an apex vertex, which is not adjacent to the deleted edge.
For if it were adjacent to the edge, the vertex deletion would also remove the edge,
making G apex, a contradiction.

After deleting an edge, G − e has at least 3v − 7+ D edges. Next delete a
vertex, a ∈ V (G) of degree d . Then the lower bound on the number of edges in the
resulting planar graph is 3v− 7+ D− d . As this graph is planar on v− 1 vertices,
an upper bound on the number of edges is 3(v− 1)− 6, the number of edges in a
triangulation. Thus 3v− 7+ D− d ≤ 3(v− 1)− 6, which implies d ≥ D+ 2.

This means the degree of a is at least D+ 2. However, following the argument
above, if we first delete an edge incident to a, we deduce that there is a second
vertex b that is again of degree at least D + 2. This is a contradiction since D
was assumed to be the maximum such that two vertices have degree at least D.
Therefore, if δ(G)≥ 6, then G is not MMNA. �



SIX VARIATIONS ON A THEME: ALMOST PLANAR GRAPHS 423

Since κ(G)≤ δ(G), we have a bound on connectivity as an immediate corollary.

Corollary 4.5. If G is MMNA, then κ(G)≤ 5.

Note that K6 is an MMNA graph of connectivity 5, so this bound is sharp. Indeed,
K6 is part of the Petersen family, a family of seven graphs shown to be MMNA
by Barsotti and Mattman [2016]. Other graphs in this family provide examples of
graphs of connectivity 4 (K3,3,1) and connectivity 3 (K4,4−e and the Petersen graph)
and the computer search of [Pierce 2014] unearthed numerous further examples
with connectivity greater than 2.

Nonetheless, in the remainder of this section, we restrict attention to MMNA
graphs of connectivity 2. Let us fix some notation for this situation. For G MMNA
with cut set {a, b}, we have G−a, b=G ′1tG ′2. Let Gi denote the induced subgraph
on V (G ′i )∪ {a, b} so that (G1,G2) is a separation of order 2.

Theorem 4.6. Let G be an MMNA graph where κ(G) = 2, with cut set {a, b}. If
G− a, b = G ′1 tG ′2, then G ′1 and G ′2 are not both nonplanar.

Proof. Let ca be an apex of G− a. By the assumption that G is MMNA, G− a, ca

is planar. If ca = b, we are done because G ′1 tG ′2 = G− a, b = G− a, ca , which
would imply both G ′1 and G ′2 are planar.

Without loss of generality, assume ca ∈ V (G ′1). Since none of the edges of G ′2
are in G ′1 and a, ca /∈ V (G ′2), it follows that G ′2 is a subgraph of the planar graph
G− a, ca . Thus, G ′2 is planar. �

Theorem 4.7. If G is MMNA and κ(G) = 2 such that G − a, b = G ′1 tG ′2, then,
up to relabeling, G ′1+ a, G ′1+ b are planar, and G ′2+ a, G ′2+ b are nonplanar.

We prove this with two lemmas.

Lemma 4.8. G ′1+ a and G ′2+ a cannot both be planar.

Proof. Let G be as described. Suppose both G ′1+ a and G ′2+ a are planar. Since
G ′1 and G ′2 are otherwise disjoint, G − b = (G ′1 + a)∪ (G ′2 + a) is the union of
two planar graphs at only one vertex, with no new edges. Thus, G − b is planar,
which is a contradiction. So it cannot be that both G ′1+a and G ′2+a are planar. A
similar argument could be made for b. �

Lemma 4.9. G ′1+ a and G ′2+ b cannot both be nonplanar (up to relabeling).

Proof. Let G be as described. Suppose both G ′1+ a and G ′2+ b are nonplanar. Let
e be an edge between a vertex in G ′1 and the vertex b. Since G is MMNA, G− e is
apex. So there is a vertex v such that (G− e)− v is planar. If v = a then G ′2+ b is
a subgraph of (G− e)− v, which is a contradiction since G ′2+ b is nonplanar. If
v ∈ V (G ′1) then again G ′2+b is a subgraph of (G−e)−v, which is a contradiction
since G ′2 + b is nonplanar. If v = b then (G − e)− v = G − v, which implies
(G − e)− v is nonplanar since G is NA, so this is a contradiction. If v ∈ V (G ′2)
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then G ′1+ a is a subgraph of (G− e)− v, which is a contradiction since G ′1+ a is
nonplanar. Therefore there is no apex for G− e, which is a contradiction. So our
assumption was wrong and one of G ′1+ a and G ′2+ b must be planar. �

We can now prove Theorem 4.7.

Proof of Theorem 4.7. Let G be as described. By the first lemma we know that
at least one of G ′1+ a and G ′2+ a must be nonplanar. Without loss of generality
suppose G ′2 + a is nonplanar. Since G ′2 + a is nonplanar, we know that G ′1 + b
must be planar by the second lemma. Since G ′1+ b is planar, by the first lemma
we know that G ′2+ b is nonplanar. By the second lemma this implies that G ′1+ a
must be planar. Therefore, up to relabeling, G ′1+a and G ′1+b are both planar, and
G ′2+ a and G ′2+ b are both nonplanar. �

Going forward, we adopt the convention suggested by Theorem 4.7 and label
G ′1 and G ′2 such that G ′1+ a, G ′1+ b are planar and G ′2+ a, G ′2+ b are not. Let
G be MMNA with cut set {a, b}. Our next goal is to classify such graphs in the
case that ab is an edge of the graph.

Theorem 4.10. If G is MMNA and κ(G) = 2 with cut set {a, b} such that ab ∈
E(G), then G1 and G2 are nonplanar.

Proof. Let Gi denote the induced subgraph on V (G ′i )∪ {a, b}. By Theorem 4.7,
G2 is nonplanar. For the sake of contradiction, assume G1 is planar. Since G2 is a
proper subgraph of G, there is a vertex v ∈ V (G2) such that G2− v is planar. But
this means G− v is planar and contradicts that G is NA.

So if G is MMNA with cut set {a, b} ⊂ V (G) such that ab ∈ E(G), then G1 and
G2 are nonplanar. �

Theorem 4.11. If G is MMNA and κ(G) = 2 with cut set {a, b} such that ab ∈
E(G), then G ′1 and G ′2 are both planar.

Proof. By Theorem 4.10, G1 is nonplanar. By Theorem 4.6, without loss of
generality, G ′1 is planar. Suppose G ′2 is nonplanar. Then G1 t G ′2 is a proper
subgraph of G. Since G1 and G ′2 are both nonplanar, G1 tG ′2 has a disconnected
MMNA minor, contradicting that G is minor minimal. �

Theorem 4.12. If G is MMNA with cut set {a, b} such that ab ∈ E(G), then
G1 ∈ {K5, K3,3}.

Proof. First observe that for any e ∈ E(G1), the graph G1 − e must be planar.
Suppose instead that there is e′ ∈ E(G1) such that G1 − e′ is nonplanar. Since
G−e′ is apex, there is a vertex v ∈ V (G) such that (G−e′)−v is planar. However,
v /∈ {a, b} since G ′2+ a and G ′2+ b are nonplanar by Theorem 4.7. If v ∈ V (G ′1),
then G2 is a subgraph of (G − e′)− v. By Theorem 4.10, since G2 is nonplanar,
(G − e′) − v is also nonplanar. If v ∈ V (G ′2), then G1 − e′ is a subgraph of
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(G− e′)−v, and since G1− e′ is nonplanar, (G− e′)−v is nonplanar. So we have
a contradiction and deduce that for all e ∈ E(G1), the graph G1− e must be planar.

Since G1 is nonplanar by Theorem 4.10, and since G1−e is planar for all e ∈G1,
it follows that G1 consists of a K-subgraph along with some number (possibly zero)
of isolated vertices. However, if G1 is anything other than K5 or K3,3, then G1 has
a proper minor N ∈ {K5, K3,3} formed by deleting isolated vertices or contracting
edges in the K-subgraph. Then G has a proper minor G ′ such that N is a subgraph
of G ′. Since G is MMNA, there exists vertex v ∈ V (G ′) that is an apex. Since
N and G2 are subgraphs of G ′ and both N and G2 are nonplanar, we have that
v ∈ V (N )∩ V (G2) ⊂ {a, b}. However, G2 − a = G ′2 + b and G2 − b = G ′2 + a
are both nonplanar (Theorem 4.7) and therefore G has a proper NA minor. This
contradicts G being minor minimal.

Therefore if G is MMNA with cut set {a, b} such that ab ∈ E(G), then G1 ∈

{K5, K3,3}. �

Theorem 4.13. If G is MMNA with cut set {a, b} such that ab ∈ E(G), then there
is a vertex c ∈ V (G ′2) such that every a-b-path in G2− ab passes through c.

Proof. Assume for the sake of contradiction that there is no such vertex c. Since G
is MMNA, G−ab must have some apex v. If v ∈ {a, b}, then (G−ab)−v=G−v.
This would mean that G has an apex, and contradicts that G is NA. If v ∈ V (G ′1),
then (G − ab) − v is nonplanar as it contains G ′2 + a, which is nonplanar by
Theorem 4.7. So it must be that v ∈ V (G ′2). Then G1 − ab is a subgraph of
(G − ab)− v. Note that G1 − ab ∈ {K5 − e, K3,3 − e} since G1 ∈ {K5, K3,3} by
Theorem 4.12.

Since there is no c vertex as described in the statement of the theorem, there
remains an a-b-path in (G2− ab)− v. Together with G1− ab, this constitutes a
nonplanar subgraph of (G− ab)− v, contradicting the definition of v as an apex
for G − ab. Thus, if G is MMNA with ab ∈ E(G), then there is a vertex c such
that every a-b-path of G2− ab passes through c. �

Theorem 4.14. Let G be MMNA with cut set {a, b} and ab ∈ E(G) and let c ∈
V (G2) be such that every a-b-path of G2− ab passes through c. Then {a, c} and
{b, c} are also cut sets.

Proof. First we show there exists some v2 ∈ V (G ′2) such that v2 6= c, but v2 is
adjacent to a. Suppose instead that c is the only vertex in G ′2 adjacent to a. Since
G ′2 is planar by Theorem 4.11, and since G ′2+ a has only one more edge than G ′2,
G ′2 + a is also planar. However, this contradicts Theorem 4.7, where G ′2 + a is
shown to be nonplanar.

So let v2 be a vertex of G ′2 that is adjacent to a, but is not c, and take v1 ∈ V (G ′1).
We demonstrate there is no v1-v2-path in G− a, c. Since any path from a vertex in
G ′1 to a vertex in G ′2 must pass through a or b by assumption, the supposed path
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from v1 to v2 must pass through b, since a has been deleted. However, there cannot
be a path from b to v2 that does not pass through c. Otherwise we would be able
to find a path from b to v2 and finally to a without passing through c, violating
our assumption on c. We conclude that G− a, c is disconnected. By an analogous
argument, {b, c} is also a cut set for G. �

In order to classify connectivity-2 MMNA graphs with ab ∈ E(G), we need to
describe G1 in the case that ab /∈ E(G).

Theorem 4.15. If G is MMNA with cut set {a, b} such that ab /∈ E(G), then
G1 ∈ {K5− e, K3,3− e, K3,3} and G1+ ab is nonplanar.

Proof. Let G− a, b = G ′1 tG ′2 and let Gi denote the subgraph induced by vertices
V (G ′i ) ∪ {a, b}. If G1 is nonplanar, then G1 has a K-subgraph N. Form a new
graph, H, by replacing G1 with N. It is clear that a, b∈V (N ) because if not, then G
contains two disjoint K-subgraphs (G ′2+a and G ′2+b are nonplanar, Theorem 4.7)
and therefore has a proper MMNA minor.

We can see that H is NA. Take v ∈ V (H). If v ∈ V (N − a, b), then G ′2+ a is a
subgraph of H − v so H − v is nonplanar. If v ∈ V (G ′2), then N is a subgraph of
H − v so H − v is nonplanar. And if v ∈ {a, b}, then either G ′2+ a or G ′2+ b is
a subgraph of H − v and therefore H − v is nonplanar. Thus, H is NA. Since G
is minor minimal, G1 = N. As G is MMNA it has no degree-2 vertices and since
ab /∈ E(G), we have G1 = K3,3 in this case.

Suppose next that G1 is planar. Assume for the sake of contradiction G1+ ab
is planar and replace G1 with the edge ab to form a new graph H ′. Equivalently,
H ′ =G2+ab. We observe that for every v ∈ V (H ′), the graph H ′−v is nonplanar.
If v ∈ {a, b}, then G ′2+a or G ′2+b is a subgraph of H ′−v, which is then nonplanar.
On the other hand if v ∈ V (G ′2), then since G is NA, G− v has a K-subgraph M.
However, if |{a, b} ∩ V (M)| < 2, then since G1 is planar, M lies wholly in G2

and we may delete G ′1 without changing M. That is, M is a subgraph of H ′− v.
If |{a, b} ∩ V (M)| = 2, then by Lemma 1.8, a and b are vertices in a path of M.
Since G1+ ab is planar, we may replace G1 by ab to create a new K-subgraph B
in H ′− v. Therefore H ′ is NA. However, as H ′ is a proper minor of G, this is a
contradiction. We conclude G1+ ab is nonplanar.

Finally, observe that G1+ab is a K-subgraph. Otherwise, we may replace it with
a K-subgraph contained in G1+ab to get a proper minor of G that is NA. Since an
MMNA graph cannot have vertices of degree 2 or less, G1+ ab ∈ {K5, K3,3}.

This shows if G is MMNA with cut set {a, b} such that ab /∈ E(G), then we
have G1 ∈ {K5− e, K3,3− e, K3,3}. �

Theorem 4.16. If G is MMNA, κ(G)= 2 with cut set {a, b}, and ab ∈ E(G), then
G is one of the nine graphs shown in Figure 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. The nine MMNA graphs with ab ∈ E(G).

Proof. It is straightforward to verify that the nine graphs are MMNA. Let G be
MMNA, κ(G)= 2 with cut set {a, b}, and ab ∈ E(G). By Theorems 4.13 and 4.14,
there exists a vertex c such that {a, c} and {b, c} are also 2-cuts for G. Let H1 play
the role of G1 for the {a, c} cut set. That is, G − a, c = H ′1 t J ′1 with H ′1+ a and
H ′1 + c planar (see Theorem 4.7). Similarly, let H2 be the G1 for the {b, c} cut
set. By Theorem 4.12, G1 ∈ {K3,3, K5} and by that theorem and Theorem 4.15,
Hi ∈ {K3,3, K3,3− e, K5, K5− e}.

Note that, if H1 is K3,3 − e or K5 − e, then G − b is planar and similarly
for H2. Thus, H1, H2 ∈ {K3,3, K5}. There are three cases depending on whether
ac, bc ∈ E(G) or not.

First suppose that ab is the only one of ab, bc, and ac present in the graph. As
above, G1, H1 and H2 are each either K3,3 or K5. However, by Theorem 4.15, this
means H1 = H2 = K3,3. So, there are exactly two graphs (graphs (a) and (b) in
Figure 2) of this type, depending on whether G1 is K5 or K3,3.
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a b
c

d e

Figure 3. Bowtie graphs.

Next suppose that exactly one of ac and bc, say ac, is in the graph. As in the
previous case H2 must be K3,3. There are three graphs (graphs (c), (d), and (e) of
Figure 2) of this type as {G1, H1} is either {K5, K5}, {K5, K3,3}, or {K3,3, K3,3}.

Finally, suppose all three edges ab, ac and bc are in the graph. Then, as above,
G1, H1, and H2 are each either K3,3, or K5. There are four graphs of this type,
shown as graphs (f) through (i) of Figure 2. For example, such a graph has between
zero and three K5’s.

This shows that the nine graphs of Figure 2 are the graphs where G is MMNA,
κ(G)= 2 with cut set {a, b}, and ab ∈ E(G). �

Henceforth, we can assume ab /∈ E(G). By Theorem 4.15, this means G1 ∈

{K5−e, K3,3−e, K3,3}. We will say that G is a bowtie if the neighborhood of a, b
in G2 is as shown in Figure 3 (left). That is, a and b have degree 2 in G2 and c
has degree 4. Although d and e have additional neighbors in G2 besides {a, c} and
{b, c} respectively, de /∈ E(G2).

Theorem 4.17. If G is a bowtie MMNA graph, then G is one of the three graphs
shown in Figure 3 (right).

Proof. It is straightforward to verify that the three graphs in the figure are MMNA.
Let G be a bowtie MMNA graph. Then, referring to Figure 3 (left), {d, e} is a cut
set as well. Let H1 play the role of the G1 for the {d, e} cut set. By Theorem 4.15,
G1 and H1 are both drawn from {K3,3, K3,3− e, K5− e}.

We will argue that neither G1 nor H1 is K3,3. For the sake of contradiction,
assume instead G1 = K3,3. Notice G1 and G ′2 are disjoint, and nonplanar. So, G
has a proper NA minor, G1 tG ′2, which contradicts that G is to be minor minimal.

So, G1 and H1 are both in {K3,3− e, K5− e}, where ab is the missing edge, e,
and the only possibilities are the three graphs shown in Figure 3 (right). �

Let G be MMNA with cut set {a, b} such that ab /∈ E(G). We say G is of
(2, 2, c) type if, in G2, the vertices a and b are of degree 2 and have c common
neighbors. For example, a bowtie graph is of (2, 2, 1) type.
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Figure 4. Graphs of type (2, 2, 2).

Theorem 4.18. If G is MMNA and of (2, 2, 2) type, then G is one of the five graphs
shown in Figure 4.

Proof. It is straightforward to verify that the five graphs are MMNA. Let G be
MMNA with cut set {a, b} and of (2, 2, 2) type. Let {c, d} be the common neighbors
of a and b in G2. Note that cd /∈ E(G), as otherwise G must be one of the nine
graphs of Theorem 4.16 and none of those are (2, 2, 2) type.

By Theorem 4.15, and using symmetry, G1,G ′2 ∈ {K3,3, K3,3 − e, K5 − e}.
However, they cannot both be K3,3, as otherwise G1 tG ′2 is a proper NA subgraph,
which contradicts that G is minor minimal. So at most one of the subgraphs can
be K3,3. This leaves the five possibilities shown in Figure 4. �

Theorem 4.19. Suppose G is MMNA and of connectivity 2 with G1 ∈ {K5 − e,
K3,3 − e}. Then there is no vertex, other than a and b, common to all a-b-paths
in G2.

Proof. Assume, for the sake of contradiction, that G1 ∈ {K5−e, K3,3−e} and there
is a vertex c ∈ V (G ′2) that lies on every a-b-path in G2. Then, as in Theorem 4.14,
{a, c} and {b, c} are 2-cuts for G, and as in the proof of Theorem 4.16, we can let H1

play the role of the G1 for the {a, c} cut and similarly H2 for the {b, c} cut and, by
Theorems 4.12 and 4.15, both H1 and H2 are drawn from {K5, K3,3, K5−e, K3,3−e}.
Then G− c is planar, contradicting that G is NA.

Therefore, if G is MMNA, of connectivity 2 with G1 ∈ {K5− e, K3,3− e}, then
there is no vertex, other than a and b, common to all a-b-paths in G2. �

Theorem 4.20. Let G be MMNA with κ(G)= 2 and ab /∈ E(G), where {a, b} is a
2-cut. If G ′2 is nonplanar, then there are independent a-b-paths in G2.

Proof. By Theorem 4.15, G1 ∈ {K5−e, K3,3, K3,3−e}. However, if G1= K3,3 then,
together with G ′2, this constitutes a pair of disjoint K -subgraphs, which would mean
G has a proper disconnected NA minor, a contradiction. So G1 ∈ {K5−e, K3,3−e}
and we can apply Menger’s theorem and Theorem 4.19. �
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Figure 5. Graphs of type (2, 2, 0).

Theorem 4.21. If G is MMNA of (2, 2, 0) type and G ′2 ∈ {K5, K3,3}, then G is one
of the eight graphs in Figure 5.

Proof. Notice that the eight graphs in the figure are MMNA. Suppose G is MMNA
of (2, 2, 0) type with G ′2 a Kuratowski graph. By Theorem 4.15, G1 ∈{K5−e, K3,3,

K3,3−e}. However, G1 cannot be K3,3 because then, together with G ′2 it forms a dis-
connected MMNA minor of G. We continue by examining the ways to construct G2.

To construct G2, we consider how to add the vertices a and b to G ′2. Let a have
neighbors v1, v2 ∈ V (G ′2) and let v3, v4 ∈ V (G ′2) be the neighbors of b. Since G
is of (2, 2, 0) type, {v1, v2} ∩ {v3, v4} =∅. Up to symmetry, there is only one way
to attach a and b to K5. This gives two of the graphs in the figure, as G1 is either
K5− e or K3,3− e.

In K3,3, the vertices are split into two parts A and B, each of three vertices. Then
the four vertices vi , i=1, . . . , 4, are either divided with two in each part, or else with
three in one part and the fourth in the other. In the first case, there are two subcases:
either {v1, v2}⊂ A (and {v3, v4}⊂ B) or else |{v1, v2}∩ A| = |{v1, v2}∩B| = 1 (and
similarly for {v3, v4}). These three choices for G2 along with the two choices for G1,
either K5− e or K3,3− e, account for the remaining six graphs in Figure 5. �

Theorem 4.22. If G is MMNA of (2, 2, 1) type and G ′2 ∈ {K5, K3,3}, then G is one
of the eight graphs of Figure 6.



SIX VARIATIONS ON A THEME: ALMOST PLANAR GRAPHS 431

Figure 6. Graphs of type (2, 2, 1).

Proof. The proof is similar to that for (2, 2, 0) type. If G ′2 is a Kuratowski graph,
then G1 cannot be K3,3, as that would result in a proper NA minor. So G1 ∈

{K5− e, K3,3− e}. If G ′2 = K5, up to symmetry there is only one way to form G2

and this gives two graphs in the figure, as G1 is either K5− e or K3,3− e.
If G ′2 = K3,3, there are three ways to form G2. Together, a and b have three

neighbors in G ′2, which can either all lie in one part or else be split with a single
vertex in one part and the remaining two in the other. In this second case, there are
two further subcases since the vertex that is alone in its part can either be the common
neighbor or not. Together with these three choices for G2, there are two choices
for G1, either K5−e or K3,3−e. This gives the remaining six graphs of Figure 6. �

We conclude this section with a classification of the MMNA graphs of con-
nectivity 2, with 2-cut {a, b} such that G − a, b has a nonplanar component. By
Theorem 4.11 we must have ab /∈ E(G), and by Theorem 4.7, G ′1 is planar. In other
words, if there is a nonplanar component, it must be G ′2. So far, we have constructed
21 graphs with nonplanar G ′2, the three bowtie graphs of Theorem 4.17, two of the
(2, 2, 2) graphs (the two to the left of Figure 4), and eight each of (2, 2, 0) type
(Theorem 4.21) and (2, 2, 1) type (Theorem 4.22). This is in fact a complete listing
of the graphs with G ′2 nonplanar, as we now show.

Theorem 4.23. Let G be MMNA with κ(G)= 2 and 2-cut {a, b} such that G−a, b
has a nonplanar component. Then G is of (2, 2, c) type with c = 0, 1, or 2 and
appears in one of Figures 3 (right), 4, 5, or 6.
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Proof. Assume the hypothesis. As remarked above, if {a, b} is a 2-cut, this im-
plies ab /∈ E(G) and G ′2 is nonplanar. Let H ′2 be a K-subgraph of G ′2. Since
ab /∈ E(G), combining Theorems 4.15 and 4.2, we have G1 ∈ {K5− e, K3,3− e}.
By Theorem 4.20 there are independent a-b-paths in G2, call them P1 and P2.
Since, by Theorem 4.15, G1 + ab is nonplanar, P1 and P2 each have vertices in
common with H ′2. (Otherwise, G has disjoint nonplanar subgraphs and therefore a
disconnected NA minor, by Theorem 4.2, contradicting G being minor minimal.)
By contracting edges if necessary, we have a minor of G for which the vertices of
Pi are a, ai , . . . , bi , b with ai , bi ∈ V (H2), i = 1, 2. Then there are several cases
that correspond to (2, 2, c) type, where c = 0, 1, 2.

Suppose first that a1 = b1 and a2 = b2 so that G is of (2, 2, 2) type. By con-
tracting edges in H ′2 if needed, we recognize that G has one of the five graphs of
Theorem 4.18 as a minor. Since G is MMNA, G is one of these five graphs and
since G ′2 is nonplanar, G must be one of the two graphs with G ′2 = K3,3 (i.e., the
two to the left of Figure 4). In other words G is of (2, 2, 2) type and appears in one
of the figures, as required.

The rest of the argument is a little technical and we introduce some notation to
simplify the exposition. The K-subgraph H ′2 is a subdivision of K5 or K3,3 and,
along with vertices of degree 2, has five or six vertices of higher degree that we
will call branch vertices. Corresponding to the edges of K5 or K3,3, the branch
vertices are connected by paths that we call 2-paths whose internal vertices are all
of degree 2.

To continue the argument, suppose next that, say, a1 = b1, but a2 6= b2. By
contracting edges in H ′2 if necessary, we can arrange that at least two of the three
vertices a1, a2, and b2 become branch vertices of the K-subgraph. If all three
can be made branch vertices, then, by further edge contractions, if necessary, we
see that one of the eight (2, 2, 1) graphs of Theorem 4.22 is a minor of G. Since
G is MMNA, this means G is one of the (2, 2, 1) graphs, with G ′2 ∈ {K5, K3,3}

appearing in Figure 6, as required. If not, we can assume that it is a1 that remains
as a degree-2 vertex of H ′2. For, if it is a2 or b2 that remains, we can contract edges
to make a2= b2 and return to the previous case. With a1 as a degree-2 vertex in G ′2,
we recognize that, perhaps by further edge contractions, G has a bowtie graph as a
minor. Since G is MMNA, G is a bowtie graph. That is G is of (2, 2, 1) type and
appears in Figure 3 (right), as required.

Finally, suppose a1 6= b1 and a2 6= b2. If all four can be made distinct branch
vertices by edge contractions in H ′2, then G has a (2, 2, 0) minor, so G is a (2, 2, 0)
graph with G ′2 ∈ {K5, K3,3} appearing in Figure 5, as required.

Next, suppose at most three can be made into branch vertices and, without loss
of generality, suppose it is a1 that remains as a degree-2 vertex in H ′2. This means
a1 lies on a 2-path between two of b1, a2, and b2. If the path ends at b1, by further
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edge contractions in H ′2, we can realize a1 = b1 as a branch vertex and return to an
earlier case. So, we can assume that a1 is on a 2-path between a2 and b2. Use the
part of the 2-path between a1 and b2 to form a new a-b-path P ′1 (i.e., a′1 = a1 and
b′1 = b2) and use a path in H ′2 between the branch vertices a2 and b1 that avoids
the branch vertex b2 to construct an independent a-b-path P ′2 (i.e., P ′2 has a′2 = a2

and b′2 = b1). Now we can contract edges in P ′1 to identify a′1 = a1 and b′1 = b2 to
return to the earlier case where a1 = b1. This completes the argument when at most
three of the vertices can be moved to branch vertices.

Finally, suppose that at most two of the vertices can be made into branch vertices
of H ′2 by contracting edges, if needed. There are two subcases. If a1 and b1 are the
branch vertices, then a2 and b2 are degree-2 vertices on a 2-path between a1 and b1.
Here we can further contract edges in H ′2 to identify a2 and b2, which returns us to
an earlier case. In the second subcase, without loss of generality, it is a1 and a2

that are the branch vertices of H ′2. Assuming we cannot easily contract edges to
identify a1 and b1 or a2 and b2, it must be that the 2-path from a1 to a2 passes
first through b2 and then through b1. In this case, we replace P1 and P2 by the
independent paths P ′1, which uses the 2-path from a1 to b2 (so a′1= a1 and b′1= b2),
and P ′2, which uses the 2-path from a2 to b1 (then a′2 = a2 and b′2 = b1). By further
edge contractions, we return to our first case where a1 = b1 and a2 = b2. �

Together, the three bowtie graphs and the eight of Figure 6 give eleven MMNA
graphs of (2, 2, 1) type. In total we have found three disconnected MMNA graphs,
nine where ab ∈ E(G), as well as eight, eleven, and five, respectively when G is of
type (2, 2, c) for c = 0, 1, 2, respectively. This gives a total of 36 MMNA graphs.

5. MMNE and MMNC graphs

In this section we classify MMNE and MMNC graphs of connectivity, κ(G), at
most 1. For MMNE graphs we also show κ(G)≤ 5 and determine the graphs with
κ(G)= 2 and minimum degree at least 3. We conclude the section by describing a
computer search that found 55 MMNE and 82 MMNC graphs.

We begin by observing that the MMNE and MMNC graphs are not Kuratowski
sets as the opposite properties are not minor closed. Recall that NE is an abbreviation
for not edge apex. The opposite property is edge apex, meaning there is an e∈ E(G)
so that G− e is planar. We call such an edge an apex edge. Similarly, the opposite
of NC is contraction apex, meaning there is an edge e such that G/e is planar. We
call e a contraction apex.

Theorem 5.1. Deleting an edge of an edge apex graph results in an edge apex
graph. Contracting an edge of an edge apex graph results in an edge apex graph
unless the edge that is contracted is the only apex edge.
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e

e

Figure 7. Examples showing that the sets of MMNE and MMNC
graphs are not Kuratowski sets.

Proof. Suppose that G is edge apex, so it contains an edge e such that G − e is
planar. Let G ′ be the result of deleting some edge f in G. If f 6= e, consider G ′−e
and note that G ′− e = G− e, f , which is a minor of G− e. Graph G− e is planar,
so G ′− e is also planar, and e is an apex edge for G ′, which is therefore edge apex.
Otherwise, if f = e, then G ′ would be planar and so would also be edge apex.

Now suppose that G contains at least two edges e1 and e2 (e1 6= e2) such that
both G − e1 and G − e2 are planar. Let f be an arbitrary edge in G and let G ′′

be the result of contracting edge f in G. Without loss of generality, suppose that
f 6= e1. Consider the graph G ′′− e1, where if e1 is incident to f in G then e1 is
incident to the vertex formed by contracting f in G ′′. Note that this graph G ′′− e1

is a minor of G − e1. But G − e1 is planar, and since planarity is closed under
taking minors, the graph G ′′− e1 is planar. So edge e1 is an apex edge of G ′′. �

Theorem 5.2. The set of graphs that are edge apex is not closed under taking
minors.

Proof. Let G be the graph in Figure 7 (left). This graph can be described as K3,3

with all but one edge replaced by a triangle, and with that one edge subdivided into
an edge e and another edge to be replaced by a triangle. This graph is edge apex
with e as the unique apex edge. However, G/e is K3,3 with every edge replaced by
a triangle, so G/e is not edge apex. �

Theorem 5.3. Contracting an edge of a contraction apex graph results in a con-
traction apex graph. Deleting an edge of a contraction apex graph results in a
contraction apex graph unless the edge that is deleted is the only contraction apex.

Proof. Suppose that G is contraction apex, so it contains an edge e such that G/e
is planar. Let G ′ be the result of contracting some edge f in G. If f 6= e, consider
G ′/e and note that G ′/e = G/e, f , which is a minor of G/e. Graph G/e is planar,
so G ′/e is also planar, and e is a contraction apex for G ′, which is therefore a
contraction apex graph. Otherwise, if f = e, then G ′ would be planar and so would
also be contraction apex.
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Now suppose that G contains at least two edges e1 and e2 (e1 6= e2) such that
both G/e1 and G/e2 are planar. Let f be an arbitrary edge in G and let G ′′ be the
result of deleting edge f in G. Without loss of generality, suppose that f 6= e1.
Consider the graph G ′′/e1 and note that it is a minor of G/e1. But G/e1 is planar,
and since planarity is closed under taking minors, the graph G ′′/e1 is planar. So
edge e1 is a contraction apex of G ′′. �

Theorem 5.4. The set of graphs that are contraction apex is not closed under taking
minors.

Proof. Define the graph G as two copies of K5 that share a common edge e; see
Figure 7 (right). We show that G is contraction apex, but has a minor that is NC.
Indeed, contracting the common edge, G/e = K4∪̇K4, which is planar. Note that
this is the unique contraction apex of G.

Now define the subgraph G ′ as G− e. Label the two subgraphs isomorphic to
K5− e as G ′1 and G ′2. Without loss of generality, suppose we contract an edge f
in G ′2. Notice that we are left with G ′1= K5−e, and a path through G ′2 that connects
the two degree-3 vertices of G ′1. Thus, G ′/ f has a subgraph homeomorphic to K5

and is nonplanar. By symmetry, whatever edge f ∈ E(G ′) we choose, G ′/ f is
nonplanar. Thus G ′ is NC. �

We next classify the disconnected and connectivity-1 MMNE and MMNC graphs,
which turn out to be the same sets.

Theorem 5.5. The disconnected MMNE graphs are K5 t K5, K5 t K3,3, and
K3,3 t K3,3.

Proof. First observe that these three graphs are MMNE. Let G be MMNE and
disconnected. Suppose one of G1,G2 is planar, say G1. Then let e1 ∈ E(G1), and
note that G− e1 is not NE and nonplanar. Let e2 be the edge whose removal from
G−e1 gives a planar graph. Since G1 is planar, it must be that e2 is in E(G2). But,
since G1 is planar, this means that removing e2 from G gives the disconnected union
of the planar G1 and a planar minor of G2. So, this graph, G− e2, is planar, which
is a contradiction since G is NE. So it must be that G1 and G2 are both nonplanar.
Thus one of the graphs generated by G1tG2, where G1,G2 ∈ {K5, K3,3}, must be
a minor of G. Since G is minor minimal, G must be one of these three graphs. �

Theorem 5.6. The disconnected MMNC graphs are K5 t K5, K5 t K3,3, and
K3,3 t K3,3.

Proof. First observe that these three graphs are MMNC. Let G be MMNC and
disconnected. Suppose one of G1,G2 is planar, say G1. Then let e1 ∈ E(G1), and
note that G − e1 is not NC and nonplanar. Then there is an edge e2 ∈ E(G − e1)

such that (G− e1)/e2 is planar. Since G1 is planar, it must be that e2 is in E(G2).
But, since G1 is planar, this means that contracting e2 in G gives the disconnected
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union of the planar G1 and a planar minor of G2. This graph G/e2 is planar, which
is a contradiction since G is NC. So it must be that G1 and G2 are both nonplanar.
Then one of the graphs G = G1 tG2, with Gi ∈ {K5, K3,3}, is a minor of G. Since
G is minor minimal, it is one of those three graphs. �

Corollary 5.7. Let G be disconnected. The following are equivalent: G is MMNA;
G is MMNE; G is MMNC.

Recall that G1∪̇G2 is the union of G1 and G2 with one vertex identified.

Theorem 5.8. If G is MMNE and κ(G) = 1 then G = G1∪̇G2, where G1,G2 ∈

{K5, K3,3}, and they share exactly one vertex.

Proof. First observe that these three graphs are MMNE. Let G = G1∪̇G2 and
suppose for the sake of contradiction that one of G1 and G2, say G1, is planar. Let
e be an edge of G1. Then G− e is not NE and nonplanar. Let f be the apex edge
of G − e. Since G1 is planar, f must lie in E(G2). Since G2− f is a subgraph
of the planar G− e, f , it must itself be planar. Note that G− f = G1 ∪ (G2− f )
is the union of two planar graphs that share at most one vertex, which is clearly
planar. This is a contradiction, since G is NE. So both G1 and G2 are nonplanar.
So G has one of the graphs G1∪̇G2, G1, G2 ∈ {K5, K3,3} as a minor. Since these
graphs are NE and G is minor minimal, G must be one of these three graphs. �

Theorem 5.9. If G is MMNC and κ(G) = 1 then G = G1∪̇G2, where G1,G2 ∈

{K5, K3,3}, and they share exactly one vertex.

Proof. First observe that these three graphs are MMNC. Let G = G1∪̇G2 and
suppose for the sake of contradiction that one of G1 and G2, say G1, is planar. Let
e be an edge of G1. Then G − e is not NC and nonplanar. Let f ∈ E(G − e) be
the contraction apex of G− e; that is, (G− e)/ f is planar. Since G1 is planar, f
must lie in G2. Since G2/ f is a subgraph of the planar (G− e)/ f , it must itself be
planar. Note that G/ f = G1 ∪ (G2/ f ) is the union of two planar graphs that share
at most one vertex, which is clearly planar. This is a contradiction, since G is NC.

Thus, both G1 and G2 are nonplanar. So G has one of the graphs G1∪̇G2 with
G1,G2 ∈ {K5, K3,3} as a minor. Since these graphs are NC and G is minor minimal,
G must be one of these three graphs. �

Corollary 5.10. Let G have connectivity 1. Then G is MMNE if and only if it is
MMNC.

Recall that there are no MMNA graphs of connectivity 1. In particular, for each
of K5∪̇K5, K5∪̇K3,3, and K3,3∪̇K3,3, the cut vertex is an apex. We next classify
the MMNE graphs of connectivity 2 under the assumption that the minimum degree,
δ(G), is at least 3. We will argue that there are exactly six such graphs and we begin
with the observation that those graphs are indeed MMNE. As discussed at the end
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Figure 8. The six MMNE graphs of connectivity 2 with δ(G)≥ 3.

of this section, based on a computer search, these again coincide with the MMNC
examples of connectivity 2 with δ(G)≥ 3. In addition to being both MMNE and
MMNC, these 12 graphs with κ(G)≤ 2 are exactly the obstructions, of connectivity
at most 2, to embedding a graph in the projective plane; see [Mohar and Thomassen
2001, Section 6.5].

Theorem 5.11. The six graphs of Figure 8 are MMNE.

Note that these graphs are of the form G1∪̈G2 with Gi ∈ {K5−e, K3,3, K3,3−e},
i.e., the union of G1 and G2 identified on two vertices.

Proof. Let G be one of the six graphs and e denote an arbitrary edge of G. It is
easy to verify that each G − e is nonplanar, so G is NE. We must also show that
no minor of G is NE. We first observe that for each choice of e, there is another
edge f such that G − e, f is planar. That is, G − e is not NE. Also, there is an
edge g such that (G/e)− g is planar, which shows G/e is not NE.

By Theorem 5.1, deleting or contracting further edges continues to give minors
of G that are not NE, so long as we do not contract the unique apex edge in a graph.
Working around this obstacle is not difficult as we very quickly come to planar
minors. Planarity is closed under taking minors and a planar graph is not NE. �

A key step in the classification is the observation that ab is not an edge of G.

Lemma 5.12. If G is MMNE, κ(G)= 2 with cut set {a, b}, and δ(G)≥ 3, then ab
is not an edge in G.
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Proof. Let G be as described. Let G− a, b = G ′1 tG ′2 and let Gi be the induced
subgraph of G on the vertices V (G ′i )∪ {a, b}. For a contradiction, suppose that ab
is an edge in G. There are three cases to consider depending on which of G1 and
G2 is planar. If both are planar, then G is the union of two planar graphs that share
an edge and therefore is planar. This contradicts G being MMNE.

Next suppose exactly one of G1 and G2 is planar, say G1. If e ∈ E(G2) is an
edge other than ab, then G2−e must be nonplanar. For otherwise, G−e, the union
of two planar graphs, G1 and G2 − e along ab, is planar contradicting G being
NE. If G2− ab is also nonplanar, then G2 is a proper subgraph that is NE, which
contradicts G being minor minimal. So, G2− ab is planar.

This means that G − ab is the union of the planar G1 − ab and the planar
G2 − ab, joined at two vertices. However, since G is NE, G − ab is nonplanar,
so it has a subgraph homeomorphic to K5 or K3,3. Using Lemma 1.8, we know
that the subgraph must use only a path through one of G1, G2, and nothing else
in that component. This means that one of G∗i is an edge away from containing
a K-subgraph, where G∗i denotes Gi − ab. Since G1 is planar, it must be G∗2
that contains a subdivision of K5 or K3,3 with an edge removed. Thus, G2 has a
subgraph homeomorphic to K5 or K3,3 that uses the edge ab.

Replace G∗1 by the path of Lemma 1.8 to form a subgraph H of G. We claim that
H is NE. Indeed, deleting e ∈ E(G∗2) leaves H − e with the nonplanar subgraph
G2− e. Deleting ab or an edge in the G∗1 path leaves an a-b-path that completes a
K-subgraph in G∗2. Since G is minor minimal, G must be H. However, H has at
least one degree-2 vertex, contradicting δ(G)≥ 3.

Finally, we have the case where G1 and G2 are both nonplanar. Here there are
three subcases to consider depending on which of G∗1 =G1−ab and G∗2 =G2−ab
is planar.

Suppose first that both G∗1 and G∗2 are planar. In this case, each of G1 and G2 has
a K-subgraph that contains ab. It follows that one of the graphs of Theorem 5.11 is
a proper minor of G, contradicting the minor minimality of G.

In the subcase where both G∗1 and G∗2 are nonplanar, let e be the apex edge of
G− ab. Since the only edge common to G∗1 and G∗2 is ab, the edge e is in exactly
one of G∗1 and G∗2. Whichever it is not in will constitute a nonplanar subgraph of
G− ab, e, which is a contradiction.

Finally, assume exactly one of G∗1 and G∗2 is planar, say G∗1. As above, G∗1 planar
and G1 not implies G1 contains a K-subgraph including ab as an edge. On the
other hand, since G∗2 is nonplanar, it has a K-subgraph H. Let M = G1 ∪ H and,
for a contradiction, suppose that M is a proper minor. Then M must have an apex
edge. However, if we remove an edge e from G1, then H remains, meaning M − e
is nonplanar. If we remove e from H (which shares no edges with G1 since it is a
subgraph of G∗2), then G1 remains, meaning M − e is still nonplanar. Therefore,
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no matter what edge we remove from M , we cannot make it planar and M is
NE. However, M is a minor of G, so this contradicts G being MMNE. Therefore,
H is not a proper minor of G∗2, so G∗2 is a subdivision of K5 or K3,3. A similar
argument (replacing H by K5 or K3,3) shows, in fact, G∗2 is K5 or K3,3 and not
just a subdivision. However, since ab is not an edge of G∗2, then G∗2 must be K3,3.

Thus G∗2 = K3,3 and G1 contains a subdivision of K3,3 or K5 that includes ab
as an edge. This means G includes one of the graphs of Theorem 5.11 as a proper
minor and is not minor minimal.

This completes the last subcase of the last case and shows that ab is not an edge
of G. �

For G of connectivity 2 with cut set {a, b}, we have G − a, b = G ′1 tG ′2. We
will use Gi to denote the induced subgraph on V (G ′i )∪ {a, b}.

Lemma 5.13. If G is MMNE, κ(G)= 2, and G1 and G2 are both nonplanar, then
G1 = G2 = K3,3.

Proof. Let G be as described. First suppose for the sake of contradiction that
G1 is nonplanar but not K3,3. Note that G1 cannot be K5 because ab /∈ E(G) by
Lemma 5.12. So G1 has some nonplanar proper minor H, and H∪G2 is a proper mi-
nor of G. Since there are no edges between H and G2, the apex edge of H∪G2 must
be in exactly one of H or G2. Whichever one does not contain the apex edge will be
a nonplanar subgraph even when the edge is removed, contradicting the fact that G
is MMNE. Therefore G1 = K3,3. A symmetrical argument can be made for G2. �

Lemma 5.14. If G is MMNE, κ(G) = 2, with cut set {a, b}, δ(G) ≥ 3, and both
G1 and G2 are planar, then Gi ∈ {K5− e, K3,3− e} with ab as the missing edge.

Proof. Let G be as described. For a contradiction, assume that G1+ ab is planar.
Since G is NE, for every e ∈ E(G), the graph G − e is nonplanar and, therefore,
has a K-subgraph, H. By Lemma 1.8 and our assumption that G1+ ab is planar,
H ∩G1 is an a-b-path. In particular G2+ ab is nonplanar.

Note that there are edge-disjoint a-b-paths P1 and P2 in G1. If not, say every
a-b-path goes through the edge e′. Then G− e′ must be planar as, by Lemma 1.8, a
K-subgraph of G − e′ would either use a path in G1, which is not possible as all
such paths pass through e′, or else use a path in G2, which is not possible since
G1+ab is planar. The contradiction shows there are edge-disjoint paths P1 and P2.

This means we can construct a proper minor M of G by adding a triangle on ab.
That is, V (M)= V (G2)∪ {c} and E(M)= E(G2)∪ {ab, bc, ac}. Since G is NE,
for any e ∈ E(G2), the graph G− e is nonplanar with a K-subgraph that uses only
a path in G1. So, M − e is also nonplanar. On the other hand, if we delete any e
in {ab, ac, bc}, we are left with a subgraph of M − e homeomorphic to G2+ ab.
So M − e is again nonplanar. Then M is a proper NE minor of G contradicting G
being minor minimal.
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We conclude G1 + ab is nonplanar. A similar argument shows G2 + ab is
nonplanar as well. Then G must have one of the NE graphs G1∪̈G2 with Gi ∈

{K5 − e, K3,3 − e} as a minor. Since G is minor minimal, G is a graph of this
form. �

Lemma 5.15. If G is MMNE, κ(G) = 2, δ(G) ≥ 3, G1 is planar, and G2 is
nonplanar, then G1 ∈ {K5− e, K3,3− e}, sharing two vertices and no edges with
G2 = K3,3.

Proof. Let G be as described. For a contradiction, suppose G1+ab is planar. Then
G2+ ab must be NE. Indeed, if we delete ab, we are left with the nonplanar G2.
Let e ∈ E(G2). Since G is NE, G− e is nonplanar and has a K-subgraph K. If K
uses at most one of {a, b}, then K lies entirely in G2 and avoids e. So, (G2+ab)−e
is nonplanar in this case. On the other hand, if {a, b} ⊂ V (K ), then, by Lemma 1.8
and since G1+ ab is planar, the part of K in G1 is an a-b-path. So using edge ab
instead, K remains as a K-subgraph of (G2+ ab)− e, which is again nonplanar.
However, G2 + ab being NE contradicts G being minor minimal. We conclude
G1+ ab is nonplanar.

This means G1 has one of K5− e and K3,3− e as a minor with the missing edge
corresponding to ab. Replace G1 by its minor K5 − e or K3,3 − e, call it H, to
form M = H ∪G2, a minor of G. We claim M is again NE. Indeed, if we delete
e ∈ E(H), the graph G2 shows M−e is nonplanar. For e ∈ E(G2), we know G−e
has a K-subgraph K. If K sees at most one of a and b, it must lie entirely in G2

(since H is planar) and M− e is nonplanar. If {a, b} ⊂ V (K ), then, by Lemma 1.8,
K is simply a path on one side of the 2-cut. If K is a path in G1, then replace
that by a path in H to recognize K as a subgraph of M − e, which is therefore
nonplanar. On the other hand, if K is a path in G2, this path avoids e. So, we can
use H along with that path to again find a nonplanar subgraph of M − e. Since G
is minor minimal, G = M and G1 ∈ {K5− e, K3,3− e} as required.

Now, G2 being nonplanar has a K-subgraph K. Also, there must be an a-b-path P
in G2, as otherwise G has connectivity 1. Moreover, both K and G1 ∪ P are
nonplanar, and so they must overlap, as otherwise G has a proper disconnected
MMNE minor. This means P passes through K and, by contracting edges in P
if necessary, we can assume G has a minor with {a, b} ⊂ V (K ). From this, form
the minor M = G1 ∪ K. If K is a subdivision of K5, Then M and hence G has
the MMNA graph G1∪̈(K5− e) as a proper minor, which is a contradiction. So,
K is a subdivision of K3,3. After contracting edges, G either has the MMNA
G1∪̈(K3,3− e) as a proper minor, which is a contradiction, or else G has G1∪̈K3,3

as a minor, where a and b are in the same part of K3,3. Since G was minor minimal,
we conclude G = G1∪̈K3,3. In other words, as required, G2 = K3,3, sharing two
vertices and no edge with G1 ∈ {K5− e, K3,3− e}. �
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Theorem 5.16. If G is MMNE, κ(G)= 2, and δ(G)≥ 3, then G is one of the six
graphs of Figure 8.

Proof. We showed that these six graphs are MMNE in Theorem 5.11. Lemma 5.13
immediately gives that if G1 and G2 are both nonplanar, then they are both K3,3.
Lemmas 5.14 and 5.15 complete the other parts of the proof. In total, these account
for six graphs: one from Lemma 5.13, three from Lemma 5.14, and two from
Lemma 5.15. �

The restriction on the minimum degree in the last theorem is necessary. Indeed,
there are many MMNE graphs with δ(G)= 2 (meaning κ(G)≤ 2). For example,
contracting edge e of Figure 7 (left) results in an MMNE graph that is formed by
replacing each edge of K3,3 with a triangle. Similarly, replacing each edge of K5

with a triangle also yields an MMNE graph. Further examples of MMNE graphs
with a degree-2 vertex are the first seven listed in Section A.1 of the Appendix.

We remark that these examples arise in part due to our insistence that edge
contraction lead to a simple graph. Contracting an edge of a degree-2 vertex in a
triangle gives a (multi)graph with a doubled edge. Our convention is to delete one
of the doubled edges to return to a simple graph.

We next show that δ(G)= 2 is the minimum for MMNE graphs.

Theorem 5.17. The minimum vertex degree in an MMNE graph is at least 2.

Proof. The addition or deletion of an isolated vertex or vertex of degree 1 in a planar
graph will again result in a planar graph. So if G is NE with δ(G)<2, then removing
a vertex of degree 0 or 1 will result in a NE graph; hence G is not MMNE. �

Although we cannot completely classify the δ(G)= 2 MMNE graphs, we show
that degree-2 vertices must occur as part of a triangle.

Theorem 5.18. In an MMNE graph, the neighbors of a degree-2 vertex are them-
selves neighbors.

Proof. Let G be an NE graph with a degree-2 vertex v with neighbors a and b.
For a contradiction, suppose ab is not an edge of G. Perhaps G is MMNE so that
every proper minor of G is not NE. Let H = G/av be the graph that results from
contracting edge av in G. Since G is MMNE, there must be some edge e in H
such that H − e is planar. Note that e cannot be the newly formed edge ab in H,
else, since degree-1 vertices have no impact on the planarity of a graph, G − av
would also be planar, contradicting G being MMNE. Consider the graph G − e.
Note that G− e and H − e are homeomorphic, so since H − e is planar, G− e is
also planar. But this contradicts G being MMNE. �

If graph G has a triangle abc, a ∇Y move on G means forming a new graph G ′

with one additional vertex v (i.e., V (G ′) = V (G)∪ {v}) and replacing the edges
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ab, ac, and bc with va, vb, vc. So, G ′ has the same number of edges as G and one
additional vertex. Pierce [2014] shows that∇Y often preserves NA, as was originally
observed by Barsotti in unpublished work. (The bowtie graphs of Figure 3 are exam-
ples where ∇Y does not preserve NA.) Here we give a similar result for NE graphs.

Theorem 5.19. Given an NE graph G with triangle t , let G ′ be the result of
performing a ∇Y move on triangle t in G, and let v be the vertex added in G ′.
Graph G ′ is NE if and only if G ′− ei is nonplanar for each ei incident to v.

Proof. If G ′ is NE, then G ′− ei is nonplanar by definition. Conversely suppose
that G ′− ei is nonplanar for each ei incident to v. Perhaps G ′ is not NE, so there is
e ∈ E(G ′) such that G ′− e is planar. Note that e cannot be incident to v. Since e is
not part of triangle t , performing a ∇Y move on G−e will result in G ′−e, so ∇Y on
G−e is also planar. Note that undoing the ∇Y transform on this graph will preserve
its planarity. However, graph G− e being planar contradicts G being NE. �

We next give an upper bound on the connectivity of MMNE graphs. We first
observe that the minimum degree δ(G) is bounded by 5.

Theorem 5.20. If G is MMNE, then δ(G)≤ 5.

Proof. Suppose G is MMNE with δ(G) ≥ 6 and let n = |V (G)|. We can assume
n ≥ 6, as G must be nonplanar and the only nonplanar graph with five or fewer
vertices is K5, which is not MMNE. Since δ(G) ≥ 6, a lower bound on |E(G)|
is 6n/2 = 3n. Now since G is MMNE, there exist two edges e and f such that
G− e, f is a planar graph with at least 3n− 2 edges. However, a planar graph on
n vertices can have no more than 3n− 6 edges, the number of edges in a planar
triangulation. The contradiction shows there is no MMNE graph with δ(G)≥ 6. �

As κ(G)≤ δ(G), we have a bound on the connectivity as an immediate corollary.

Corollary 5.21. If G is MMNE, then κ(G)≤ 5.

Finally, we observe a nice connection between MMNE and MMNA graphs.

Theorem 5.22. If G is MMNE, then G is MMNA or apex.

Proof. Suppose G is MMNE and NA. We will argue that G is in fact MMNA. For
this, let H be a proper minor. Since G is MMNE, H is edge apex. This means
either H is already planar, or else there is an edge e such that H − e is planar. In
the latter case, if v is a vertex of e, then H − v is again planar. This shows that H
is apex, as required. �

Results of computer searches. In addition to the results above, we have found other
examples of MMNE and MMNC graphs through brute-force computer searches. Our
code is available at https://github.com/mikepierce/MMGraphFunctions/tree/master/
brute-force-search. See the file Brute-Force-Search.nb for documentation.

https://github.com/mikepierce/MMGraphFunctions/tree/master/brute-force-search
https://github.com/mikepierce/MMGraphFunctions/tree/master/brute-force-search
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The algorithms underlying the searches are fairly straightforward. First we
generate a list of all the graphs that we are going to search using the gtools that are
available with the nauty and Traces graph theory software [McKay and Piperno
2014]. Specifically, we use the gtools geng and planarg to produce all connected,
nonplanar graphs of minimum vertex degree at least 2 that either have fewer than
20 edges or that have fewer than 10 vertices. The commands used to generate these
graphs in bash are the following:

$ for i in {6..9}; do
geng -c -d2 ${i} | planarg -v > ${i}v.txt
done

$ for i in {10..16}; do
geng -c -d2 ${i} 0:17 | planarg -v > ${i}v,(0-17)e.txt
geng -c -d2 ${i} 18 | planarg -v > ${i}v,(18)e.txt
geng -c -d2 ${i} 19 | planarg -v > ${i}v,(19)e.txt
done

This brute force search was carried out on a standard laptop computer with
4 GB of memory and an Intel Core i3-350M 2.266 GHz processor. The graphs
to be searched were split among many different files so that the search could be
run in more manageable segments and so that we did not overflow the laptop’s
memory. We chose to limit our search to graphs with fewer than 20 edges or fewer
than 10 vertices due to time constraints. There are a total of 158 505 connected,
nonplanar graphs that have 9 vertices and a minimum vertex degree of at least 2.
Searching these graphs took about five hours. Since there are 9 229 423 such graphs
on 10 vertices, searching these would take more than ten days. Similarly it took
about three days to search all 7 753 990 connected, nonplanar graphs that have
19 edges and a minimum vertex degree of at least 2, so searching all 44 858 715
similar graphs on 20 edges is not feasible.

Next we reformat these graphs in each file produced to be read into Wolfram
Mathematica. Then we use Mathematica functions to iterate over this list of graphs
one file at a time and pull out any that are found to be either MMNE or MMNC.
The code in Mathematica was run on a single Mathematica kernel (no attempt was
made to parallelize the search in Mathematica). An overview of the method of
testing if a graph G is MMNE is as follows, and an analogous method is used to
test if a graph is MMNC:

(1) For each e ∈ E(G), if G− e is planar return false.

(2) Build all the simple minors of G (the graphs in {G− e,G/e | e ∈ E(G)}) and
remove any duplicates (under isomorphism). If for any of these graphs there
is no edge f such that G− f is planar, return false.

(3) Take S = {G} ∪ {G− e | e ∈ E(G)}. While S 6=∅:
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(a) Reset S to the result of contracting each edge of each graph in S.
(b) Remove all planar graphs and duplicate graphs from S.
(c) If there exists G ∈ S such that G− e is nonplanar for each e ∈ E(G) then

return false.

(4) Return true.

We need step (3) explicitly because both of the properties edge apex and con-
traction apex are not closed under taking graph minors as shown in Theorems 5.2
and 5.4.

In addition to the 12 MMNE graphs that have been considered in this section,
the brute-force search has found 15 more examples of MMNE graphs (listed in
Section A.1 of the Appendix). Notable graphs in this list are K4,3, K6 − e, the
rook’s graph on 9 vertices, and some examples of MMNE graphs with degree-2
vertices. The brute-force search also found new examples of MMNC graphs in
addition to the six graphs considered in this section. In particular, the computer
demonstrated that the six MMNE graphs of connectivity 2 in Figure 8 are also
MMNC. Along with these graphs there are 69 other MMNC graphs on 19 or fewer
edges or 9 or fewer vertices. Section A.2 of the Appendix is an abridged list of
these graphs (those on 17 or fewer edges or 9 or fewer vertices).

Beyond a simple brute-force search, we also conducted a more intelligent graph
search using the knowledge that performing ∇Y and Y∇ moves on a graph has the
potential to preserve the NE or NC property of that graph; see Theorem 5.19. The
idea is that the ∇Y or Y∇ families of an MMNE or MMNC graph may contain
new MMNE or MMNC graphs. The details of the methodology of this search, as
well as the Mathematica code, can be found in [Pierce 2014]. In total, we have
found 55 MMNE graphs and 82 MMNC graphs, and we suspect that there are many
more of each. Tables 3 and 4 below give a classification of the MMNE and MMNC
graphs we have found organized by graph size.

graph size (|E(G)|) ≤ 11 12 13 14 15 16 17 18 19 20

number of MMNE graphs 0 1 0 2 0 2 3 11 6 ≥ 2

graph size (|E(G)|) 21 22 23 24 25 26 27 28 29 30

number of MMNE graphs ≥ 13 ≥ 7 ≥ 4 ≥ 2 ≥ 0 ≥ 0 ≥ 1 ≥ 0 ≥ 0 ≥ 1

Table 3. The number of MMNE graphs we have found grouped
by size. Note that this is a complete classification based on graph
size up to and including size 19.
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graph size (|E(G)|) ≤11 12 13 14 15 16 17 18 19 20

number of MMNC graphs 0 1 0 0 1 6 14 32 25 ≥ 3

Table 4. The number of MMNC graphs we have found grouped
by size. Note that this is a complete classification based on graph
size with the exception of size 20.

Appendix: Edge lists of graphs found through computer searches

A.1. MMNE graphs. The following 15 MMNE graphs are the result of a computer
search conducted on the set of graphs that have 19 or fewer edges or 9 or fewer
vertices, and that all have a minimum vertex degree of at least 2. These graphs,
together with eleven other graphs considered explicitly in the paper (i.e., all but
K5 t K5, which has order 10 and size 20) make up all 26 MMNE graphs on 19 or
fewer edges or on 9 or fewer vertices. (Note that Table 3 gives 25 graphs of size 19
or less. Adding the graph K5∪̇K5, of order 9 and size 20, is what brings the total
to 26.)

{(1, 8), (1, 9), (2, 4), (2, 7), (2, 8), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6),
(4, 8), (5, 6), (5, 7), (5, 9), (6, 7), (6, 9), (7, 9), (8, 9)}

{(1, 6), (1, 7), (2, 5), (2, 7), (3, 7), (3, 8), (3, 9), (4, 5), (4, 6), (4, 8),
(4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (8, 9)}

{(1, 8), (1, 9), (2, 6), (2, 7), (2, 9), (3, 5), (3, 7), (3, 9), (4, 5), (4, 6),
(4, 9), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8), (7, 8), (8, 9)}

{(1, 8), (1, 9), (2, 7), (2, 10), (3, 6), (3, 8), (3, 10), (4, 6), (4, 7), (4, 9),
(5, 6), (5, 7), (5, 8), (6, 9), (6, 10), (7, 8), (7, 10), (8, 9), (9, 10)}

{(1, 9), (1, 10), (2, 7), (2, 8), (2, 10), (3, 7), (3, 8), (3, 9), (4, 6), (4, 8),
(4, 10), (5, 6), (5, 7), (5, 9), (6, 7), (6, 8), (7, 10), (8, 9), (9, 10)}

{(1, 6), (1, 9), (2, 7), (2, 8), (3, 6), (3, 7), (3, 10), (4, 5), (4, 6), (4, 7),
(4, 10), (5, 8), (5, 9), (5, 10), (6, 9), (7, 8), (8, 9), (8, 10), (9, 10)}

{(1, 8), (1, 10), (2, 4), (2, 8), (2, 9), (3, 4), (3, 5), (3, 9), (4, 5), (4, 6),
(5, 7), (5, 10), (6, 7), (6, 8), (6, 9), (7, 9), (7, 10), (8, 10), (9, 10)}

{(1, 6), (1, 7), (1, 9), (2, 7), (2, 8), (2, 9), (3, 6), (3, 8), (3, 9), (4, 5),
(4, 8), (4, 9), (5, 6), (5, 7), (5, 9), (6, 8), (7, 8)}

{(1, 7), (1, 8), (1, 9), (2, 6), (2, 8), (2, 9), (3, 6), (3, 7), (3, 9), (4, 6),
(4, 7), (4, 8), (5, 6), (5, 7), (5, 8), (5, 9)}
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{(1, 6), (1, 7), (1, 8), (2, 5), (2, 7), (2, 8), (3, 4), (3, 7), (3, 8), (4, 5),
(4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8)}

{(1, 6), (1, 7), (1, 9), (2, 5), (2, 7), (2, 8), (3, 7), (3, 8), (3, 9), (4, 5),
(4, 6), (4, 8), (4, 9), (5, 7), (5, 9), (6, 7), (6, 8), (8, 9)}

{(1, 4), (1, 7), (1, 8), (2, 3), (2, 7), (2, 8), (3, 5), (3, 6), (4, 5), (4, 6),
(5, 7), (5, 8), (6, 7), (6, 8)}

{(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7), (4, 5),
(4, 6), (4, 7)}

{(1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (2, 5), (2, 8), (2, 9), (3, 4), (3, 5),
(3, 6), (3, 7), (4, 7), (4, 9), (5, 6), (5, 8), (6, 9), (7, 8)}

{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5),
(3, 6), (4, 5), (4, 6), (5, 6)}

A.2. MMNC graphs. The following 22 MMNC graphs are the result of a computer
search conducted on the set of graphs that have 17 or fewer edges or 9 or fewer
vertices, and that all have a minimum vertex degree of at least 2.

{(1, 9), (1, 12), (2, 8), (2, 11), (3, 6), (3, 7), (4, 5), (4, 10), (5, 11), (5, 12),
(6, 9), (6, 11), (7, 8), (7, 12), (8, 10), (9, 10)}

{(1, 6), (1, 10), (2, 5), (2, 9), (3, 4), (3, 6), (3, 8), (4, 5), (4, 7), (5, 10),
(6, 9), (7, 9), (7, 11), (8, 10), (8, 11), (9, 11), (10, 11)}

{(1, 6), (1, 10), (2, 7), (2, 8), (2, 9), (3, 6), (3, 8), (3, 9), (4, 7), (4, 9),
(4, 10), (5, 7), (5, 8), (5, 10), (6, 7), (8, 10), (9, 10)}

{(1, 9), (1, 10), (2, 3), (2, 6), (2, 7), (3, 4), (3, 5), (4, 7), (4, 10), (5, 6),
(5, 9), (6, 8), (6, 10), (7, 8), (7, 9), (8, 9), (8, 10)}

{(1, 9), (1, 11), (2, 9), (2, 10), (3, 4), (3, 6), (3, 11), (4, 5), (4, 10), (5, 8),
(5, 9), (6, 7), (6, 9), (7, 10), (7, 11), (8, 10), (8, 11)}

{(1, 9), (1, 11), (2, 9), (2, 10), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 9),
(5, 11), (6, 10), (7, 8), (7, 9), (8, 10), (8, 11), (10, 11)}

{(1, 4), (1, 11), (2, 6), (2, 9), (3, 5), (3, 6), (3, 7), (4, 5), (4, 9), (5, 10),
(6, 11), (7, 9), (7, 10), (8, 9), (8, 10), (8, 11), (10, 11)}

{(1, 9), (1, 11), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (3, 7), (4, 8), (4, 9),
(5, 11), (6, 10), (7, 9), (7, 10), (8, 10), (8, 11), (10, 11)}

{(1, 10), (1, 11), (2, 3), (2, 7), (2, 9), (3, 6), (3, 8), (4, 5), (4, 9), (4, 10),
(5, 8), (5, 11), (6, 7), (6, 11), (7, 10), (8, 10), (9, 11)}
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{(1, 8), (1, 9), (2, 6), (2, 12), (3, 5), (3, 11), (4, 11), (4, 12), (5, 7), (5, 9),
(6, 7), (6, 8), (7, 10), (8, 11), (9, 12), (10, 11), (10, 12)}

{(1, 9), (1, 11), (2, 5), (2, 12), (3, 4), (3, 12), (4, 8), (4, 9), (5, 7), (5, 9),
(6, 7), (6, 8), (6, 11), (7, 10), (8, 10), (10, 12), (11, 12)}

{(1, 4), (1, 8), (1, 9), (2, 3), (2, 8), (2, 9), (3, 4), (3, 6), (3, 9), (4, 5),
(4, 8), (5, 6), (5, 7), (5, 9), (6, 7), (6, 8), (7, 8), (7, 9)}

{(1, 4), (1, 8), (1, 9), (2, 4), (2, 7), (2, 9), (3, 4), (3, 6), (3, 9), (5, 6),
(5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (7, 8)}

{(1, 5), (1, 6), (1, 8), (2, 3), (2, 4), (2, 7), (3, 6), (3, 10), (4, 5), (4, 10),
(5, 9), (6, 9), (7, 9), (7, 10), (8, 9), (8, 10)}

{(1, 5), (1, 6), (1, 8), (2, 3), (2, 4), (2, 7), (3, 6), (3, 10), (4, 5), (4, 9),
(5, 10), (6, 9), (7, 9), (7, 10), (8, 9), (8, 10)}

{(1, 2), (1, 9), (1, 10), (2, 7), (2, 8), (3, 8), (3, 9), (3, 10), (4, 7), (4, 9),
(4, 10), (5, 7), (5, 8), (5, 10), (6, 7), (6, 8), (6, 9)}

{(1, 2), (1, 4), (1, 10), (2, 3), (2, 9), (3, 4), (3, 7), (4, 8), (5, 7), (5, 8),
(5, 10), (6, 7), (6, 8), (6, 9), (7, 10), (8, 9), (9, 10)}

{(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7), (4, 5),
(4, 6), (4, 7)}

{(1, 2), (1, 4), (1, 7), (1, 9), (2, 3), (2, 6), (2, 8), (3, 5), (3, 6), (3, 9),
(4, 5), (4, 7), (4, 8), (5, 8), (5, 9), (6, 8), (6, 9), (7, 8), (7, 9)}

{(1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (2, 5), (2, 8), (2, 9), (3, 4), (3, 5),
(3, 6), (3, 7), (4, 7), (4, 9), (5, 6), (5, 8), (6, 9), (7, 8)}

{(1, 5), (1, 6), (1, 7), (1, 8), (2, 3), (2, 4), (2, 7), (2, 8), (3, 4), (3, 6),
(3, 8), (4, 5), (4, 8), (5, 6), (5, 7), (6, 7)}

{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4),
(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}
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Nested Frobenius extensions of graded superrings
Edward Poon and Alistair Savage

(Communicated by Kenneth S. Berenhaut)

We prove a nesting phenomenon for twisted Frobenius extensions. Namely,
suppose R ⊆ B ⊆ A are graded superrings such that A and B are both twisted
Frobenius extensions of R, R is contained in the center of A, and A is projective
over B. Our main result is that, under these assumptions, A is a twisted Frobenius
extension of B. This generalizes a result of Pike and the second author, which
considered the case where R is a field.

1. Introduction

Frobenius extensions, which are a natural generalization of Frobenius algebras,
appear frequently in many areas of mathematics, from topological quantum field
theory to categorical representation theory. Several generalizations of Frobenius
extensions have been introduced since their inception. In particular, Nakayama and
Tsuzuku [1960] introduced Frobenius extensions of the second kind. These were
further generalized to the concept of (α, β)-Frobenius extensions in [Morita 1965],
where α and β are automorphisms of the rings involved. The corresponding theory
for graded superrings was then developed in [Pike and Savage 2016], where they
were called twisted Frobenius extensions.

In the literature, one finds that many examples of (twisted) Frobenius extensions
arise from certain types of subobjects. For instance, if H is a finite-index subgroup
of G, then the group ring R[G] is a Frobenius extension of R[H ], where R is a
commutative base ring. This example dates back to the original paper [Kasch 1954]
on Frobenius extensions. Another example comes from the theory of Hopf algebras.
In particular, it was shown in [Schneider 1992, Corollary 3.6(1)] that if K is a Hopf
subalgebra of H, then H is a Frobenius extension of K of the second kind. Yet an-
other example comes from Frobenius algebras themselves. Namely, it was shown (in
the more general graded super setting) in [Pike and Savage 2016, Corollary 7.4] that
if A is a Frobenius algebra over a field, B is a subalgebra of A that is also a Frobenius
algebra, and A is projective over B, then A is a twisted Frobenius extension of B.

MSC2010: 17A70, 16W50.
Keywords: Frobenius extension, Frobenius algebra, graded superring, graded superalgebra.
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The goal of the current paper is to shed more light on this “nesting” phenomenon.
Namely, we consider the situation where we have graded superrings R ⊆ B ⊆ A
such that A and B are both twisted Frobenius extensions of R, and R is contained
in the center of A. We call these nested Frobenius extensions. We first prove that
these assumptions imply A and B are untwisted Frobenius extensions of R (see
Corollary 3.2). Then, our main result (Theorem 3.8) is that, provided A is projective
over B, it follows that A is a twisted Frobenius extension of B. The twisting is
given in terms of the Nakayama automorphisms of A and B. In particular, even
though A and B are untwisted Frobenius extensions of R, A can be a nontrivially
twisted Frobenius extension of B. This result can be viewed as a generalization of
[Pike and Savage 2016, Corollary 7.4] to the setting of arbitrary supercommutative
ground rings.

The organization of the paper is as follows. We begin in Section 2 by recalling the
definition of twisted Frobenius extensions of graded superrings, together with some
related results. In Section 3, we examine nested Frobenius extensions R ⊆ B ⊆ A,
where R is contained in the center of A. We begin by proving that A and B are, in
fact, untwisted Frobenius extensions of R (Corollary 3.2). Then, after establishing
several important lemmas, we prove our main result (Theorem 3.8), that A is a
twisted Frobenius extension of B, provided A is projective over B. We conclude in
Section 4 with several applications of our main result. In particular, we explain how
the aforementioned examples of group rings and Hopf algebras can be deduced
from our main theorem. We also give an example arising from nilcoxeter rings.

Note on the arXiv version. For the interested reader, the tex file of the arXiv version
of this paper includes hidden details of some straightforward computations and
arguments that are omitted in the pdf. These details can be displayed by switching
the details toggle to true in the tex file and recompiling.

2. Twisted Frobenius extensions

In this section we recall the definition of twisted Frobenius extensions, together
with some of their properties that will be used in this paper. We refer the reader to
[Pike and Savage 2016] for further details.

Fix an abelian group3 and by graded, we mean3-graded. In particular, a graded
superring is a 3×Z2-graded ring. In other words, if A is a graded superring, then

A =
⊕

λ∈3,π∈Z2

Aλ,π , Aλ,π Aλ′,π ′ ⊆ Aλ+λ′, π+π ′, λ, λ′∈3, π, π ′∈ Z2.

We denote the multiplicative unit of A by 1A. To avoid repeated use of the modifiers
“graded” and “super”, from now on we will use the term ring to mean graded
superring and subring to mean graded subsuperring. Similarly, by an automorphism
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of a ring, we mean an automorphism as graded superrings (homogeneous of degree
zero).

We will use the term module to mean graded supermodule. In particular, a left
A-module M is a 3×Z2-graded abelian group with a left A-action such that

Aλ,πMλ′,π ′ ⊆ Mλ+λ′, π+π ′, λ, λ′ ∈3, π, π ′ ∈ Z2,

and similarly for right modules. If v is a homogeneous element in a ring or module,
we will denote by |v| its 3-degree and by v̄ its Z2-degree. Whenever we write
an expression involving degrees of elements, we will implicitly assume that such
elements are homogeneous.

For M, N two 3×Z2-graded abelian groups, we define a 3×Z2-grading on
the space HOMZ(M,N ) of all Z-linear maps by setting HOMZ(M,N )λ,π , λ ∈3,
π ∈ Z2, to be the subspace of all homogeneous maps of degree (λ, π). That is,

HOMZ(M,N )λ,π
= { f ∈ HOMZ(M,N ) | f (Mλ′,π ′)⊆ Nλ+λ′, π+π ′ for all λ′∈3, π ′∈ Z2}.

For A-modules M and N, we define the 3×Z2-graded abelian group

HOMA(M,N )=
⊕

λ∈3,π∈Z2

HOMA(M,N )λ,π ,

where the homogeneous components are defined by

HOMA(M,N )λ,π
= { f ∈ HOMZ(M,N )λ,π | f (am)=(−1)π āa f (m) for all a ∈ A, m ∈ M}.

We let A-mod denote the category of left A-modules, with set of morphisms from M
to N given by HOMA(M,N )0,0. Similarly, we have the category of right A-modules
with morphisms from M to N given by

{ f ∈ HOMZ(M,N )0,0 | f (ma)= f (m)a for all m ∈ M, a ∈ A}.

We will call elements of HOMA(M,N )λ,π homomorphisms of degree (λ, π) and, if
they are invertible, isomorphisms of degree (λ, π). Note that they are not morphisms
in the category A-mod unless they are of degree (0, 0). We use similar terminology
for right modules.

If M is a left A-module, we let `a denote the operator given by the left action
by a; that is,

`a(m)= am, a ∈ A, m ∈ M. (2-1)

If M is a right A-module, then for each homogeneous a ∈ A, we define a Z-linear
operator

ra : M→ M, ra(m)= (−1)ām̄ma, a ∈ A, m ∈ M. (2-2)
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If A1 and A2 are rings, then, by definition, an (A1, A2)-bimodule M is both a
left A1-module and a right A2-module such that the left and right actions commute:

(a1m)a2 = a1(ma2) for all a1 ∈ A1, a2 ∈ A2, m ∈ M.

If M is an (A1, A2)-bimodule and N is a left A1-module, then HOMA1(M,N ) is a
left A2-module via the action

a · f = (−1)ā f̄ f ◦ ra, a ∈ A2, f ∈ HOMA1(M,N ), (2-3)

and HOMA1(N,M) is a right A2-module via the action

f · a = (−1)ā f̄ (ra) ◦ f, a ∈ A2, f ∈ HOMA1(N,M). (2-4)

For λ∈3, π ∈Z2, and an A-module M, we let {λ, π}M denote the3×Z2-graded
abelian group that has the same underlying abelian group as M, but a new grading
given by ({λ, π}M)λ′,π ′ = Mλ′−λ, π ′−π . Abusing notation, we will also sometimes
use {λ, π} to denote the map M→ {λ, π}M that is the identity on elements of M.
We define a left action of A on {λ, π}M by a · {λ, π}m = (−1)π ā

{λ, π}am. In this
way, {λ, π} defines a functor from the category of A-modules to itself that leaves
morphisms unchanged.

Suppose M is a left A-module, N is a right A-module, and α is a ring automor-
phism of A. Then we can define the twisted left A-module αM and twisted right
A-module Nα to be equal to M and N, respectively, as graded abelian groups, but
with actions given by

a ·m = α(a)m, a ∈ A, m ∈ αM, (2-5)

n · a = nα(a), a ∈ A, n ∈ Nα, (2-6)

where juxtaposition denotes the original action of A on M and N. If α is a ring
automorphism of A, and B is a subring of A, then we will also use the notation
α

B AA to denote the (B,A)-bimodule equal to A as a graded abelian group, with
right action given by multiplication, and with left action given by b · a = α(b)a
(where here juxtaposition is multiplication in the ring A), even though α is not
necessarily a ring automorphism of B. We use A AαB for the obvious right analogue.
By convention, when we consider twisted modules as above, operators such as ra
and `a defined in (2-1) and (2-2) involve the right and left action (respectively) in
the original (i.e., untwisted) module.

Definition 2.1 (twisted Frobenius extension). Suppose B is a subring of a ring A,
that α is a ring automorphism of A, and that β is a ring automorphism of B.
Furthermore, suppose λ ∈3 and π ∈ Z2. We call A an (α, β)-Frobenius extension
of B of degree (−λ, π) if A is finitely generated and projective as a left B-module,
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and there is a morphism of (B, B)-bimodules

tr : βB AαB→ {λ, π}B BB

satisfying the following two conditions:

(T1) If tr(Aa)= 0 for some a ∈ A, then a = 0.

(T2) For every ϕ ∈ HOMB(
β

B A, {λ, π}B B), there exists an a ∈ A such that ϕ =
tr ◦ ra.

The map tr is called a trace map. We will often view it as a map β

B AαA→ B BB

that is homogeneous of degree (−λ, π). If A is an (α, β)-Frobenius extension of B
for some α and β, we say that A is a twisted Frobenius extension of B. If A is an
(idA, idB)-Frobenius extension of B, we call it a Frobenius extension or untwisted
Frobenius extension (when we wish to emphasize that the twistings are trivial).

Remark 2.2. We say the extension is of degree (−λ, π) since that is the degree of
the trace map. If A and B are concentrated in degree (0, 0), then (α, β)-Frobenius
extensions were defined in [Morita 1965, p. 41]. In particular, an (idA, β)-Frobenius
extension is sometimes called a β−1-extension, or a Frobenius extension of the
second kind; see [Nakayama and Tsuzuku 1960].

If B is a subring of a ring A, then we define the centralizer of B in A to be the
subring of A given by

CA(B)= {a ∈ A | ab = (−1)āb̄ba for all b ∈ B}. (2-7)

If A is an (α, β)-Frobenius extension of B, then we have the associated Nakayama
isomorphism (an isomorphism of rings)

ψ : CA(B)→ CA(α(B)),

which is the unique map satisfying

tr(ca)= (−1)āc̄ tr(aψ(c)) for all a ∈ A, c ∈ CA(B). (2-8)

Proposition 2.3. The ring B is an untwisted Frobenius extension of R of degree
(−λ, π) if and only if there exists a homomorphism of (R, R)-bimodules tr : B→ R
of degree (−λ, π), and finite subsets {x1, . . . , xn}, {y1, . . . , yn} of B such that
(|yi |, ȳi )= (λ− |xi |, π − x̄i ) for i = 1, . . . , n, and

b = (−1)π b̄
n∑

i=1

(−1)π x̄i tr(byi )xi =

n∑
i=1

yi tr(xi b) for all b ∈ B. (2-9)

We call the sets {x1, . . . , xn} and {y1, . . . , yn} dual sets of generators of B over R.

Proof. This is a special case of [Pike and Savage 2016, Proposition 4.9], where the
twistings are trivial. �
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3. Nested Frobenius extensions

In this section, we introduce our main object of study, nested Frobenius extensions,
and prove our main result (Theorem 3.8). We begin with a simplification result.

Lemma 3.1. Suppose A is an (α, β)-Frobenius extension of R of degree (−λ, π),
with trace map tr and Nakayama isomorphismψ . Furthermore, suppose CA(R)= A.
Then α|R = β and ψ |R = idR .

Proof. For all r ∈ R and a ∈ β

R AαR , we have

tr(ar)= tr(a)α−1(r)= (−1)r̄(π+ā)α−1(r) tr(a)

= (−1)r̄ ā tr(β(α−1(r))a)= tr(aβ(α−1(r))),

where the second and fourth equalities follow from the fact that CA(R)= A. Since
the trace map is linear, this implies

tr(a(r −β(α−1(r))))= 0 for all a ∈ β

R AαR.

By (T1), we have β(α−1(r))= r for all r ∈ R. It follows that α|R = β.
Similarly, for all r ∈ R and a ∈ β

R AαR , we have

tr(ar)= (−1)r̄ ā tr(ra)= tr(aψ(r)),

and so ψ |R = idR by (T1). �

Corollary 3.2. If A is a twisted Frobenius extension of R and CA(R)= A, then A
is in fact an untwisted Frobenius extension of R of the same degree.

Proof. Suppose A is an (α, β)-Frobenius extension of R of degree (−λ, π), with
trace map tr and Nakayama isomorphism ψ . Furthermore, suppose that CA(R)= A.
Then, by Lemma 3.1, A is an (α, α)-Frobenius extension of R and α(R)=β(R)= R.
The result then follows immediately from [Pike and Savage 2016, Corollary 3.6]. �

For the remainder of this paper, we fix rings

R ⊆ B ⊆ A, with CA(R)= A.

This implies CB(R) = B and CR(R) = R. In particular, R is supercommuta-
tive, and so we do not distinguish between left and right R-modules. In light of
Corollary 3.2, we suppose that A and B are untwisted Frobenius extensions of R
of degrees (−λA, πA) and (−λB, πB), respectively. We denote their trace maps by
trA and trB and their Nakayama isomorphisms by ψA and ψB , respectively. We call
A and B nested Frobenius extensions of R.

Remark 3.3. The assumption that CA(R) = A implies that ψA and ψB are ring
automorphisms of A and B, respectively. In fact, this is precisely why we assume
CA(R)= A.
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For an R-module M, we define

M∨ = HOMR(M,R).

If, in addition, M is a (B,A)-bimodule, then it is straightforward to verify that M∨

is an (A,B)-bimodule with action given by

a · f ·b= (−1)ā f̄ f ◦ ra◦`b= (−1)ā f̄+āb̄ f ◦`b◦ ra, a ∈ A, b∈ B, f ∈M∨. (3-1)

Note that B is naturally a (B,B)-bimodule via left and right multiplication. We
denote this bimodule by B BB to emphasize the actions. Therefore, if M is a (B,A)-
bimodule, HOMB(M,B BB) is an (A,B)-bimodule via the actions (2-3) and (2-4).

Lemma 3.4. For any (B,A)-bimodule M, the map

HOMB(
ψBM, B BB)→ M∨, f 7→ trB ◦ f, (3-2)

is a homomorphism of (A,B)-bimodules of degree (−λB, πB).

Proof. By Lemma 3.1, we have ψB(r) = r for all r ∈ R. Thus, any element
f ∈ HOMB(

ψBM, B) is also an element of HOMR(M,B), and hence trB ◦ f ∈ M∨.
The map (3-2) is also clearly of degree (−λB, πB), since trB is.

It remains to show that (3-2) is a homomorphism of (A,B)-bimodules. It is
clearly a homomorphism of abelian groups. For a ∈ A and f ∈ HOMB(

ψBM,B),
we have

trB ◦(a · f )= (−1)ā f̄ trB ◦ f ◦ ra = (−1)āπB a · (trB ◦ f ).

Thus, (3-2) is a homomorphism of left A-modules. Now let b ∈ B and y ∈ ψB
B MA.

Then

trB ◦( f · b)(y)= (−1)b̄ f̄ trB ◦(
rb ◦ f )(y)

= (−1)b̄ f̄ trB ◦(
rb( f (y)))

= (−1)b̄ ȳ trB( f (y)b)

= (−1)b̄ f̄ trB(ψ
−1
B (b) f (y))

= trB( f (by))= trB ◦ f ◦ `b(y)= ((trB ◦ f ) · b)(y).

Thus the map (3-2) is also a homomorphism of right B-modules. �

Let
{xi }

n
i=1 and {yi }

n
i=1

be dual sets of generators of B over R, where |xi |+ |yi | = λB and x̄i + ȳi = πB for
each i = 1, . . . , n (see Proposition 2.3).
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Proposition 3.5. If M is a (B,A)-bimodule, then the map

M∨→ HOMB(
ψBM, B BB),

θ 7→

(
m 7→ (−1)πB(θ̄+m̄)

n∑
i=1

(−1)ȳi (πB+m̄)θ(yi m)xi

)
,

(3-3)

is a homomorphism of (A,B)-bimodules of degree (λB, πB). Moreover, the maps
(3-2) and (3-3) are mutually inverse isomorphisms of (A,B)-bimodules.

Proof. The map

m 7→ (−1)πB(θ̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄)θ(yi m)xi (3-4)

is clearly a homomorphism of abelian groups. Now let b ∈ B and m ∈ ψBM. Then
b ·m = ψB(b)m maps to

(−1)πB(θ̄+b̄+m̄)
n∑

i=1

(−1)ȳi (πB+b̄+m̄)θ(yiψB(b)m)xi

(2-9)
= (−1)πB(θ̄+b̄+m̄)

n∑
i=1

(−1)ȳi (πB+b̄+m̄)θ

( n∑
j=1

yj trB(x j yiψB(b))m
)

xi

= (−1)πB(θ̄+b̄+m̄)
n∑

i, j=1

(−1)ȳi (πB+b̄+m̄)+ȳj (πB+x̄ j+ȳi+b̄)θ
(
trB(x j yiψB(b))yj m

)
xi

= (−1)πB(θ̄+b̄+m̄)
n∑

i, j=1

(−1)ȳi (πB+b̄+m̄)+(ȳj+θ̄ )(πB+x̄ j+ȳi+b̄) trB(x j yiψB(b))θ(yj m)xi

= (−1)πB(θ̄+b̄)
n∑

i, j=1

(−1)ȳi (πB+b̄)+m̄(x̄ j+b̄)θ(yj m) trB(x j yiψB(b))xi

= (−1)πB(θ̄+b̄)
n∑

i, j=1

(−1)ȳiπB+m̄(x̄ j+b̄)+b̄x̄ j θ(yj m) trB(bx j yi )xi

(2-9)
= (−1)πB(θ̄+b̄)

n∑
j=1

(−1)πB ȳj+m̄(x̄ j+b̄)+b̄ ȳj θ(yj m)bx j

= (−1)b̄(θ̄+πB)+πB θ̄

n∑
j=1

(−1)πB ȳj+m̄x̄ j bθ(yj m)x j

= (−1)b̄(θ̄+πB)b
(
(−1)πB(θ̄+m̄)

n∑
j=1

(−1)ȳj (πB+m̄)θ(yj m)x j

)
.
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Thus (3-4) is a homomorphism of left B-modules of degree (λB, πB). Since the (set-
theoretic) inverse of a bimodule homomorphism is also a bimodule homomorphism,
it remains to show that (3-2) and (3-3) are mutually inverse.

Let f ∈HOMB(
ψBM, B BB). The map (3-2) followed by (3-3) sends f to the map

m 7→ (−1)πB(πB+ f̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄) trB( f (yi m))xi

= (−1)πB(πB+ f̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄+ f̄ ) trB(ψ
−1
B (yi ) f (m))xi

= (−1)πB( f̄+m̄)
n∑

i=1

(−1)πB x̄i trB( f (m)yi )xi
(2-9)
= f (m).

Thus (3-3) is left inverse to (3-2).
Now let θ ∈ M∨. The map (3-3) followed by the map (3-2) sends θ to the map

m 7→ (−1)πB(θ̄+m̄)
n∑

i=1

(−1)ȳi (πB+m̄) trB(θ(yi m)xi )

=

n∑
i=1

(−1)ȳi m̄θ(yi m) trB(xi )=

n∑
i=1

(−1)ȳi (θ̄+ȳi ) trB(xi )θ(yi m)

=

n∑
i=1

(−1)ȳi θ(trB(xi )yi m)=
n∑

i=1

θ(yi trB(xi )m)= θ
( n∑

i=1

yi trB(xi )m
)

(2-9)
= θ(m).

Hence (3-3) is also right inverse to (3-2). �

We will let
κ : (B AψA

A )
∨
∼=
−→ HOMB(

ψB
B AψA

A , B BB)

be the special case of the isomorphism (3-3) of (A,B)-bimodules where one takes
M to be B AψA

A .

Proposition 3.6. The map

ϕA : A AB→ (B AψA
A )
∨, ϕA(a)= trA ◦

rψA(a),

is an isomorphism of (A,B)-bimodules of degree (−λA, πA).

Proof. The map ϕA is clearly a homomorphism of abelian groups. Let r ∈ R, a ∈ A,
and x ∈ A AψA

B . Then
ϕA(a)(r x)= trA ◦

rψA(a)(r x)= (−1)ā(r̄+x̄) trA(r xψA(a))

= (−1)ā(r̄+x̄)+πAr̄r trA(xψA(a))= (−1)r̄(ā+πA)r trA ◦
rψA(a)(x)

= (−1)r̄(ā+πA)rϕA(a)(x).

Thus, ϕA(a) ∈ (B AψA
A )
∨.
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Now, for a, a′ ∈ A and x ∈ A AψA
B , we have

ϕA(a′a)(x)= trA ◦
rψA(a′a)(x)

= (−1)x̄(ā
′
+ā) trA(xψA(a′a))

= (−1)x̄(ā
′
+ā) trA(xψA(a′)ψA(a))

= (−1)ā
′(x̄+ā) trA ◦

rψA(a)(xψA(a′))

= (−1)ā
′(x̄+ā)ϕA(a)(xψA(a′))

= (−1)ā
′āϕA(a) ◦ rψA(a′)(x)

= (−1)ā
′πA(a′ ·ϕA(a))(x).

Thus ϕA is a homomorphism of left A-modules of degree (−λA, πA).
On the other hand, for a ∈ A, b ∈ B, and x ∈ A AψA

B , we have

ϕA(ab)(x)= trA ◦
rψA(ab)(x)

= (−1)(ā+b̄)x̄ trA(xψA(ab))

= (−1)(ā+b̄)x̄ trA(xψA(a)ψA(b))

= (−1)ā(x̄+b̄) trA(bxψA(a))

= trA ◦
rψA(a)(bx)= trA ◦

rψA(a) ◦ `b(x)= (ϕA(a) · b)(x).

Thus ϕA is a homomorphism of right B-modules.
It remains to show that ϕA is an isomorphism. Suppose ϕ(a)= ϕ(a′) for some

a, a′ ∈ A. This implies ā = ā′. Then, for all x ∈A AψA
A , we have

ϕ(a)(x)=ϕ(a′)(x) =⇒ trA ◦
ra(x)= trA ◦

ra′(x)

=⇒ (−1)ā x̄ trA(xψA(a))= (−1)ā
′ x̄ trA(xψA(a′))

=⇒ 0= (−1)ā x̄ trA
(
x(ψA(a)−ψA(a′))

)
.

It thus follows from (T1) that ψA(a) = ψA(a′), and hence a = a′. Thus ϕA is
injective.

Now, every element ϕ ∈ (B AψA
A )
∨ can be viewed as an element of HOMR(R A,R).

Then, by (T2), there exists an a ∈ A such that ϕ = trA ◦
ra. Since ψA is a ring

isomorphism, we have

trA ◦
rψA(ψ

−1
A (a))= trA ◦

ra = ϕ.

Thus, ϕA is surjective. �

Proposition 3.7. The map

κ ◦ϕA : A AB→ HOMB(
ψB

B AψA
A , B BB)
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is an isomorphism of (A,B)-bimodules of degree (λB − λA, πA+πB). Moreover,
the map

tr : ψB
B AψA

B → B BB, tr(a)= (−1)πB(πA+ā)
n∑

i=1

(−1)ȳi (πB+ā) trA(yi a)xi

is a trace map; i.e., it satisfies conditions (T1) and (T2).

Proof. Since κ ◦ϕA is a composition of (A,B)-bimodule isomorphisms, it too is an
(A,B)-bimodule isomorphism. Now, for a ∈ A AB, we have

(κ ◦ϕA)(1A)(a)= (κ(trA ◦
rψA(1A)))(a)= (κ(trA))(a)

= (−1)πB(πA+ā)
n∑

i=1

(−1)ȳi (πB+ā) trA(yi a)xi .

Then by [Pike and Savage 2016, Proposition 4.1], tr is left trace map. �

Theorem 3.8. Let A be a ring extension of B, and B be a ring extension of R, with
CA(R)= A. Suppose that A is a Frobenius extension of R of degree (−λA, πA), with
Nakayama automorphism ψA, and that B is a Frobenius extension of R of degree
(−λB, πB), with Nakayama automorphismψB . If A is projective as a left B-module,
then A is a (ψA, ψB)-Frobenius extension of B of degree (λB − λA, πB + πA).
Moreover, the induction functor A AB ⊗B − is right adjoint to the shifted twisted
restriction functor {λB − λA, πB +πA}

ψB
B AψA

A ⊗A− .

Proof. Since A is a Frobenius extension of R, it is finitely generated as an R-module,
and hence also finitely generated as a left B-module. Moreover, by Proposition 3.7,
there is a trace map satisfying (T1) and (T2). Thus A is an (ψA, ψB)-Frobenius
extension of B. The final assertion follows from [Pike and Savage 2016, Theo-
rem 6.2]. �

Remark 3.9. Recall that, by Corollary 3.2, we gain no generality in Theorem 3.8
by allowing for A and B to be twisted Frobenius extensions of R. In the case that
R is a field, concentrated in degree (0, 0), Theorem 3.8 recovers [Pike and Savage
2016, Corollary 7.4].

4. Applications

In this final section, we give several examples that illustrate Theorem 3.8. In
particular, we see that a number of results that have appeared in the literature follow
immediately from this theorem.

Example 4.1 (group rings). Let R be a supercommutative ring, G a finite group,
and H a subgroup of G. Consider the following group rings over R:

R ∼= R[{e}] ⊆ R[H ] ⊆ R[G],
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where e is the identity element of G. By construction, R[H ] and R[G] are free as
R-modules. It is easy to verify that the map

tr : R[G] → R, tr
(∑

g∈G

rgg
)
= re

satisfies (T1) and (T2) with α and β both the identity map. Thus R[G] and R[H ] are
both untwisted Frobenius extensions of R and their Nakayama automorphisms are
the identity automorphisms. The ring R clearly lies in the center of R[G] and R[G]
is free as a left R[H ]-module, with basis given by a set of left coset representatives.
Therefore, by Theorem 3.8, R[G] is an untwisted Frobenius extension of R[H ]. In
the case that R is concentrated in degree (0, 0), this recovers the well-known result
that a finite group ring is a Frobenius extension of a subgroup ring.

Example 4.2 (Hopf algebras). Let R be an unique factorization domain, let H be a
Hopf algebra over R that is finitely generated and projective as an R-module, and let
K be a Hopf subalgebra of H. Then H and K are both untwisted Frobenius exten-
sions of R by [Pareigis 1971, Corollary 1]. Let ψH and ψK denote their respective
Nakayama automorphisms. If H is projective as a left K -module (this condition is
automatically satisfied when R is a field by [Nichols and Zoeller 1989, Theorem 7]),
then H is a (ψH , ψK )-Frobenius extension of K by Theorem 3.8. Moreover, we
have that H is an (idH , ψK ◦ψ

−1
H )-Frobenius extension of K by applying [Pike

and Savage 2016, Proposition 3.4] with u = 1H. That is, it is a Frobenius extension
of the second kind. Thus we recover the result [Schneider 1992, Corollary 3.6(1)].

Example 4.3 (nilcoxeter rings). Let R be a supercommutative ring and fix a non-
negative integer n. The nilcoxeter ring Nn over R is generated by the elements
u1, . . . , un−1 with the relations

u2
i = 0 for 1≤ i ≤ n− 1,

ui u j = u j ui for 1≤ i, j ≤ n− 1 such that |i − j |> 1,

ui ui+1ui = ui+1ui ui+1 for 1≤ i < n− 1.

As an R-module, Nn has the basis {uw | w ∈ Sn}, where Sn is the symmetric group
on n elements. Multiplication of basis elements is given by

uvuw =
{

uvw if `(v+w)= `(v)+ `(w),
0 if `(v+w) 6= `(v)+ `(w),

where ` is the length function of the symmetric group. So Nn is free and thus
projective as an R-module. Now consider the R-linear function determined by

trn : Nn→ R, trn(uw)=
{

1 if w = w0 ∈ Sn,

0 if w 6= w0 ∈ Sn,
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where w0 denotes the permutation of maximal length in Sn . It can be shown that Nn

is an untwisted Frobenius extension of R of degree
(
−
(n

2

)
,
(n

2

))
with trace map trn ,

and the Nakayama automorphism associated to trn is given by ψn(ui )= un−i ; see
[Pike and Savage 2016, Lemma 8.2], where one replaces F with R. Although the
author of [Khovanov 2001, Proposition 4] works over the field Q, his proof that Nn

is projective as a left Nn−1-module still holds over R. It is clear that CNn (R)= Nn .
Therefore, by Theorem 3.8, Nn is a (ψn, ψn−1)-Frobenius extension of Nn−1 of
degree

((n−1
2

)
−
(n

2

)
,
(n

2

)
+
(n−1

2

))
.
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On G-graphs of certain finite groups
Mohammad Reza Darafsheh and Safoora Madady Moghadam

(Communicated by Kenneth S. Berenhaut)

The notion of G-graph was introduced by Bretto et al. and has interesting prop-
erties. This graph is related to a group G and a set of generators S of G and is
denoted by 0(G, S). In this paper, we consider several types of groups G and
study the existence of Hamiltonian and Eulerian paths and circuits in 0(G, S).

1. Introduction

Let G be a finitely generated group with a generating set S = {s1, s2, . . . , sn}. The
left transversal of the left cosets of the subgroup 〈si 〉 in G is denoted by T〈si 〉. This
means that {〈si 〉x | x ∈ T〈si 〉} is the set of all the distinct left cosets of 〈si 〉 in G. A
simple graph 0(G, S) is defined as follows: the vertex set of 0(G, S) is the set
{〈si 〉x j | x j ∈ T〈si 〉}, and two distinct vertices 〈si 〉x j and 〈sk〉xl are joined by an edge
if 〈si 〉x j ∩ 〈sk〉xl 6=∅.

The G-graphs were introduced in [Bretto and Faisant 2005] to study the group
isomorphism problem. They also defined a similar graph 0(G, S), which dif-
fers from 0(G, S) by the fact that there are p edges between 〈si 〉x j and 〈sk〉xl if
|〈si 〉x j ∩ 〈sk〉xl | = p. In this paper, we are more concerned with the simple graph
0(G, S). For more information on the subject see, for example, [Bretto et al. 2007;
Bretto and Gillibert 2005]. By [Bretto et al. 2007], if S is a generating set of G,
then 0(G, S) is a connected graph. We always choose S such that G = 〈S〉.

The existence of Hamiltonian paths and circuits in 0(G, S) was the main interest
of [Bretto and Faisant 2011]. In [Bauer et al. 2008] the authors considered various
classes of finite groups G and studied the Eulerianness and Hamiltonicity of the
graph 0(G, S). For instance, they studied the Hamiltonicity of certain G-graphs on
the groups Zm × Zn and D2n , the dihedral group of order 2n. In this paper we will
consider the groups Zn1 × Zn2 × · · ·× Znk such that n1 | n2 | · · · | nk , the dicyclic
group T4n of order 4n with presentation

T4n = 〈a, b | a2n
= e, an

= b2, b−1ab = a−1
〉,

MSC2010: primary 05C25, 20F05; secondary 05C45.
Keywords: G-graphs, finite group, Hamiltonian circuit, graphs, paths, circuits.
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V8n , a group of order 8n with presentation

V8n = 〈a, b | a2n
= b4
= e, ba = a−1b−1, b−1a = a−1b〉,

and obtain the conditions under which 0(G, S) is Eulerian or Hamiltonian.

2. Preliminaries

Let S = {s1, s2, . . . , sn} be a generating set for the group G. Let

Vsi = {〈si 〉x j | x j ∈ T〈si 〉}, 16 i 6 n,

where T〈si 〉 is a complete set of left transversals of 〈si 〉 in G. Then by definition the
vertex set of 0(G, S) is V (0(G, S))=

⊔n
i=1 Vsi . The graph 0(G, S) is connected

and n-partite. We recall some results which will be used in this paper.

Result 1 [Bondy and Murty 1976]. Let 0 be a nontrivial connected graph. Then:

(a) 0 has an Eulerian circuit if and only if every vertex of 0 has even degree.

(b) 0 has an Eulerian path if and only if 0 has exactly two vertices of odd degree.
Furthermore, the path begins at one of the vertices of odd degree and terminates
at the other one.

Result 2 [Bauer et al. 2008]. Let G be a group with a generating set given by
S = {s1, s2, . . . , sn}. Let Si j = |〈si 〉∩〈sj 〉|. Then the degree of the vertex 〈si 〉 in the
graph 0(G, S) is equal to deg(〈si 〉) =

∑n
i=1(o(si )/Si j )− 1, where o(si ) denotes

the order of the element si ∈ G. Note that for all elements x j 〈si 〉 in Vi we have
deg(x j 〈si 〉)= deg(〈si 〉).

Result 3 [Bauer et al. 2008]. Let G = Zn × Zm and S = {(1, 0), (0, 1)}. Then
0(G, S) has a Hamiltonian path if and only if |m− n|6 1.

In the following we generalize Result 3 to obtain a necessary condition for a
Hamiltonian circuit of 0(G, S).

Theorem 2.1. Let G = 〈a, b〉, S = {a, b} and X = |G|/o(a) and Y = |G|/o(b). If
0(G, S) has a Hamiltonian path, then |X − Y |6 1.

Proof. Let Va = {a1, a2 · · · aX } and Vb = {b1, b2 · · · bY }.

Case 1: Assume that the Hamiltonian path begins from a vertex in Va . Call this
vertex ai1 . The next vertex can’t be from Va . Thus it is from Vb. Call this vertex bi1 .
In this way, the Hamiltonian path can be represented as ai1 , bi1 , ai2 , bi2 , . . . .

If this Hamiltonian path ends with a vertex from Va , it is represented as

ai1, bi1, ai2, bi2, . . . , aiX−1, biX−1, aiX .

Now notice that bi1, bi2, . . . , biX−1 should exhaust all the vertices of Vb exactly
once. So {bi1, bi2, . . . , biX−1} = {b1, b2, . . . , bY }; hence X − 1= Y , which implies
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X−Y = 1. But if this path ends with a vertex of Vb, it is represented as ai1 , bi1 , ai2 ,
bi2 , . . . , aiX , biX . Similarly, {bi1, bi2, . . . , biX } = {b1, b2, . . . , bY }, so X = Y.

Case 2: Assume that the Hamiltonian path begins with a vertex from Vb. In the
same manner as above, this path can be represented as bi1 , ai1 , bi2 , ai2 , . . . .

If this path ends with a vertex from Va , it is represented by bi1 , ai1 , bi2 , ai2 , . . . ,
biY , aiY . Notice that ai1, ai2, . . . , aiY should exhaust all the vertices of Va exactly
once, so {ai1, ai2, . . . , aiY } = {a1, a2, . . . , aX }; hence Y = X . But if this path, ends
with a vertex from Vb, it is represented by bi1 , ai1 , bi2 , ai2 , . . . , biY−1 , aiY−1 , biY .
Similarly, {ai1, ai2, . . . , aiY−1}={a1, a2, . . . , aX }, so Y−1= X , implying Y−X =1.

Thus in the general case the inequality |X − Y |6 1 holds. �

Result 4. Let G = Zn × Zm and S = {(1, 0), (0, 1)}. Then 0(G, S) has a Hamil-
tonian circuit if and only if m = n.

A generalization of Result 4 for the existence of a Hamiltonian circuit is given
in the following theorem.

Theorem 2.2. Let G = 〈a, b〉, S = {a, b} and X = |G|/o(a) and |G|/o(b). If
0(G, S) has Hamiltonian circuit, then X = Y.

Proof. Let Va = {a1, a2, . . . , aX } and Vb = {b1, b2, . . . , bY }, and assume this circuit
starts from a vertex in Va , which is called ai1 . The next vertex can’t be from Va , so it
should be from Vb; call this vertex bi1 . Therefore this circuit can be represented by
ai1 , bi1 , ai2 , bi2 , . . . , aiX , biX , ai1 . Now notice that bi1 , bi2 , . . . , biX should exhaust
all the vertices of Vb exactly once. So {bi1, bi2, . . . , biX } = {b1, b2, . . . , bY }; hence
X = Y. �

3. Finite abelian groups

From [Rotman 1995] it’s well known that every finite abelian group G is isomor-
phic to a direct product of cycle groups, say G ∼= Zn1 × Zn2 × · · · × Znk , where
n1 | n2 | · · · | nk . We choose

S = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)}

as a generating set of G. The vector (0, . . . , 1, . . . , 0) with 1 in the i-th position is
denoted by ei , and the zero vector is denoted by 0= (0, 0, . . . , 0).

We are going to generalize the results of Section 3 in [Bauer et al. 2008] and
obtain necessary and sufficient conditions in order that 0(G, S) contains an Eulerian
path or circuit.

Theorem 3.1. Let G be a finite abelian group which can be represented by G ∼=
Zn1 × Zn2 × · · · × Znk , where n1 | n2 | · · · | nk . Let S = {e1, e2, . . . , ek}. Then
0(G, S) has an Eulerian circuit if and only if k is odd or n1 is even. Furthermore
0(G, S) has an Eulerian path if and only if G ∼= Z1× Z1 or G ∼= Z1× Z2.
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(0)+ 0 (0)+ 0

Figure 1. 0(Z1× Z1, S).

(e2)+ 0

(0)+ 0 (0)+ e2

Figure 2. 0(Z1× Z2, S).

Proof. Let us check the vertices 〈ei 〉+ 0 (16 i 6 k) of 0(G, S):

(e1)+ 0= (0, e1, 2e1, . . . , (n1− 1)e1),

(e2)+ 0= (0, e2, 2e2, . . . , (n2− 1)e2),

...

(ek)+ 0= (0, ek, 2ek, . . . , (nk − 1)ek).

For all i, j such that 1 6 i, j 6 k, i 6= j , we have ((ei )+ 0 ∩ (ej )+ 0) = 0, so
|(ei )+ 0∩ (ej )+ 0| = 1. Thus for all (ei )+ x and (ej )+ y such that (ei )+ x ∈ Vei

and (ej )+ y ∈ Vej , if |(ei )+ 0∩ (ej )+ 0| 6= 0, then |(ei )+ 0∩ (ej )+ 0| = 1. So
in the simple graph 0(G, S), we have deg((ei )+ x)= (k− 1)ni for every (ei )+ x
from vertices of 0(G, S) (Result 2). Now consider the following cases:

Case 1: If k is odd, then the degree of every vertex of 0(G, S) is even. On the other
hand, G = 〈(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)〉. Thus 0(G, S)

is connected, so it has an Eulerian circuit but it doesn’t have any Eulerian paths
(Result 1).

Case 2: Assume that k is even:

Case 2.1: If n1 is even, then ni is even for each 16 i 6 k, because n1 | n2 | · · · | nk .
So the degree of every vertex of 0(G, S) is even; thus it has an Eulerian circuit but
it doesn’t have any Eulerian paths (Result 1).

Case 2.2: If n1 is odd and G ∼= Z1× Z1, then 0(G, S) is given in Figure 1. It has
an Eulerian path, but it doesn’t have any Eulerian circuits (Result 1).

Case 2.3: If n1 is odd and G ∼= Z1× Z2, then 0(G, S) is given in Figure 2. It has
an Eulerian path, but it doesn’t have any Eulerian circuits.
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Case 2.4: If n1 is odd, n1 > 3 and G = Zn1 × Zn2 , then n1 | n2, so n2 > 3. On the
other hand, the number of vertices of Ve1 is |G|/o(e1) = n2. So 0(G, S) has at
least three vertices of odd order. Thus it doesn’t have any Eulerian paths or circuits
(Result 1).

Case 2.5: If G = Zn1 × Zn2 × · · · × Znk such that n1 is odd and k > 2, then
0(G, S) doesn’t have any Eulerian paths or circuits: the number of vertices of Ve1

is |G|/o(e1)=
∏k

j=2 ni j .
If
∏k

j=2 ni j = 1, then G = Z1×· · ·× Z1× Z1, so 0(G, S) has k vertices of odd
degree (the degree is k− 1). Thus 0(G, S) has at least four vertices of odd degree,
and hence it doesn’t have any Eulerian paths or circuits (Result 1).

If
∏k

j=2 ni j = 2, then G = Z1× · · ·× Z1× Z2, so

k−1∑
r=1

|Ver | =

k−1∑
r=1

|G|
o(er )

= 2(k− 1)> 6.

Thus 0(G, S) has at least six vertices of odd degree (the degree is k − 1), so it
doesn’t have any Eulerian paths or circuits (Result 1).

If
∏k

j=2 ni j > 3, then 0(G, S) has at least three vertices of odd degree (the degree
is n1(k− 1)), so it doesn’t have any Eulerian paths or circuits (Result 1). Therefore
the theorem is proved. �

4. Dicyclic group

Let G be the dicyclic group whose presentation is

T4n = 〈a, b | a2n
= e, an

= b2, b−1ab = a−1
〉, (1)

which is a group of order 4n. We want to check the existence of Eulerian and
Hamiltonian circuits and paths in the graph 0(G, S) for a suitable subset S of G.

Theorem 4.1. Let G be the group (1) and S = {a, b}. If n is even, 0(G, S) has an
Eulerian circuit and doesn’t have any Eulerian paths. If n is odd, 0(G, S) has an
Eulerian path and doesn’t have any Eulerian circuits.

Proof. Clearly o(b)= 4. Now we check the vertices (a)e and (b)e, where e is the
identity element of G:

(a)e = (e, a, a2, . . . , a2n−1),

(b)e = (e, b, b2, b3)= (e, b, an, anb).

So (a)e ∩ (b)e = {e, an
}, and thus |(a)e ∩ (b)e| = 2. Now we know that if

(a)x ∩ (b)y 6= ∅, then by [Bauer et al. 2008], |(a)x ∩ (b)y| = 2. Notice that
the number of vertices of Va is |G|/o(a) = (4n)/(2n) = 2. On the other hand
o(b)= 4, so deg((b)y)= 4 for every (b)y ∈ Vb. Thus every vertex of Vb has exactly
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(a)e (a)b

(b)e (b)a

Figure 3. 0(T8, {a, b}).

(a)e (a)b

(b)e (b)a (b)a2

Figure 4. 0(T12, {a, b}).

two edges to every vertex of Va . Also we know that the number of vertices of Vb is
|G|/o(b)= 4n/4= n; thus 0(G, S) is isomorphic to K 2

n,2, so 0(G, S) u Kn,2.
Next if n is even, then deg(v) is even for every vertex v of 0(G, S); hence

0(G, S) has an Eulerian circuit and it doesn’t have any Eulerian paths (Result 1).
But if n is odd, then deg(b)y is 2 for every (b)y in Vb, and deg(a)x is n, which

is odd for every (a)x in Va . So 0(G, S) has exactly two vertices of odd order; thus
it has an Eulerian path and it doesn’t have any Eulerian circuits (Result 1). �

Theorem 4.2. Let G be the group (1) and S = {a, b}. If n = 2, then 0(G, S) has a
Hamiltonian path and circuit. If n = 1 or 3, then 0(G, S) has Hamiltonian path
but it doesn’t have any Hamiltonian circuits. If n 6= 1, 2, 3, then 0(G, S) doesn’t
have any Hamiltonian paths or circuits.

Proof. Assume that 0(G, S) = Kn,2 has a Hamiltonian path; then |n − 2| 6 1
(Theorem 2.1). Therefore just one of the following cases happens:

Case 1: n = 2. So 0(G, S) is as in Figure 3. Thus its Hamiltonian path is (a)e,
(b)a, (a)b, (b)e, and the Hamiltonian circuit is (a)e, (b)a, (a)b, (b)e, (a)e.

Case 2: (n−2=1) ⇒ (n=3). So 0(G, S) is as in Figure 4. Thus its Hamiltonian
path is (b)e, (a)e, (b)a, (a)b, (b)a2, but it doesn’t have any Hamiltonian circuits
because n 6= 2 (Theorem 2.2).
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(a)e (a)b

(b)e

Figure 5. 0(T4, {a, b}).

Case 3: (2−n=1) ⇒ (n=1). So 0(G, S) is as in Figure 5. Thus its Hamiltonian
path is (a)e, (b)e, (a)b, but it doesn’t have any Hamiltonian circuits because n 6= 2
(Theorem 2.2).

So 0(G, S) has a Hamiltonian circuit if and only if n=2, and it has a Hamiltonian
path if and only if n = 1 or 3. �

Theorem 4.3. Let G be the group (1) and S = {ab, b}. Then 0(G, S) has Eulerian
and Hamiltonian circuits, and the Hamiltonian circuit is just the Eulerian circuit.
Also 0(G, S) has a Hamiltonian path, but it doesn’t have any Eulerian paths.

Proof. Clearly o(ab)= 4. Now let us check the vertices of Vb:

(b)e = (e, b, b2, b3),

(b)a = (a, ba, b2, b3a),

(b)a2
= (a2, ba2, b2, b3a2),

...

(b)an−1
= (an−1, ban−1, b2, b3an−1).

Now notice that bai
= a2n−i b, (b)2ai

= an+i and (b)3ai
= an−i b. So

(b)e = (e, b, an, (a)nb),

(b)a = (a, a2n−1b, an+1, (a)n−1b),

(b)a2
= (a2, a2n−2b, an+2, (a)n−2b),

...

(b)an−1
= (an−1, an+1b, a2n−1, ab).

Next let us see the vertices of Vab:

(ab)e = (e, ab, (ab)2, (ab)3),

(ab)a = (a, aba, (ab)2a, (ab)3a),

(ab)a2
= (a2, aba2, (ab)2a2, (ab)3a2),

...

(ab)an−1
= (an−1, aban−1, (ab)2an−1, (ab)3an−1).
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(b)e (b)a (b)a2 (b)a3 (b)an−1

(ab)e (ab)a (ab)a2 (ab)a3 (ab)an−1

Figure 6. 0(T4n, {ab, b}).

Since abai
= a(bai ) = a2n−1+i, we know (ab)2ai

= anai
= an+i and (ab)3ai

=

an+1bai
= an−i+1. So

(ab)e = (e, ab, (a)n, (a)n+1b),

(ab)a = (a, b, (a)n+1, (a)nb),

(ab)a2
= (a2, a2n−1b, (a)n+2, (a)n−1b),

...

(ab)an−1
= (an−1, an+2b, (a)2n−1, (a)2b).

Thus we have
(ab)ai

∩ (b)ai
= {ai, an+i

},

(ab)ai+1
∩ (b)ai

= {a2n−i, an−i b},

(ab)e∩ (b)an−1
= {ab, an+1b}.

Therefore 0(G, S) is as shown in Figure 6.
Hence the Eulerian and Hamiltonian circuit is

(ab)e, (b)e, (ab)a, (b)a, (ab)a2, (b)a2, . . . , (ab)an−1, (b)an−1, (ab)e,

the Hamiltonian path is

(ab)e, (b)e, (ab)a, (b)a, (ab)a2, (b)a2, . . . , (ab)an−1, (b)an−1

and 0(G, S) doesn’t have any Eulerian paths because the degree of every vertex of
0(G, S) is even (Result 1). �

Theorem 4.4. Let G be the group (1) and S = {a, ab}. If n is even, 0(G, S) has
an Eulerian circuit and it doesn’t have any Eulerian paths, and if n is odd, 0(G, S)

has an Eulerian path and it doesn’t have any Eulerian circuits.

Proof. Let us check the vertices (a)e and (ab)e:

(a)e = (e, a, a2, . . . , a2n−1),

(b)e = (e, ab, an, an+1b).



ON G-GRAPHS OF CERTAIN FINITE GROUPS 471

(a)e (a)b

(ab)e (ab)a

Figure 7. 0(T8, {a, ab}).

(a)e (a)b

(ab)e (ab)a (ab)a2

Figure 8. 0(T12, {a, ab}).

So (a)e∩ (ab)e= {e, an
}; thus |(a)e∩ (ab)e| = 2. We know that for (a)x ∈ Va and

(ab)y ∈ Vab, if (a)x ∩ (ab)y 6=∅, then by [Bauer et al. 2008], |(a)x ∩ (ab)y| = 2.
On the other hand o(ab) = 4 so deg(ab)x = 4 for every (ab)x ∈ Vab, and also
we know that the number of vertices of Va is |G|/o(a)= (4n)/(2n)= 2. Thus in
0(G, S), every vertex of Vb has an edge to every vertex of Va , so 0(G, S) is Kn,2.
Now if n is even, the degree of every vertex of 0(G, S) is even, so it has an Eulerian
circuit and doesn’t have any Eulerian paths (Result 1).

But if n is odd, 0(G, S) has exactly two vertices of odd degree ((a)e and (a)b),
so it has an Eulerian path and doesn’t have any Eulerian circuits (Result 1). �

Theorem 4.5. Let G be the group (1) and S = {a, ab}. If n = 2, then 0(G, S) has
a Hamiltonian path and circuit, if n = 1 or n = 3, then 0(G, S) has a Hamiltonian
path and it doesn’t have any Hamiltonian circuits, and if n 6= 1, 2, 3, then 0(G, S)

doesn’t have any Hamiltonian paths or circuits.

Proof. The G-graph 0(G, S) is isomorphic to Kn,2 (as we have already proved).
Assume that it has a Hamiltonian path; then |n− 2|6 1 (Theorem 2.1). So just one
of the following cases happens:

Case 1: n= 2. So 0(G, S) is as in Figure 7. Therefore its Hamiltonian path is (a)e,
(ab)e, (a)b, (ab)a, and its Hamiltonian circuit is (a)e, (ab)e, (a)b, (ab)a, (a)e.
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(a)e (a)b

(ab)e

Figure 9. 0(T4, {a, ab}).

Case 2: (n−2 = 1) ⇒ (n = 3). So 0(G, S) is as in Figure 8. Therefore its
Hamiltonian path is (ab)e, (a)e, (ab)a, (a)b, (ab)a2. But it doesn’t have any
Hamiltonian circuits because n 6= 2 (Theorem 2.2).

Case 3: (2−n = 1) ⇒ (n = 1). So 0(G, S) is as in Figure 9. Therefore its
Hamiltonian path is (a)e, (ab)e, (a)b. But it doesn’t have any Hamiltonian circuits
because n 6= 2 (Theorem 2.2). So 0(G, S) has a Hamiltonian circuit if and only
if n = 2, and it has a Hamiltonian path if and only if n = 1 or 3. �

5. The group V8n of order 8n

The group G = V8n has presentation

V8n = 〈a, b | a2n
= b4
= e, ba = a−1b−1, b−1a = a−1b〉. (2)

We want to check the existence of Eulerian and Hamiltonian paths and circuits in
0(G, S).

Theorem 5.1. Let G be the group (2) and S = {a, b}. Then 0(G, S) always has an
Eulerian circuit and never has Eulerian paths.

Proof. Let us check (a)e and (b)e:

(a)e = (e, a, a2, . . . , a2n−1),

(b)e = (e, b, b2, b3).

So, (a)e ∩ (b)e = {e}; thus |(a)e ∩ (b)e| = 1. Hence, for every (a)x ∈ Va and
(b)y ∈ Vb, if (a)x ∩ (b)y 6= ∅, then |(a)x ∩ (b)y| = 1 [Bauer et al. 2008]. Now
notice that o(a)= 2n, so the number of vertices of Va is |G|/o(a)= (8n)/(2n)= 4.
Also we know that o(b)= 4, so deg(b)y = 4 for every (b)y ∈ Vb. Thus every vertex
of Vb has exactly one edge to every vertex of Va . On the other hand, the number of
vertices of Vb is |G|/o(b)= 8n/4= 2n, so 0(G, S)= K2n,4.

Hence the degree of every vertex of 0(G, S) is even (2n or 4), so it has an
Eulerian circuit but it doesn’t have any Eulerian paths (Result 1). �

Theorem 5.2. Let G be the group (2) and S = {a, b}. Then 0(G, S) has a Hamil-
tonian circuit if and only if n = 2.
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(a)e (a)b (a)b2 (a)b3

(b)e (b)a (b)a2 (b)a3

Figure 10. 0(V16, {a, b}).

Proof. The G-graph 0(G, S) is isomorphic to K2n,4. Assume that it has a Hamil-
tonian path, so |2n − 4| 6 1 (Theorem 2.1); hence one of the following cases
happens:

Case 1: (2n=4) ⇒ (n=2). So 0(G, S) is as in Figure 10. The Hamiltonian path
is (a)e, (b)e, (a)b, (b)a, (a)b2, (b)a2, (a)b3, (b)a3, and the Hamiltonian circuit is
(a)e, (b)e, (a)b, (b)a, (a)b2, (b)a2, (a)b3, (b)a3, (a)e.

Case 2: (4−2n= 1) ⇒ (2n= 3), which is not possible.

Case 3: (2n−4= 1) ⇒ (2n= 5), which is not possible.

Notice that if n 6= 2, then 0(G, S) doesn’t have any Hamiltonian circuits
(Theorem 2.2). So 0(G, S) has a Hamiltonian path and circuit if and only if n=2. �

Theorem 5.3. Let G be the group (2) and S = {b, ab}. Then 0(G, S) always has
an Eulerian circuit and doesn’t have any Eulerian paths.

Proof. Clearly o(ab) = 2. Now notice that abai
= b3ai−1 and ab2ai

= b2ai+1.
Next let us check the vertices of Vab:

(ab)e = (e, ab)= (e, b3a2n−1),

(ab)a = (a, aba)= (a, b3),

(ab)a2
= (a2, aba)= (a, b3a),

...

(ab)a2n−1
= (a2n−1, aba)= (a, b3a2n−2),

(ab)b = (b, ab2)= (b, b2a),

(ab)ba = (ba, ab2a)= (ba, b2a2),

(ab)ba2
= (ba2, ab2a2)= (ba2, b2a3),

...

(ab)ba2n−1
= (ba2n−1, ab2a2n−1)= (ba2n−1, b2).
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(ab)e (ab)a (ab)a2
(ab)a2n−2 (ab)a2n−1

(b)e (b)a (b)a2

(b)a2n−2 (b)a2n−1

(ab)b (ab)ba (ab)ba2
(ab)ba2n−2 (ab)ba2n−1

Figure 11. 0(V8n, {b, ab}).

Let us also check those of Vb:

(b)e = (e, b, b2, b3),

(b)a = (a, ba, b2a, b3a),

(b)a2
= (a2, ba2, b2a2, b3a2),

...

(b)a2n−1
= (a2n−1, ba2n−1, b2a2n−1, b3a2n−1).

So we have (ab)ai
∩ (b)ai

= {ai
} and (ab)ai+1

∩ (b)ai
= {b3ai

} and (ab)bai
∩

(b)ai
= {bai

} and (ab)bai−1
∩ (b)ai

= {b2ai
}. Hence in 0(G, S), the degree of

every vertex of Vab is 2, and the degree of every vertex of Vb is 4. So the degree of
every vertex of 0(G, S) is even. On the other hand G = V8n = 〈ab, b〉, so 0(G, S)

is connected [Bretto et al. 2007]. Thus 0(G, S) is a connected graph such that the
degree of every vertex is even, so it has an Eulerian circuit and it doesn’t have any
Eulerian paths (Result 1). The Eulerian circuit in 0(G, S) is

(b)a2n−1, (ab)e, (b)e, (ab)a, (b)a, (ab)a2, (b)a2,

. . . , (ab)a2n−2, (b)a2n−2, (ab)a2n−1, (b)a2n−1, (ab)ba2n−1,

(b)e, (ab)e, (b)a, (ab)ba, (b)a2, (ab)ba2,

. . . , (b)a2n−2, (ab)ba2n−2, (b)a2n−1. �

Theorem 5.4. Let G be the group (2) and S = {b, ab}. Then 0(G, S) doesn’t have
any Hamiltonian paths or circuits.

Proof. The number of vertices of Vb is |G|/o(b) = 8n/4 = 2n, and the number
of vertices of Vab is |G|/o(a) = 8n/2 = 4n. Now assume that 0(G, S) has a
Hamiltonian path, so |4n − 2n| 6 1 (Theorem 2.1). Hence one of the following
cases will happen:
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(ab)e (ab)a (ab)a2
(ab)a2n−1

(a)e (a)b
(a)b2

(a)b3

(ab)b
(ab)ba (ab)ba2 (ab)ba2n−1

Figure 12. 0(V8n, {a, ab}).

Case 1: (4n= 2n) ⇒ (n= 0).

Case 2: (4n−2n= 1) ⇒ (2n= 1) ⇒
(
n= 1

2

)
.

Case 3: (2n−4n= 1) ⇒ (2n=−1) ⇒
(
n=−1

2

)
.

Obviously none of these cases can happen, so 0(G, S) doesn’t have any Hamil-
tonian paths, and thus it doesn’t have any Hamiltonian circuits. �

Theorem 5.5. Let G be the group (2) and S = {a, ab}. Then 0(G, S) has an
Eulerian circuit and doesn’t have any Eulerian paths.

Proof. Notice that o(a)= 2n and o(ab)= 2. Also notice that (ab)e = (e, ab) and
(a)e= (e, a, a2, · · · , a2n−1), so (ab)e∩ (a)e= {e}. Thus, for every (a)x ∈ Va and
(ab)y ∈ Vab, if (a)x ∩ (ab)y 6=∅, then |(a)x ∩ (ab)y| = 1 [Bauer et al. 2008]. So
the degree of every vertex of Va is 2n, and the degree of every vertex of Vab is 2.

On the other hand G = 〈a, ab〉, so 0(G, S) is connected [Bretto et al. 2007].
Thus, 0(G, S) is a connected graph such that the degree of every vertex is even.
So it has an Eulerian circuit and doesn’t have any Eulerian paths (Result 1). �

Theorem 5.6. Let G be the group (2) and S = {a, ab}. Then 0(G, S) has a
Hamiltonian path and circuit if and only if n = 1.

Proof. The number of vertices of Va is |G|/o(a)= (8n)/(2n)= 4, and the number
of vertices of Vab is |G|/o(ab) = 8n/2 = 4n. Now assume that 0(G, S) has a
Hamiltonian path, so |4n−4|6 1 (Theorem 2.1). Hence one of the following cases
happens:

Case 1: (4n−4= 1) ⇒ (4n= 5), which is impossible.

Case 2: (4−4n= 1) ⇒ (4n= 3), which is impossible.

Case 3: (4n−4= 0) ⇒ (4n= 4) ⇒ (n= 1). In this case, the image of 0(G, S)

is shown in Figure 13. Its Hamiltonian path is (ab)e, (a)b3, (ab)ba, (a)b2, (ab)b,
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(ab)e (ab)a (ab)b (ab)ba

(a)e (a)b (a)b2
(a)b3

Figure 13. 0(V8, {a, ab}).

(a)b, (ab)a, (a)e, and its Hamiltonian circuit is (ab)e, (a)b3, (ab)ba, (a)b2, (ab)b,
(a)b, (ab)a, (a)e, (ab)e. If 0(G, S) doesn’t have any Hamiltonian paths, then it
doesn’t have any Hamiltonian circuits; thus 0(G, S) has a Hamiltonian path and
circuit if and only if n = 1. �

6. Conclusion

In this paper we investigated the existence of Eulerian circuits and paths in the
G-graphs of finite abelian groups. Also we checked the existence of Hamiltonian
and Eulerian circuits and paths in the G-graphs of some nonabelian finite groups.
Our method can be applied to other finite groups as well.
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The tropical semiring in higher dimensions
John Norton and Sandra Spiroff

(Communicated by Scott T. Chapman)

We discuss the generalization, in higher dimensions, of the tropical semiring,
whose two binary operations on the set of real numbers together with infinity
are defined to be the minimum and the sum of a pair, respectively. In particular,
our objects are closed convex sets, and for any pair, we take the convex hull of
their union and their Minkowski sum, respectively, as the binary operations. We
consider the semiring in several different cases, determined by a recession cone.

Introduction

The tropical semiring is 〈R∪ {∞},⊕,�〉, with the two operations defined by

x ⊕ y =min(x, y) and x � y = x + y.

The fact that this is a semiring comes from the lack of inverses under ⊕, as the
additive neutral object is infinity. The multiplicative neutral object, i.e., under
the operation �, is zero. Inspired by [Speyer and Sturmfels 2009, p. 165], we
generalize the tropical semiring to higher dimensions. In particular, our elements
are polyhedra, or more generally, closed convex sets, in Rn with a fixed recession
cone, i.e., the directions in which the set recedes, and the two operations are defined
by taking the convex hull of the union and by the Minkowski sum. Indeed, when
n = 1 and the recession cone is R+ = {ξ : ξ ≥ 0}, then this definition reduces to
the tropical semiring [Maclagan and Sturmfels 2015; Speyer and Sturmfels 2009]
as described above: the real numbers x and y represent the sets of solutions to the
inequalities t ≥ x and t ≥ y, respectively; i.e., they correspond to the polyhedra in R

given by the positive rays with vertices at x, y. In particular, for each, the recession
cone is the nonnegative ray emanating from the origin, or R+. Clearly, the union
of these two sets is represented by the inequality t ≥min(x, y) and likewise, the
Minkowski sum is given by the inequality t ≥ x+ y. Careful consideration must be
given to the neutral objects in this setting.

MSC2010: primary 16Y60, 52B11, 52A20; secondary 52A07.
Keywords: tropical semiring, polyhedra, compact subsets.
Spiroff is supported by a grant (#245926) from the Simons Foundation.
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As suggested in [Speyer and Sturmfels 2009], the set of convex polyhedra in Rn

with fixed recession cone will form a semiring. We explore this idea in detail,
considering various recession cones. In particular, we first consider the case of
bounded polyhedra, i.e., convex polytopes, in Rn. In this case, the common recession
cone is {0} and the properties follow quite nicely. Furthermore, we can generalize
this case to that of compact (convex) sets in Rn. These proofs are the content of the
second section.1 Prior to that, we provide the necessary background on recession
cones and asymptotic cones, and include examples to demonstrate the possible
pathology of ⊕ and � if the recession cone is not fixed. The main portion of the
paper is dedicated to establishing the axioms of the various semirings, and most
especially, those dealing with the closure of the two operations. The final section of
the paper considers unbounded closed convex sets. We demonstrate the semirings
of closed convex polyhedra and general convex sets, both with recession cone equal
to the nonnegative orthant Rn

+
.

1. Background: polyhedra, recession cones, and asymptotic cones

Some general references for the material in this section are [Rockafellar 1970;
Ziegler 1995; Border 1985; 2002].

Definition 1.1 [Rockafellar 1970, p. 10]. A subset P of Rn is convex if it satisfies
the following property: for every x, y ∈ P and λ ∈ R, 0 < λ < 1, the element
λx + (1− λ)y is in P.

Fact 1.2 [Rockafellar 1970, §2]. Given a subset S of Rn, the convex hull of S,
denoted by conv S, is the intersection of all the convex sets containing S. It is
the smallest convex set containing S. In particular, it is the set of all convex
combinations of the elements of S; i.e.,

conv S =
{
λ1s1+ · · ·+ λksk : si ∈ S, λi ≥ 0, λ1+ · · ·+ λk = 1, k ∈ N

}
.

Definition 1.3 [Rockafellar 1970, p. 61]. Given a nonempty convex set P in Rn,
the recession cone is the set of all y ∈Rn such that p+ y ∈ P for all p ∈ P. Denoted
by 0+P, the recession cone is the set of all directions in which P recedes, i.e., is
unbounded.

Fact 1.4 [Rockafellar 1970, Theorem 8.4]. A nonempty closed convex set P in Rn

is bounded if and only if its recession cone 0+P consists of the zero vector alone.

Example 1.5. In the case of n = 2, the following sets have recession cone equal to
the first quadrant of the plane R2

+
= {x = (ξ1, ξ2) : ξ1 ≥ 0, ξ2 ≥ 0}.

(1) P =
{
(x, y) : x ≥−5, y ≥−18, y ≥− 5

3 x + 2
}
;

1Section 2 and part of Section 3 are the basis for Norton’s undergraduate thesis for the Honors
College at the University of Mississippi.



THE TROPICAL SEMIRING IN HIGHER DIMENSIONS 479

(2) Q =
{
(x, y) : x ≥−3, y ≥−15, y ≥−6x − 16, y ≥− 1

2 x − 8
}
;

(3) [Rockafellar 1970, Example p. 62] {(x, y) : x > 0, y ≥ 1/x}.

Definition 1.6 [Rockafellar 1970, p. 170; Ziegler 1995, p. 28; Aliprantis and Border
2006, p. 232]. A polyhedral convex set in Rn is a set which can be expressed as
the intersection of some finite collection of closed half spaces; i.e., it is the set
of solutions to some finite system of inequalities Ax ≤ b. A convex polytope is a
bounded polyhedron; i.e., the convex hull of a finite set.

Fact 1.7 [Ziegler 1995, Proposition 1.12]. If P is a polyhedral convex set in Rn,
then 0+P is the set of solutions to the system of inequalities Ax ≤ 0.

Definition 1.8 [Rockafellar 1970, p. 162]. A point x in a convex set P is an extreme
point if the only way to express x as the convex combination (1− λ)y + λz for
y, z ∈ P and 0< λ < 1 is by taking y = z = x . Denote the set of extreme points
of P by ext(P).

Fact 1.9 [Rockafellar 1970, Corollary 19.1.1]. If P is a polyhedral convex set, then
ext(P) is finite.

In Example 1.5, the first two sets are polyhedra (see Figure 2), but the third one
is not. The finite system of inequalities associated to P is−1 0

0 −1
−

5
3 −1

[x
y

]
≤

 5
18
−2

,
so that 0+P = {(x, y) : x ≥ 0, y ≥ 0}, and ext(P)=

{(
−5, 31

3

)
, (12,−18)

}
.

For a set that is not convex, there is a generalization of the notion of a recession
cone. While we only consider convex sets, this new cone is relevant since the two
definitions coincide when the convex set is closed; hence we may apply related
results in the literature in our cases. We apply this material in the last section.

Definition 1.10 [Border 1985, Definition 2.34]. The asymptotic cone of a set P
in Rn, denoted by AP, is the set of all possible limits of sequences of the form
{αi xi }i , where each xi ∈ P, αi > 0, and αi → 0.

Some properties of the asymptotic cone will be necessary to our proof:

Fact 1.11 [Debreu 1959, §1.9; Border 2002, Lemma 4]. The following hold for
sets E, F in Rn:

(1) AE is a cone.

(2) AE ⊆ AF if E ⊆ F.

(3) 0+E ⊆ AE .

(4) AE ⊆ A(E + F).
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(5) AE is closed.

(6) AE is convex if E is convex.

(7) 0+E = AE if E is closed and convex.

(8) AE + AF ⊆ A(E + F) if E + F is convex.

(9) A set E is bounded if and only if AE = {0}.

Fact 1.12 [Shveidel 2001, proof of Theorem 2.3]. For a set P ⊆ Rn, we have
AP = AP .

Example 1.13 [Woo 2013]. In R2, let

P = {(x, y) : 0≤ x ≤ 1, 0≤ y ≤ 1} ∪ {(x, y) : 0≤ x < 1, y ≥ 1}.

Although P is unbounded, 0+P = {0}; however, P is not closed (see Fact 1.7). On
the other hand, 0+P = {(0, y) : y ≥ 0} = AP = AP.

As the above definitions and results are important to establishing the closure of
the operation ⊕, the following definition and result are helpful in establishing the
closure of the operation �.

Fact 1.14 [Schneider 2014, Theorem 1.1.2]. Let P, Q be convex subsets of Rn.
Then conv(P) = P, and the Minkowski sum P + Q of P and Q is convex. In
particular, if P, Q are nonempty, then P + Q = {p + q : p ∈ P, q ∈ Q}, and
P +∅=∅.

Definition 1.15 [Debreu 1959, 1.9 m., p. 22]. The cones C1,C2, . . . ,Ck in Rn are
positively semi-independent if, for any ci ∈ Ci , the condition c1+ c2+· · ·+ ck = 0
implies that each ci = 0.

Fact 1.16 [Border 2002, Theorem 8]. For closed and convex sets E, F ⊆Rn whose
asymptotic cones AE and AF are positively semi-independent, the Minkowski
sum E + F is closed and A(E + F)⊆ AE + AF.

Example 1.17 [Border 2002, Example 2]. In R2, set E = {(x, y) : x > 0, y ≥ 1/x}
and F = {(x, y) : x < 0, y ≥−1/x}. Note that both E and F are closed sets, but
E + F = {(x, y) : y > 0}, which is not closed.

Finally, Carathéodory’s theorem (see, e.g., [Schneider 2014, Theorem 1.1.4])
will be helpful when considering the elements of convex sets.

Carathéodory’s theorem. If a point x lies in the convex (hull of a) set P ⊆ Rn,
then x can be written as a convex combination of no more than n+ 1 points in P;
i.e., there are p0, p1, . . . , pn ∈ P and λi ≥ 0 such that λ0+ λ1+ · · ·+ λn = 1 and
x = λ0 p0+ · · ·+ λn pn .
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Figure 1. A convex polytope (left) and a nonconvex set (right) in R2.

2. The tropical semiring in higher dimensions: the bounded case

The semiring of convex polytopes. Recall that a convex polytope in Rn is a bounded
polyhedral set; i.e., the convex hull of a finite number of points in Rn. See Figure 1.
In particular, these sets are those convex polyhedra in Rn with recession cone equal
to the zero vector.

Theorem 2.1. The set of all convex polytopes P, Q in Rn, with operations shown
below, is a semiring:

P ⊕ Q = conv(P ∪ Q) P � Q = P + Q = {p+ q : p ∈ P, q ∈ Q}. (2-1)

Proof. Let P, Q, R be convex polytopes in Rn. Note that the empty set satisfies the
convexity property vacuously, and as the solution set of any inconsistent system, it
is a polytope. In particular, if P, Q are nonempty, set P = conv(p1, . . . , ps) and
Q = conv(q1, . . . , qt).

Claim 2.1A. The set of all convex polytopes in Rn under the operation of ⊕ is a
commutative monoid.

• The operation ⊕ is closed; i.e., conv(P ∪ Q) is a convex polytope:2 First of all,
P ⊕∅ = conv(P ∪∅) = conv(P) = P, as P is convex, and likewise for ∅⊕ Q.
Moreover, ∅⊕∅=∅. Thus, we may assume that P, Q are both nonempty. We
will show that conv(P ∪ Q)= conv(p1, . . . , ps, q1, . . . , qt). Let z ∈ conv(P ∪ Q).
By Carathéodory’s theorem, z =

∑n
i=0 λi yi , where each λi ≥ 0,

∑n
i=0 λi = 1 and

yi ∈ P ∪ Q. For each yi ∈ P, one can write yi =
∑s

j=1 δi j pj , where δi j ≥ 0 for

2This fact appears in several books without proof. Therefore, we provide an argument, for the
benefit of the undergraduate reader. (Likewise, for some other proofs in this section.) For algorithms
that compute the convex hull of a finite set of points in the plane, for example, Graham’s scan and
Jarvis’s march, see, e.g., [Cormen et al. 2001, Chapter 33, Section 3].
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all j and
∑s

j=1 δi j = 1. If all yi ∈ P, then

z =
n∑

i=0

(
λi

s∑
j=1

δi j pj

)

=

s∑
j=1

( n∑
i=0

λiδi j

)
pj ∈ conv(p1, . . . , ps)⊆ conv(p1, . . . , ps, q1, . . . , qt);

it is similar if all yi ∈ Q. Thus, let m ∈ N, m < n, such that y0, . . . , ym−1 ∈ P \ Q
and ym, . . . , yn ∈ Q. Then

z =
n∑

i=0

λi yi =

m−1∑
i=0

( s∑
j=1

λiδi j pj

)
+

n∑
i=m

( t∑
k=1

λiδikqk

)
is a convex combination of {p1, . . . , qt }; hence, conv(P ∪ Q)⊆ conv(p1, . . . , qt).
Since the containment ⊇ is clear, conv(P∪Q)= conv(p1, . . . , ps, q1, . . . , qt), and
the latter, by Definition 1.6, is a polytope.

• The operation ⊕ is associative; i.e., (P ⊕ Q)⊕ R = P ⊕ (Q ⊕ R): Regarding
(P ⊕ Q)⊕ R = P ⊕ (Q⊕ R), we wish to prove

conv[conv(P ∪ Q)∪ R] = conv[P ∪ conv(Q ∪ R)]. (2-2)

If any one or more of the sets is the empty set, then it is easy to see that the
equality holds. Otherwise, it suffices to show that each of these sets is equal to
conv(P∪Q∪R). Consider the set on the left. Since P∪Q∪R⊆ conv(P∪Q)∪R,
we have conv(P ∪ Q ∪ R)⊆ conv[conv(P ∪ Q)∪ R].

Conversely, as conv(P∪Q), R⊆ conv(P∪Q∪R), we have conv(P∪Q)∪R⊆
conv(P ∪ Q ∪ R). Take the convex hull of both sides: conv[conv(P ∪ Q)∪ R] ⊆
conv(P∪Q∪ R). This establishes that conv(P∪Q∪ R)= conv[conv(P∪Q)∪ R].
The argument for conv[P ∪ conv(Q ∪ R)] is analogous; hence we have (2-2).

• The operation ⊕ is commutative: order does not matter in unions of sets.

• There exists a neutral object O for addition such that for any convex polytope P
in Rn, P⊕O=O⊕ P = P : take O to be the empty set ∅, since conv(P ∪∅)= P.

Claim 2.1B. The set of all convex polytopes in Rn under the operation of � is a
commutative monoid.

• The operation� is closed; i.e., P+Q is a convex polytope: First of all, P�∅=∅
since P + ∅ = ∅ in Minkowski addition, and likewise for ∅� Q. Moreover,
∅�∅=∅. Thus, we may assume that P, Q are both nonempty. We will show that
P + Q = conv({pj + qk : 1≤ j ≤ s, 1≤ k ≤ t}), as per the hint in [Aliprantis and
Border 2006, proof of Lemma 5.124]. Let p ∈ P and q ∈ Q. Write p=

∑s
j=1 λj pj
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and q =
∑t

k=1 µkqk , where λj , µk ≥ 0 and
∑s

j=1 λj = 1=
∑t

k=1 µk . Then,

p+ q =
s∑

j=1

λj pj +

t∑
k=1

µkqk

=

( t∑
k=1

µk

) s∑
j=1

λj pj +

( s∑
j=1

λj

) t∑
k=1

µkqk =

s∑
j=1

t∑
k=1

λjµk(pj + qk)

is a convex combination of {pj + qk : 1≤ j ≤ s, 1≤ k ≤ t}.
Conversely, let

∑n
i=0 λi (xi+ yi ) be a convex combination of {pj+qk : 1≤ j ≤ s,

1≤ k ≤ t}; i.e., xi = pj for some j and yi = qk for some k, λi ≥ 0, and
∑n

i=0 λi = 1.
Then

n∑
i=0

λi (xi + yi )=

n∑
i=0

λi xi +

n∑
i=0

λi yi ,

where the first sum is in conv(p1, . . . , ps) and the second sum is in conv(q1, . . . , qt).
Thus, P+Q= conv({pj+qk |1≤ j ≤ s, 1≤ k≤ t}), and the latter, by Definition 1.6,
is a convex polytope.

• The operation � is associative: addition in Rn is associative.

• The operation � is commutative: addition in Rn is commutative.

• There exists a neutral object I for multiplication such that for any convex poly-
tope P in Rn, P�I = I� P = P : Take I to be conv({0})= {0}, which is a convex
polytope by Definition 1.6, and the common recession cone of all nonempty convex
polytopes P in Rn. Then P + 0= P, by definition of 0+P, and ∅+ 0=∅.

Claim 2.1C. The operation � is distributive over ⊕; i.e.,

P � (Q⊕ R)= (P � Q)⊕ (P � R).

We wish to establish that P + conv(Q ∪ R) = conv[(P + Q) ∪ (P + R)]. If
P = ∅ or more than two of the sets are empty, then both expressions equal ∅,
and if only Q =∅ or only R =∅, then both expressions equal P + R or P + Q
respectively. Thus, assume all three are nonempty.

First of all, take p+ z, where p ∈ P and z ∈ conv(Q ∪ R). Then z =
∑n

i=0 λi yi ,
where λi ≥ 0,

∑n
i=0 λi = 1, and yi ∈ Q ∪ R. Therefore, we have

p+ z = 1p+
n∑

i=0

λi yi =

( n∑
i=0

λi

)
p+

n∑
i=0

λi yi =

n∑
i=0

λi (p+ yi ).

The elements p+ y j are in P + Q or P + R, and possibly both. Therefore, the
last expression is in conv[(P+Q)∪(P+R)]; i.e., p+z ∈ conv[(P+Q)∪(P+R)].
Since p and z are arbitrary, we have P+conv(Q∪ R)⊆ conv[(P+Q)∪ (P+ R)].
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Conversely, since P + Q, P + R ⊆ P + conv(Q ∪ R), it follows that P +
conv(Q ∪ R) contains (P + Q)∪ (P + R). Take the convex hull of both sides:

conv[(P+Q)∪(P+R)]⊆conv[P+conv(Q∪R)]=conv(P)+conv[conv(Q∪R)],

where the equality follows by Fact 1.14. Now since both terms in the last sum are
convex, the expression simplifies to P + conv(Q ∪ R). This establishes the other
inclusion, and therefore, P + conv(Q ∪ R)= conv[(P + Q)∪ (P + R)].

Claim 2.1D. The additive neutral object O is an absorbing element for �; i.e., for
any convex polytope P in Rn, O� P = P �O =O.

This follows from the fact that, in Minkowski addition, ∅+ P =∅. �

The semiring of convex compact sets. In this section, we generalize the above
work with convex polytopes to general convex compact subsets of Rn. Of import is
the Heine–Borel theorem (see, e.g., [Aliprantis and Border 2006, Theorem 3.19]):

Heine–Borel theorem. Subsets of Rn are compact if and only if they are closed
and bounded.

Proposition 2.2. The set of all compact convex sets P, Q in Rn, with the operations
as in (2-1), is a semiring.

Proof. We note that the arguments for many of the claims above do not change. In
particular, the empty set is compact; hence it remains the neutral element under ⊕.
However, closure of the two operations must be considered. Therefore, let P, Q be
compact convex sets in Rn.

• The operation ⊕ is closed; i.e., conv(P ∪ Q) is a compact convex set: The union
of finitely many compact sets is compact. Thus, P∪Q is compact. Next, the convex
hull of a compact set in Rn remains compact (see, e.g., [Aliprantis and Border 2006,
Corollary 5.18]); thus, conv(P ∪ Q) is a compact convex set.

• The operation � is closed; i.e., P + Q is a compact convex set: As per [Border
2002, Corollary 11], the summation of a closed set and a compact set is closed. As
such, P � Q = P + Q is closed, and convex. Moreover, P + Q is bounded since
P, Q are bounded. Apply the Heine–Borel theorem. �

3. The tropical semiring in higher dimensions: the unbounded case

The semiring of convex polyhedra. We consider the set of convex polyhedra in Rn

with the operations⊕ and� as in (2-1). Although convex polyhedra are necessarily
closed (see, e.g., [Rockafellar 1970, Theorem 19.1]), the convex hull of the union
of two convex polyhedral sets need not be polyhedral or closed, as evinced by
Example 3.1 below, that is, if their recession cones do not coincide. Therefore,
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we restrict our sets to those with the same recession cone, namely the nonnega-
tive orthant Rn

+
= {x = (ξ1, . . . , ξn) : ξ1 ≥ 0, . . . , ξn ≥ 0}. This restriction is a

generalization of the nonnegative ray in the tropical semiring when n = 1.

Example 3.1 [Rockafellar 1970, p. 177]. In R2, let P ={(−1, 0)} and Q={(x, y) :
x, y ≥ 0}. Then conv(P ∪ Q) = {(−1, 0)} ∪ {(x, y) : −1 < x, 0 ≤ y}, which is
neither polyhedral nor closed. However, 0+P is the origin, while 0+Q = Q = R2

+
.

Proposition 3.2. Let P be the set of all convex polyhedra in Rn with recession cone
equal to the nonnegative orthant Rn

+
. Then 〈P∪{∅},⊕,�〉, with operations defined

in (2-1), is a semiring.

Proof. It suffices to address the issues regarding closure of the two operations for
convex polyhedra P, Q in Rn with recession cone equal to Rn

+
, and the multiplicative

neutral object, since the earlier arguments for the remaining properties apply here.

• The operation ⊕ is closed; i.e., conv(P ∪ Q) is a convex polyhedron in Rn

with recession cone equal to Rn
+

: Since conv(P ∪ Q) is convex, it remains to
establish that conv(P ∪ Q) is polyhedral with a recession cone equal to the non-
negative orthant. The fact that the recession cone of conv(P ∪ Q) is equal to
Rn
+

follows from [Rockafellar 1970, Theorem 9.8.1]; therefore, it only remains
to show that conv(P ∪ Q) is polyhedral. By Definition 1.6, P is the irredundant
intersection of some finite collection of closed half spaces, including those of the
form {x : 〈x, (0, . . . , 0, 1, 0, . . . , 0)〉 ≥ ai } for some ai ∈ R, i.e., xi ≥ ai , since
0+P = Rn

+
. Likewise, 0+Q = Rn

+
; hence, for each i , the half-spaces defining Q

include xi ≥ ci for some ci ∈ R. Thus, every element of P ∪ Q satisfies the set of
inequalities

{x : 〈x, (0, . . . , 0, 1, 0, . . . , 0)〉 ≥min(ai , ci )}.

Moreover, if z ∈ conv(P ∪ Q) \ (P ∪ Q), then z is in the finite region bounded
by the (necessarily finite set of) extreme points of P and Q. See Figure 2 for an
example. Thus, conv(P ∪ Q) = conv(ext(P) ∪ ext(Q))+ Rn

+
, and the latter, by

[Ziegler 1995, Theorem 1.2], is polyhedral.

• The operation � is closed; i.e., P + Q is a convex polyhedron with recession
cone equal to Rn

+
: By [Rockafellar 1970, Corollary 19.3.2], the Minkowski sum

of two polyhedral convex sets in Rn is polyhedral, and it is convex. Therefore, it
remains to show that 0+(P + Q)= Rn

+
. Since polyhedral convex sets are closed,

their recession cones are equal to their asymptotic cones. Hence by Fact 1.11(8),
AP + AQ ⊆ A(P + Q). Next, as AP = AQ = Rn

+
, it follows that if y ∈ AP\{0},

then −y /∈ AQ. In other words, AP and AQ are positively semi-independent, as
per Definition 1.15. Thus, by Fact 1.16, A(P + Q) ⊆ AP + AQ and the result
follows.
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Figure 2. The graphs of polyhedra P (top left) and Q (top right)
from Example 1.5, and P ∪ Q (bottom left) and conv(P ∪ Q)
(bottom right).

• There exists a neutral object I for multiplication: Take I to be Rn
+

, which is
not only an element of P, but also the common recession cone of all nonempty
polyhedra P in P. Thus P+Rn

+
= P, by the definition of 0+P, and ∅+Rn

+
=∅. �

Remark 3.3. While the set of real numbers R1 is in one-to-one correspondence
with the set of all nonempty closed convex polyhedra in the real number line, the
same is not true for Rn when n ≥ 2. As mentioned in the Introduction, r ↔ [r,∞),
in the case that n = 1, but an ordered pair (r1, r2) does not correspond to a unique
closed convex polyhedron in R2.

The semiring of closed convex sets with a fixed recession cone. Finally, we gen-
eralize the above work to closed convex subsets of Rn with a fixed recession cone C .
As evinced in Example 1.13, pathology arises if the convex sets are not assumed
to be closed. However, despite taking two convex sets that are closed, neither the
convex hull of the union nor the Minkowski sum need be closed, as demonstrated by
Examples 3.1 and 1.17, respectively, that is, if their recession cones do not coincide.
Moreover, our earlier work hints at the possible necessity of taking C such that
AC ∩ (−AC)= {0}.
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Theorem 3.4. Let S be the set of all closed convex sets in Rn with fixed recession
cone C satisfying either of the conditions below:

(1) AC ∩ (−AC)= {0}.
(2) C is a closed half-space containing the origin.

Then 〈S ∪ {∅},⊕,�〉, with operations defined in (2-1), is a semiring.

Proof. Again, the earlier arguments for the most of the properties apply here;
therefore, we address the issues regarding closure of the two operations for closed
convex sets P, Q of Rn with fixed recession cone C satisfying either of the two
conditions. The fact that conv(P∪Q) is a closed convex subset in Rn with recession
cone C follows from [Rockafellar 1970, Theorem 9.8.1]. If C satisfies condition (1),
then we may apply our previous argument. If C satisfies condition (2), then P
and Q are parallel to C , and hence so is P + Q. The result follows. �

To tie this theorem to our earlier work, we make note of the following:

Corollary 3.5. The empty set, together with the set of all closed convex sets in Rn

with recession cone equal to Rn
+

, and operations defined in (2-1), is a semiring.

Remark 3.6. The set of all closed convex sets in Rn with recession cone C equal
to Rn is the trivial semiring {C}.
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A tale of two circles:
geometry of a class of quartic polynomials

Christopher Frayer and Landon Gauthier

(Communicated by Michael Dorff)

Let P be the family of complex-valued polynomials of the form p(z) =
(z−1)(z−r1)(z−r2)

2 with |r1|= |r2|=1. The Gauss–Lucas theorem guarantees
that the critical points of p ∈ P will lie within the unit disk. This paper further
explores the location and structure of these critical points. For example, the unit
disk contains two “desert” regions, the open disk

{
z ∈ C :

∣∣z− 3
4

∣∣< 1
4

}
and the

interior of 2x4
− 3x3

+ x + 4x2 y2
− 3xy2

+ 2y4
= 0, in which critical points of

p cannot occur. Furthermore, each c inside the unit disk and outside of the two
desert regions is the critical point of at most two polynomials in P .

1. Introduction

Given a complex-valued polynomial p(z), the Gauss–Lucas theorem guarantees that
its critical points lie in the convex hull of its roots. Critical points of polynomials
of the form

p(z)= (z− 1)(z− r1)(z− r2)

with |r1| = |r2| = 1 are studied in [Frayer et al. 2014]. For such a polynomial, a
critical point almost always determines p uniquely, and the unit disk contains a
desert, the open disk

{
z ∈ C :

∣∣z − 2
3

∣∣ < 1
3

}
, in which critical points of p cannot

occur.
This paper extends the results of [Frayer et al. 2014] to a family of polynomials

of the form

P = {p : C→ C : p(z)= (z− 1)(z− r1)(z− r2)
2, |r1| = |r2| = 1}.

We used GeoGebra to investigate the critical points of p(z)= (z−1)(z−r1)(z−r2)
2.

In Figure 1, we set r1 and r2 in motion around the unit circle and traced the loci of
the critical points with the color gray. Much to our surprise, the unit disk contained

MSC2010: 30C15.
Keywords: geometry of polynomials, critical points, Gauss–Lucas theorem.
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c1

c2

r1

r2

Figure 1. Letting the roots vary and tracking the loci of the critical
points yields a very surprising result.

two desert regions. In this paper we determine the boundary equations of the desert
regions and characterize the critical points of polynomials in P.

2. Preliminary information

Circles tangent to the line x = 1 will appear frequently throughout this paper. We
let Tα denote the circle of diameter α passing through 1 and 1−α in the complex
plane. That is,

Tα =
{
z ∈ C :

∣∣z− (1− 1
2α
)∣∣= 1

2α
}
.

For example, T2 is the unit circle. A key result from [Frayer et al. 2014] will be
used to analyze critical points of a polynomial in P .

Theorem 1 [Frayer et al. 2014]. Suppose f (z)= (z− 1)(z− r1) · · · (z− rn) with
|rk |=1 for each k. Let c1, c2, . . . , cn denote the critical points of f (z), and suppose
that 1 6= ck ∈ Tαk for each k. Then

n∑
k=1

1
αk
= n. (1)

An additional fact of interest is related to fractional linear transformations. Func-
tions of the form

f (z)= eiθ z−α
ᾱz− 1

with |α|< 1 are the only one-to-one analytic mappings of the unit disk onto itself
[Saff and Snider 1993, p. 334]. Therefore, the only fractional linear transformations
sending the unit circle to the unit circle are of the form f (z) or 1/ f (z). In either
case, writing eiθ

= eiθ/2/e−iθ/2 leads to the following result.
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Theorem 2. A fractional linear transformation T sends the unit circle to the unit
circle if and only if

T (z)=
ᾱz− β̄
βz−α

for some α, β ∈ C with |α/β| 6= 1.

3. Critical points

A polynomial of the form

p(z)= (z− 1)(z− r1)(z− r2)
2
∈ P

has three critical points: one trivial critical point at the repeated root r2, and two
additional critical points. Differentiation yields

p′(z)= (z− r2)(4z2
− (3r1+ 2r2+ 3)z+ r1r2+ 2r1+ r2).

Definition 3. We define the nontrivial critical points of p to be the two roots of

q(z)= 4z2
− (3r1+ 2r2+ 3)z+ r1r2+ 2r1+ r2.

We begin by analyzing a few special cases for future reference.

Example 4. Let p ∈ P have a nontrivial critical point at z = 1. Then p must have
a repeated root at z = 1. Therefore, p ∈ P has a nontrivial critical point at z = 1 if
and only if p(z)= (z− 1)2(z− r)2 or p(z)= (z− 1)3(z− r) for some r ∈ T2.

Now that we know which polynomials in P have a nontrivial critical point at
c = 1, we will assume that c 6= 1 as necessary throughout the remainder of the
paper.

Example 5. Let p ∈ P have a nontrivial critical point at c ∈ T2, where c 6= 1. The
Gauss–Lucas theorem implies that c is a root of p. In order for c to be a nontrivial
critical point, p must have a triple root at c. Therefore, p ∈ P has a nontrivial
critical point at c ∈ T2, where c 6= 1, if and only if p(z) = (z − 1)(z − c)3. In
this case, p′(z) = 4(z − 1)2

(
z −

(3
4 +

1
4 c
))

and the other nontrivial critical point,
3
4 +

1
4 c ∈ T1/2, lies on the line segment 1c. In fact, whenever p has two distinct

roots, due to repeated roots, then the critical points of p lie on the line segment
between the two roots.

The Gauss–Lucas theorem guarantees that the nontrivial critical points of p ∈ P
lie within the unit disk. But we can say more; there is a desert, the open disk{
z : z ∈ Tα with 0< α < 1

2

}
, in which critical points of p cannot occur. This desert

corresponds to the white disk in Figure 1.

Theorem 6. No polynomial p ∈ P has a critical point strictly inside T1/2.
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Proof. Let c1, c2 6= 1 be nontrivial critical points of p(z)= (z− 1)(z− r1)(z− r2)
2

with c1 ∈ Tα and c2 ∈ Tβ . As the trivial critical point lies on T2, Theorem 1 gives

1
2
+

1
α
+

1
β
= 3. (2)

Suppose for the sake of contradiction that α < 1
2 . Then

1
β
<

5
2
− 2= 1

2

implies β > 2, which violates the Gauss–Lucas theorem. �

A similar analysis leads to the following theorem.

Theorem 7. Let c1, c2 6= 1 be nontrivial critical points of p ∈ P . If c1 lies on T4/5

so does c2. Otherwise, c1 and c2 lie on opposite sides of T4/5.

Proof. Let c1 ∈ Tα and c2 ∈ Tβ . Then, (2) implies 1/α+1/β = 5
2 . Therefore, α= 4

5
if and only if β = 4

5 and α > 4
5 if and only if β < 4

5 . �

4. The second desert

Figure 1 suggests the existence of two desert regions in which critical points
cannot occur. Methods from [Frayer et al. 2014] quickly identify the desert region{
z : z ∈ Tα with 0< α < 1

2

}
. See Theorem 6. Determining the second desert, the

white region enclosed by the “bean”-shaped curve in Figure 1, requires a significant
amount of analysis.

To begin this analysis we investigate the relationship between the roots and
nontrivial critical points of a polynomial in P . Given p(z)= (z−1)(z−r1)(z−r2)

2

with a nontrivial critical point at c, we have

0= q ′(c)= 4c2
− (3r1+ 2r2+ 3)c+ r1r2+ 2r1+ r2.

Direct calculations give

r1 =
(1− 2c)r2+ 4c2

− 3c
−r2+ 3c− 2

and r2 =
(2− 3c)r1+ 4c2

− 3c
−r1+ 2c− 1

.

Definition 8. Given c ∈ C, define

f1,c(z)=
(1− 2c)z+ 4c2

− 3c
−z+ 3c− 2

and f2,c(z)=
(2− 3c)z+ 4c2

− 3c
−z+ 2c− 1

and let S1 = f1,c(T2) and S2 = f2,c(T2).

Observe that f1,c and f2,c are fractional linear transformations with f1,c(r2)= r1

and f2,c(r1)= r2. We have established the following theorem.
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Theorem 9. The polynomial p(z)= (z− 1)(z− r1)(z− r2)
2
∈ P has a nontrivial

critical point at c 6= 1 if and only if f1,c(r2)= r1 and f2,c(r1)= r2.

When c = 1,
f1,c(z)= f2,c(z)=

−z+ 1
−z+ 1

= 1.

If c 6= 1, then f1,c and f2,c are one-to-one with ( f1,c)
−1
= f2,c. Furthermore,

f1,c(r2)= r1 ∈ T2, so that r1 ∈ S1 ∩ T2, and f2,c(r1)= r2 ∈ T2, so that r2 ∈ S2 ∩ T2.
We can use these facts to classify the polynomials in P having a critical point at
c 6= 1 in the closed unit disk. We will show that |S1 ∩ T2| = |S2 ∩ T2| (Lemma 10)
and that the cardinality of S1 ∩ T2 is the number of polynomials in P having a
nontrivial critical point at c (Lemma 11).

As fractional linear transformations map circles and lines to circles and lines, S1

is a circle or line. Therefore, S1 = T2 or |S1 ∩ T2| ≤ 2. We will show that S1 6= T2.
If S1 = T2, then f1,c(T2)= T2. Since

f1,c(z)=
(1− 2c)z+ 4c2

− 3c
−z+ 3c− 2

,

Theorem 2 implies that 1− 2c = 2− 3c and 4c2− 3c = 1. The second equation
implies 4c2

− 3c = 1 and it follows that

0= 4c2
− 3c− 1= (4c+ 1)(c− 1)

so that c =− 1
4 or c = 1. However, c =− 1

4 does not satisfy the equation 1− 2c =
2− 3c, and when c = 1, we know f1,1(z) = 1 does not satisfy the hypothesis of
Theorem 2. Therefore, S1 6= T2. Likewise, as ( f1,c)

−1
= f2,c, there is no c for

which S2 = T2.

Lemma 10. If c 6= 1, then |S1 ∩ T2| = |S2 ∩ T2| ∈ {0, 1, 2}.

Proof. Without loss of generality, suppose |S1 ∩ T2| = 1 and S2 ∩ T2 = {a, b} with
a 6=b. By definition of S2, there exist a0, b0 ∈ T2 with f2,c(a0)=a, f2,c(b0)=b and
a0 6=b0. Hence, f1,c( f2,c(a0))= f1,c(a) and f1,c( f2,c(b0))= f1,c(b), which implies

f1,c(a)= a0 and f1,c(b)= b0

so that |S1 ∩ T2|> 1; a contradiction. Therefore, |S1 ∩ T2| = |S2 ∩ T2|. �

The following lemma characterizes the three possible cardinalities of S1 ∩ T2.

Lemma 11. Suppose c 6= 1.

(1) If S1 and T2 are disjoint, then no p ∈ P has a critical point at c.

(2) If S1 and T2 are tangent, then c is the nontrivial critical point of exactly one
p ∈ P .

(3) If S1 and T2 intersect in two distinct points, then c is the nontrivial critical
point of exactly two polynomials in P .
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Proof. Suppose c 6= 1. If S1 ∩ T2 =∅, then no point in C is eligible to be r1 or r2

and it follows that no p ∈ P has a critical point at c. If S1 ∩ T2 = {a}, it follows
from Lemma 10 that S2 ∩ T2 = {b}. By the definitions of S1 and S2, there exist
a0, b0 ∈ T2 with f1,c(a0)= a and f2,c(b0)= b. As ( f1,c)

−1
= f2,c, we have

a0 = f2,c(a) and b0 = f1,c(b).

Therefore a0 = b and b0 = a. By Theorem 9, c is a nontrivial critical point of
p(z)= (z−1)(z−a)(z−b)2. Furthermore, as r1∈ S1∩T2={a} and r2∈ S2∩T2={b},
no other p ∈ P has a nontrivial critical point at c.

If S1 ∩ T2 = {a, b} with a 6= b, it follows from Lemma 10 that S2 ∩ T2 = {d, e}
with d 6= e. By the definition of S1, there exist a0, b0 ∈ T2 with f1,c(a0) = a,
f1,c(b0)= b and a0 6= b0. Hence, a0 = f2,c(a) and b0 = f2,c(b) and it follows that
{a0, b0} = {d, e}. Therefore, f2,c(a) = a0 and f1,c(a0) = a. Theorem 9 implies
that c is a nontrivial critical point of p1(z) = (z − 1)(z − a)(z − a0)

2. Likewise,
f2,c(b) = b0 and f1,c(b0) = b implies that c is also a nontrivial critical point of
p2(z) = (z − 1)(z − b)(z − b0)

2. Moreover, as r1 ∈ S1 ∩ T2 = {a, b}, we have
exhausted the potential candidates for r1 and no other p ∈P has a nontrivial critical
point at c. When |S1 ∩ T2| = 2, there are exactly two polynomials in P with a
nontrivial critical point at c. �

In light of Lemmas 10 and 11, S1 alone is sufficient to characterize the nontrivial
critical points of polynomials in P.

4.1. Analyzing S1. To determine the boundary equation of the second desert region,
we need to further explore S1. Let 1 6= c ∈ C. Since

f1,c(z)=
(1− 2c)z+ 4c2

− 3c
−z+ 3c− 2

is a fractional linear transformation, S1 will be a line when there exists z ∈ T2 with
−z+ 3c− 2= 0. This occurs when

|3c− 2| = |z| = 1 ⇐⇒
∣∣c− 2

3

∣∣= 1
3 .

Therefore, S1 is a line whenever c ∈ T2/3. We now investigate an example for future
reference.

Example 12. Let c ∈ T2/3. Then, S1 is a line passing through f1,c(1)= 1
3(4c− 1)

and f1,c(−1)= (4c2
− c− 1)/(3c− 1). Moreover,

f1,c(1)− f1,c(−1)=
4− 4c
9c− 3

. (3)

Substituting c = 2
3 +

1
3 eiθ into (3) and simplifying yields Re( fc(1)− fc(−1))= 0.

When c ∈ T2/3, we have S1 is a vertical line through f1,c(1)= 1
3(4c− 1) ∈ T8/9.
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For c /∈ T2/3, we will determine the center and radius of S1. By definition, z ∈ S1

if and only if there exists a w ∈ T2 with f1,c(w) = z. That is, w = ( f1,c)
−1(z) =

f2,c(z) ∈ T2, which is true if and only if | f2,c(z)| = 1. Equivalently,∣∣∣∣(2− 3c)(z)+ 4c2
− 3c

−z+ 2c− 1

∣∣∣∣= 1.

Therefore, z ∈ S1 if and only if

|z− (2c− 1)| = |2− 3c|
∣∣∣∣z− 3c− 4c2

2− 3c

∣∣∣∣. (4)

For k 6= 1, the solution set of

|z− u| = k|z− v|

is a circle with center C and radius R satisfying

C = v+
v− u
k2− 1

and R2
= |C |2−

k2
|v|2− |u|2

k2− 1
.

Observe that when k = |2− 3c| = 1,∣∣ 2
3 − c

∣∣= 1
3 ⇐⇒ c ∈ T2/3

and by Example 12, S1 is a line. When c ∈ Tα with α 6= 2
3 , we have k = |2−3c| 6= 1

and routine calculations establish the following lemma.

Lemma 13. Suppose c 6= 1 and c∈ Tα with α 6= 2
3 . Then, S1 is a circle with center γ

and radius r given by

γ =
4c− 1

3
+

2α
9α− 6

and r =
2α

3|3α− 2|
.

We now study a special case.

Example 14. Suppose c ∈ T2 with c 6= 1. Direct calculations give

f1,c(c)= c, f1,c(1)=
4c− 1

3
and f1,c(−1)=

4c2
− c− 1

3c− 1
,

so that ∣∣ f1,c(z)− 4
3 c
∣∣= 1

3

for z ∈ {c,±1}. Therefore, for c∈ T2 with c 6= 1, we have S1 is a circle with radius 1
3

and center 4
3 c, which is externally tangent to T2 at c. See Figure 2.

When 1 6= c ∈ T2, it follows from Example 5 that the other nontrivial critical
point, c2 =

3
4 +

1
4 c ∈ T1/2, lies on the line segment 1c. Similar calculations show

that for c2 =
3
4 +

1
4 c, we have S1 is a circle with radius 1

3 and center 2
3 c, which is

internally tangent to T2 at c. See Figure 2.



496 CHRISTOPHER FRAYER AND LANDON GAUTHIER

S1

4
3 c

c
c2

T1/2

1
3 c

2
3 c

S1

c2

T1/2

1
3

Figure 2. Left: for c ∈ T2 with c 6= 1, the circle S1 is externally
tangent to T2 at c. Right: for the corresponding nontrivial critical
point, c2, the circle S1 is internally tangent to T2 at c.

4.2. When is S1 tangent to T2? Let 1 6= c ∈ C. When S1 ∩ T2 = ∅, Lemma 11
implies that c is not the critical point of any p ∈ P. To better understand this case,
we will determine when |S1 ∩ T2| = 1. That is, for what c in the unit disk will S1

and T2 be tangent? By Example 14, if c ∈ T1/2, where T1/2 is the boundary of the
first desert region, then S1 is internally tangent to T2. Additionally, if c ∈ Tα with
α < 1

2 , it follows from Theorem 6 that S1 and T2 are disjoint.
For 1 6= c ∈ Tα with 1

2 ≤ α ≤ 2, if S1 is internally tangent to T2, then

|γ | + r = 1. (5)

See Figure 3. For R = 2α/(9α− 6), the circle S1 has center γ = 1
3(4c− 1)+ R

and radius r = |R|. Substituting into (5) and setting c = x + iy gives

(4x − 1+ 3R)2+ 16y2
= 9(1− |R|)2. (6)

Since R depends upon α, we denote (6) by Dα.
Since r > 0, (5) is satisfied if and only if S1 is internally tangent to T2 or S1 = T2.

Recalling that there is no c for which S1 = T2, we obtain the following result.

r γ
S1

T2

Figure 3. When |γ | + r = 1, the circle S1 will be internally tangent to T2.
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Lemma 15. Let c 6= 1 and 1
2 ≤ α ≤ 2. Then, S1 is internally tangent to T2 if and

only if c ∈ Tα ∩ Dα.

To apply Lemma 15 we need to determine when and where the circles Tα and
Dα intersect, that is, the values of α for which Tα ∩Dα 6=∅, and the corresponding
points of intersection. Because of the |R| = |2α/(9α − 6)| appearing in (6), we
consider three cases:

(1) 1
2 ≤ α <

2
3 ;

(2) α = 2
3 ;

(3) 2
3 < α ≤ 2.

In the first case, |R| = −R and (6) becomes(
x −

(
1−

11α− 6
12α− 8

))2

+ y2
=

(
11α− 6
12α− 8

)2

.

For 1
2 ≤ α <

2
3 , circles Tα and Dα intersect if and only if α = 1

2 . When α = 1
2 ,

T1/2 = D1/2 and by Lemma 15, when c ∈ T1/2, we have S1 is internally tangent
to T2. See Example 14.

In the second case, α= 2
3 and Dα is undefined. By Example 12, when c∈ T2/3, S1

is a vertical line passing through f1,c(1)= 1
3(4c−1)∈T8/9 and S1 is not tangent to T2.

In the third case, |R| = R and (6) becomes(
x −

(
−

1
2
+

7α− 6
12α− 8

))2

+ y2
=

(
7α− 6
12α− 8

)2

.

For 2
3 <α≤ 2, the circles Tα and Dα intersect if and only if 1≤α≤ 3

2 . To determine
the values of c where S1 is internally tangent to T2, we need to find the intersection
of the circles Dα and Tα. Upon simplification, these equations become

(4x − 1+ 3R)2+ 16y2
= 9(1− R)2,

α(1− x)− (1− x)2 = y2.

By setting R = 2α/(9α− 6) and using substitution, we eventually obtain

x =
2(α− 1)2

(2α− 1)(α− 2)
and y =±

α
√
(3− 2α)(α− 1)

(2α− 1)(α− 2)
. (7)

As α varies from 1 to 3
2 , a parametric curve is formed. See Figure 4. For each

value of c on the parametric curve, S1 is internally tangent to T2. Using resultant
methods, see [Sederberg et al. 1984], the curve can be implicitized. Substituting
t = α− 1 into (7) implies 0≤ t ≤ 1

2 and

x =
2t2

2t2− t − 1
and y2

=
−2t4

− 3t3
+ t

4t4− 4t3− 3t2+ 2t + 1
, (8)
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T2

Tα

Dα

T2

Tα

Dα

Figure 4. Left: when 1≤ α≤ 3
2 , we have |Dα∩Tα| = 2. Right: as

α varies from 1 to 3
2 , parametric equations (7) trace the boundary

of the second desert.

so that

f = (2x − 2)t2
+ (−x)t + (−x)= 0,

g = (4y2
+ 2)t4

+ (−4y2
+ 3)t3

+ (−3y2)t2
+ (2y2

− 1)t + y2
= 0.

The resultant of f and g with respect to t ,

Res( f, g; t)=

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x − 2 −x −x 0 0 0
0 2x − 2 −x −x 0 0
0 0 2x − 2 −x −x 0
0 0 0 2x − 2 −x −x

4y2
+ 2 −4y2

+ 3 −3y2 2y2
− 1 y2 0

0 4y2
+ 2 −4y2

+ 3 −3y2 2y2
− 1 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

eliminates the variable t and is the implicit form of the curve. With the assistance
of Mathematica, we find

Res( f, g; t)= 2x4
− 3x3

+ x + 4x2 y2
− 3xy2

+ 2y4

and the cartesian representation of (7) is

2x4
− 3x3

+ x + 4x2 y2
− 3xy2

+ 2y4
= 0. (9)

Equation (9) represents the boundary of the second desert region.

Theorem 16. No polynomial in P has a critical point strictly inside 2x4
− 3x3

+

x + 4x2 y2
− 3xy2

+ 2y4
= 0.

Proof. Let c = x + iy ∈ Tα with α ∈
[
1, 3

2

]
. Then, c lies inside 2x4

− 3x3
+ x +

4x2 y2
− 3xy2

+ 2y4
= 0 whenever

(4x − 1+ 3R)2+ 16y2 < 9(1− R)2 and x + iy ∈ Tα.
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T2

Tα

Dα

Figure 5. The bold semicircle lies strictly inside the circle
(4x − 1+ 3R)2+ 16y2

= 9(1− R)2 and on Tα.

See Figure 5. Equivalently, (5) and (6) imply |γ |+ r < 1 and c ∈ Tα . Therefore, S1

and T2 are disjoint. By Lemma 11, c is not the critical point of any p ∈ P. �

The analysis of the circles Dα and Tα has established the following result.

Lemma 17. The circle S1 is internally tangent to T2 if and only if c = x + iy is on
T1/2 or 2x4

− 3x3
+ x + 4x2 y2

− 3xy2
+ 2y4

= 0.

Furthermore, for c ∈ Tα with 1
2 ≤ α ≤ 2, the circle S1 will be externally tangent

to T2 if and only if |γ | − r = 1. A similar, but less involved, analysis leads to the
following result.

Lemma 18. The circle S1 is externally tangent to T2 if and only if c ∈ T2.

5. Main result

We are now ready to characterize the critical points of a polynomial in P. Let O
represent the region strictly inside the closed unit disk and outside of T1/2 and
2x4
− 3x3

+ x + 4x2 y2
− 3xy2

+ 2y4
= 0. That is, O is the gray shaded region in

Figure 1. Denote the closure of O by O.

Theorem 19. Let c ∈ C.

(1) The polynomial p ∈ P has a nontrivial critical point at c = 1 if and only if
p(z)= (z− 1)2(z− r)2 or p(z)= (z− 1)3(z− r) for some r ∈ T2.

(2) If c /∈ O, there is no p ∈ P with a critical point at c.

(3) If 1 6= c ∈ O − O , there is a unique p ∈ P with a nontrivial critical point at c.

(4) If c ∈ O, there are exactly two polynomials in P with a nontrivial critical
point at c.

Proof. A polynomial p ∈ P has a nontrivial critical point at c = 1 if and only if p
has a repeated root at 1, that is, p(z)= (z− 1)2(z− r)2 or p(z)= (z− 1)3(z− r)
for some r ∈ T2. See Example 4.
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Let c lie strictly inside T1/2, strictly inside 2x4
−3x3

+x+4x2 y2
−3xy2

+2y4
=0,

or strictly outside T2. Then, it follows from Theorems 6, 16 and the Gauss–Lucas
theorem respectively, that no p ∈ P has a critical point at c.

Let c 6= 1 lie on T2, T1/2, or 2x4
−3x3

+x+4x2 y2
−3xy2

+2y4
= 0. Lemmas 17

and 18 imply that S1 is tangent to T2. Therefore, by Lemma 11, there is exactly
one p ∈ P with a nontrivial critical point at c.

Lastly, we need to show that for c ∈ O, we have |S1∩T2| = 2. This follows from
a “root dragging” argument. Without loss of generality, suppose S1 ∩ T2 =∅ with
S1 contained inside of T2. As we “drag” c to T2 along a line segment contained in O,
S1 is continuously transformed into a circle externally tangent to T2. By continuity,
there exists a c0 on the line segment with S1 internally tangent to T2. As c never
crosses T1/2 or 2x4

−3x3
+x+4x2 y2

−3xy2
+2y4

= 0, this contradicts Lemma 17.
Therefore, |S1 ∩ T2| = 2 and by Lemma 11 there are exactly two polynomials in P
with a nontrivial critical point at c. �

This completes the characterization of critical points of polynomials in P. Our
results can be extended to polynomials of the form

p(z)= (z− 1)k(z− r1)
m(z− r2)

n

with |r1| = |r2| = 1 and {k,m, n} ⊆ N. Similar to P, when m 6= n, the unit disk
contains two “desert” regions in which critical points cannot occur, and each c
inside the unit disk and outside of the desert regions is the critical point of exactly
two such polynomials. However, some questions remain unanswered. For example,
if a polynomial has four or more distinct roots, all of which lie on the unit circle,
how many desert regions will be in the unit disk?
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Zeros of polynomials with four-term recurrence
Khang Tran and Andres Zumba

(Communicated by Kenneth S. Berenhaut)

Given real numbers b, c ∈ R, we form the sequence of polynomials {Hm(z)}∞m=0
satisfying the four-term recurrence

Hm(z)+ cHm−1(z)+ bHm−2(z)+ zHm−3(z)= 0, m ≥ 1,

with the initial conditions H0(z)= 1 and H−1(z)= H−2(z)= 0. We find necessary
and sufficient conditions on b and c under which the zeros of Hm(z) are real
for all m, and provide an explicit real interval on which

⋃
∞

m=0 Z(Hm) is dense,
where Z(Hm) is the set of zeros of Hm(z).

1. Introduction

Consider the sequence of polynomials {Hm(z)}∞m=0 satisfying the finite recurrence
n∑

k=0

ak(z)Hm−k(z)= 0, m ≥ n, (1-1)

where ak(z), 1≤ k ≤ n, are complex polynomials. With certain initial conditions,
one may ask for the locations of the zeros of Hm(z) on the complex plane. There
are two common approaches to answering this question. The first describes the
asymptotic location of the zeros of the generated polynomials, while the second
provides the exact location of these zeros (or at least for the zeros of Hm(z) for
m � 1). Recent works in the first direction include [Beraha et al. 1975; 1978;
Borcea et al. 2006; Boyer and Goh 2007; 2008]. Results using the first approach
prove useful when establishing the necessary condition for Hm(z) to be hyperbolic,
as we will see in Section 3.

When considering polynomials satisfying a generic recurrence such as (1-1), the
task of finding an explicit curve where the zeros of the Hm(z) must lie is difficult.
For three-term recurrences with degree two and appropriate initial conditions, the
curve containing zeros is given in [Tran 2014]. The corresponding curve for a
three-term recurrence with degree n is given in [Tran 2015]. Among all possible

MSC2010: 30C15, 26C10, 11C08.
Keywords: generating functions, hyperbolic polynomials, recursive sequence.
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curves containing the zeros of the Hm(z), the real line plays an important role.
We say that a polynomial is hyperbolic if all of its zeros are real. There are a
lot of recent works on hyperbolic polynomials and on linear operators preserving
hyperbolicity of polynomials; see for example [Bates and Yoshida 2016; Borcea
and Brändén 2009; Bunton et al. 2015; Craven and Csordas 2004]. For studies of
sequences of hyperbolic polynomials satisfying finite recurrences, see [Eğecioğlu
et al. 2001; Forgács and Tran 2016].

The main result of this paper, Theorem 2, is the identification of necessary
and sufficient conditions on b, c ∈ R under which the zeros of the sequence of
polynomials Hm(z) satisfying the recurrence

Hm(z)+ cHm−1(z)+ bHm−2(z)+ zHm−3(z)= 0, m ≥ 1,

H0(z)≡ 1,

Hm(z)≡ 0, m < 0,

(1-2)

are real. We use the convention that the zeros of the constant zero polynomial are
real.

Definition 1. The set of zeros of Hm(z) is denoted by Z(Hm).

Theorem 2. Suppose b, c∈R, and let {Hm(z)}∞m=0 be defined as in (1-2). The zeros
of Hm(z) are real for all m if and only if one of the two conditions below holds:

(i) c = 0 and b ≥ 0.

(ii) c 6= 0 and −1≤ b/c2
≤

1
3 .

In the first case, if b > 0, then
⋃
∞

m=0 Z(Hm) is dense in (−∞,∞). In the second
case,

⋃
∞

m=0 Z(Hm) is dense in the interval

c3
·
(
−∞, 1

27

(
−2+ 9b/c2

− 2
√
(1− 3b/c2)3

)]
.

Our paper is organized as follows. In Section 2, we prove a sufficient condition
for the zeros of all Hm(z) to be real in the case c 6= 0. The case c = 0 follows from
similar arguments whose key differences will be outlined in Section 3. Finally, in
Section 4, we prove the necessary condition for the zeros of Hm(z) to be real.

2. The case c 6= 0 and −1≤ b/c2 ≤ 1
3

We write the sequence {Hm(z)}∞m=0 in (1-2) using its generating function

∞∑
m=0

Hm(z)tm
=

1
1+ ct + bt2+ zt3 . (2-1)

Substituting t→ t/c, b/c2
→ a, and z/c3

→ z, we will prove the following form
of the theorem.
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Theorem 3. Consider the sequence of polynomials {Hm(z)}∞m=0 generated by
∞∑

m=0

Hm(z)tm
=

1
1+ t + at2+ zt3 , (2-2)

where a ∈ R. If −1≤ a ≤ 1
3 then the zeros of Hm(z) lie in the real interval

Ia =
(
−∞, 1

27

(
−2+ 9a− 2

√
(1− 3a)3

)]
, (2-3)

and
⋃
∞

m=0 Z(Hm) is dense in Ia .

We will see later that the density of the union of zeros on Ia follows naturally
from the fact that Z(Hm)⊂ Ia and thus we focus on proving this claim. We note
that each value of a ∈

[
−1, 1

3

]
generates a sequence {Hm(z, a)}∞m=0. The lemma

below asserts that it suffices to prove that Z(Hm(z, a)) ⊂ Ia for all a in a dense
subset of

[
−1, 1

3

]
.

Lemma 4. Let S be a dense subset of
[
−1, 1

3

]
, and let m ∈ N be fixed. If

Z(Hm(z, a))⊂ Ia

for all a ∈ S, then
Z(Hm(z, a∗))⊂ Ia∗

for all a∗ ∈
[
−1, 1

3

]
.

Proof. Let a∗ ∈
[
−1, 1

3

]
be given. By the density of S in

[
−1, 1

3

]
, we can find

a sequence {an} in S such that an → a∗. For any z∗ /∈ Ia∗ , we will show that
Hm(z∗, a∗) 6= 0. We note that the zeros of Hm(z, an) lie in the interval Ian whose
right endpoint approaches the right endpoint of Ia∗ as n → ∞. If we let z(n)k ,
1≤ k ≤ deg Hm(z, an), be the zeros of Hm(z, an) then

|Hm(z∗, an)| = γ
(n)

deg Hm(z,an)∏
k=1

∣∣z∗− z(n)k

∣∣,
where γ (n) is the leading coefficient of Hm(z, an). Since deg Hm(z, an) ≤

⌊1
3 m
⌋

(see Lemma 5), using this product representation and the assumption that z∗ /∈ Ia , we
conclude that there is a fixed (independent of n) δ > 0 so that |Hm(z∗, an)|> δ for
all large n. Since Hm(z∗, a) is a polynomial in a for any fixed z∗, we conclude that

Hm(z∗, a∗)= lim
n→∞

Hm(z∗, an) 6= 0

and the result follows. �

Lemma 4 allows us to ignore some special values of a. In particular, we
may assume a 6= 0. In our main argument, we count the number of zeros of
Hm(z) on the interval Ia in (2-3) and show that this number is at least as big as



504 KHANG TRAN AND ANDRES ZUMBA

the degree of Hm(z). To count the number of zeros of Hm(z) on Ia , we write
z = z(θ) as a strictly increasing function of a variable θ on the interval

( 2π
3 , π

)
.

Then we construct a function gm(θ) on
( 2π

3 , π
)

with the property that θ is a
zero of gm(θ) on

( 2π
3 , π

)
if and only if z(θ) is a zero of Hm(z) on Ia . From

this construction, we count the number of zeros of gm(θ) on
(2π

3 , π
)
, which will

be the same as the number of zeros of Hm(z) on Ia by the monotonicity of the
function z(θ).

We next obtain an upper bound for the degree of Hm(z) and provide heuristic
arguments for the formulas of z(θ) and gm(θ).

Lemma 5. The degree of the polynomial Hm(z) defined by (2-2) is at most
⌊ 1

3 m
⌋

.

Proof. We rewrite (2-2) as

(1+ t + at2
+ zt3)

∞∑
m=0

Hm(z)tm
= 1.

By equating the coefficients in t of both sides, we see that the sequence {Hm(z)}∞m=0
satisfies the recurrence

Hm+3(z)+ Hm+2(z)+ aHm+1(z)+ zHm(z)= 0

and the initial conditions

H0(z)≡ 1, H1(z)≡−1, and H2(z)≡ 1− a.

The lemma follows by induction. �

2.1. Heuristic arguments. We now provide heuristic arguments to motivate the
formulas for two functions z(θ) and gm(θ) on

( 2π
3 , π

)
. Let t0 = t0(z), t1 = t1(z),

and t2 = t2(z) be the three zeros of the denominator 1+ t+at2
+ zt3. We will show

rigorously in Section 2.2 that t0, t1, t2 are nonzero and distinct with t0 = t̄1. We let
q = t1/t0 = e2iθ, θ 6= 0, π . We have

∞∑
m=0

Hm(z)tm
=

1
1+ t + at2+ zt3 =

1
z(t − t0)(t − t1)(t − t2)

.

We apply partial fractions to rewrite the generating function given above as(
z(t−t0)(t0−t1)(t0−t2)

)−1
+
(
z(t−t1)(t1−t0)(t1−t2)

)−1
+
(
z(t−t2)(t2−t0)(t2−t1)

)−1
,

which can be expanded as a series in t as

−

∞∑
m=0

1
z

((
(t0− t1)(t0− t2)tm+1

0

)−1
+
(
(t1− t0)(t1− t2)tm+1

1

)−1

+
(
(t2− t0)(t2− t1)tm+1

2

)−1
)

tm. (2-4)
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From this expression, we deduce that z is a zero of Hm(z) if and only if(
(t0− t1)(t0− t2)tm+1

0

)−1
+
(
(t1− t0)(t1− t2)tm+1

1

)−1

+
(
(t2− t0)(t2− t1)tm+1

2

)−1
= 0. (2-5)

After multiplying the left side of (2-5) by tm+3
0 , we obtain the equality(

(1− t1/t0)(1− t2/t0)
)−1
+
(
(t1/t0− 1)(t1/t0− t2/t0)(t1/t0)m+1)−1

+
(
(t2/t0− 1)(t2/t0− t1/t0)(t2/t0)m+1)−1

= 0.

Setting ζ = t2/t0eiθ, we rewrite the left side as(
(1− e2iθ )(1− ζeiθ )

)−1
+
(
(e2iθ
− 1)(e2iθ

− ζeiθ )(e2iθ )m+1)−1

+
(
(ζeiθ

− 1)(ζeiθ
− e2iθ )(ζeiθ )m+1)−1

,

or equivalently(
e2iθ (−2i sin θ)(e−iθ

− ζ )
)−1
+
(
(2i sin θ)(eiθ

− ζ )(e2iθ )m+2)−1

+
(
(ζ − e−iθ )(ζ − eiθ )(ζ )m+1(eiθ )m+3)−1

.

We multiply this expression by (ζ − e−iθ )(ζ − eiθ )ei(m+3)θ and set the summation
equal to zero to arrive at

0=
(ζ−eiθ )ei(m+1)θ

2i sin θ
+

e−iθ
−ζ

(2i sin θ)ei(m+1)θ +
1

ζm+1

=
(ζ−eiθ )ei(m+1)θ

−(ζ−e−iθ )e−i(m+1)θ

2i sin θ
+

1
ζm+1

=
ζ(ei(m+1)θ

−e−i(m+1)θ )+e−i(m+2)θ
−ei(m+2)θ

2i sin θ
+

1
ζm+1

=
ζ(2i sin((m+1)θ))−2i sin((m+2)θ)

2i sin θ
+

1
ζm+1

=
2iζ sin((m+1)θ)−2i sin((m+1)θ) cos θ−2i cos((m+1)θ) sin θ

2i sin θ
+

1
ζm+1

=
(ζ−cos θ) sin((m+1)θ)

sin θ
−cos((m+1)θ)+

1
ζm+1 . (2-6)

The last expression will serve as the definition of gm(θ); see (2-15).
We next provide a motivation for the specific form of z(θ). Since t0, t1, and t2

are the zeros of D(t, z)= 1+ t + at2
+ zt3, they satisfy the three identities

t0+ t1+ t2 =−
a
z
, t0t1+ t0t2+ t1t2 =

1
z
, and t0t1t2 =−

1
z
.
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If we divide the first equation by t0, the second by t2
0 , and the third by t3

0 then these
identities become

1+ e2iθ
+ ζeiθ

=−
a

zt0
, (2-7)

e2iθ
+ ζeiθ

+ ζe3iθ
=

1
zt2

0
, (2-8)

ζe3iθ
=−

1
zt3

0

. (2-9)

We next divide (2-7) by (2-8), and (2-8) by (2-9) to obtain

1+ e2iθ
+ ζeiθ

e2iθ + ζeiθ + ζe3iθ =−at0 and
e2iθ
+ ζeiθ

+ ζe3iθ

ζe3iθ =−t0,

from which we deduce that

(1+ e2iθ
+ ζeiθ )ζe3iθ

= a(e2iθ
+ ζeiθ

+ ζe3iθ )2.

This equation is equivalent to

(e−iθ
+ eiθ

+ ζ )ζe4iθ
= ae4iθ (1+ ζe−iθ

+ ζeiθ )2,

or simply
(2 cos θ + ζ )ζ = a(1+ 2ζ cos θ)2.

Lemma 6. For any a ∈
[
−1, 1

3

]
and θ ∈

( 2π
3 , π

)
, the zeros in ζ of the polynomial

(2 cos θ + ζ )ζ − a(1+ 2ζ cos θ)2 (2-10)
are real and distinct.

Proof. We consider the discriminant of the above polynomial in ζ :

1= (1− 4a) cos2 θ + a.

There are three possible cases depending on the value of a. If 1
4 ≤ a ≤ 1

3 , the
inequality 1> 0 comes directly from

a ≥ 4a− 1> (1− 4a) cos2 θ.

If 0≤ a < 1
4 , the claim 1> 0 is trivial since 1− 4a > 0. Finally, if a < 0, we have

1≥ 1
4(1− 4a)+ a = 1

4 .

It follows that the zeros of (2-10) are real and distinct for any a ∈
[
−1, 1

3

]
and

θ ∈
( 2π

3 , π
)
. �

To obtain a formula for z(θ), we multiply (2-7) and (2-8) to get

(1+ e2iθ
+ ζeiθ )(e2iθ

+ ζeiθ
+ ζe3iθ )=−

a
z2t3

0

,
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and divide (2-9) by this equation to arrive at

z =
ae3iθζ

(1+e2iθ+ζeiθ )(e2iθ+ζeiθ+ζe3iθ )

=
ae3iθζ

e3iθ (e−iθ+eiθ+ζ )(1+ζe−iθ+ζeiθ )
=

aζ
(2 cos θ+ζ )(1+2ζ cos θ)

. (2-11)

2.2. Rigorous proof. Motivated by Section 2.1, we now rigorously prove Theorem 3.
We start by defining the function ζ(θ) according to (2-10).

Definition 7. The function ζ(θ) is defined on
( 2π

3 , π
)

as

ζ = ζ(θ)=
(2a− 1) cos θ +

√
(1− 4a) cos2 θ + a

1− 4a cos2 θ
. (2-12)

Remark 8. From Lemma 6, ζ(θ) is a real function on
( 2π

3 , π
)

with a possible
vertical asymptote at

θ = cos−1
(
−

1
2
√

a

)
(2-13)

when 1
4 < a ≤ 1

3 . However, we note that the function 1/ζ(θ) is a real continuous
function on

( 2π
3 , π

)
.

Lemma 9. Let ζ(θ) be defined as in (2-12). Then |ζ(θ)|> 1 for every a ∈
(
−1, 1

3

)
and every θ ∈

( 2π
3 , π

)
with 1− 4a cos2 θ 6= 0.

Proof. From (2-10), we note that ζ+ := ζ(θ) and

ζ− :=
(2a− 1) cos θ −

√
(1− 4a) cos2 θ + a

1− 4a cos2 θ

are the zeros of

f (ζ ) := (2 cos θ + ζ )ζ − a(1+ 2ζ cos θ)2.

Note that

f (−1) f (1)= (−1+ 2 cos θ)(1+ 2 cos θ)(4a2 cos2 θ − (a− 1)2).

If θ ∈
( 2π

3 , π
)

and a ∈
(
−1, 1

3

)
, this product is negative since

4a2 cos2 θ − (a− 1)2 ≤ 4a2
− (a− 1)2 = (a+ 1)(3a− 1) < 0.

Thus exactly one of the zeros of the quadratic function f (ζ ) lies outside the interval
[−1, 1]. The claim follows from the fact that |ζ+|> |ζ−|. �

Although one can prove Lemma 9 for the extreme values a =−1 or a = 1
3 , that

will not be necessary by Lemma 4. Next, motivated by (2-11), we define the real
function z(θ) as follows.
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Definition 10. The function z(θ) is defined on
( 2π

3 , π
)

as

z = z(θ) :=
aζ

(2 cos θ + ζ )(1+ 2ζ cos θ)
. (2-14)

Lemma 9 implies 1+2ζ cos θ 6= 0, and by (2-10), neither is 2 cos θ+ζ . Dividing
the numerator and the denominator of (2-14) by ζ 2(θ) and combining with the fact
that 1/ζ(θ) is continuous on

( 2π
3 , π

)
, we conclude that the possible discontinuity

of z(θ) in (2-13) is removable. Finally, motivated by (2-6), we define the function
gm(θ) as follows.

Definition 11. The function gm(θ) is defined on
( 2π

3 , π
)

as

gm(θ) :=
(ζ − cos θ) sin((m+ 1)θ)

sin θ
− cos((m+ 1)θ)+

1
ζm+1 . (2-15)

We note that gm(θ) has the same vertical asymptote as that of ζ(θ) in (2-13)
when 1

4 < a ≤ 1
3 .

From Lemma 9, we see that the sign of the function gm(θ) alternates at values
of θ where cos(m+1)θ =±1. Thus by the intermediate value theorem, the function
gm(θ) has at least one root on each subinterval whose endpoints are solutions of
cos(m+1)=±1. However, in the case 1

4 ≤ a ≤ 1
3 , one of the subintervals contains

the vertical asymptote given in (2-13). The lemma below counts the number of
zeros of gm(θ) on such a subinterval.

Lemma 12. Let gm(θ) be defined as in (2-15). Suppose 1
4 < a≤ 1

3 and m ≥ 6. Then
there exists h ∈ N such that

θh−1 :=
h− 1
m+ 1

π < cos−1
(
−

1
2
√

a

)
≤

h
m+ 1

π =: θh,

where
⌊ 2

3(m+ 1)
⌋
+ 1≤ h− 1< h ≤ m+ 1. Furthermore, as long as

cos−1
(
−

1
2
√

a

)
6=

h
m+ 1

π, (2-16)

the function gm(θ) has at least two zeros on the interval

θ ∈

(
h− 1
m+ 1

π,
h

m+ 1
π

)
:= Jh (2-17)

whenever h is at most m, and at least one zero when h is m+ 1.

Proof. Suppose a ∈
( 1

4 ,
1
3

]
. Since the function cos−1(−1/(2

√
x)) is decreasing on

the interval
( 1

4 ,
1
3

]
, we conclude that

cos−1
(
−

1
2
√

a

)
≥

5π
6
.
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The existence of h now follows directly from⌊ 2
3(m+ 1)

⌋
+ 1

m+ 1
π <

5π
6
,

when m ≥ 6.
The vertical asymptote of gm(θ) at cos−1(−1/(2

√
a)) divides the interval Jh in

(2-17) into two subintervals. We will show that each subinterval contains at least
one zero of gm(θ) if h ≤ m. In the case h = m+ 1, only the subinterval on the left
contains at least one zero of gm(θ). We analyze these two subintervals in the two
cases below.

We consider the first case when θ ∈ Jh and θ < cos−1(−1/(2
√

a)). By Lemma 9
and (2-15) we see that the sign of gm(θh−1) is (−1)h. We now show that the
sign of gm(θ) is (−1)h−1 when θ → cos−1(−1/(2

√
a)). From (2-12), we ob-

serve that ζ(θ) → +∞ as θ → cos−1(−1/(2
√

a)). Since θ ∈ Jh , the sign of
sin((m + 1)θ) is (−1)h−1 and consequently the sign of gm(θ) is (−1)h−1 when
θ→ cos−1(−1/(2

√
a)) by (2-15). By the intermediate value theorem, we obtain

at least one zero of gm(θ) in this case.
Next we consider the case when θ ∈ Jh and θ > cos−1(−1/(2

√
a)). In this

case the sign of gm(θh) is (−1)h−1 if h ≤ m by Lemma 9. Since ζ(θ)→−∞ as
θ→ cos−1(−1/(2

√
a)) and the sign of sin((m+1)θ) is (−1)h−1, the sign of gm(θ)

is (−1)h as θ→ cos−1(−1/(2
√

a)). By the intermediate value theorem, we obtain
at least one zero of gm(θ) in this case if h ≤ m. �

Note that as a consequence of Lemma 4, we may assume that none of the
partitioning points under consideration are the points cos−1(−1/(2

√
a)). From the

fact that the sign of gm(θ) in (2-15) alternates when cos((m+ 1)θ)=±1, we can
find a lower bound for the number of zeros of gm(θ) on

( 2π
3 , π

)
by the intermediate

value theorem. We will relate the zeros of gm(θ) to the zeros of Hm(z) by (2-6).
However to ensure that the partial fractions procedure preceding (2-6) is rigorous,
we need the lemma below.

Lemma 13. Let θ ∈ (0, π) be such that θ 6= cos−1(−1/(2
√

a)) whenever a > 1
4 .

The zeros in t of 1+ t + at2
+ z(θ)t3 are

t0 =−
e2iθ
+ ζeiθ

+ ζe3iθ

ζe3iθ , t1 = t0e2iθ and t2/t0 = ζeiθ,

where ζ := ζ(θ) is given in (2-12).

Proof. We first note that

P(t0)= 1+t0+at2
0+zt3

0

=−
1
ζeiθ −e−2iθ

+
a

ζ 2e2iθ (1+ζe−iθ
+ζeiθ )2−

z
ζ 3e3iθ (1+ζe−iθ

+ζeiθ )3,
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where ζ is a root of the quadratic equation (2 cos θ + ζ )ζ − a(1+ 2ζ cos θ)2 = 0.
We apply the identities

(1+ ζe−iθ
+ ζeiθ )2 = (1+ 2ζ cos θ)2 = 1

a
(2 cos θ + ζ )ζ = 1

a
(e−iθ

+ eiθ
+ ζ )ζ

and

z=
aζ

(2 cos θ + ζ )(1+ 2ζ cos θ)
=

ζ 2

(1+ 2ζ cos θ)3
=

ζ 2

(1+ ζe−iθ + ζeiθ )3
, (2-18)

to conclude that P(t0)= 0. Similarly, we have

P(t1)= 1+ t0e2iθ
+ at2

0 e4iθ
+ zt3

0 e6iθ

=−
eiθ

ζ
− e2iθ

+
ae2iθ

ζ 2 (1+ ζe−iθ
+ ζeiθ )2−

ze3iθ

ζ 3 (1+ ζe−iθ
+ ζeiθ )3

=−
eiθ

ζ
− e2iθ

+
ae2iθ

ζ 2

(e−iθ
+ eiθ

+ ζ )ζ

a
−

e3iθ

ζ 3 ζ
2
= 0.

Finally,

P(t2)= P(ζ t0eiθ )

=−ζe−iθ
− ζeiθ

+ a(1+ ζe−iθ
+ ζeiθ )2− z(1+ ζe−iθ

+ ζeiθ )3

=−ζe−iθ
− ζeiθ

+ a 1
a
(e−iθ

+ eiθ
+ ζ )ζ − ζ 2

= 0. �

As a consequence of Lemma 13, if θ ∈
( 2π

3 , π
)
, then the zeros of 1+ t + at2

+

z(θ)t3 will be distinct and t1 = t̄0 since ζ ∈ R by Lemma 6. Thus we can apply the
partial fractions given in the beginning of Section 2.1. From this partial fraction
decomposition, we conclude that if θ is a zero of gm(θ), then z(θ) will be a zero of
Hm(z). In fact, we claim that each distinct zero of gm(θ) on

( 2π
3 , π

)
produces a

distinct zero of Hm(z) on Ia . This is the content of the following two lemmas.

Lemma 14. Let ζ(θ) be defined as in (2-12). The function z(θ) defined as in (2-14)
is increasing on θ ∈

( 2π
3 , π

)
.

Proof. Lemma 13 gives

−z =
1+ t0+ at2

0

t3
0

=
1+ t1+ at2

1

t3
1

.

We differentiate the three terms and obtain

dz =
3+ 2t0+ at2

0

t4
0

dt0 =
3+ 2t1+ at2

1

t4
1

dt1, (2-19)

where
dt1 = d(t0e2iθ )= e2iθdt0+ 2i t0e2iθdθ.
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If we set

f (t0)=
3+ 2t0+ at2

0

t4
0

, f (t1)=
3+ 2t1+ at2

1

t4
1

,

then f (t0)= f (t1), and consequently f (t0) f (t1)≥ 0. Thus (2-19) implies

f (t0)dt0 = f (t1)(e2iθdt0+ 2i t0e2iθdθ).

After solving this equation for dt0 and substituting it into (2-19), we obtain

dz
dθ
=

2i f (t0) f (t1)t0e2iθ

f (t0)− f (t1)e2iθ . (2-20)

With t0 = τe−iθ, τ ∈ R, we have

f (t0)− f (t1)e2iθ

2i t0e2iθ =
f (t0)e−iθ

− f (t1)eiθ

2i t0eiθ =
=( f (t0)e−iθ )

τ
=

1
τ
=

(
3+2t0+at2

0

t4
0

e−iθ
)
.

We now substitute 3=−3t0− 3at2
0 − 3zt3

0 and have

f (t0)− f (t1)e2iθ

2i t0e2iθ =
1
τ
=

(
−t0−2at2

0−3zt3
0

t4
0

e−iθ
)
=

1
τ 4=(−e2iθ

−2aτeiθ
−3zτ 2)

=
1
τ 4 (− sin 2θ−2aτ sin θ)=

2 sin θ
τ 4 (− cos θ−aτ).

In the formula for t0 in Lemma 13, we substitute τ =−1/ζ − 2 cos θ and obtain

f (t0)− f (t1)e2iθ

2i t0e2iθ =
2 sin θ
τ 4 (− cos θ + a/ζ + 2a cos θ). (2-21)

We finish this lemma by showing that − cos θ + a/ζ + 2a cos θ > 0. This strict
inequality implies that we cannot have f (t0)= f (t1)= 0 by (2-21), and the lemma
follows from (2-20). To prove the inequality, we expand and divide both sides of
(2-10) by ζ to get

ζ(1− 4a cos2 θ)+ 2 cos θ(1− 2a)− a/ζ = 0,

or equivalently,

ζ(1− 4a cos2 θ)+ cos θ(1− 2a)=− cos θ + 2a cos θ + a/ζ.

Finally, using the definition of ζ in (2-12) and Lemma 6, we calculate

ζ(1− 4a cos2 θ)+ cos θ(1− 2a)=
√
(1− 4a) cos2 θ + a > 0. �

Lemma 15. The function z(θ) as defined in (2-14) maps the interval
( 2π

3 , π
)

onto
the interior of Ia .
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Proof. Since z(θ) is a continuous increasing function on
( 2π

3 , π
)
, we only need to

evaluate the limits of z(θ) at the endpoints. Since |ζ |> 1 by Lemma 9, the formula
of ζ(θ) in (2-12) implies ζ(θ)→ 1+ as θ→

( 2π
3

)+. Consequently, (2-18) gives

lim
θ→(2π/3)+

z(θ)=−∞.

Finally, the fact that

lim
θ→π

ζ(θ)=
1− 2a+

√
1− 3a

1− 4a
,

together with (2-14), implies

lim
θ→π

z(θ)=
a(1− 2a+

√
1− 3a)(1− 4a)

(−1+ 6a+
√

1− 3a)(−1− 2
√

1− 3a)

=
a(−1+ 4a)2(−2+ 9a)+ 2a(−1+ 3a)(−1+ 4a)2

√
1− 3a

27(1− 4a)2a

=
−2+ 9a− 2

√
(1− 3a)3

27
, (2-22)

where we obtain (2-22) after multiplication and division by (−1+ 6a−
√

1− 3a)
(−1+ 2

√
1− 3a). �

Before making the final arguments connecting the results of this section, we
check the sign of gm(θ) at one of the endpoints.

Lemma 16. If −1≤ a < 1
4 , then the sign of gm(π

−) is (−1)m.

Proof. Since −1≤ a < 1
4 , one can check that

lim
θ→π−

ζ(θ)=
1− 2a+

√
1− 3a

1− 4a
≥ 1.

The result follows directly from (2-15) and the fact that

lim
θ→π−

sin((m+ 1)θ)
sin(θ)

= (m+ 1)(−1)m. �

With all the lemmas at our disposal, we produce the final arguments to finish the
proof of Theorem 3. We consider the function gm(θ) at the points

θh =
hπ

m+1
∈
( 2π

3 , π
)
,

⌊ 2
3(m+ 1)

⌋
+ 1≤ h ≤ m.

We note that the number of such values of h is

m−
⌊ 2

3(m+ 1)
⌋
=
⌊ 1

3 m
⌋
,

where the equality can be checked by considering the residue classes of m modulo 3.
From the formula of gm(θ) in (2-15) and Lemma 9, the sign of gm(θh) is (−1)h−1.
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By the intermediate value theorem and Lemma 12, there are at least
⌊1

3 m
⌋
−1 zeros

of gm(θ) on
( 2π

3 , π
)
. In fact, we claim that there are at least

⌊1
3 m
⌋

zeros of gm(θ)

on
( 2π

3 , π
)
. In the case −1 ≤ a < 1

4 , we obtain one more zero of gm(θ) from
Lemma 16. On the other hand, if 1

4 < a ≤ 1
3 , then we obtain another zero of gm(θ)

by Lemma 12. Using Lemmas 14 and 15, we obtain at least
⌊ 1

3 m
⌋

zeros of Hm(z)
on Ia . Since the degree of Hm(z) is at most

⌊ 1
3 m
⌋

by Lemma 5, all the zeros of
Hm(z) lie in Ia . Recall that we can ignore the case a = 1

4 by Lemma 4. The density
of
⋃
∞

m=0 Z(Hm(z)) in Ia comes from the density of
⋃
∞

m=0 Z(gm(θ)) in
( 2π

3 , π
)

and from z(θ) being a continuous map.

3. The case c= 0 and b≥ 0

It is trivial that if c = 0 and b = 0, then the zeros of Hm(z) are real under the
convention that the constant zero polynomial is hyperbolic. When b > 0, we make
the substitution t→ t/

√
b and reformulate the claim as follows.

Theorem 17. The zeros of the sequence of polynomials {Hm(z)}∞m=0 generated by
∞∑

m=0

Hm(z)tm
=

1
1+ t2+ zt3 (3-1)

are real, and the set
⋃
∞

m=0 Z(Hm) is dense in (−∞,∞).

The proof of Theorem 17 follows from a similar procedure as that seen in
Section 2. We will point out some key differences. The following lemma comes
directly from the recurrence relation

Hm(z)+ Hm−2(z)+ zHm−3(z)= 0

and induction.

Lemma 18. The degree of the polynomial Hm(z) generated by (3-1) is at most
1
3 m if m ≡ 0 (mod 3),
1
3(m− 4) if m ≡ 1 (mod 3),
1
3(m− 2) if m ≡ 2 (mod 3).

We define the following three functions on the interval
(
π
3 ,

π
2

)
:

ζ(θ)=−
1

2 cos θ
,

gm(θ)=
− sin((m+ 1)θ)

2 cos θ sin θ
(2+ cos 2θ)− cos((m+ 1)θ)+ (−2 cos θ)m+1,

z(θ)=
2 cos θ√

(1− 4 cos2 θ)3
.

(3-2)
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The proof of the lemma below is similar to that of Lemma 13. We leave the
detailed computations to the reader.

Lemma 19. Suppose θ ∈
(
π
3 ,

π
2

)
, ζ = ζ(θ), and z = z(θ) are defined by (3-2). The

three zeros of 1+ t2
+ z(θ)t3 are

t0 =−
e−iθ

z(2 cos θ + ζ )
, t1 = t0e2iθ, t2/t0 = ζeiθ.

Looking at z′(θ), one can check that z(θ) is strictly decreasing on the interval(
π
3 ,

π
2

)
. Using the partial fraction decomposition

∞∑
m=0

Hm(z)tm
=

1
1+ t2+ zt3 =

1
z(t − t0)(t − t1)(t − t2)

,

we conclude that for each zero of gm(θ) on the interval
(
π
3 ,

π
2

)
we obtain two zeros

±z(θ) of Hm(z). We can also check by induction that z = 0 is a simple zero of
Hm(z) if m is odd, and z = 0 is not a zero of Hm(z) when m is even. The formula
of gm(θ) implies that the sign of this function alternates when cos((m+1)θ)=±1,
that is, when,

(m+ 1)θ = kπ, 1
3(m+ 1) < k < 1

2(m+ 1).

Since gm(θ) is continuous on
(
π
3 ,

π
2

)
, we may apply the intermediate value theorem

to compute the number of zeros of gm(θ) on
(
π
3 ,

π
2

)
and the corresponding number

of zeros of Hm(z) on (−∞,∞). We will see that this number is equal to the degree
of Hm(z), thereby proving Theorem 17. We summarize the six arising cases, where
θ∗ denotes the smallest solution (m+ 1)θ = kπ on the interval

(
π
3 ,

π
2

)
.

Case 1: m ≡ 1 (mod 3) and m is even. There are

1
2 m− 1

3(m+ 2)= 1
6(m− 4)

zeros of gm(θ) on
(
π
3 ,

π
2

)
, which give 1

3(m− 4) zeros of Hm(z) on (−∞,∞).

Case 2: m ≡ 1 (mod 3) and m is odd. There are

1
2(m− 1)− 1

3(m+ 2)= 1
6(m− 7)

zeros of gm(θ) on
(
π
3 ,

π
2

)
, which give 1

3(m− 7) nonzero zeros of Hm(z). We add a
simple zero z = 0 and obtain 1

3(m− 4) zeros of Hm(z) on (−∞,∞).

Case 3: m≡ 0 (mod 3) and m is even. With the observation that limθ→π/3 gm(θ)=

−3< 0 and gm(θ
∗) > 0, we obtain

1
2 m−

( 1
3 m+ 1

)
+ 1= 1

6 m

zeros of gm(θ) on
(
π
3 ,

π
2

)
, which give 1

3 m zeros of Hm(z) on (−∞,∞).
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Case 4: m ≡ 0 (mod 3) and m is odd. With the observation that limθ→π/3 gm(θ)=

3> 0 and gm(θ
∗) < 0, we obtain

1
2(m− 1)−

( 1
3(m)+ 1

)
+ 1= 1

6(m− 3)

zeros of gm(θ) on
(
π
3 ,

π
2

)
, which give 1

3(m− 3) nonzero zeros of Hm(z). We add a
simple zero z = 0 and obtain 1

3 m zeros of Hm(z) on (−∞,∞).

Case 5: m ≡ 2 (mod 3) and m is even. With the observation that gm
(
π
3

)
= 0,

g′m
(
π
3

)
> 0, and gm(θ

∗) < 0, we obtain

1
2 m−

( 1
3(m+ 1)+ 1

)
+ 1= 1

6(m− 2)

zeros of gm(θ) on
(
π
3 ,

π
2

)
, which give 1

3(m− 2) zeros of Hm(z) on (−∞,∞).

Case 6: m ≡ 2 (mod 3) and m is odd. With the observation that gm
(
π
3

)
= 0,

g′m
(
π
3

)
< 0, and gm(θ

∗) > 0, we obtain

1
2(m− 1)−

( 1
3(m+ 1)+ 1

)
+ 1= 1

6(m− 5)

zeros of gm(θ) on
(
π
3 ,

π
2

)
, which give 1

3(m− 5) nonzero roots of Hm(z). We add a
simple zero z = 0 and obtain 1

3(m− 2) zeros of Hm(z) on (−∞,∞).
In all cases above the number of zeros of Hm(z) on (−∞,∞) corresponds to

the degree of Hm(z) and Theorem 17 follows.

4. Necessary condition for the reality of zeros

To prove the necessary condition of Theorem 2, we first show that if c= 0 and b< 0
then not all polynomials Hm(z) are hyperbolic. In fact, with the substitution t→ i t ,
we conclude that all the zeros of Hm(z) will be purely imaginary by Theorem 17.

It remains to consider the sequence Hm(z)}∞m=0 generated by
∞∑

m=0

Hm(z)tm
=

1
1+ t + at2+ zt3 ,

and to show that if a /∈
[
−1, 1

3

]
then there is an m such that not all the zeros of

Hm(z) are real. In fact, we will show if a /∈
[
−1, 1

3

]
, then Hm(z) is not hyperbolic

for all large m. To prove this, let us introduce some definitions, discussed in [Sokal
2004], related to the root distribution of a sequence of functions

fm(z)=
n∑

k=1

αk(z)βk(z)m,

where αk(z) and βk(z) are analytic in a domain D. We say that an index k is
dominant at z if |βk(z)| ≥ |βl(z)| for all l (1≤ l ≤ n). Let

Dk = {z ∈ D : k is dominant at z}.
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Let lim infZ( fm) be the set of all z ∈ D such that every neighborhood U of z
has a nonempty intersection with all but finitely many of the sets Z( fm). Let
lim supZ( fm) be the set of all z ∈ D such that every neighborhood U of z has a
nonempty intersection with all but infinitely many of the sets Z( fm). We will need
the following theorem from Sokal.

Theorem 20 [Sokal 2004, Theorem 1.5]. Let D be a domain in C, and let α1, . . . ,αn ,
β1, . . . ,βn (n ≥ 2) be analytic functions on D, none of which is identically zero.
Let us further assume a “no-degenerate-dominance” condition: there do not exist
indices k 6= k ′ such that βk ≡ ωβk′ for some constant ω with |ω| = 1 and such that
Dk (= Dk′) has nonempty interior. For each integer m ≥ 0, define fm by

fm(z)=
n∑

k=1

αk(z)βk(z)m.

Then lim inf Z( fm) = lim sup Z( fm), and a point z lies in this set if and only if
either

(i) there is a unique dominant index k at z, and αk(z)= 0, or

(ii) there are two or more dominant indices at z.

If z∗ ∈C such that the zeros in t of 1+t+at2
+z∗t3 are distinct then by the partial

fractions given in (2-4) and Theorem 20, z∗ will belong to lim infZ(Hm) when the
two smallest (in modulus) zeros of 1+ t + at2

+ z∗t3 have the same modulus. We
also note that t0(z), t1(z), and t2(z) are analytic in a neighborhood of z∗ by the
implicit function theorem. If we let ω = e2iθ, then the no-degenerate-dominance
condition in Theorem 20 comes directly from equations (2-14) and (2-12) since θ
is a fixed constant (and thus z is a fixed point which has empty interior).

Suppose a /∈
[
−1, 1

3

]
. With the setup in the previous paragraph, our main goal

is to find a z∗ /∈ R so that the zeros of 1+ t + at2
+ z∗t3 are distinct and the two

smallest (in modulus) zeros of this polynomial have the same modulus. If we can
find such a point, then z∗ ∈ lim infZ(Hm)= lim supZ(Hm). This implies that on a
small neighborhood of z∗ which does not intersect the real line, there is a nonreal
zero of Hm(z) for all large m by the definition of lim infZ(Hm). Our choice of
z∗ = z(θ∗) comes from (2-14) for a special θ∗. Unlike in Section 2, θ∗ will not
belong to

( 2π
3 , π

)
to ensure that z∗ /∈ R. In particular, we consider the two cases

a <−1 and a > 3.

The case a <−1. We select 0� θ∗< π
2 . Since

lim
θ→ π

2

ζ(θ)= i
√
|a|,

see (2-12), we can pick 0< θ∗< π
2 sufficiently close to π

2 so that ζ := ζ(θ∗) ∈C\R

and |ζ(θ∗)|> 1. By Lemma 13, we have t2 = ζ t0eiθ∗ and t1 = t0e2iθ∗. The fact that
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|ζ |> 1 and θ∗ 6= 0, π2 implies that the polynomial 1+ t+at2
+ z(θ∗)t3 has distinct

zeros and not all its zeros are real. We will show that z(θ∗) /∈ R, by contradiction.
Indeed, if z(θ∗) ∈ R then the zeros of the polynomial 1+ t + at2

+ z(θ∗)t3
∈ R[t]

satisfy t0 = t̄1 and
t2 = t0ζeiθ∗

∈ R.

This gives a contradiction because the first equation implies t0eiθ∗
∈ R, while the

second equation implies t0eiθ∗ /∈ R since ζ /∈ R.

The case a > 1
3 . We select β < cos θ∗ � 1, where β =

√
a/(4a− 1) < 1. Once

more, ∣∣ lim
cos θ→β

ζ(θ)
∣∣= {∣∣√4a2− a/(1− 2a)

∣∣ if a 6= 1
2 ,

∞ if a = 1
2 ,

where we can easily check that∣∣∣∣
√

4a2− a
1− 2a

∣∣∣∣> 1, a > 1
3 .

Thus if cos θ∗ is sufficiently close to β, then 0<θ∗< π
2 , |ζ(θ∗|>1, and |ζ(θ∗)| /∈R,

where the last statement comes from (2-12) and the inequality

(1− 4a) cos2 θ∗+ a < 0.

With 0<θ∗< π
2 , |ζ(θ∗|> 1, and |ζ(θ∗)| /∈R, we apply the same arguments given

in the previous case to complete the proof.
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Binary frames with prescribed dot products
and frame operator

Veronika Furst and Eric P. Smith

(Communicated by David Royal Larson)

This paper extends three results from classical finite frame theory over real or
complex numbers to binary frames for the vector space Zd

2 . Without the notion
of inner products or order, we provide an analog of the “fundamental inequality”
of tight frames. In addition, we prove the binary analog of the characterization
of dual frames with given inner products and of general frames with prescribed
norms and frame operator.

1. Introduction

Due to applications in signal and image processing, data compression, sampling
theory, and other problems in engineering and computer science, frames in finite-
dimensional spaces have received much attention from pure and applied mathemati-
cians alike, over the past thirty years; see, for example, Chapter 1 of [Casazza and
Kutyniok 2013]. The redundant representation of vectors inherent to frame theory
is central to the idea of efficient data storage and transmission that is robust to noise
and erasures.

Frames for Cd and Rd have been extensively studied; see [Christensen 2003]
for a standard introduction to frame theory, [Kovačević and Chebira 2007] for
applications, and [Han et al. 2007] for an exposition at the undergraduate level.
Noting the similarity between frames and error-correcting codes, Bodmann, Le,
Reza, Tobin, and Tomforde [Bodmann et al. 2009] introduced the concept of binary
frames, that is, finite frames for the vector space Zd

2 . Binary Parseval frames robust
to erasures were characterized in [Bodmann et al. 2014], and their Gramian matrices
were studied in [Baker et al. 2018]. A more generalized approach to binary frames
was taken in [Hotovy et al. 2015].

We begin with a brief introduction to classical frame theory terminology. Let
Hd denote the Hilbert space Cd or Rd.
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Definition 1.1. A (finite) frame for a Hilbert space Hd is a collection {x j }
K
j=1 of

vectors in Hd for which there exist finite constants A, B > 0 such that for every
y ∈ Hd,

A‖y‖2 ≤
K∑

j=1

|〈y, x j 〉|
2
≤ B‖y‖2.

The constants A and B are known as frame bounds. An A-tight frame is one for
which A = B, and a Parseval frame is one for which A = B = 1.

The vectors x j in the above definition need not be orthogonal or even linearly
independent. An orthonormal basis is most closely resembled by a Parseval frame,
for which we have the (not necessarily unique) reconstruction formula:

Proposition 1.2. A collection of vectors {x j }
K
j=1 in a finite-dimensional Hilbert

space Hd is a Parseval frame for Hd if and only if

y =
K∑

j=1

〈y, x j 〉 x j

for each y ∈ Hd.

Definition 1.3. Let {x j }
K
j=1 be a frame for the finite-dimensional Hilbert space Hd.

The corresponding frame operator S : Hd
→ Hd is defined by

S(x)=
K∑

j=1

〈x, x j 〉 x j .

It can be seen as the composition S =22∗ of the synthesis operator 2 :CK
→Hd

and its adjoint, the analysis operator 2∗ : Hd
→ CK, given by the formulas

2




c1

c2
...

cK


= K∑

j=1

cj x j and 2∗(x)=


〈x, x1〉

〈x, x2〉
...

〈x, xK 〉

 .
The frame operator is a bounded, invertible, self-adjoint operator satisfying

AId ≤ S ≤ B Id . Here and in what follows, we use Id to denote the d × d identity
matrix and 0d to denote the d×d zero matrix. A frame is Parseval if and only if its
frame operator is the identity operator.

From both a pure and an applied point-of-view, construction of frames with
desired properties has been a central question [Bownik and Jasper 2015]. In
particular, much attention has been paid to tight frames with prescribed norms and
general frames with both prescribed norms and frame operator. In the case of tight
frames, the answer, the so-called “fundamental frame inequality”, was provided by
Casazza, Fickus, Kovačević, Leon, and Tremain:
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Theorem 1.4 [Casazza et al. 2006, Corollary 4.11]. Given real numbers a1 ≥ a2 ≥

· · · ≥ aK > 0, K ≥ d, there exists a λ-tight frame {x j }
K
j=1 for a d-dimensional

Hilbert space Hd with prescribed norms ‖x j‖
2
= aj for 1≤ j ≤ K if and only if

λ=
1
d

K∑
j=1

aj ≥ a1.

Casazza and Leon generalized this result to frames with prescribed frame opera-
tors (the classical case is when S = λId ):

Theorem 1.5 [Casazza and Leon 2010, Theorem 2.1]. Let S be a positive self-
adjoint operator on a d-dimensional Hilbert space Hd with eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λd > 0. Given real numbers a1 ≥ a2 ≥ · · · ≥ aK > 0, K ≥ d , there is a frame
{x j }

K
j=1 for Hd with frame operator S and ‖x j‖

2
= aj for all 1≤ j ≤ K if and only if

K∑
j=1

aj =

d∑
j=1

λj and
k∑

j=1

aj ≤

k∑
j=1

λj

for every 1≤ k ≤ d.

This can be seen as a consequence of the classical Schur–Horn theorem [Bownik
and Jasper 2015]. Cahill, Fickus, Mixon, Poteet, and Strawn [Cahill et al. 2013]
introduced a so-called eigenstep method for constructing all frames with a given
frame operator and set of norms; see also [Fickus et al. 2013], and [Bownik and
Jasper 2015] for a survey of the topic.

A different approach was taken by Christensen, Powell, and Xiao [Christensen
et al. 2012], extending Theorem 1.4 to the setting of dual frame pairs. Given a
frame {x j }

K
j=1, a sequence {yj }

K
j=1 is called a dual frame if, for every y ∈ Hd,

y =
K∑

j=1

〈y, x j 〉 yj =

K∑
j=1

〈y, yj 〉 x j .

Theorem 1.6 [Christensen et al. 2012, Theorem 3.1]. Given a sequence of numbers
{aj }

K
j=1 ⊂ H with K > d , the following are equivalent:

(1) There exist dual frames {x j }
K
j=1 and {yj }

K
j=1 for Hd such that 〈x j , yj 〉 = aj for

all 1≤ j ≤ K.

(2) There exists a tight frame {x j }
K
j=1 and dual frame {yj }

K
j=1 for Hd such that

〈x j , yj 〉 = aj for all 1≤ j ≤ K.

(3)
∑K

j=1 aj = d.

The goal of this paper is to extend the theory of frames with prescribed norms
(or inner products) from the classical Hilbert spaces of Cd and Rd to the binary
space Zd

2 . We provide analogs of Theorems 1.4, 1.5, and 1.6 for binary frames.
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The challenge, of course, is the lack of an inner product, positive elements, and
guaranteed eigenvalues. Section 2 contains background material on binary frames.
In Section 3, we explore dual binary frames and prove the binary versions of
Theorems 1.6 and 1.4. In Section 4, we construct binary frames with prescribed
“norms” and frame operator, as an analog to Theorem 1.5. We conclude in Section 5
with examples and a catalog.

2. Binary frames

Bodmann, Le, Reza, Tobin, and Tomforde [Bodmann et al. 2009] introduced a
theory of frames over the d-dimensional binary space Zd

2 , where Zd
2 is the direct

product Z2⊕· · ·⊕Z2 having d≥1 copies of Z2. The main trouble in defining frames
in a binary space stems from the lack of an ordering on Z2. Without an order, there
can be no inner product defined for binary space. In spite of this, [Bodmann et al.
2009] establishes the dot product as the analog of the inner product on Rd and Cd.

Definition 2.1 [Bodmann et al. 2009]. The dot product on Zd
2 is defined as the map

( · , · ) : Zd
2 ×Zd

2 → Z2 given by

(a, b)=
d∑

n=1

a[n]b[n].

Due to the degenerate nature of the dot product (note that (a, a)= 0 need not
imply a= 0), it fails to help define a frame in the manner of Definition 1.1. However,
when working over finite-dimensional spaces in the classical case, a frame is merely
a spanning sequence of vectors. This motivates the definition of a frame in binary
space.

Definition 2.2 [Bodmann et al. 2009]. A frame is a sequence of vectors F={ f j }
K
j=1

in Zd
2 such that Span(F )= Zd

2 .

The synthesis, analysis, and frame operators of F are defined similarly to
Definition 1.3 and are denoted by 2F , 2∗F , and SF , respectively.

Definition 2.3 [Bodmann et al. 2009]. The synthesis operator of a frame F =
{ f j }

K
j=1 is the d× K matrix whose i-th column is the i-th vector in F. The analysis

operator 2∗F is the transpose of the synthesis operator. Explicitly,

2F =

 | |

f1 · · · fK

| |

 and 2∗F =

— f ∗1 —
...

— f ∗K —

 .
The frame operator is SF =2F 2

∗
F .

It is demonstrated in [Bodmann et al. 2009] that the spanning property of F is
necessary and sufficient for F to have a reconstruction identity with a dual family G.
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This fact is summed up in the following theorem and is shown by choosing a basis
consisting of d vectors in F (without loss of generality, assumed to be f1, . . . , fd )
and applying the Riesz representation theorem to the linear functionals γi defined
by γi ( f j )= δi j .

Theorem 2.4 [Bodmann et al. 2009, Theorem 2.4]. The family F = { f j }
K
j=1 in Zd

2
is a frame if and only if there exist vectors G = {gj }

K
j=1 such that, for all y ∈ Zd

2 ,

y =
K∑

j=1

(y, gj ) f j . (1)

In the proof, gi is defined as the unique vector satisfying γi (y) = (y, gi ) for
every y for 1≤ i ≤ d, and gi = 0 for d < i ≤ K . Equation (1) can be rewritten as

2F 2
∗

G = Id ,

which is equivalent to 2G 2
∗
F = Id . Consequently, G is a dual frame to F. We

will refer to the dual frame G as a natural dual to F. Note that this definition is
unrelated to the usual definition of the canonical dual in Cd or Rd as {S−1( f j )},
where S = 22∗ is the frame operator from Definition 1.3. Although SF is no
longer necessarily invertible, we still have

SF (gi )=

K∑
j=1

(gi , f j ) f j =

K∑
j=1

δi j f j = fi

for i ≤ d .
Propositions 2.5 and 2.6 make clear that the natural dual frame is unique, up to

permutation, if and only if K = d .

Proposition 2.5. Let F = { f j }
K
j=1 be a frame for Zd

2 with a natural dual frame G.
Then H is a dual frame of F if and only if 2∗H =2

∗
G +C for some K × d matrix C

satisfying 2F C = 0d .

Proof. Given the existence of a matrix C with 2∗H =2
∗
G +C and 2F C = 0d , it is

immediate that 2F 2
∗
H =2F 2

∗
G = Id . Conversely, if H is a dual frame of F, then

letting C =2∗H−2
∗
G gives 2F C =2F 2

∗
H−2F 2

∗
G = Id − Id = 0d . �

The following result is well known in Rd and Cd ; see [Han et al. 2007, Proposi-
tion 6.3]. Since the proof in that text uses the invertibility of the frame operator, we
provide a modified proof for Zd

2 here.

Proposition 2.6. Let F = { f j }
K
j=1 be a frame for Zd

2 . Then F has a unique dual
frame if and only if F is a basis.

Proof. Since a frame is a spanning set, F is a basis if and only if the vectors f j are
linearly independent and K = d. This is equivalent to the only K × d matrix C
satisfying 2F C = 0d being the zero matrix. By Proposition 2.5, this happens if
and only if the (unique choice of) natural dual G is the only dual frame of F. �
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The diagonal of the Gramian matrix 2∗F 2F is the vector whose i-th entry is
( fi , fi ); when F and H are a dual frame pair, the diagonal of the cross-Gramian
matrix 2∗F 2H is the vector whose i-th element is (hi , fi ).

Definition 2.7 [Bodmann et al. 2009]. A Parseval frame for Zd
2 is a sequence of

vectors F = { f j }
K
j=1 ⊂ Zd

2 such that

y =
K∑

j=1

(y, f j ) f j

for all y ∈ Zd
2 .

Note that a binary Parseval frame must be a binary frame. In matrix notation,
F is a Parseval frame for Zd

2 if and only if 2F 2
∗
F = Id . If a collection of vectors

{x j } ⊂ Zd
2 satisfies (xi , x j ) = 0 for all i 6= j and (xi , xi ) = 1 for all i , we say,

through a slight abuse of terminology, that {x j } is an orthonormal set. An easy,
matrix-theoretical consequence of the definitions of frame and Parseval frame is
the following proposition:

Proposition 2.8. Let F = { f j }
K
j=1 be a sequence of vectors in Zd

2 .

(1) The rows of 2F are linearly independent if and only if F is a frame.

(2) The rows of 2F are orthonormal if and only if F is a Parseval frame.

In the rest of this paper, unless otherwise noted, all vectors are elements of the
binary vector spaces Zd

2 or ZK
2 . All operations are performed modulo 2; for example,

Tr(A) represents the usual trace of a matrix A, but Tr(AB)≡ Tr(B A) (mod 2) for
two binary matrices A and B. All frames refer to binary frames. Throughout, we
denote the standard orthonormal basis in Zd

2 by {ε1, ε2, . . . , εd}.

3. Dual and Parseval binary frames

If F = { f j }
K
j=1 is a frame for Zd

2 and K = d , then the vectors { f j } must be linearly
independent and hence a basis with a unique (natural) dual G. In this case, ( f j , gj )=

γj ( f j ) = 1 for all 1 ≤ j ≤ K . In this section, we are largely concerned with the
question of which sequences α ∈ ZK

2 satisfy α[ j] = ( f j , h j ) for a dual frame pair
(F,H); so we assume K > d . We use ‖α‖0 to denote the number of nonzero entries
in a vector α, the parity of which will be fundamental in this paper.

Lemma 3.1. Let F = { f j }
K
j=1 be a frame for Zd

2 and let π be a permutation of the
set {1, 2, . . . , K }. Denote by Fπ the frame { fπ( j)}

K
j=1. Then a frame H is a dual

frame of F if and only if Hπ is a dual frame of Fπ . Furthermore, if α is a sequence
in ZK

2 , then the dual frame pair (F,H) satisfies ( f j , h j )= α[ j] for every j if and
only if the dual frame pair (Fπ ,Hπ ) satisfies ( fπ( j), hπ( j))= α[π( j)] for every j .
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Proof. Suppose 2F 2
∗
H = Id and diag(2∗H2F )= α. Then

2Fπ2
∗

Hπ
=

 | |

fπ(1) · · · fπ(K )
| |


— h∗π(1) —

...
— h∗π(K ) —


=

 | |

fπ(1) · · · fπ(K )
| |

 P∗P

— h∗π(1) —
...

— h∗π(K ) —


=

 | |

f1 · · · fK

| |

— h∗1 —
...

— h∗K —


=2F 2

∗

H = Id ,

where

P =

— ε∗
π−1(1) —
...

— ε∗
π−1(K ) —

 ,
and here we use εi to indicate the i-th standard basis vector in ZK

2 . Thus Fπ and
Hπ are dual frames and ( f j , h j )= α[ j] for each j implies ( fπ( j), hπ( j))= α[π( j)].
For the converse statements, let σ = π−1. �

The next theorem and corollary are the analog of Theorem 1.6 in binary space.

Theorem 3.2. Given α ∈ ZK
2 , there exists a dual frame pair (F,H) for Zd

2 with
( fi , hi )= α[i] for every i if and only if ‖α‖0 ≡ d (mod 2).

Proof. Suppose (F,H) is a dual frame pair for Zd
2 such that ( fi , hi ) = α[i] for

every i . Then

‖α‖0 ≡ Tr(2∗H2F )≡ Tr(2F 2
∗

H)≡ Tr(Id)≡ d (mod 2).

Conversely, suppose ‖α‖0 ≡ d (mod 2). We consider three cases.

Case 1: ‖α‖0 = d . Let f j = εj for 1≤ j ≤ d and let f j be arbitrary for d < j ≤ K .
A natural dual frame is then given by gj = εj for 1≤ j ≤ d and gj = 0 for d < j ≤ K .
Define β ∈ ZK

2 by β[ j] = 1 for 1≤ j ≤ d and β[ j] = 0 for d < j ≤ K , and let π
be a permutation of {1, 2, . . . , K } such that β[ j] = α[π( j)]. It follows that

diag(2∗G 2F )= β.

By Lemma 3.1, (Fπ−1,Gπ−1) is the desired dual frame pair with ( fπ−1( j), gπ−1( j))=

β[π−1( j)] = α[ j] for each j .

Case 2: ‖α‖0 = d + 2t for some positive integer t ≤ 1
2(K − d). Consider the

frame F defined in Case 1 above, but set f j = ε1 for all d + 1 ≤ j ≤ d + 2t . A
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natural dual frame G of F is the same as that defined in Case 1 above. Let C be
the K × d matrix whose top d × d block is 0d and rows d + 1 through d + 2t are
equal to ε∗1 . The remaining rows of C are zeros. Due to the introduction of an
even number of ε∗1’s, we see that 2F C = 0d , and hence H given by the rows of
2∗H =2

∗
G +C is a dual frame of F , by Proposition 2.5. Since diag(2∗H2F ) is the

vector composed of d + 2t ones followed by K − (d + 2t) zeros, Lemma 3.1 again
implies the existence of the desired dual frame pair.

Case 3: ‖α‖0= d−2t for some positive integer t ≤ 1
2 d . Consider again the frame F

defined in Case 1, except set fd+1 = εd+εd−1+· · ·+εd−2t+2+εd−2t+1. We again
take the same natural dual frame G as in Case 1 above. Let C be the K × d matrix
whose top d − 2t rows are zeros, rows d − 2t + 1 through d + 1 are f ∗d+1, and the
remaining rows are zeros. Then 2F C = 0d , and hence H defined by 2∗H=2

∗
G+C

is a dual frame of F. Due to the presence of an even number of ones in fd+1, we
have ( fd+1, fd+1) = 0, while ( f j , h j ) = 0 for d − 2t + 1 ≤ j ≤ d. Consequently,
diag(2∗H2F ) consist of ones in its first d−2t entries followed by K−(d−2t) zeros.
Lemma 3.1 again completes the proof. �

Corollary 3.3. Given α ∈ ZK
2 , there exists a Parseval frame F and a corresponding

dual frame H for Zd
2 with ( fi , hi )=α[i] for every i if and only if ‖α‖0≡ d (mod 2).

Proof. The necessity of the condition on ‖α‖0 follows immediately by Theorem 3.2.
The sufficiency depends on slight modifications of the frame F constructed in the
proof of Theorem 3.2. In Case 1, instead of letting f j for d < j ≤ K be arbitrary,
set each of those vectors to be the zero vector, E0, in Zd

2 . Proposition 2.8 implies
F is a Parseval frame. Similarly, the frame built in Case 2 is a Parseval frame if
we set f j = E0 for 2t + 1 ≤ j ≤ K . The frame built in Case 3 is not a Parseval
frame; however, consider instead the frame F ′ defined as f ′j = f j for 1≤ j ≤ d+1,
f ′d+2 = fd+1, and f ′j = E0 for d + 3≤ j ≤ K . By Proposition 2.8, F ′ is a Parseval
frame. Note that each column of the matrix C constructed in Case 3 is still a
(possibly trivial) dependence relation among the columns of 2F ′ , which implies
2F ′ C = 0d . Since the natural dual G of F constructed in Case 3 is still a natural
dual of F ′, the frame H with analysis operator 2∗H =2

∗
G+C is a dual frame of F ′;

moreover, ( f ′j , h j )= ( f j , h j ) for all j since hd+2 = 0. �

Remark 3.4. The Parseval frames built in Cases 1 and 2 of the above corollary, in
fact, satisfy ( f j , f j )= α[ j] for each j after a suitable permutation, as allowed by
Lemma 3.1. However, this is not true in Case 3. By constructing a Parseval frame
that satisfies ( f j , f j )= α[ j] for each j in the case when ‖α‖0 = d − 2t for some
positive integer t ≤ 1

2 d, we will prove the binary analog of Theorem 1.4.

Theorem 3.5. Given nonzero α ∈ ZK
2 , there exists a Parseval frame F for Zd

2 with
( fi , fi )= α[i] for every i if and only if ‖α‖0 ≡ d (mod 2).
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Proof. Since a Parseval frame is self-dual, the necessity of the condition on ‖α‖0
follows immediately from Theorem 3.2. For sufficiency, Remark 3.4 implies that
we need only construct Parseval frames satisfying ( fi , fi ) = α[i] for every i for
‖α‖0 < d. Since ‖α‖0 ≡ d (mod 2) and ‖α‖0 6= 0, we must have d ≥ 3.

For d = 3 and ‖α‖0 = 1, we build the Parseval frame
0

1
1

 ,
1

0
1

 ,
1

1
0

 ,
1

1
1

 ,
and note that we may permute the vectors as needed. Moreover, we may insert any
number of copies of E0 to satisfy any K > 4. By augmenting each vector with a last
entry of 0 and inserting the vector ε4 ∈ Z4

2, we construct the Parseval frame


0
1
1
0

 ,


1
0
1
0

 ,


1
1
0
0

 ,


1
1
1
0

 ,


0
0
0
1




for Z4
2 that, after suitable permutation and inclusion of copies of E0, satisfies any

‖α‖0 = 2.
Given any odd dimension d, suppose we have constructed, without zero vec-

tors, the Parseval frames F1,F3, . . . ,F d−4 for Zd−2
2 corresponding to ‖α‖0 =

1, 3, . . . , d − 4. For each odd n, create the collection F̃ n+2 by augmenting each
vector of F n with two zero entries and unioning the augmented vectors with
εd−1, εd ∈ Zd

2 . Then F̃ 3
, F̃ 5

, . . . , F̃ d−2 are Parseval frames for Zd
2 corresponding to

‖α‖0= 3, 5, . . . , d−2. Let F̃ 1
={E1+ε1, E1+ε2, . . . , E1+εd , E1}, where E1 represents

the vector with d ones in Zd
2 . Then F̃1 is a Parseval frame for Zd

2 corresponding to
‖α‖0 = 1.

If the dimension d is even, we create the Parseval frames F̃n+1 from F̃n for each
n = 1, 3, . . . , d−3, corresponding to ‖α‖0 = 2, 4, . . . , d−2: augment each vector
of F̃n with a last entry of 0 and insert the vector εd ∈ Zd

2 .
In both cases, permutation of the vectors and possible inclusion of copies of E0

finishes the proof. �

4. Binary frames with prescribed frame operator

In the previous section, we gave a necessary and sufficient condition on α ∈ ZK
2

for the existence of a Parseval frame F for Zd
2 with ( f j , f j )= α[ j] for every j. In

classical frame theory over R or C, the characterization has been broadened to frames
with a given frame operator and specified values for ‖ f j‖ (the case of a Parseval
frame is when S= I ), as in Theorem 1.5. In the classical case, the frame operator is
a symmetric, invertible, positive definite matrix. For a binary frame F, SF =2F 2

∗
F
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is not necessarily invertible; for example, the zero matrix is the frame operator of any
frame in which every vector occurs twice. Consequently, we must first characterize
those binary symmetric matrices that are frame operators of binary frames.

Throughout this section, we rely heavily on the idea of vector parity in Zd
2.

Definition 4.1. Describe a vector v ∈ Zd
2 as even if (v, v) = 0. Equivalently, a

vector is even if ‖v‖0 ≡ 0 (mod 2). If a vector is not even, then it is odd.

Lemma 4.2. (1) The sum of two even vectors is an even vector.

(2) The sum of two odd vectors is an even vector.

(3) The sum of an odd vector and an even vector is an odd vector.

Proof. This follows from the above definition and the observation that if u, v ∈ Zd
2 ,

then
(u+ v, u+ v)= (u, u)+ (u, v)+ (v, u)+ (v, v)= (u, u)+ (v, v). �

As a consequence of this lemma, we note that a collection of only even vectors
cannot span Zd

2 .
Given a d × d symmetric matrix S, we call A a factor of S if S = AA∗. We say

A is a minimal factor if it has the minimum number of columns over all factors of S.
Minimal factorization of symmetric binary matrices also arises in the computation
of the covering radius of Reed–Muller codes [Cohen et al. 1997].

Theorem 4.3 [Lempel 1975, Theorem 1]. Every binary symmetric matrix S can
be factorized as S = AA∗ for some binary matrix A. The number of columns of a
minimal factor of S is rank(S) if diag(S) 6= E0 and rank(S)+ 1 if diag(S)= E0.

Proposition 4.4. If S = AA∗ for some d × m matrix A, where m = rank(S) or
m = rank(S)+ 1, then rank(A)= rank(S).

Proof. Frobenius’ rank inequality and the fact that, for properly sized matrices C
and D, rank(C D)≤min{rank(C), rank(D)} [Horn and Johnson 1985] imply

rank(A)+ rank(A∗)≤ m+ rank(S)≤ m+ rank(A).

If m = rank(S), the above inequalities simplify to

rank(A)≤ rank(S)≤ rank(A),

and hence rank(A)= rank(S). If m = rank(S)+ 1, we instead have

2 rank(A)≤ 2 rank(S)+ 1≤ 2 rank(A)+ 1.

Since 2 rank(A)= 2 rank(S)+1 is impossible, we must have rank(A)= rank(S). �

We can use factors of a matrix to construct frames with a given frame operator.
Minimal factors correspond to minimal frames, that is, frames with the fewest
number of elements. In the previous section, we disregarded frames { f j }

K
j=1 that
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were bases since they corresponded to unique duals {gj }
K
j=1 with predetermined

values for the dot products ( f j , gj ). In this section, however, we are concerned with
( f j , f j ), so we do not rule the case K = d out of consideration.

Theorem 4.5. Let S be a d × d symmetric matrix with rank(S) = d. There exists
a (minimal) d-element frame F (i.e., basis) such that S = 2F 2

∗
F if and only if

diag(S) 6= E0. If diag(S)= E0, then there exists a (minimal) (d+1)-element frame F
such that S =2F 2

∗
F .

Proof. Suppose there is a d-element frame F such that S =2F 2
∗
F . If diag(S)= E0,

then 2F is a d×d square matrix with all even rows, which cannot span Zd
2 . Hence,

the columns of 2F cannot span Zd
2 , contradicting F being a frame. Conversely,

suppose diag(S) 6= E0. By Theorem 4.3, there exists a d × k matrix A such that
S = AA∗ and k = rank(S). By Proposition 4.4, rank(A)= rank(S)= k = d . Thus,
A is a d × d matrix whose columns span Zd

2 . Defining F by 2F = A constructs
the d-element frame.

Now suppose diag(S)= E0. By Theorem 4.3, there exists a minimal d×k factor A
such that S= AA∗ and k= rank(S)+1. By Proposition 4.4, rank(A)= rank(S)= d .
Therefore, the columns of A span Zd

2 , and we can construct a (d+1)-element frame
by taking 2F = A. �

Remark 4.6. The columns of 2F can be augmented by copies of the zero vector
without affecting S, so nonminimal frames can always be constructed from minimal
frames by including any number of copies of the zero vector.

Next we construct minimal frames whose prescribed frame operators are not of
full rank. Let r(A) and c(A) denote the number of rows and columns of a matrix A,
respectively.

Lemma 4.7 [Lempel 1975, Section 4]. Let S be a d × d symmetric matrix of
rank(S) < d. There exists a permutation matrix P and a nonsingular matrix T such
that

S = P∗
[

L M
M∗ K

]
P = P∗T

[
L 0
0 0

]
T ∗P,

where L is a symmetric matrix with r(L)= rank(L)= rank(S).

Corollary 4.8. A d × d symmetric matrix S with diag(S)= E0 must have even rank.

Proof. It is known that if rank(S) = d, then d must be even; see, for example,
[Cohen et al. 1997, Section 9.3]. Suppose rank(S) < d. The rank(S)× rank(S)
symmetric matrix L constructed in Lemma 4.7 has rank(L)= rank(S). Since the
diagonal elements of S are the diagonal elements of L and K , diag(L) = E0. So
rank(S) must be even. �

Theorem 4.9. Let S be a d × d symmetric matrix with rank(S) < d. There exists a
k-element frame F such that S =2F 2

∗
F if and only if k ≥ 2d − rank(S).
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Proof. Necessity follows from Frobenius’s rank inequality

rank(2F )+ rank(2∗F )≤ k+ rank(S)

since frames are spanning sets.
Conversely, let k be an integer such that k ≥ 2d − rank(S). Let L , P, T be the

matrices guaranteed by Lemma 4.7, and let V = P∗T. Suppose diag(L) 6= E0. By
Theorem 4.3 there exists a factor H of L such that[

L 0
0 0

]
=

[
H
0

] [
H∗ 0

]
and r(H)= c(H)= rank(L). Consider the augmented matrix

A =
[

H 0
0 B

]
,

where the columns of B are the standard basis vectors of Z
d−rank(S)
2 , each repeated

twice. Then r(A)= d, c(A)= 2d − rank(S), and AA∗ =
[ L

0
0
0

]
. By construction,

rank(A)= d . Since V is nonsingular, V A is a d× (2d− rank(S)) matrix of rank d
such that S = V AA∗V ∗. If k = 2d− rank(S), let a minimal frame F be the columns
of V A; if k > 2d− rank(S), augment the columns of V A with the necessary number
of zero vectors.

Now suppose diag(L)= E0. By Corollary 4.8, rank(L)= rank(S) must be even.
As above (by Theorem 4.3) we can factorize L with a matrix H, but now r(H)=
rank(L) and c(H)= rank(L)+ 1. In this case, we build the augmented matrix

Ã =


H
∣∣∣ 0

r1
∣∣ r2

0
∣∣∣ B̃

 ,
where r1 = [1 1 1 · · · 1] is a vector of length c(H), r2 = [1 0 0 0 · · · 0] has length
2(d − rank(S))− 1, and the columns of B̃ are the zero vector followed by the
standard basis vectors of Z

d−(rank(S)+1)
2 , each repeated twice. Since the (i, j) entry

of the product Ã Ã∗ can be viewed as the dot product of the i-th and j-th rows
of Ã, it is easy to see that Ã Ã∗ =

[ L
0

0
0

]
. Indeed, since diag(L) = E0, each row of

H is an even vector. Since c(H) is odd, the vector [r1 | r2] is even, as is each row
of B̃. By construction, rank( Ã) = d, r( Ã) = r(H)+ 1+ d − rank(S)− 1 = d,
and c( Ã) = c(H) + 1 + 2(d − rank(S) − 1) = 2d − rank(S). As above let F
consist of the columns of V Ã if k = 2d − rank(S) or these columns together with
k− 2d + rank(S) copies of the zero vector if k > 2d − rank(S). �

Theorems 4.5 and 4.9 provide minimal (and nonminimal) frames with frame
operator S, subject only to restrictions based on rank(S). In what follows, sometimes
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we will make additional assumptions on S, which allow the construction of frames
with frame operator S in different, and sometimes more intuitive, ways.

Definition 4.10. A d × d symmetric matrix S is said to be parity indicative if, for
every 1≤ i ≤ d , the diagonal entry Si i is equal to 1 if and only if the i-th row of S
is odd.

Lemma 4.11. Let S be a d × d symmetric matrix, and suppose S = AA∗ for some
d×m matrix A. If every column of A is odd, then S is parity indicative. Conversely,
if S is parity indicative and the columns of A are linearly independent, then every
column of A must be odd.

Proof. Assume S = AA∗ =
∑m

i=1 ai a∗i , where each column ai of A is odd. The
i-th row of S equals the sum of those a∗j satisfying aj [i] = 1. Suppose the i-th
row of S is odd. Then this sum must be composed of an odd number of nonzero
terms by Lemma 4.2. That is, there is an odd number of indices j having aj [i] = 1.
Consequently, the i-th row of A is an odd vector, and Si i =

∑m
j=1 aj [i]aj [i] = 1.

On the other hand, if the i-th row of S is even, then Lemma 4.2 implies that an
even number of aj have aj [i] = 1, resulting in Si i = 0.

To show the converse, assume that the columns of A are linearly independent.
Suppose some of the columns of A are even; denote the odd columns by {oj } and
the even columns by {ej }. If for every index l, we have ej [l] = 1 for an even number
of the vectors {ej }, then

∑
ej = E0, contradicting the linear independence of the

columns of A. So, assume that there exists an index i such that the number of the
vectors {ej } that satisfy ej [i] = 1 is odd. If an odd number of the vectors {oj } are
such that oj [i] = 1, then the i-th row of A is even, so Si i = 0; on the other hand,
the i-th row of S equals the sum of an odd number of rows e∗j plus an odd number
of rows o∗j , which is odd, by Lemma 4.2. If there are an even number of the vectors
{oj } with oj [i] = 1, then the i-th row of A is odd, so Si i = 1; on the other hand, the
i-th row of S equals the sum of an odd number of e∗j plus an even number of o∗j ,
which is even, by Lemma 4.2. Therefore, S is not parity indicative. �

Lemma 4.12. Let S be a d × d symmetric matrix, and suppose S = AA∗ for some
d ×m matrix A. If S is parity indicative, diag(S) = E0, and c(A) = rank(A)+ 1,
then either every column of A is even or every column of A is odd.

Proof. Denote the odd columns and even columns of A by {oj } and {ej }, respectively,
and assume both sets are nonempty. Since each row of S is even, for every i , an
even number of the vectors {oj } must have oj [i] = 1, by Lemma 4.2. It follows that∑

oj = E0; that is, Ax = E0 where x[ j] = 1 if j is the index of an odd column and
x[ j]=0 if j is the index of an even column. But since every row of A is even, AE1=E0.
Hence Ay = E0 for y = E1+ x . Since the nonzero linearly independent vectors x
and y are both contained in the null space of A, the rank-nullity theorem implies
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rank(A)≤ c(A)− 2= rank(A)+ 1− 2= rank(A)− 1,

a contradiction. Therefore, either {oj } or {ej } must be empty. �

One additional useful fact is required before we state our main result.

Lemma 4.13. (1) Suppose e, o1, o2, o3 ∈ Zd
2 are four vectors such that e is even

and o1, o2, o3 are odd. Then there exists three even vectors f1, f2, f3 and an
odd vector p such that

ee∗+ o1o∗1 + o2o∗2 + o3o∗3 = f1 f ∗1 + f2 f ∗2 + f3 f ∗3 + pp∗,

and Span{e, o1, o2, o3} = Span{ f1, f2, f3, p}.

(2) Suppose e1, e2, e3, o ∈Zd
2 are four vectors such that e1, e2, e3 are even and o is

odd. Then there exists an even vector f and odd vectors p1, p2, p3 such that

e1e∗1 + e2e∗2 + e3e∗3 + oo∗ = f f ∗+ p1 p∗1 + p2 p∗2 + p3 p∗3,

and Span{e1, e2, e3, o} = Span{ f, p1, p2, p3}.

Proof. For part (1), let f1 = e+ o1+ o2, f2 = e+ o1+ o3, f3 = e+ o2+ o3, and
p = o1+o2+o3. By Lemma 4.2, f1, f2 and f3 are even and p is odd. For part (2),
let f = e1 + e2 + e3, and p1 = e1 + e2 + o, p2 = e1 + e3 + o, p3 = e2 + e3 + o.
Lemma 4.2 implies f is even and p1, p2, p3 are odd. Easy computations show that
the given equalities are satisfied. �

We are now ready for the binary analog of Theorem 1.5: necessary and sufficient
conditions on pairs of matrices S and vectors α such that S is the frame operator of
a frame with vector “norms” determined by α. The necessary condition is easy.

Theorem 4.14. Let F = { fi }
K
i=1 be a frame such that S = 2F 2

∗
F . Let α be the

vector in ZK
2 defined by α[i] = ( fi , fi ) for each i . Then ‖α‖0 ≡ Tr(S) (mod 2).

Proof. ‖α‖0 ≡ Tr(2∗F 2F )≡ Tr(2F 2
∗

F )≡ Tr(S) (mod 2). �

Sufficiency breaks down into three possible scenarios. If S is parity indica-
tive, then a minimal frame F with frame operator S must consist of only odd
vectors or can attain any nonzero vector α with ‖α‖0 ≡ Tr(S) (mod 2) in the
sense that ( fi , fi ) = α[i] for each i ; if S is not parity indicative, a minimal
frame must contain at least one even vector. This is shown in Theorems 4.15
and 4.17. Nonminimal frames can be constructed to correspond to any nonzero α
with ‖α‖0 ≡ Tr(S) (mod 2) if S is parity indicative or to any such α with at least
one zero entry if S is not parity indicative (Corollary 4.16 and Theorem 4.17).

The frame elements can be permuted in any way without affecting the frame op-
erator. Indeed, if2F 2

∗
F = S and2F̃ =2F P∗ for some permutation matrix P, then

2F̃ 2
∗

F̃ =2F P∗P2∗F =2F 2
∗

F = S.
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Therefore, in what follows, we need only construct frames with the correct number
of odd elements, corresponding to ‖α‖0, in order to attain the dot products prescribed
by α.

Theorem 4.15. Let S be a d × d parity indicative symmetric matrix. Let K =
2d − rank(S), and let α ∈ ZK

2 be a nonzero vector with ‖α‖0 ≡ Tr(S) (mod 2).

(1) Suppose diag(S) 6= E0.

(a) If rank(S) = d, there exists a (minimal) K -element frame F such that S =
2F 2

∗
F and ( fi , fi )= α[i] for every i only if ‖α‖0 = K.

(b) If rank(S) < d, there exists a (minimal) K -element frame F such that S =
2F 2

∗
F and ( fi , fi )= α[i] for every i .

(2) Suppose diag(S)= E0. Then rank(S) < d.

(a) If rank(S) = d − 1, there exists a (minimal) K -element frame F such that
S =2F 2

∗
F and ( fi , fi )= α[i] for every i only if ‖α‖0 = K.

(b) If rank(S) < d − 1, there exists a (minimal) K -element frame F such that
S =2F 2

∗
F and ( fi , fi )= α[i] for every i .

Proof. In case (1a), Theorem 4.5 implies the existence of a K -element frame F,
where K = d, whose frame operator is S. The d columns of 2F must be lin-
early independent, so every fi must be odd, by Lemma 4.11. (As a corollary of
Theorem 4.14, we note that d ≡ Tr(S) (mod 2) for any d × d, full rank, parity
indicative symmetric matrix S with diag(S) 6= E0.)

For case (1b), instead of using the result of Theorem 4.9, we rely directly on
Theorem 4.3 to construct a d× rank(S) matrix A with rank(A)= rank(S) such that
AA∗ = S. Since the columns of A are linearly independent, Lemma 4.11 implies
that they are all odd. As in the proof of Theorem 4.9, we consider an augmented
matrix

2F =
[
A B

]
but with more care taken in the choice of B. By letting the columns of B be
d−rank(S) of the standard basis vectors not in the column space of A, each repeated
twice, we construct a frame F for ‖α‖0 = 2d − rank(S). Replacing any identical
pair of columns of B, say {εl, εl}, with {εl + εn, εl + εn} for any other basis vector
εn 6= εl , the columns of 2F still span, 2F 2

∗
F is still equal to S, but now F contains

two fewer odd vectors. In this way, we are able to construct a frame F with dot
products ( fi , fi ) satisfying any ‖α‖0= rank(S)+2m for 0≤m≤d−rank(S). (Note
that, by the proof of Theorem 4.14, rank(S) ≡ Tr(S) (mod 2).) By Lemma 4.13,
any four vectors consisting of three odds and one even can be substituted by four
vectors consisting of three evens and one odd, having the same span and no effect
on 2F 2

∗
F . Each substitution allows us to increase the number of even vectors by
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two, until only two odd vectors remain in F if rank(S) is even or one odd vector
remains if rank(S) is odd. Therefore, we can build a frame with 2d − rank(S)
elements, corresponding to any nonzero α with ‖α‖0 ≡ rank(S)≡ Tr(S) (mod 2).

Now let S be parity indicative with diag(S)= E0. Since every row of S is even,
rank(S) < d. In case (2a), Theorem 4.9 implies the existence of a (d+1)-element
frame F whose frame operator is S. Since F is a spanning set, it must contain
an odd vector. By Lemma 4.12, every vector in F must be odd. (Note that, by
Corollary 4.8, case (2a) can only occur if rank(S) is even, and hence d is odd.)

Lastly, we assume in case (2b) that rank(S) ≤ d − 2. By Theorem 4.3 and
Proposition 4.4, there exists a d × (rank(S)+ 1) matrix A with rank(A)= rank(S)
such that AA∗ = S. By Lemma 4.12, either every column of A is even or every
column is odd. Since Si i = 0 for every i , every row of A is even, and hence the
sum of the columns of A is E0. Moreover, since diag(S)= E0, we know that rank(S)
must be even, by Corollary 4.8. If every column of A were odd, then the sum of all
rank(S)+1 columns would have to be odd, by Lemma 4.2, yielding a contradiction.
So every column of A must be even.

Augment A with a column of zeros and call the resulting matrix B. Then each
column of B is even, each row of B is even, and B has an even number of columns.
Consider a row b∗n of B such that b∗n ∈ Span{b∗j : b∗j is a row of B and j 6= n}.
Replace b∗n by its complement (that is, add E1∗ for E1 ∈ Z

rank(S)+2
2 to b∗n), and call

the resulting matrix C. Then CC∗= S, rank(C)= rank(S)+1, and C is composed of
rank(S)+2 odd columns. As in case (1b), we now augment C with d−(rank(S)+1)
of the standard basis vectors not in the column space of C, each repeated twice,
to construct 2F . In doing so, we construct a frame F consisting of rank(S)+ 2+
2(d−(rank(S)+1))= 2d−rank(S) vectors, with frame operator S, such that every
element of F is odd. By Theorem 4.14, ‖α‖0 must be even. As in case (1b), we
can replace pairs of odd elements of F by even vectors until only two odd vectors
remain. �

Corollary 4.16. Let S be a d × d parity indicative symmetric matrix. Let K >

2d − rank(S). Let α ∈ ZK
2 be a nonzero vector such that ‖α‖0 ≡ Tr(S) (mod 2).

Then there exists a K -element frame F such that S = 2F 2
∗
F and ( fi , fi ) = α[i]

for every i .

Proof. Since S is parity indicative, a K -element frame with K > 2d − rank(S) is
necessarily nonminimal and can be constructed by augmenting the minimal frames
of the previous theorem. Consider first the minimal frame F guaranteed by case (1a)
of Theorem 4.15. Adding the zero vector to F allows us to apply Lemma 4.13
and create frames satisfying ( fi , fi ) = α[i] for any ‖α‖0≡Tr(S) (mod 2) with
0 < ‖α‖0 < d. Similarly, for case (2a), including the zero vector allows the
construction of a frame corresponding to any ‖α‖0 = 2, 4, 6, . . . , d + 1. In either
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case, the addition of two identical copies of odd vectors or two identical copies of
even vectors provides frames for any ‖α‖0 ≡ Tr(S) (mod 2) when ‖α‖0 ≥ d+ 2 or
‖α‖0 ≥ d+3, corresponding to cases (1a) and (2a), respectively. Similarly in cases
(1b) and (2b), the addition of two identical copies of an odd vector or two identical
copies of an even vector yield frames for 2d − rank(S) < ‖α‖0. �

Theorem 4.17. Let S be a d × d symmetric matrix that is not parity indicative. Let
K ≥ 2d− rank(S) or if rank(S)= d and diag(S)= E0, let K ≥ d+1. Let α ∈ ZK

2 be
a nonzero vector such that ‖α‖0 ≡ Tr(S) (mod 2). Then there exists a K -element
frame F such that S =2F 2

∗
F and ( fi , fi )= α[i] for every i only if ‖α‖0 6= K.

Proof. We use Theorem 4.5 and Remark 4.6 or Theorem 4.9 to construct a
K -element frame F such that 2F 2

∗
F = S. By Lemma 4.11, F must contain

an even vector. Of course, F must also contain an odd vector, in order to span. Let
m ≡ Tr(S) (mod 2) represent the number of odd elements of F and K −m be the
number of even elements. By Lemma 4.13, F may be replaced by a frame with two
more or two fewer odd vectors. Through repeated applications, we can construct a
frame F corresponding to any ‖α‖0 = 1, 3, 5, . . . , K −1 if m is odd and K is even,
any ‖α‖0=1, 3, 5, . . . , K−2 if m is odd and K is odd, any ‖α‖0=2, 4, 6, . . . , K−1
if m (≥ 2) is even and K (>m) is odd, or any ‖α‖0 = 2, 4, 6, . . . , K −2 if m (≥ 2)
is even and K (> m) is even. �

5. Examples and data

Examples. In this subsection we consider two symmetric matrices S and build
frames with various α’s to illustrate the main result of Section 4. The algorithm for
factorizing a matrix as S = AA∗ and for reducing A into a minimal factor can be
found in [Lempel 1975].

Example 5.1. Consider the identity matrix

S = I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and note that it is a symmetric, parity indicative, full-rank matrix. Any frame with
frame operator S is a Parseval frame. By Theorem 4.15, a minimal 4-element
such Parseval frame must satisfy ‖α‖0 = 4, where α[i] = ( fi , fi ) for each i ;
clearly, this follows from the Parseval frame necessarily being an orthonormal basis.
Corollary 4.16 guarantees Parseval frames in Z4

2 of length K = 5 with either two or
four odd vectors corresponding to any α∈Z5

2 with ‖α‖0=2, 4. To begin the construc-
tion, factor S as I4 I ∗4 . Appending the zero-column to the left factor yields the matrix
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2F =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,
the columns of which constitute a frame with frame operator S and α= (1, 1, 1, 1, 0).
To obtain any other α ∈ Z5

2 with ‖α‖0 = 4, simply permute the columns.
We utilize Lemma 4.13 to reduce the number of odd vectors by two. Let e be the

zero-column and o1, o2, o3 be the first, second, and third columns of 2F , respec-
tively. Replacing e, o1, o2, o3 with their counterparts constructed in Lemma 4.13
results in

2F ′ =


1 1 0 0 1
1 0 1 0 1
0 1 1 0 1
0 0 0 1 0

 .
Taking the columns of 2F ′ as frame vectors builds the frame F ′ satisfying α =
(0, 0, 0, 1, 1). Again, the columns of F ′ can be permuted to acquire any α ∈ Z5

2
with ‖α‖0= 2. Notice that a permutation of F ′ appears in the proof of Theorem 3.5.

Example 5.2. Suppose we wish to find a frame for Z3
2 of length 7 with frame

operator

S =

0 1 0
1 1 1
0 1 0

 .
Since this rank-2, symmetric matrix is not parity indicative, we apply Theorem 4.17.
In doing so, we follow the proof of Theorem 4.9 and factorize S as

S = P∗T
[

L 0
0 0

]
T ∗P,

where P is the 3× 3 identity matrix,

L =
[

0 1
1 1

]
, and T =

1 0 0
0 1 0
1 0 1

 .
Then

A =
[

H 0
0 B

]
=

1 1 0 0
1 0 0 0
0 0 1 1

 ,
and we append three zero-columns to T A to build the frame F :

2F = [T A E0 E0 E0] =

1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

 .
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Letting ( fi , fi )=α[i] for each i , we see that F satisfies α= (1, 0, 1, 1, 0, 0, 0). We
increase or decrease the number of odd vectors as desired, by applying Lemma 4.13
first to { f1, f3, f4, f5} and then to { f4, f5, f6, f7}. We obtain frames F1 and F2

satisfying

2F1 =

1 1 1 0 1 0 0
1 0 1 0 1 0 0
0 1 0 0 1 0 0

 , α1 = (0, 0, 0, 0, 1, 0, 0);

2F2 =

1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 0 1 1 1

 , α2 = (1, 0, 1, 0, 1, 1, 1).

By Theorem 4.17, ‖α‖0 = 7 is unattainable.

Data. An exhaustive search for frame operators 2F 2
∗
F and ‖α‖0 associated with

F = { f j }
K
j=1 in Zd

2 was performed, using Python 3.6, for various dimensions and
frame lengths (i.e., various d’s and K ’s). The tables contained in this subsection
hold information about the number of symmetric matrices that are frame operators
and the set of ‖α‖0 that accompany them. We include summaries for dimensions d=
2, . . . , 5. Because every frame in Zd

2 must have at least d vectors, and because
2d is the minimum number of vectors needed to ensure every symmetric matrix
is a frame operator (Theorems 4.5, 4.9), the computations were performed for
K = d, . . . , 2d.

For d = 2, . . . , 5, in the table containing information about the d-dimensional
binary space, the entry in the row labeled {αmin, αmin+2, . . . , αmin+2t} and column
labeled K = k0 shows the number of symmetric matrices S in d-dimensional space
such that for each α∈{αmin, αmin+2, . . . , αmin+2t} there exists a frame F={ f j }

k0
j=1

such that S =2F 2
∗
F and α[i] = ( fi , fi ) for 1≤ i ≤ k0.

In each table, the sum of the entries of the last column represents all possible
symmetric d×d binary matrices. There are 2d(d+1)/2 such matrices, which becomes
prohibitively large as the dimension d increases.

{‖α‖0}
K

2 3 4

{1} 2 2 0
{2} 1 3 2
{1, 3} 0 2 4
{2, 4} 0 0 2

Table 1. Number of attainable frame operators of frames for Z2
2.
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{‖α‖0}
K

3 4 5 6

{1} 12 0 0 0
{2} 12 21 0 0
{3} 4 0 0 0
{4} 0 1 0 0
{1, 3} 0 28 24 0
{2, 4} 0 6 31 24
{1, 3, 5} 0 0 8 32
{2, 4, 6} 0 0 0 8

Table 2. Number of attainable frame operators of frames for Z3
2.

{‖α‖0}
K

4 5 6 7 8

{2} 168 0 0 0 0
{4} 28 0 0 0 0
{1, 3} 224 392 0 0 0
{2, 4} 0 420 441 0 0
{1, 3, 5} 0 56 504 448 0
{2, 4, 6} 0 0 63 511 448
{1, 3, 5, 7} 0 0 0 64 512
{2, 4, 6, 8} 0 0 0 0 64

Table 3. Number of attainable frame operators of frames for Z4
2.

{‖α‖0}
K

5 6 7 8 9 10

{5} 448 0 0 0 0 0
{6} 0 28 0 0 0 0
{1, 3} 6720 0 0 0 0 0
{2, 4} 6720 13020 0 0 0 0
{1, 3, 5} 0 13888 15120 0 0 0
{2, 4, 6} 0 840 15988 15345 0 0
{1, 3, 5, 7} 0 0 1008 16368 15360 0
{2, 4, 6, 8} 0 0 0 1023 16383 15360
{1, 3, 5, 7, 9} 0 0 0 0 1024 16384
{2, 4, 6, 8, 10} 0 0 0 0 0 1024

Table 4. Number of attainable frame operators of frames for Z5
2.



BINARY FRAMES WITH PRESCRIBED DOT PRODUCTS AND FRAME OPERATOR 539

Acknowledgement

We thank Erich McAlister for his very valuable feedback.

References

[Baker et al. 2018] Z. J. Baker, B. G. Bodmann, M. G. Bullock, S. N. Branum, and J. E. McLaney,
“What is odd about binary Parseval frames?”, Involve 11:2 (2018), 219–233.

[Bodmann et al. 2009] B. G. Bodmann, M. Le, L. Reza, M. Tobin, and M. Tomforde, “Frame theory
for binary vector spaces”, Involve 2:5 (2009), 589–602. MR Zbl

[Bodmann et al. 2014] B. G. Bodmann, B. Camp, and D. Mahoney, “Binary frames, graphs and
erasures”, Involve 7:2 (2014), 151–169. MR Zbl

[Bownik and Jasper 2015] M. Bownik and J. Jasper, “Existence of frames with prescribed norms
and frame operator”, pp. 103–117 in Excursions in harmonic analysis, IV, edited by R. Balan et al.,
Birkhäuser, Cham, 2015. MR

[Cahill et al. 2013] J. Cahill, M. Fickus, D. G. Mixon, M. J. Poteet, and N. Strawn, “Constructing
finite frames of a given spectrum and set of lengths”, Appl. Comput. Harmon. Anal. 35:1 (2013),
52–73. MR Zbl

[Casazza and Kutyniok 2013] P. G. Casazza and G. Kutyniok (editors), Finite frames: theory and
applications, Birkhäuser, New York, 2013. MR Zbl

[Casazza and Leon 2010] P. G. Casazza and M. T. Leon, “Existence and construction of finite frames
with a given frame operator”, Int. J. Pure Appl. Math. 63:2 (2010), 149–157. MR Zbl

[Casazza et al. 2006] P. G. Casazza, M. Fickus, J. Kovačević, M. T. Leon, and J. C. Tremain, “A
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