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Using the work of Shelby Wilson and Doron Levy (2012), we develop a math-
ematical model to study the growth and responsiveness of cancerous tumors to
various immunotherapy treatments. We use numerical simulations and stability
analysis to predict long-term behavior of passive and aggressive tumors with a
range of antigenicities. For high antigenicity aggressive tumors, we show that
remission is only achieved after combination treatment with TGF-β inhibitors
and a peptide vaccine. Additionally, we show that combination treatment has
limited effectiveness on low antigenicity aggressive tumors and that using TGF-β
inhibition or vaccine treatment alone proves generally ineffective for all tumor
types considered. A key feature of our model is the identification of separate
cancer stem cell and tumor cell populations. Our model predicts that even
with combination treatment, failure to completely eliminate the cancer stem cell
population leads to cancer recurrence.

1. Introduction

Cancer is a leading cause of death in the world today. Although an enormous
amount of resources have been spent in search of a cure, much is still unknown
about the dynamics of how cancer cells are created and destroyed. The general
consensus is that cancer is caused by mutated cells, which are unable to die and
thus grow uncontrollably, and that cancer requires many mutations to transform
normal cells into cancer cells [Li and Neaves 2006]. However, another theory of
cancer development, which states that cancer arises from stem cells, is steadily
gaining recognition.
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1.1. Stem cells and cancer. The cancer stem cell hypothesis originated in 1855
when German pathologist Rudolf Virchow theorized that cancers arise from the
activation of inactive embryonic-like cells found in mature tissue [Huntly and
Gilliland 2005]. In 1994, John Dick’s lab showed the presence of leukemia-inducing
stem cells in the blood of mice with acute myeloid leukemia. In 2003 and 2004,
Michael Clarke’s and Peter Dirks’ labs showed the presence of cancer stem cells in
breast and brain cancer respectively [Li and Neaves 2006].

Cancer stem cells differ from other tumor cells in their potential for growth,
development and differentiation. Unlike other cells, cancer stem cells have the
ability to self-renew. A cancer stem cell divides to produce two daughter cells.
One daughter remains a stem cell while the other mutates and undergoes further
differentiation. Cancer stem cells also have a higher potential for proliferation and
a longer life span than other cells [Li and Neaves 2006].

1.2. Treatment of cancer stem cells. Another difference between cancer stem cells
and other tumor cell types is their resistance to radiation and chemotherapy. Al-
though these treatments are able to destroy the differentiated tumor cells, they are
relatively ineffective against cancer stem cells, which have mechanisms for repairing
DNA and resisting cytotoxic drugs [Deonarain et al. 2009]. Even if such treatments
cause the patient to go into remission, in many cases the cancer relapses months
or years later due to the presence of cancer stem cells [Cripe et al. 2009]. Further
complicating matters is the fact that chemotherapy and radiation have a greater
effect on normal cells than cancerous cells. Research shows that chemotherapy and
radiation cause normal hematopoietic stem cells, but not cancer stem cells, to un-
dergo senescence or premature aging. This gives the cancer cells a growth advantage
over normal cells, especially after several rounds of treatment [Jordan et al. 2006].

1.2.1. Immunotherapy. Immunotherapy is a form of treatment that aims to improve
the ability of the immune system to fight cancer cells [Stewart and Smyth 2011].
One of the major advantages of immunotherapy over traditional cancer treatments,
such as radiation and chemotherapy, is that the immune system is much more
discriminatory in its actions, targeting only cancer cells and leaving the majority
of the healthy tissues of the body unharmed [Joshi et al. 2009]. This lessens the
competitive advantage of cancer stem cells over normal stem cells after successive
rounds of treatment. Paul Ehrlich, an immunologist in the early 20th century,
was the first person to conceive the idea that the immune system is capable of
scanning for and eradicating the tumors that arise in our bodies before they become
clinically manifested [Malmberg 2004]. Although this idea was controversial at first,
experimental evidence has shown that when cancer cells proliferate to a detectable
number within the human body, the body’s immune system is activated into a
“search and destroy” mode. This spontaneous immune response is possible only if
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the cancer cells have unique surface markers called tumor specific antigens. Tumor
cells that possess these antigens are known as immunogenic cancers [Nani and
Freedman 2000]. The recognition of cancerous cells by the immune system is
called immune surveillance, and cancer progression occurs when this process fails
[Stewart and Smyth 2011].

1.2.2. TGF-β: an agent of both tumor suppression and progression. Transforming
growth factor-β (TGF-β) is a protein that acts as a strong inhibitor of cell growth
and an inducer of programmed cell death or apoptosis [Akhurst and Derynck 2001].
TGF-β is present in both normal and tumor cells. It plays a beneficial role in wound
healing, inflammation, and angiogenesis (i.e., new blood vessel formation) [Arciero
et al. 2004]. At early stages of tumorigenesis, for example, when the tumor is still
benign, TGF-β acts directly on cancer cells to suppress tumor growth [Akhurst
and Derynck 2001]. However, as time elapses, genetic changes allow TGF-β to
stimulate tumor progression by its activities on both the cancerous and nonmalignant
structural cell types of the tumor. Experimental evidence has shown that small
tumors produce little or no TGF-β, while large tumors produce large amounts of
TGF-β and rely heavily on its angiogenesis-promoting and immunosuppressive
effects.

The discovery of TGF-β’s immunosuppressive effects has led scientists to im-
plement new forms of treatment aimed to inhibit TGF-β production. Unfortunately,
several studies demonstrate that TGF-β inhibition alone is not enough to eliminate
tumors. For instance, in [Terabe et al. 2009], the authors examined whether the
inhibition of TGF-β can enhance immune responses caused by a peptide vaccine.
Their goal was to ascertain under which conditions this enhanced tumor response
slows down or stops tumor growth in mice. They found that treatment with only
anti-TGF-β had no impact on tumor growth, but anti-TGF-β did greatly enhance
the effects of the peptide vaccine. Shelby Wilson and Doron Levy [2012] then
developed a mathematical model in order to quantitatively study the results of
Terabe et al. Our model modifies the Wilson–Levy model in order to study the
effects of TGF-β inhibition and vaccine combination treatment on cancer stem
cells.

2. The Wilson–Levy model

We first present the original Wilson–Levy model for proper context. The model
follows the size of a tumor represented by T (t), the concentration of TGF-β
represented by G(t), the number of effector cells represented by E(t), the number
of regulatory T cells represented by R(t), and the number of additional T cells in a
vaccine represented by V (t). Note that we relabel the constant d from their paper
as d0 to avoid confusion with the differential operator. Wilson and Levy’s model
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[2012] is written as the following system of ordinary differential equations:

dT
dt
= a0T (1− c0T )− δ0

ET
1+ c1 B

− δ0T V, (1)

d B
dt
= a1

T 2

c2+ T 2 − d0 B, (2)

d E
dt
=

f ET
1+ c3TB

− r E − δ0 RE − δ1 E, (3)

d R
dt
= r E − δ1 R, (4)

dV
dt
= g(t)− δ1V. (5)

Equation (1) describes the growth rate of the tumor measured in mm2. The tumor
is assumed to grow logistically with a growth rate of a0 and a carrying capacity of
1/c0. The second term of (1) represents the rate at which the effector cells are able
to destroy tumor cells. The term 1+ c1 B represents the negative effect that TGF-β
production has on the effector cells’ ability to attack the tumor cells. The last term
represents the action of the vaccine on the tumor cells.

Equation (2) represents the rate of change in the concentration of TGF-β mea-
sured in ng/ml. The switch in the amount of TGF-β production between small and
large tumors is modeled by the first term in (2). The constant c2 represents the
tumor cell population at which the switch occurs and a1 is the maximum rate of
TGF-β production [Arciero et al. 2004]. The decay rate for TGF-β is given by d0.

Equation (3) represents the rate of change of the number of effector cells in the
system. The first term represents the rate at which effector cells are recruited to
attack the tumor. The expression 1+ c3TB represents the negative effect of both
TGF-β production and tumor growth on the effector cells’ ability to proliferate.
The constant f represents the tumor’s antigenicity and it measures the degree that
the tumor is able to stimulate an immune response. The number r represents the
rate at which effector cells differentiate into regulatory T cells. The effector cells
are also removed when interacting with regulatory T cells at a rate of δ0.

Equation (4) represents the number of regulatory T cells in the system. This
model assumes that only CD8+ effector cells become regulatory T cells.

Equation (5) represents the rate of change of the vaccine, which is modeled as an
addition of 5000 activated T cells at day 3. If the vaccine is given, g(t) is a constant
multiple of a Dirac delta function centered at t = 3, i.e., g(t)= g0δ(t − 3), where
g0 = 5000. If the vaccine is withheld, g(t) is identically 0. Finally, the effector
cells, regulatory T cells, and activated T cells in the vaccine are all assumed to
share a natural death rate of δ1.
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3. The modified model

We modify Wilson and Levy’s equations by modeling the rate of change of cancer
stem cells and tumor cells separately in order to better understand how the proposed
treatments affect each population. To highlight the role that TGF-β plays in tumor
growth and immunosuppression, we follow the example of [Arciero et al. 2004]
and choose to consider two scenarios of tumor development, namely:

• passive tumors that do not produce TGF-β,

• aggressive tumors that produce TGF-β.

3.1. Passive tumor model. In the passive tumor model, we follow the size of the
cancer stem cell population represented by C(t), the size of the tumorous cell
population represented by T (t), the number of effector cells represented by E(t),
and the number of T cells in the vaccine represented by V (t). Our model is written
as the following system of ordinary differential equations:

dC
dt
= kC

(
1−

C
M1

)
− hEC − hCV, (6)

dT
dt
= kC

C
M1

(
1−

T
M2

)
− hET − hT V − d1T, (7)

d E
dt
= f ET − r E − d3 E, (8)

dV
dt
= g(t)− d3V. (9)

Note that G = 0 in the passive tumor case, as these tumors do not produce TGF-β.
Equation (6) describes the growth rate of the cancer stem cells of the tumor, which
are assumed to follow logistic growth with a growth rate of k and a carrying capacity
of M1. The term hEC represents the rate at which effector cells attack the C stem
cells.

Equation (7) represents the growth rate of the tumor cells. The fraction of C stem
cells that differentiate into T tumor cells is represented by C/M1, and we assume
that the tumor cells are nondividing. Hence, if C < M1, then some of the stem cells
will produce more stem cells, while other stem cells will produce tumor cells. If
C = M1, then all of the stem cells will produce tumor cells. This behavior reflects
normal stem cell dynamics [Soltysova et al. 2005]. The carrying capacity of tumor
cells is given by M2, and we assume the tumor cells have a small natural death rate
of d1. The term hET represents the rate at which effector cells attack the tumor
cells. We assume that the effector cells are able to attack the C and T cells at the
same rate. Similarly, the terms hCV and hT V represent the detrimental effect that
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the vaccine has on both the C and T cells, and we assume that the vaccine is equally
effective against C and T cells.

Equations (8) and (9) model the effector cells and vaccine and follow directly
from equations (3) and (5), where we have ignored the contributions of regulatory
T cells as they only slightly increase the rate of decay of the effector cells and thus
do not greatly affect the dynamics of the model. We relabel the death rate of the
effector cells and vaccine as d3.

3.2. Aggressive tumor model. Our model of aggressive tumors is represented by
the following system of ordinary differential equations:

dC
dt
= kC

(
1−

C
M1

)
− h

EC
1+ c1 B

− hCV, (10)

dT
dt
= kC

C
M1

(
1−

T
M2

)
− h

ET
1+ c1 B

− hT V − d1T, (11)

d B
dt
= a

C2

c2+C2 − d2 B, (12)

d E
dt
=

f ET
1+ c3T B

− r E − d3 E, (13)

dV
dt
= g(t)− d3V. (14)

Equations (10), (11), (13) and (14) follow directly from the passive tumor model,
with the corresponding adjustments made to the interaction terms involving the
effector cells E in accordance with the Wilson–Levy model. Equation (12) repre-
sents the rate at which TGF-β is produced by the tumor. We assume that TGF-β is
only produced by cancer stem cells. There is a growing body of medical evidence
that shows the link between TGF-β production and cancer stem cells [Dreesen and
Brivanlou 2007; Tang et al. 2008; Mishra et al. 2005].

4. Simulations

In order to better understand the behavior of our models, we perform numerical
simulations using Mathematica 9’s NDSolve command. The code used will be
made available upon request. All of our simulations are measured in days. We
simulate the growth of four types of tumors, namely:

(1) low antigenicity passive tumors (LAPTs),

(2) high antigenicity passive tumors (HAPTs),

(3) low antigenicity aggressive tumors (LAATs),

(4) high antigenicity aggressive tumors (HAATs).



A MATHEMATICAL MODEL OF TREATMENT OF CANCER STEM CELLS 367

value units description

k 0.18 days −1 tumor growth rate
h 10−5 #−1 days −1 vaccine/effector cell-induced tumor death rate

M1 40 mm2 cancer stem cell carrying capacity
M2 369 mm2 tumor cell carrying capacity
d1 10−9 days −1 death rate of tumor cells

f
low: 5·10−6

(mm2)−1days−1 tumor antigenicity
high: 0.05

r 0.01 days −1 effector cell removal rate to regulatory T cells
d3 10−5 days −1 vaccine/effector cell death rate
g0 5000 # days −1 additional T cells provided by vaccine

Table 1. Parameters for passive tumor model.

4.1. Simulation of the passive tumor model. Table 1 lists the values of the param-
eters used in the passive tumor model. All parameter values are taken from Wilson
and Levy with the exception of f and k, which are taken from Kirschner and Panetta,
and M1 and d1, which are estimated based on the expected low ratio of cancer
stem cells to tumor cells and slow natural death rate of tumor cells. A parameter
sensitivity analysis is conducted in Section 7 to assess sensitivity of the model to
these parameter values. Following the example of Wilson and Levy, we assume that
there are 100 effector T cells present at the initial time point in all cases except for
the high antigenicity passive tumors, in which we assume that there are 1000 effector
T cells present (see discussion below). We choose 0.7 and 3 mm2 as our initial stem
cell and tumor cell sizes, respectively. The simulations for passive tumor growth
with no treatment for both low and high antigenicities are presented in Figure 1.

In Figure 1, the graphs in the top row show the low antigenicity of the tumor
does not prompt a response from the effector cells, and thus both the C stem cells
and T tumor cells grow to their respective carrying capacities while the number of
E effector cells at the tumor site decays over time. In contrast, the graphs in the
bottom row of Figure 1 show the behavior of a passive tumor with high antigenicity.
In this case, the effector cells undergo an oscillatory response and begin to restrict
the tumor’s growth. There is biological evidence to support these oscillations in
cancers such as chronic myeloid leukemia [Kirschner and Panetta 1998]. While
both the C and T cell populations continue to persist, the effector cells reduce the
steady-state population size of each cancer cell type to very minute levels.

4.2. Simulation of the aggressive tumor model. We next present the behavior of
our aggressive tumor model for both low and high antigenicities. In Table 2, we in-
troduce the new parameter values used in the aggressive tumor model. As before, all
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Figure 1. Passive tumor simulations. The graphs in the top row
model a tumor with low antigenicity and those in the bottom row
model one with high antigenicity.

value units description

k 0.1946 days −1 tumor growth rate
M1 40 mm2 cancer stem cell carrying capacity
M2 369 mm2 tumor cell carrying capacity
h 10−5 #−1 days −1 vaccine/effector cell-induced tumor death rate
c1 100 ml/ng TGF-β inhibition of effector cell-induced tumor death
d1 10−9 days −1 death rate of tumor cells
a 0.3 days−1 ng/ml maximum rate of TGF-β production
c2 300 (mm2)2 steepness coefficient of TGF-β production
d2 7·10−4 days −1 rate of degradation of TGF-β

f
low: 5·10−6

(mm2)−1days−1 tumor antigenicity
high: 0.62

c3 300 ml/(ng mm2) tumor cell and TGF-β inhibition of effector cell
activation

r 0.01 #−1 effector cell removal rate to regulatory T cells
d3 10−5 days −1 vaccine/effector cell death rate
g0 5000 # days −1 additional T cells provided by vaccine

Table 2. Parameters for aggressive tumor model.
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Figure 2. Aggressive tumor simulations.

values are taken from Wilson and Levy (including the slightly higher tumor growth
rate k and antigenicity f ) with the exception of M1 and d1, which are estimated as
stated above. The initial conditions for the cancer stem cell, tumor cell, and effector
cell populations remain unchanged, and we use 0.0035 ng/ml as the initial concentra-
tion of TGF-β produced by the tumor. Figure 2 shows the results of our simulations
for the aggressive tumor model with no treatment. In Figure 2, top left, the C
cancer stem cells and T tumor cells grow uninterrupted to their carrying capacities
for both low and high antigenicity levels. Similarly, Figure 2, top right, shows the
concentration of TGF-β produced by the C stem cells steadily increases regardless of
antigenicity level. The only discernible difference with respect to antigenicity occurs
with the effector cell population in Figure 2, bottom, where an initial spike in the
number of effector cells is seen in the high antigenicity case. However, due to the in-
hibitory effect of TGF-β on the effector cell population, this increase is short-lasting
and the effector cell population decays over time, failing to halt tumor progression.

5. Treatment

Following the example of [Wilson and Levy 2012], we divide treatment into three
cases in order to test their relative effectiveness on both the C and T cells, namely:
• vaccine treatment,
• TGF-β inhibition,
• combination treatment.



370 ZACHARY J. ABERNATHY AND GABRIELLE EPELLE

C Cells - No Treatment

C Cells - Vaccine

T Cells - No Treatment

T Cells - Vaccine

0 100 200 300 400
0

100

200

300

400

Time (days)

S
iz
e
o
f
T
u
m
o
r
(m
m
2
)

Figure 3. Vaccine treatment for LAPTs.

5.1. Treatment of passive tumors. Since passive tumors do not produce TGF-β,
we consider only vaccine treatment, which is modeled by the introduction of
5000 effector cells on day 3 of simulation. Figure 3 shows the results of the vaccine
treatment for a low antigenicity passive tumor.

The vaccine treatment is successful in reducing the final steady states of both the
cancer stem cells and tumor cells, but cannot clear the tumor entirely. The evolution
of the effector cell population is unaffected by the vaccine treatment, and the effector
cells decay as in Figure 1, top right. For high antigenicity passive tumors, the vaccine
treatment produces no noticeable difference in either the C , T , or E cell dynamics
over time, leading to simulations identical to those found in the graphs in the bottom
row of Figure 1. The large oscillatory response of the effector cells dominates any
contribution from the vaccine in diminishing the cancer cell populations.

5.2. Treatment of aggressive tumors. With the inclusion of TGF-β production by
cancer stem cells in aggressive tumors, we now have all three treatment options to
consider.

5.2.1. Vaccine treatment. We begin by repeating the vaccine treatment simulation
for low and high antigenicity aggressive tumors, shown in Figure 4.
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Figure 4. Vaccine treatment for LAATs and HAATs.
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Figure 5. TGF-β Inhibition for LAATs and HAATs.

For both antigenicity levels, the steady states of the cancer stem cells and tumor
cells are diminished by the vaccine, similar to the vaccine treatment of the low
antigenicity passive tumor. No appreciable difference is observed in the effector
cells or TGF-β concentration of the aggressive tumor model under the vaccine. For
a more accurate comparison between the effects of treatment in Figures 3 and 4,
the size of the C cell population at day 400 for the low antigenicity passive tumor
is approximately 28.9 mm2 and for the low/high antigenicity aggressive tumor is
approximately 29.7 mm2. Similarly, the size of the T cell population at day 400
is 62.7 mm2 for the low antigenicity passive tumor and 70.1 mm2 for the low/high
antigenicity aggressive tumor.

5.2.2. TGF-β inhibition. As in [Wilson and Levy 2012], TGF-β inhibition is mod-
eled as an increase of c2 from 300 to 7000. For both low and high antigenicity
tumors, TGF-β inhibition has a nearly negligible effect on the final tumor size,
with the C and T cells growing to their carrying capacities as in Figure 2, top left.
While the treatment succeeds in slowing down TGF-β production by the tumor (see
Figure 5), it fails to lead to any measurable reduction in cancer growth.

As a final note, while the effector cells continue to decay normally for low
antigenicity tumors (as in Figure 2, bottom), the TGF-β inhibition induces a large
initial response of the effector cells for high antigenicity tumors (see Figure 6).
Nevertheless, the effector cells have little impact on tumor growth in this case.

5.2.3. Combination treatment. Again following [Wilson and Levy 2012], combi-
nation treatment is modeled by both the increase in c2 from 300 to 7000 and the
administration of the vaccine. For low antigenicity tumors, the combination treat-
ment reduces the C and T steady-state populations to the same levels as the vaccine
treatment alone, with no noticeable benefit from adding the TGF-β inhibition. For
high antigenicity tumors, on the other hand, the combination treatment is highly
effective, reducing both the C and T populations to nearly zero by approximately
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Figure 6. Effector cells under TGF-β inhibition for HAATs.
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Figure 7. Combination treatment for LAATs and HAATs.

day 30. However, the remission is temporary and both cancer cell populations start
growing again shortly before day 300 (see Figure 7).

In Figure 8, the effector cell population also displays new behavior under the
combination treatment for high antigenicity tumors. The treatment produces a
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Figure 8. Effector cells under combination treatment for HAATs.
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Figure 9. TGF-β concentration under combination treatment for
LAATs and HAATs.

significant initial spike in effector cells, helping send the cancer into its temporary
remission. Once the cancer begins to recur around day 300, the effector cells produce
a second smaller response that is unable to slow the cancer’s growth. Finally, the
suppression of TGF-β production by the C cancer stem cells under combination
treatment is shown in Figure 9. For high antigenicity tumors in particular, the
concentration of TGF-β is greatly diminished for the first year of simulated time.

5.2.4. Summary of simulations. Table 3 provides a summary of the behavior of the
treatment outcomes on all four types of tumors. In general, our simulations reveal

no treatment vaccine TGF-β
inhibition

combination

LAPT
C , T cells grow
to CC; no E cell
response

(C, T ) =
(72%, 17%)
of CC at end

not applicable not applicable

HAPT
C , T cells reduced to minute
levels; E cells produce large
oscillatory response

not applicable not applicable

LAAT
C , T cells grow
to CC; no E cell
response

(C, T ) =
(74%, 19%)
of CC at end

C , T cells grow
to CC; no E cell
response

(C, T ) =
(74%, 19%)
of CC at end

HAAT

C , T cells grow
to CC; small
initial E cell
response

(C, T ) =
(74%, 19%)
of CC at end

C , T cells grow
to CC; large
initial E cell
response

C , T cells reduced to
nearly 0; recurrence by
day 300; very large
initial E cell response
with secondary response
when cancer recurs

Table 3. Summary of treatment outcomes for four types of tumors.
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that the vaccine treatment is overall more effective than TGF-β inhibition at com-
bating cancer growth. The cancer stem cells appear more resilient to the additional
effector cells provided by the vaccine, with a smaller reduction in carrying capacity
when compared with the tumor cells. Also, the largest effect of TGF-β inhibition is
seen when combined with the vaccine against high antigenicity aggressive tumors,
sending the cancer into remission for an extended period of time.

6. Stability analysis

6.1. Dimensionless models. To reduce the number of parameters in the model and
ease calculations, we follow the example of [Kirschner and Panetta 1998; Arciero
et al. 2004] and nondimensionalize our equations using the following scaling:

x =
C
M1
, y =

T
M2
, z = c1 B, w =

hE
r
, v =

d3V
g0
,

τ = kt, ρ =
r
k
, η =

hg0

kd3
, µ=

M1

M2
, α =

ac1

k
,

β =
c2

M2
1
, γ =

M2 f
k
, σ =

M2c3

c1
, δ1 =

d1

k
, δ2 =

d2

k
, δ3 =

d3

k
.

This results in the following scaled system of differential equations for the passive
tumor model:

dx
dτ
= x(1− x)− ρwx − ηxv, (15)

dy
dτ
= µx2(1− y)− ρwy− ηyv− δ1 y, (16)

dw
dτ
= γwy− ρw− δ3w, (17)

dv
dτ
= δ3δ(τ − 3k)− δ3v. (18)

Similarly, the scaled aggressive tumor model is given by:

dx
dτ
= x(1− x)− ρ

wx
1+ z

− ηxv, (19)

dy
dτ
= µx2(1− y)− ρ

wy
1+ z

− ηyv− δ1 y, (20)

dz
dτ
=

αx2

β + x2 − δ2z, (21)

dw
dτ
= γ

wy
1+ σ yz

− ρw− δ3w, (22)

dv
dτ
= δ3δ(τ − 3k)− δ3v. (23)



A MATHEMATICAL MODEL OF TREATMENT OF CANCER STEM CELLS 375

6.2. Stability of passive tumor model. In order to assess the stability of the passive
tumor model, we first find equilibrium solutions by setting (15)–(18) equal to 0 and
solving the resulting nonlinear algebraic system of equations. Note that the long-
term behavior of the vaccine is clearly exponential decay to zero, so we set v = 0
for the remainder of the analysis to simplify the calculation of the other equilibrium
populations. Mathematica 9 produces five equilibrium points for the remaining x ,
y, and w populations, one of which contains a negative component and is thus not
biologically meaningful, and two interior equilibrium points whose closed form
is too complex to analyze. The other two equilibria that we are able to study are

P1 : (x, y, w)= (0, 0, 0),

P2 : (x, y, w)=
(

1,
µ

δ1+µ
, 0
)
.

Next, we calculate the Jacobian matrix with v = 0:∂ f/∂x ∂ f/∂y ∂ f/∂w
∂g/∂x ∂g/∂y ∂g/∂w
∂h/∂x ∂h/∂y ∂h/∂w

 ,
where

f (x, y, w)= x(1− x)− ρwx,

g(x, y, w)= µx2(1− y)− ρwy− δ1 y,

h(x, y, w)= γwy− ρw− δ3w.

By substituting each equilibrium point into the above Jacobian, a quick calculation
of the eigenvalues of the resulting matrix reveals that the origin P1 is always unstable,
while the second equilibrium point P2 is stable if and only if

ρ+ δ3 >
γµ

δ1+µ
. (24)

Biologically, this inequality indicates that if the removal rate of the effector cells
is too high relative to the tumor’s antigenicity and size, then the effector cells will
provide an insufficient response to halt tumor growth and will eventually decay to
zero. Testing the parameters for the passive tumor model in Table 1, we find that
for low antigenicity passive tumors,

ρ+ δ3 = 0.0556,
γµ

δ1+µ
= 0.01025.

Hence inequality (24) is satisfied and P2 is stable, supporting the behavior observed
in Figure 1, top row. On the other hand, for high antigenicity passive tumors we have

ρ+ δ3 = 0.0556,
γµ

δ1+µ
= 102.5.
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Thus P2 is unstable in this case. To further investigate the long-term behav-
ior of high antigenicity passive tumors, we may substitute the parameters from
Table 1 into the symbolically intractable interior equilibrium points. We find
that there is indeed a third positive equilibrium point P3, namely (x, y, w) =
(0.0683, 0.00054, 16.7705), corresponding to steady-state populations of C=2.732,
T = .2002, and E = 16770.5. Additionally, all three eigenvalues of the Jacobian
matrix for this equilibrium have negative real part, two of which come in a complex
conjugate pair. Hence P3 is stable, and the complex-valued eigenvalues provide
evidence for the oscillatory behavior seen in Figure 1, bottom row.

6.3. Stability of aggressive tumor model. Following the procedure of the previous
section, we set (19)–(23) equal to 0 to search for steady-state solutions of the
aggressive tumor model. Mathematica 9 returns seven equilibrium solutions, but
due to the highly nonlinear nature of the model, again only two permit a local
stability analysis:

A1 : (x, y, z, w)= (0, 0, 0, 0),

A2 : (x, y, z, w)=
(

1,
µ

δ1+µ
,

α

(1+β)δ2
, 0
)
.

The Jacobian matrix of the system with v = 0 now has the form
∂ f/∂x ∂ f/∂y ∂ f/∂z ∂ f/∂w
∂g/∂x ∂g/∂y ∂g/∂z ∂g/∂w
∂h/∂x ∂h/∂y ∂h/∂z ∂h/∂w
∂ j/∂x ∂ j/∂y ∂ j/∂z ∂ j/∂w

,
where

f (x, y, z, w)= x(1− x)− ρ
wx

1+ z
,

g(x, y, z, w)= µx2(1− y)− ρ
wy

1+ z
− δ1 y,

h(w, x, y, z)=
αx2

β + x2 − δ2z,

j (x, y, z, w)= γ
wy

1+ σ yz
− ρw− δ3w.

By calculating the eigenvalues of the Jacobian at each equilibrium point, it is
easily seen that the origin A1 is again unstable, while the second equilibrium point
A2 is stable if and only if

ρ+ δ3 >
(1+β)γµδ2

αµσ + (1+β)(δ1+µ)δ2
. (25)
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This inequality establishes a threshold for the removal rate of effector cells in terms
of tumor antigenicity, size, and TGF-β production that, if exceeded, results in
exponential decay of the effector cells and growth of the cancer stem cell and tumor
cell populations to their carrying capacities. Using the parameters found in Table 2
for the aggressive tumor model, a quick calculation as before reveals that inequality
(25) is satisfied for both low and high antigenicity aggressive tumors. Hence A2 is
stable in both cases, matching our earlier observations in Figure 2.

7. Sensitivity analysis

In order to assess the sensitivity of our model to changes in parameters, we conduct
a sensitivity analysis for combination treatment of high antigenicity aggressive
tumors. More specifically, we vary each parameter over a range of percentages
centered around a baseline for 365 simulated days while leaving all other parameters
fixed and observe the effects on the resulting T tumor cell population. The results
are presented in Figure 10. In contrast with the findings in [Wilson and Levy 2012],
while the antigenicity f ranked high among the most sensitive parameters, we find
that there are three more sensitive parameters: the cancer growth rate k, the initial
injection of T cells by the vaccine g0, and the carrying capacity of the cancer stem
cells M1. It will thus be crucial to obtain highly accurate biological estimates for
these parameters to increase the applicability of the model.
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Figure 10. Sensitivity analysis for HAATs. Baseline values: k =
0.1946, M1 = 40, M2 = 369, h = 10−5, c1 = 100, d1 = 10−9,
a = 0.3, c2 = 7000, d2 = 7 · 10−4, f = 0.62, c3 = 300, r = 0.01,
d3 = 10−5, g0 = 5000.
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Figure 11. Response of cancer stem cells to treatment.
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Figure 12. Response of tumor cells to treatment.

8. Results

Figures 11 and 12 show the relative effectiveness of the vaccine, TGF-β inhibi-
tion, and combination treatments against the C and T cell populations of a high
antigenicity aggressive tumor, respectively.

Although TGF-β inhibition moderately slows down tumor growth in both cases,
the C stem cells are able to reach their carrying capacity by approximately day 60,
while the T tumor cells reach their carrying capacity by day 250. Alternatively, in
the vaccine treatment case, the vaccine is able to reduce the tumor cell population
from its carrying capacity of 369 mm2 to 70.1 mm2 (a reduction of 81%), while it is
only able to reduce the stem cell population from its carrying capacity of 40 mm2 to
29.7 mm2 (a reduction of 16%). Although remission is achieved in our simulations
of combination treatment, from Figure 11 we can see that the stem cell population is
not completely destroyed and as a result, the cancer stem cells reemerge by day 250
and prompt renewed growth of the tumor cells by day 300. Our results agree with
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Figure 13. Cancer cells approaching limit cycle for HAPT.

studies that show that unless cancer treatment is specifically directed toward cancer
stem cells, the cancer can still recur, even if there is a significant reduction in tumor
size after treatment [Jordan et al. 2006].

Conversely, in our simulation of low antigenicity aggressive tumors we show
that although combination treatment succeeds in reducing the size of the tumor,
it is unable to eliminate either the C or T cell populations. Furthermore, in our
simulations of treatment of passive tumors, we find that the vaccine produces a
similar outcome for low antigenicity tumors. The effector cell response for high
antigenicity passive tumors is sufficient to significantly reduce final tumor size, and
the vaccine treatment produces no noticeable benefit for this type of tumor.

The oscillatory behavior seen in our passive tumor model deserves further men-
tion. In [Kirschner and Panetta 1998], the authors find that in the no treatment
case, as they increase tumor antigenicity, the long-term dynamics of their model
transition from a stable node to a stable limit cycle to a stable spiral. It is interesting
to observe that in our model, the progression of these dynamics as the antigenicity
increases occurs in a somewhat different manner. Keeping all other values in Table 1
fixed, for f < 2.71 · 10−5, the equilibrium point P2 is a stable node, as in Figure 1,
top row. Biologically speaking, this implies that extremely low antigenicity tumors
are able to effectively escape immunosurveillance and grow to carrying capacity.
For 2.71 · 10−5 < f < 1.13 · 10−4, P2 becomes unstable and one of the interior
equilibria becomes a stable node. Next, for 1.14 · 10−4 < f < 0.0856, the positive
interior equilibrium transitions to a stable spiral. Thus all cell populations begin to
oscillate, and the effector cells reduce the size of the tumor to nearly zero before the
oscillations eventually dampen out. Finally, for f > 0.0857, the interior equilibrium
becomes an unstable spiral and the cell populations oscillate without bound.

Moreover, for f > 0.0445, a stable limit cycle is created. Thus for the high
antigenicity value used in our passive tumor model, f = 0.05, the long-term
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Figure 14. Limit cycle in phase space for HAPT.

dynamics either result in damped or sustained oscillations, depending on the initial
conditions. For example, if we let f = 0.05 and the initial population of effector
cells satisfy E(0)= 100, then the cell populations indeed approach the stable limit
cycle. A plot of the cancer cell populations in this case is shown in Figure 13, and
the limit cycle in phase space is presented in Figure 14.

However, if E(0) = 1000, we find that the populations approach the interior
stable spiral. This behavior was demonstrated in Figure 1, bottom row, for our high
antigenicity passive tumors.

9. Discussion

The mathematical model presented in this paper describes the dynamics of cancer
stem cells, tumor cells, and effector cells under one or more treatment protocols
designed to elicit a larger than normal response from the body’s natural immune
system. The antigenicity of the tumor as well as the aggressiveness of the tumor via
TGF-β production play a crucial role in predicting the success of such techniques.
We find that a vaccine delivering additional effector cells is able to diminish the
size of highly antigenic tumors, and pairing the vaccine with a TGF-β inhibitor
can lead to at least temporary clearance of aggressive tumors. As expected, low
antigenic tumors are able to better evade immunosurveillance and persist in the
face of immunotherapy techniques, with aggressive tumors of this type being
particularly resistant to treatment. For these tumors, other treatment options such
as chemotherapy and radiation therapy should be explored.

Qualitatively, the behavior of our model for high antigenicity aggressive tumors
agrees with the results of the Wilson–Levy model, with remission only being
achieved after combination treatment. However, our model is additionally able to
show how each of the various treatments affect the cancer stem cell and tumor cell
populations individually. We show that the cancer stem cells are more resistant to
the vaccine and experience a smaller reduction in carrying capacity when compared
to the tumor cells. In addition the re-emergence of the tumor in all cases of
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treatment of high antigenicity aggressive tumors also agrees with the stability
analysis presented by Wilson and Levy [2012], which predicts that all treatment
scenarios will eventually lead to a nonzero tumor equilibrium.

Furthermore, our simulations of passive tumors agree strongly with the results of
Arciero et al., with low antigenic tumors escaping the immune response and growing
to carrying capacity, while increasing antigenicity leads to damped oscillations that
stabilize into a small persistent tumor. The behavior of aggressive tumors with
low and high antigenicity in both models is also similar. The Arciero et al. model
[2004] simulates siRNA treatment designed to suppress TGF-β expression in tumor
cells, and as with our TGF-β inhibition strategy, they find that such a strategy alone
is insufficient to clear aggressive tumors.

Future research will include further study of the global behavior of the model,
including stability analysis of internal equilibria and identification of the basins
of attraction for various equilibria and limit cycles. The parameters of the model
should additionally be fit to experimental data to obtain a more biologically realistic
time-scale for the dynamics predicted by the model. Lastly, the model suggests
that inclusion of treatment methods that specifically target cancer stem cells could
potentially lead to tumor clearance, even for aggressive low antigenic tumors. This
possibility warrants further research by both mathematicians and biologists alike.
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