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We define a collection of functions si on the set of plane trees (or standard Young
tableaux). The functions are adapted from transpositions in the representation
theory of the symmetric group and almost form a group action. They were
motivated by local moves in combinatorial biology, which are maps that represent
a certain unfolding and refolding of RNA strands. One main result of this study
identifies a subset of local moves that we call si -local moves, and proves that
si -local moves correspond to the maps si acting on standard Young tableaux. We
also prove that the graph of si -local moves is a connected, graded poset with unique
minimal and maximal elements. We then extend this discussion to functions sC

i
that mimic reflections in the Weyl group of type C. The corresponding graph
is no longer connected, but we prove it has two connected components, one of
symmetric plane trees and the other of asymmetric plane trees. We give open
questions and possible biological interpretations.

1. Introduction

This paper analyzes a combinatorial question inspired by biology, specifically the
mathematical structure of RNA. RNA has primary structure (a sequence of letters
A, U, C, and G), secondary structure (a partial matching of the letters in the primary
structure, indicating how the RNA strand has folded and bonded to itself), and a
tertiary structure (how this folding occurs in 3-dimensional space). All of these
structures contribute to the function of the RNA strand in ways that are still being
uncovered. While our mathematical model of RNA is motivated by biology, this
paper focuses on the model’s combinatorial properties rather its direct relationship
to biology.
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There are many combinatorial models for the secondary structure of RNA,
including plane trees and standard Young tableaux of shape (n, n). We will compare
two important operations on these combinatorial objects, one from biological
applications and the other from representation theory.

The first operation is called a local move. Defined by Condon, Heitsch, and Hoos
(and in Definition 3.2), local moves model unfolding an RNA strand and refolding
it differently [Heitsch 2006]. Heitsch [ibid.] described key combinatorial statistics
of the graph whose vertices are plane trees on n edges and whose edges are local
moves; she also showed how this graph is related to other important graphs, like an
analogous graph whose vertices are noncrossing partitions.

The second operation comes from constructions of representations of the sym-
metric group Sn . One classical construction of representations of Sn uses Young
diagrams, which are staircase-shaped collections of boxes. The symmetric group acts
naturally on the set of all fillings of a Young diagram with the integers 1, 2, . . . , n
(without repeating numbers) just by permuting the numbers. It turns out that this
action on filled Young diagrams gives rise to irreducible representations of Sn; see,
e.g., [Fulton 1997; Sagan 2001] for more.

We restrict our attention to “standard” Young tableaux, which are fillings that
increase along both rows and columns. These tableaux are known to index bases
for the irreducible representations of Sn , as well as other quantities of combinatorial
interest. It is therefore natural to ask whether the symmetric group can be modified
to also act on standard Young tableaux. The answer is yes and no. In Section 2
we define a collection of maps that act on standard Young tableaux and agree as
much as possible with the action of the simple transpositions (i, i + 1) on arbitrary
fillings of Young diagrams. More precisely, the map corresponding to the simple
reflection (i, i + 1) simply exchanges i and i + 1 in the tableau when doing so
makes sense. The maps do not induce a group action of Sn because composition of
functions does not agree with multiplication in Sn . Thus these maps cannot directly
give information about Sn-representations. However, the maps are involutions,
as we confirm in Proposition 2.4. Moreover, similar maps arise in other parts of
combinatorial representation theory, including Vogan’s generalized tau invariants
[Vogan 1979; Housley et al. 2015].

We further restrict our study to the standard Young tableaux corresponding to the
partition (n, n). This partition is an especially important one in applications from
geometry [Fung 2003] to knot theory [Khovanov 2004], as well as the biological
applications discussed here. In Theorem 3.6 we prove that our maps actually
correspond to certain local moves, whose defining conditions are shown in Figure 3.
We call the local moves that arise in this way si -local moves.

Note that not all local moves correspond to the action of permutations of the
form (i, i+1). In particular the graph G A whose vertices are plane trees and whose
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edges correspond to si -local moves is different from the graph whose edges are all
local moves. The graph of all local moves is a connected graded poset for which the
cardinalities of the ranks form a symmetric, unimodal sequence; see, e.g., [Heitsch
2006]. Section 4 proves that the graph G A is still a

• connected (Proposition 4.1),

• graded poset (Proposition 4.6),

• with a unique minimal element and a unique maximal element (Proposition 4.8).

However, the grading of the graph of si -local moves does not coincide with that
of the graph of all local moves, nor does the graph of si -local moves satisfy the
symmetry of ranks that the graph of local moves does (see Remark 4.7).

Our si -local moves were constructed by analogy with the symmetric group Sn .
Thus we finish by extending the analogy to Weyl groups of other classical types,
which we can do by considering these groups as subgroups of Sn . Our main focus
is Weyl groups of type C , which give rise to type-C local moves. Like Heitsch for
local moves, we find that the plane tree model is particularly natural for type-C local
moves. Indeed we prove in Corollary 5.8 that the graph GC of plane trees under
type-C local moves contains exactly two connected components: one consisting of
symmetric plane trees and the other consisting of asymmetric plane trees.

We conclude with a brief discussion of extending si -local moves to types D
and B, as well as possible biological interpretations of all the local moves we
describe. We give open questions throughout the manuscript.

Throughout this manuscript Y denotes standard Young tableaux and T denotes
plane trees.

2. Maps on tableaux corresponding to simple transpositions

In this section we describe a set of involutions on the set of standard Young tableaux
of shape (n, n) that are indexed by simple reflections. Our maps are inspired by a
well-known Sn-action from classical representation theory that gives all irreducible
representations of the symmetric group. Our maps do not generate a group action,
as we show in Remark 2.6. However, because they are involutions, our maps induce
a graph whose vertices are the set of standard Young tableaux of shape (n, n) and
whose edges correspond to the image under each map. We define this graph in this
section. In subsequent sections we study combinatorial properties of the graph,
prove that these maps agree with operations on plane trees from combinatorial
biology, and discuss how to change the Lie type of our maps.

To begin we recall the definition of Young tableaux and sketch their relationship
to the representation theory of the symmetric group Sn .
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Definition 2.1. Let λ be a partition of n. A Young diagram of shape λ is a collection
of λ1 boxes in the top row, λ2 boxes in the second row, and so on, aligned on the
top and the left. A standard Young tableau Y of shape λ is a filling of the Young
diagram with the integers {1, 2, . . . , n} without repetition so that each row increases
left-to-right and each column increases top-to-bottom.

The Specht module for a partition λ is generated as a complex vector space
by vectors vT indexed by standard tableaux Y of shape λ. The dimension of the
irreducible representation of Sn corresponding to λ is also the number of standard
Young tableaux of shape λ. A reasonable question arises: is there an action of Sn

on standard Young tableaux under which the Young tableaux themselves can be
the basis for the irreducible representation? Sadly the answer is generally no: the
vectors vY in the Specht module are linear combinations of terms corresponding to
different fillings of λ. (See [Fulton 1997; Sagan 2001] for more.) The problem is
that Sn “should” act by permuting the entries of Y but permuting the entries of Y
usually doesn’t produce another standard tableau.

In the following family of maps, we modify the permutation action on all fillings
so that it produces standard tableaux. We define the maps on standard Young
tableaux for arbitrary partitions; in later sections we specialize to the case when
λ= (n, n) and the maps correspond to elements of S2n .

Definition 2.2. Suppose that Y is a standard Young tableau with n boxes and
si = (i, i + 1), where i = 1, . . . , n− 1, is a simple reflection. If i, i + 1 are not in
the same row or in the same column of Y then define si (Y ) to be the tableau with i
and i + 1 exchanged. If i, i + 1 are in the same row or in the same column of Y
then define si (Y ) to be Y. Define an arbitrary word si1si2 · · · sik (Y ) to be the tableau
obtained by composition of maps.

Others have considered an analogous action on 3-row tableaux [Housley et al.
2015] that comes from Vogan’s generalized tau invariant [1979].

The next result shows that these operations always give well-defined maps on
standard tableaux (of arbitrary but fixed shape).

Proposition 2.3. For each i = 1, . . . , n − 1, the map si is well-defined and the
image si (Y ) is a standard Young tableau of the same shape as Y.

Proof. By construction, si preserves the shape of Y. By definition, the boxes
containing i and i+1 inside the standard Young tableau Y have numbers less than i
to the left and above and have numbers greater than i + 1 to the right and below.
Hence if si exchanges i and i + 1 then the result si (Y ) is also a standard Young
tableau. �

Moreover, these maps have a convenient property.
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Figure 1. Graph of si = (i, i + 1) on standard Young tableaux of
shape (2, 2).

Proposition 2.4. Definition 2.2 produces a well-defined involution on the set of
standard Young tableaux of shape λ.

Proof. We check that for all i we have s2
i = e using two cases:

(1) If i and i + 1 are in the same row then by definition si (Y ) = Y so the claim
holds.

(2) If i and i + 1 are in different rows then si swaps the positions of i and i + 1.
Applying si twice brings i and i + 1 back to their original positions. �

This leads us to construct a graph whose vertices are standard Young tableaux of
shape λ and whose edges describe the maps si . The edges are undirected precisely
because the maps si are involutions for each i .

Definition 2.5. Let Gλ= (V, E) be the edge-labeled graph whose vertices V are the
set of standard Young tableaux of shape λ. An edge labeled si connects tableaux Y
and Y ′ when si (Y )= Y ′. We call Gλ the graph of si -local moves for λ.

As an example, the graph G(2,2) corresponding to the partition (2, 2) is shown
in Figure 1.

Remark 2.6. Note that the maps si do not induce a group action of the symmetric
group on the standard Young tableaux even for the shape (n, n). For a counterexam-
ple, inspect Figure 1. On the one hand s2s3s2(Y )= Y for each standard tableau Y
of shape (2, 2). On the other hand s3s2s3(Y ) is the opposite tableau of shape (2, 2).
Since s2s3s2 = s3s2s3 in the symmetric group, we conclude that the maps si do not
define a group action.

Remark 2.7. We typically omit all edges corresponding to fixed points Y = si (Y )
(represented in Figure 1 as dashed self-edges) from our drawings of Gλ. In later
sections we restrict to the case λ= (n, n) and so omit λ from our notation. We will
also modify the maps si that define the edges, so we often write G A to denote the
graph with the precise edges in Definition 2.5 or write GC to denote the modified
graph in Section 5.

Question 2.8. In subsequent sections we analyze the graph G(n,n). What can be
said about the graph Gλ for arbitrary partitions?
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3. Sn-action and local moves on plane trees

This section relates the functions defined in the previous section to an operation on
plane trees called local moves. Condon, Heitsch, and Hoos defined local moves to
represent an unfolding-and-refolding process on a strand of RNA. Heitsch [2006]
then proved many combinatorial properties of a graph whose vertices are plane
trees and whose edges come from local moves, for instance that the graph is
symmetric and unimodal. In the same paper, she also showed that under one natural
modification to the edges, we obtain the graph whose vertices are noncrossing
partitions and whose edges come from Kreweras complementation.

We extend these results in a different direction, showing that many local moves
correspond naturally to the action of the maps si on standard Young tableaux.
Since we specialize to Young diagrams of shape (n, n), we also specialize to the
permutations S2n in this section.

We begin by recalling the definitions of plane trees and local moves.

Definition 3.1. A plane tree is a rooted tree whose subtrees at any vertex are linearly
ordered.

Our convention for a plane tree is that the root is at the top and that the subtrees
are linearly ordered from left to right. In figures, the root is drawn with an open
circle and ordinary vertices are drawn with solid circles.

Plane trees are related to Young diagrams, noncrossing matchings, and other
fundamental combinatorial objects that are also counted by Catalan numbers. To see
this, we interpret each edge of a plane tree with n edges as a pair of two half-edges,
each of which is indexed with one of the integers from 1 to 2n. The half-edges
are labeled in increasing order counterclockwise from the root. We write e(i, j)
to denote the edge whose left half-edge is labeled i and whose right half-edge is
labeled j . Given this setup, the half-edges i and j in the edge e(i, j) satisfy many
constraints, including i < j .

The next definition describes local moves, which are operations on plane trees that
are central to this paper. We denote the collection of plane trees with n edges by Tn .

Definition 3.2. A local move on a plane tree T ∈ Tn converts a pair of adjacent
edges in one of two ways:

(1) If i < i ′ < j ′ < j then replace e(i, j) and e(i ′, j ′) with e(i, i ′) and e( j ′, j).
This is a local move of type (1):

i ′ j ′

i j
type-(1) local move i

i′ j ′
j
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(2) If i < j < i ′ < j ′ then replace e(i, j) and e(i ′, j ′) with e(i, j ′) and e( j, i ′).
This is a local move of type (2):

i
j i ′

j ′

type-(2) local move

j i ′

i j ′

The following map provides a natural bijection between plane trees with n edges
and standard Young tableaux of shape (n, n).

Definition 3.3. Let Y(n,n) denote the set of standard Young tableaux of shape (n, n).
Define a map φ :Tn→Y(n,n) by the rule that for each T ∈Tn the Young tableau φ(T )
has the labels of the left half-edges of T on its top row and the labels of the right-
half-edges of T on its bottom row.

The following proposition confirms that the map φ is bijective. Both the image
and the domain are sets that are known to index the Catalan numbers [Stanley 1999,
Chapter 6, Problem 19(e) and (ww)]; we include the following proof to confirm
that the specific map φ is a direct bijection.

Proposition 3.4. The map φ : Tn→ Y(n,n) is a well-defined bijection.

Proof. The half-edges of a plane tree are labeled counterclockwise, so for each k
there are at least as many left half-edges i with i ≤ k as right half-edges j with
j ≤ k. Thus if i is above j in a column of the Young tableau φ(T ) then i < j . It
follows that φ is well-defined.

If φ(T )= φ(T ′) then both T and T ′ have the same set of left half-edges and the
same set of right half-edges. Since by definition every subtree of a plane tree is
linearly ordered, the indexing of the half-edges determines the plane tree. So φ is
injective.

The sets Tn and Y(n,n) have the same cardinality so the map φ is a bijection. �

In order to prove our main result, we need more precise information about the
fragments of a plane tree that correspond to the boxes filled with i and i + 1 in a
standard Young tableau. The next lemma compiles this information.

Lemma 3.5. Consider a standard Young tableau Y of shape (n, n) and its preimage
φ−1(Y ) under the bijection in Definition 3.3. The half-edges corresponding to i and
i + 1 are in one of the following relative positions:

(i) The numbers i and i + 1 are on the same row in Y if and only if i and i + 1
label left half-edges of φ−1(Y ) in one of the ways shown in Figure 2.

(ii) The numbers i and i + 1 are on opposite rows in Y if and only if in φ−1(Y )
either i and i+1 label a leaf (Figure 3, left) or the interior of a peak (Figure 3,
right).
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i + 1 j ′

i j

j ′ i

j i + 1

Figure 2. i and i + 1 are on the same row: i and i + 1 label left
half-edges (left) or i and i + 1 label right half-edges (right).

i i + 1

j j ′

j
i

i+1
j ′

Figure 3. i and i + 1 are on different rows: i and i + 1 are incident
to the same leaf (left) or i and i+1 label the interior of a peak (right).

i i + 1

Figure 4. i and i + 1 are on the same column.

(iii) The numbers i and i + 1 are on the same column in Y if and only if i and i + 1
label a leaf incident to the root in φ−1(Y ), shown in Figure 4.

In no case is there an additional half-edge incident to the vertex between i and i+1.

Proof. By convention, plane trees are labeled counterclockwise from the root.
Hence there can be no edges or half-edges on the vertex incident to both i and
i + 1. We think of each edge e(i, j) as having a left half-edge labeled i and a right
half-edge labeled j .

(i) Consider the case where the numbers i and i+1 are on the same row in Y. By the
definition of φ, the top row of the Young tableau has the labels on the left half-edges
of the corresponding plane tree, while the bottom row has the labels on the right
half-edges. Suppose i and i + 1 are on the top row of the Young tableau. Then i
and i + 1 are left half-edges and must be in the configuration shown in Figure 2,
left. Suppose i and i + 1 are on the bottom row of the Young tableau. Then i and
i + 1 are right half-edges and must be in the configuration shown in Figure 2, right.

(ii) Consider the case where the numbers i and i + 1 are on different rows in Y.
Suppose i is on the top row and i+1 is on the bottom row. Then i is a left half-edge
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i i + 1

j j ′ type-(1) local move

type-(2) local move

j
i

i+1
j ′

Figure 5. Edges of plane tree under local moves.

and i + 1 is a right half-edge. That means these two numbers will label the same
leaf in the tree, as shown in Figure 3, left. Now suppose i + 1 is in the top row
and i is in the bottom row of Y. Then i labels a right half-edge and i + 1 labels a
left half-edge. In a plane tree, this configuration must be a peak with i and i + 1
labeling the interior, as shown in Figure 3, right.

(iii) The numbers i and i+1 are on the same column of Y if and only if the first i−1
2

columns of Y form a standard Young tableau of size
( i−1

2 ,
i−1

2

)
and filled with the

numbers 1, 2, . . . , i − 1. By restricting φ to plane trees on i−1
2 edges we note that

the first i−1
2 edges of the plane tree φ−1(Y ) form a subtree with the same root as

φ−1(Y ). This is equivalent to saying that i − 1 labels the right half of an edge
incident to the root, which is true if and only if i and i + 1 label the half-edges of
a leaf incident to the root, as shown in Figure 4. �

In the next theorem we use Lemma 3.5 to show that if i and i+1 are in different
rows (but not in the same column) of a standard Young tableau then the action of
the map si on the tableau corresponds to a local move on the corresponding plane
tree. Henceforth the maps si vary from i = 1 to i = 2n−1 since there are 2n boxes
in the Young diagram.

Theorem 3.6. Consider a plane tree T and its image Y = φ(T ) under the bijection
in Definition 3.3. The half-edges in T labeled i and i + 1 are in one of the two
relative positions in Figure 3 if and only if the local move on edges with half-edges
j < i < i + 1< j ′ produces the plane tree φ−1(si (Y )).

Proof. Lemma 3.5 showed that i and i + 1 are on different rows and different
columns exactly when i and i+1 are in the configurations in Figure 3. In fact, local
moves exchange these two configurations because j < i < i + 1< j ′, as shown in
Figure 5.

Let T ′ denote the image of T under the allowed local move on half-edges
j < i < i + 1< j ′ and let Y ′ = φ(T ′). Comparing T and T ′ in Figure 5 shows that
i and i + 1 change from a left half-edge to a right half-edge or vice versa. Thus i
is on the opposite row in Y as it is in Y ′ and similarly for i + 1. By inspection of
Figure 5, both j and j ′ stay on the same respective halves of their shared edge in T
and T ′. By definition, a local move changes only the two edges involved in the local
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2 5

1 6

2
3 4

5

1 6
1

2
3 45

6

1 2 3
4 5 6

1 2 4
3 5 6

1 3 5
2 4 6

φ φφ

s1, s2, s4, s5

s3

type-(1) local move type-(1) local move

Figure 6. A local move that does not correspond to a permutation si .

move. Thus all other numbers remain on the same rows in the corresponding Young
tableau, and so every other integer is in the same row in Y as it is in Y ′. Finally i
and i + 1 are on opposite rows in Y by the hypotheses of the theorem together with
Lemma 3.5. Thus Y ′ = si (Y ).

Conversely suppose there is a local move involving the half-edges j< i< i+1< j ′.
The configurations in Figure 5 are the only possibilities listed in Lemma 3.5 that
satisfy these inequalities. The claim follows. �

Remark 3.7. Not every local move corresponds to one of the maps si . If i and i+1
are on the same row or column of a tableau then si fixes the tableau. Otherwise
si describes the local moves in Figure 5 . But when n > 2, a local move may be
described by a transposition between i and i + k with 1< k < 2n− i in the tableau.
Figure 6 gives an example. The original tableau Y has 1, 2, 3 along its top row, so
every transposition except s3 fixes Y. However, the associated plane tree has a local
move affecting the half-edges 1, 2, 5, 6 that corresponds to exchanging 2 and 5
in the tableau. The tableau resulting from this local move differs both from the
original tableau Y and from s3(Y ).

To avoid this ambiguity we have the following definition.

Definition 3.8. Suppose T is a plane tree with n edges whose associated standard
Young tableau is φ(T )= Y. An si -local move is a local move that is consistent with



RNA, LOCAL MOVES ON PLANE TREES, AND TRANSPOSITIONS ON TABLEAUX 393

one of the maps si in the sense that the local move sends T to φ−1(si (Y )) for some
si with i = 1, 2, . . . , 2n− 1. An si -local move is trivial if si (Y )= Y.

We conclude this section with an open question.

Question 3.9. What other types of transpositions (i, j) can also be interpreted as
local moves on plane trees?

4. The graph of si -local moves in type A

Theorem 3.6 showed that the graph whose vertices are plane trees with n edges
and whose edges are si -local moves is isomorphic to the graph in Definition 2.5 for
the partition (n, n). Remark 3.7 demonstrated that this graph is a subgraph (proper
subgraph for n > 2) of the graph of plane trees under all local moves.

Heitsch [2006] studied the graph of plane trees under all local moves and com-
pared it to similar graphs for other combinatorial objects enumerated by Catalan
numbers. However, when we remove edges from these graphs, many of Heitsch’s
properties no longer hold. We explore the statistics of these modified graphs in this
section. We restrict our attention to the partition (n, n) and denote the graph from
Definition 2.5 by G A. We refer to G A as the graph of si -local moves in type A. Note
that the permutations whose corresponding maps si are defined on this partition are
in S2n rather than Sn . (In later sections we look at local moves corresponding to
other Weyl groups.)

We begin by proving that the graph of si -local moves is still connected in type A.

Proposition 4.1. The graph G A is connected.

Proof. We describe a way to construct a path between any two standard Young
tableaux Y and Y ′ that both have shape (n, n). If Y = Y ′ then the path is trivial.
We now induct on the minimum number i that lies on opposite rows in Y and Y ′.
Suppose that i is the smallest number whose row in Y is different from that in Y ′.
Suppose further that i , i +1, i +2, . . . , i + k are all on the same row and i + k+1
is on the opposite row in Y. (We allow k to be zero.)

We first prove that in Y the number i + k+ 1 is not in the same column as any
of i , i + 1, . . . , i + k. Indeed if i is on the bottom row then i + k + 1 must be in
a column to the right of i + k in order for Y to be standard. Now suppose that i
is on the top row of Y and thus on the bottom row of Y ′. In Y ′ we know that i is
directly below one of 1, 2, . . . , i − 1 in order for Y ′ to be standard. Both Y and Y ′

have 1, 2, . . . , i − 1 in the same positions, so Y has an empty box in the bottom
row below one of 1, 2, . . . , i − 1. This must be the box occupied by i + k+ 1.

Now consider the standard tableau si si+1si+2 · · · si+k−1si+k(Y ). It is connected
to Y in the graph G A by construction. The numbers 1, 2, . . . , i − 1 are in the same
positions in si si+1 · · · si+k(Y ) as in Y. Furthermore the number i occupies opposite
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rows in si si+1 · · · si+k(Y ) and Y. Thus the first i numbers are on the same rows in
si si+1 · · · si+k(Y ) as in Y ′. If 1, 2, . . . , 2n− 1 are all on the same rows in Y as in
Y ′ then 2n must also be on the same row in Y and Y ′. (Indeed 2n is on the bottom
row for all standard tableaux.) By induction we can find a path from Y to Y ′ in G A

as desired. �

The graph of plane trees under local moves has the structure of a graded poset.
This is true for G A as well, but for a different rank function. The next two results
describe total distance and total number of descendants, two functions that rank G A.
Like Heitsch, we find that the language of plane trees characterizes the ranking
more naturally than tableaux. In particular, we show that si -local moves change
both the total distance and the total number of descendants by exactly 1.

Proposition 4.2. Fix a plane tree T with root v0:

• The total distance of the plane tree dT is defined as

dT =
∑

v∈V (T )

dist(v, v0).

• If T ′ is obtained from T by an si -local move of type (1) then dT − 1= dT ′ . If
T ′ is obtained from T by an si -local move of type (2) then dT + 1= dT ′ .

Proof. The proof follows by comparing the distances in the schematics in Figure 7.
An si -local move does not change the distance between the root and the vertices
in the subtrees a, b, c, d, and e, each of which can be empty. In the tree to the
left, the leaf between half-edges i and i + 1 has no descendants. Moreover, this
vertex is one edge farther from the root than both “ankles” of the tree to the right
are, changing the total distance by exactly 1. �

Proposition 4.3. Fix a plane tree T with root v0:

• The total number of descendants in T is defined as

desT =
∑

v∈V (T )

|{descendants of v}|.

• If T ′ is obtained from T by an si -local move of type (1) then desT −1= desT ′ .
If T ′ is obtained from T by an si -local move of type (2) then desT +1= desT ′ .

Proof. Consider again the schematic in Figure 7. The number of descendants of the
root, as well as all vertices in the subtrees a, b, c, d , e, remain the same after each
si -local move. However, the length-2 path to the left has a total of three descendants,
while the peak to the right has a total of only two. �

The previous proofs were similar in part because they turn out to count the same
quantities, as we prove next.
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Figure 7. Edges with subtrees under si -local moves.

Proposition 4.4. Let T be a plane tree with root v0. The total distance equals the
total number of descendants; namely

dT = desT .

Proof. Vertex v of plane tree T has distance k from the root exactly when the
unique path between v and the root has k+ 1 vertices on it. The k vertices on this
path other than v are precisely the vertices in T with v as a descendant. Thus each
vertex v contributes exactly k to dT and exactly k to desT. �

Remark 4.5. The notions of total distance and of total number of descendants can
be useful in different contexts. For one example, see the proof of Proposition 4.8.
For another example, note that each descendant in a plane tree corresponds to a
nesting of arcs in the associated noncrossing matching. Thus the total number of
descendants in a plane tree corresponds to the total number of nestings within a
noncrossing matching. (We do not discuss noncrossing matchings in detail in this
manuscript; for more, see, e.g., [Russell 2011; Russell and Tymoczko 2011].)

The next proposition is a direct result of the previous propositions.

Proposition 4.6. Both total distance and total number of descendants partition the
vertices of G A into the same subsets of plane trees.

Direct the graph G A according to the rule that each edge is directed T → T ′

if T ′ is obtained from T by a local move of type (1). This turns G A into a graded
poset. Moreover, we can impose a rank function ρ(T )= dT on this graded poset,
whose ranks are characterized by the subsets of plane trees with total distance k
(respectively total number of descendants k).

Proof. The first claim is an immediate corollary of the fact that dT = desT for each
plane tree T.
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The directed graph G A is acyclic, and thus a poset, because if T1→T2→· · ·→Tk

is any directed path then dT1 > dT2 > · · ·> dTk and so the endpoint cannot coincide
with the initial point of the path.

Finally a function is a rank function if the following two conditions are met:

(1) The function is compatible with the partial order; namely if there is a path
T1→ T2→ · · · → Tk then ρ(T1) > ρ(Tk). We just confirmed this for total
distance (respectively total number of descendants).

(2) If T1→ T2 is an edge in the graph then ρ(T1)=ρ(T2)+1. This is the content of
Proposition 4.2 (respectively Proposition 4.3 for total number of descendants).

The final claim follows by definition of the rank function. �

Remark 4.7. The graph G A does not satisfy the same kind of symmetries as the
graph for all local moves does. For instance, Heitsch proved that the number of
plane trees of rank k agrees with those of rank n − k + 1 for each k = 1, . . . , n.
That is clearly false here: for instance, the sequence of the number of tableaux of
shape (3, 3) of each rank in increasing order is (1, 2, 1, 1), as shown in Figure 8.
(Note too that this is not the same rank function that Heitsch uses, as our graded
poset has fewer edges than hers.)

However, we can prove the following.

Proposition 4.8. There is a unique element of maximal rank and a unique element
of minimal rank.

Proof. Consider the graph G A whose vertex set is the set Tn of plane trees with
n edges. If T is a plane tree in Tn then its root must have n descendants since any
other vertex in the graph is a descendant of the root. So the minimal total number
of descendants is n. This is achieved by the star graph in Figure 9, left.

The plane tree T is connected so there is at least one vertex of each possible
distance from the root. The path graph in Figure 9, right, has just one vertex at each
distance from the root and therefore maximizes the total distance. �

Corollary 4.9. For the partition (n, n), the number of ranks in the graded poset
obtained from G A and ranked by the total distance function dT is

(n+1
2

)
− n+ 1.

Proof. The total distance of the path graph is the binomial coefficient
(n+1

2

)
. The

total distance of the star graph is n. There is at least one plane tree of each rank
between these because G A is connected and each edge changes rank by exactly 1. �

Again we close with an open question.

Question 4.10. Is the rank sequence of G A unimodal for every n?
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Figure 8. Graded poset obtained from G A when n = 3.
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Figure 9. Minimal tree which is a star graph (left) and a maximal
tree which is a path graph (right) with associated Young tableaux.

5. The graph of si -local moves in type C

In our description of si -local moves so far, we relied on an analogy with the
generators of the symmetric group. We now extend the analogy to define maps sC

i
corresponding to the generators of the Weyl group of type C. Intuitively the Weyl
group of type C plays the same role for the complex symplectic group Sp(2n,C)

that the permutation matrices play for n× n invertible matrices GL(n,C). We will
represent the Weyl group of type C as a subgroup of the permutations in S2n using
generators that we describe below.

In this section we show that we can easily define maps sC
i on the standard tableaux

of shape (n, n) even when there are no analogous local moves on the corresponding
plane trees. Nonetheless, the geometry of the plane trees is the best way to describe
key properties of these maps. More precisely we prove that restricting to type-C
si -local moves identifies symmetry within the plane trees. The main theorem of
this section shows that within the graph whose vertices are plane trees and whose
edges are type-C si -local moves, there are precisely two connected components:
one composed of symmetric plane trees and one composed of asymmetric plane
trees.

We define functions analogous to the maps si for type C instead of type A.
The reader who is not familiar with Weyl groups can take this as a definition of
the Weyl group of type C. Like in our earlier treatment, the maps si and sC

i are
both permutations in S2n . However, note that in type A we have maps si for each
i ∈ {1, 2, . . . , 2n− 1}, while in type C we only have sC

i for i ∈ {1, 2, . . . , n}.
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Definition 5.1. The maps of type C are the involutions on standard tableaux defined
by

sC
1 = s1s2n−1 corresponding to the reflection (1, 2)(2n− 1, 2n),

sC
2 = s2s2n−2 corresponding to the reflection (2, 3)(2n− 2, 2n− 1),
...

sC
n−1 = sn−1sn+1 corresponding to the reflection (n− 1, n)(n+ 1, n+ 2),

sC
n = sn corresponding to the reflection (n, n+ 1).

Using the bijection φ :Tn→{standard Young tableaux of size (n, n)}we also define
maps sC

i on plane trees according to the rule

sC
i (T )= φ

−1(sC
i (φ(T ))).

Generally the simple reflections of type C exchange disjoint pairs of integers
according to the product si s2n−i of type-A reflections. However, note that sn

exchanges just the two integers n and n+1. It is the only simple reflection of type C
that exchanges integers between the sets {1, 2, . . . , n} and {n+ 1, n+ 2, . . . , 2n}.

Remark 5.2. Note that while we use terminology from earlier in the paper, the
maps sC

i are no longer local moves in the strict sense. Except for the case when i =n,
the maps sC

i = si s2n−i corresponding to the reflections (i, i +1)(2n− i, 2n− i +1)
are in fact pairs of si -local moves of type A. We can perform a pair of si -local
moves on a standard tableau Y simultaneously because the pairs of integers are
disjoint: if i and i+1 are in the same row or column then si does nothing; otherwise
si exchanges the positions of i and i + 1 leaving all the other numbers in their
original positions. The same dynamic holds for s2n−i with respect to 2n− i and
2n− i + 1. So the standard tableau sC

i (Y ) is always defined.
Our definition for the plane tree sC

i (T ) uses the action on the corresponding
tableau φ(T ). This is because often a pair of si -local moves that would act on a
plane tree is not defined on that plane tree. Figure 10 provides an example in which
the map sC

2 involves one nontrivial s2-local move and one trivial s6-local move. The
heuristic for determining sC

i (T ) directly is to perform all of the local moves si and
s2n−i that are nontrivial.

We stress that even though it appears unnatural to define local moves of type C
on plane trees (given that the constituent local moves of type A are not necessarily
well-defined), the maps sC

i characterize key geometric properties of the plane trees.
Indeed we think it is a theme of this field that different characterizations of standard
tableaux (plane trees, noncrossing matchings, etc.) provide valuable and often
complementary information.



400 LAURA DEL DUCA, JENNIFER TRIPP, JULIANNA TYMOCZKO AND JUDY WANG

1
2

5 6

4 7

3
8

sC
2 = s2s6

2
3

5 6

7
4

1 8

1 3 4 5
2 6 7 8

1 2 4 5
3 6 7 8

Figure 10. Map sC
2 involving a nontrivial s2-local move and a

trivial s6-local move.

The maps sC
i define a graph GC in the same way that the maps si defined a

graph G A.

Definition 5.3. The graph GC is the graph whose vertices are plane trees. An edge
connects plane trees T and T ′ precisely when T ′ = sC

i (T ) for a map sC
i . We call

GC the graph of plane trees under sC
i -local moves (read si -local moves of type C).

The following definition formalizes our notion of symmetric and asymmetric
plane trees.

Definition 5.4. Let T be a plane tree. We say that T is symmetric if and only if for
each edge e(i, j) in T the mirror image e(2n− j + 1, 2n− i + 1) is also an edge
in T. A plane tree is asymmetric if it is not symmetric.

We will prove that the graph of plane trees GC under the sC
i -local moves has two

connected components: one consisting of symmetric plane trees and one consisting
of asymmetric plane trees. Our proof uses several steps. First we show that no
connected component contains both a symmetric plane tree and an asymmetric
plane tree.

Lemma 5.5. Each connected component of GC consists either entirely of symmetric
plane trees or entirely of asymmetric plane trees.

Proof. We will show that if sC
i is a generator of the Weyl group of type C and

T is a symmetric plane tree then sC
i (T ) is also symmetric. It follows that the

connected component of GC containing any symmetric plane tree consists entirely
of other symmetric plane trees. Since every tree is either symmetric or asymmetric,
it follows further that the connected component of GC containing any asymmetric
plane tree must consist entirely of other asymmetric plane trees.

Given a subtree T ′ of symmetric plane tree T we call the edges in T that are
symmetric to T ′ the mirror image of T.
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Consider the half-edges labeled by i and i+1. A priori there are four possibilities:
they could both be left-half-edges, they could both be right-half-edges, they could
form a leaf, or they could form the interior of a peak.

Table 1 shows these four possibilities, the mirror image of these possibilities,
the sC

i -local move on the original and its mirror image in each case, and the mirror
image of the sC

i -local move on the original in each case. Note that in the first two
possibilities, i and i+1, as well as 2n− i and 2n− i+1, will stay in their respective
rows of the corresponding tableaux after the sC

i -local move, which consequently
does not alter the either T ′ or its mirror image. We inspect columns three and
five in Table 1 and observe that they are the same. So if two edges were part of a
symmetric tree before we perform an sC

i -local move on them, then they will still be
part of a symmetric tree after the sC

i -local move.
Since these are the only edges changed by the local move, all the other edges

will still satisfy the symmetry condition. We conclude that sC
i (T ) is symmetric

whenever T is symmetric. The result follows. �

Next we prove there is exactly one connected component of symmetric plane
trees in GC by showing that each symmetric plane tree can be transformed via
sC

i -local moves to one with the leaf e(1, 2) and then using induction.

Theorem 5.6. If T and T ′ are symmetric plane trees then there is a finite sequence
of sC

i -local moves that transforms T into T ′.

Proof. The proof is by induction on the total number n of edges in a plane tree.
There are two base cases. The case when n = 2 was addressed in Figure 1 since

sC
2 = s2 in that setting; it is reproduced in type-C notation in Figure 11, left. The

case when n = 3 has three symmetric plane trees as shown in Figure 11, right: the
top and the middle are connected by the edge sC

3 = s3, while the middle and the
bottom are connected by sC

2 = s2s4.
For the induction step, assume that any two symmetric plane trees with at most

n− 1 edges can be transformed into each other by a sequence of sC
i -local moves.

Now consider a symmetric plane tree with n edges.
First we show that there is a path of sC

i -local moves from each plane tree T to
a plane tree containing the edge e(1, 2). If T does not have the edge e(1, 2) then
it has the edge e(1, j) for some j ≥ 3. This means that 1 and 2 are both in the
top row of the tableau φ(T ). Let k be the first integer not in the top row of φ(T ).
Since φ(T ) has shape (n, n), we know that k ≤ n + 1. Proposition 4.1 showed
that the standard tableau s2s3 · · · sk−1(φ(T )) has 2 in the bottom row by way of
si -local moves of type A. We now confirm that sC

2 sC
3 · · · s

C
k−1 also moves 2 to the

bottom row. If k = n+ 1 then the top row of the tableau is filled with the integers
from 1 through n, and sC

k−1 = sn simply exchanges n and n + 1. For j ≤ n we
know that sC

2 sC
3 · · · s

C
j−1 permutes numbers within the disjoint sets {1, 2, . . . , j}
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T ′ mirror image of T ′
sC

i -local move sC
i -local mirror image of

on mirror image of T ′ move on T ′ sC
i -local move on T ′

i+1 j ′

i j

2n− j ′+1 2n−i

2n− j+1 2n−i+1

2n− j ′+1 2n−i

2n− j+1 2n−i+1
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i i+1

j j ′
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1
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i
2n
−
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1
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−

j+
1

j
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i+
1

j ′
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−

j′ +
1

2n
−

i

2n
−

i+
1

2n
−

j+
1

j
i

i+
1

j ′

2n
−

j′ +
1

2n
−

i

2n
−

i+
1

2n
−

j+
1

2n−i 2n−i+1

2n− j ′+1 2n− j+1

i i+1

j j ′

2n−i 2n−i+1

2n− j ′+1 2n− j+1

Table 1. Identical results from sC
i -local move on mirror image of

T ′ and mirror image of sC
i -local move on T ′.

and { j + 1, . . . , 2n} independently. So the tableau sC
2 sC

3 · · · s
C
k−1(φ(T )) has 2 on

the bottom row for all k ≤ n + 1. We therefore conclude that T is in the same
connected component of GC as a plane tree with the edge e(1, 2).

We next show that all symmetric plane trees are in the same connected component
of GC. Suppose T and T ′ are both symmetric plane trees. By the previous argument,
we can assume that they each contain the leaf e(1, 2) and hence by symmetry the
leaf e(2n− 1, 2n). Since these edges are both leaves, they can be erased without
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Figure 11. Type-C base cases n = 2 (left) and n = 3 (right) for
symmetric plane trees.

disconnecting the two trees. Consider the subtrees T1 and T ′1 consisting respectively
of all the edges of T and T ′ except e(1, 2) and e(2n − 1, 2n). The two subtrees
are still symmetric but have only n− 2 edges. By the inductive hypothesis we can
transform T1 into T ′1 with a sequence of sC

i -local moves, which also transforms T
into T ′. By induction the claim is proven. �

The proof for asymmetric plane trees is somewhat similar but more subtle.

Theorem 5.7. If T and T ′ are asymmetric plane trees then there is a finite sequence
of sC

i -local moves that transforms T into T ′.
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Proof. The proof is by induction on the total number of edges n in a plane tree.
The base cases for asymmetric plane trees occur when n = 3 and when n = 4.

There are two asymmetric plane trees with three edges, and these trees are related by
sC

2 = s2s4, as shown in Figure 12, left. There are eight asymmetric plane trees with
four edges, and these trees are related by the sC

i -local moves shown in Figure 12,
right.

For the induction step, let n ≥ 4 and assume that any two asymmetric plane
trees with at most n− 1 edges can be transformed into each other by a sequence of
sC

i -local moves.
Let T be an arbitrary asymmetric plane tree with n edges. We describe an

algorithm to obtain a sequence of sC
i -local moves from T to a plane tree with

only the edge e(1, 2n) incident to the root. (Note the special case of plane trees
with three edges, for which there are no asymmetric trees containing the edge
e(1, 2n)=e(1, 6).) Figure 13 gives a schematic of T with notation for the half-edges
j1 < j1+1< j2 < j2+1< · · ·< jk−1+1< jk and the possibly empty subtrees ai .

Since sC
j1 = s j1s2n− j1 , we can use an sC

j1-local move on edges e(1, j1) and
e( j1 + 1, j2) to form edges e(1, j2) and e( j1, j1 + 1). Repeat this process for
each jp with jp ≤ n.

We can continue this process for any edge e(1, j) with j >n as long as we are not
in the case of Figure 14. The problem in that case is that the local move that collapses
2n − jp and 2n − jp + 1 simultaneously triggers a type-(1) local move on half-
edges jp and jp+ 1 and reinserts a lower-indexed branch into the root. (Note that
jp<n<2n− jp by our convention on the labeling of the half-edges in the plane tree.)

To address the case in Figure 14, we apply the sequence sC
jp−1sC

j ′q−1
· · · sC

j ′2
sC

j ′1
of

sC
i -local moves. Since jp < n, the sequence of local moves permutes indices in the

sets { j ′1, . . . , jp} and {2n− jp+1, 2n− jp+2, . . . , 2n− j ′1+1} independently. Thus
after applying those sC

i -local moves, the tree contains both of the edges e(1, 2n− jp)

and e(2, jp + 1). Applying sC
jp

to that tree results in a plane tree with edge e(1, k)
for k ≥ 2n− jp + 2 as desired. Continuing this process, we obtain in all cases a
sequence of sC

i -local moves that transforms an arbitrary asymmetric plane tree to
one containing the edge e(1, 2n).

Finally we show that all asymmetric plane trees are in the same connected
component of GC. Suppose T and T ′ are both asymmetric plane trees with at least
four edges. By the previous argument, we can assume that they each contain the
edge e(1, 2n). Consider the subtrees T1 and T ′1 consisting of all the edges of T
and respectively T ′ except e(1, 2n). The two subtrees are still asymmetric but have
only n− 1 edges. By the inductive hypothesis we can transform T1 into T ′1 with
a sequence of sC

i -local moves, which also transforms T into T ′. By induction the
claim is proven. �

The main result is a simple corollary of the previous results.
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Figure 12. Type-C base cases n = 3 (left) and n = 4 (right) for
asymmetric plane trees.
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Figure 14. Problematic case.

Corollary 5.8. The graph GC has exactly two connected components: one con-
taining exactly the symmetric plane trees and the other containing exactly the
asymmetric plane trees.

Appendix A in the arXiv version of this paper gives examples of Corollary 5.8
for n = 5, 6, 7. The Mathematica notebook that generates these orbits is publicly
available online at http://github.com/jujuwoman/RNA-combinatorics.

http://github.com/jujuwoman/RNA-combinatorics
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We conclude with a formula for the size of each connected component in GC,
namely the number of symmetric plane trees and the number of asymmetric plane
trees.

Proposition 5.9. Given Tn the number of symmetric plane trees is

r =
∑

m

∑
k1+k2+···+km+1=

n−m
2

m+1∏
j=1

Ck j ,

where m varies over odd numbers between 0 and n when n is odd and over even
numbers between 0 and n when n is even. The number of asymmetric plane trees is
Cn − r .

Proof. We use the fact that the total number of plane trees with n edges is the
Catalan number Cn =

1
n+1

(2n
n

)
.

Define the middle path graph of a symmetric plane tree in Tn to be the maximal
set of edges of the form e(i, 2n + 1− i) for some i with 1 ≤ i ≤ n. Let m be
the number of edges in the middle path graph of a symmetric plane tree. To be a
symmetric plane tree, any descendants to the left of a vertex in the middle path
graph have their mirror image to the right of the same vertex. Thus the set of all
symmetric plane trees can be constructed by all possible ways to attach plane trees
to the left of the middle path graph, together with the mirror images on the right.
There are m + 1 vertices in the middle path graph; suppose that for each i with
1 ≤ i ≤ m + 1 the i-th vertex from the root in the middle path graph has a plane
tree with ki edges to its left. The sum k1+ k2+ · · ·+ km+1 must satisfy

k1+ k2+ · · ·+ km+1 =
n−m

2

since there are n total edges in the tree, m edges on the middle path graph, and
another k1+k2+· · ·+km+1 edges in the mirror images of the subtrees to the left of
the middle path graph. By examining parity, we see that m varies over odd numbers
from 0 to n if n is odd and over even numbers from 0 to n if n is even. For any
such partition k1+ k2+· · ·+ km+1, we can independently take any of the Cki plane
trees on ki vertices to attach to the left of the i-th vertex on the middle path graph,
with its mirror image on the right. Thus the total number of symmetric plane trees
with n edges is ∑

m

∑
k1+k2+···+km+1=

n−m
2

m+1∏
j=1

Ck j

as desired. The number of asymmetric plane trees is simply the number of all plane
trees minus the number of symmetric plane trees. �
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Question 5.10. Do other properties of G A hold for the components of GC as well?
For instance, is each component of GC graded by a function with a straightforward
description?

6. Remarks on classical types B and D and possible biological
interpretations

We conclude this paper with remarks and questions in two directions. First we
discuss whether si -local moves could be reasonably extended to Weyl groups of
other classical Lie types. At the end we discuss speculative connections to biology.

Extending si -local moves combinatorially to other classical Lie types. There are
two other Weyl groups of classical types, namely the Weyl groups of type B and
type D. Both can be described as a subgroup of a sufficiently large permutation
group.

We think the Weyl group of type D is unlikely to extend fruitfully to the setting
of plane trees. The problem is that the generators of the Weyl group of type D
cannot be written as a product of disjoint simple transpositions (i, i + 1). Indeed,
one generator must contain a transposition like (n, n+ 2). Within the permutation
group, that transposition equals

(n, n+ 1)(n+ 1, n+ 2)(n, n+ 1)= (n+ 1, n+ 2)(n, n+ 1)(n+ 1, n+ 2).

However, the si -local moves do not form a group action; as we discussed in
Remark 2.6 there is no consistent way to define (n, n+ 2).

By contrast the Weyl group of type B may lead to meaningful biological and
combinatorial implications. The maps of type B are the involutions defined by

s B
1 = s1s2n corresponding to the reflection (1, 2)(2n, 2n+ 1),

s B
2 = s2s2n−1 corresponding to the reflection (2, 3)(2n− 1, 2n),
...

s B
n−1 = sn−1sn+2 corresponding to the reflection (n− 1, n)(n+ 2, n+ 3),

s B
n = sn corresponding to the reflection (n, n+ 2).

Note that s B
n is different from the other permutations, much like sC

n . (Also like the
Weyl group of type C , we only have s B

i for i ∈ {1, 2, . . . , n}.) Though it is not a
simple transposition, the fact that n+1 is fixed by all of the other generators s B

i means
that we can define an unambiguous action on standard tableaux of shape (n+ 1, n).
In this action, the map s B

n exchanges n and n+ 2 and the other maps s B
i act as the

corresponding product of type-A si -local moves.
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1
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3

1 3 4
2 5

Figure 15. Type-B model when n = 2.

The type-B involutions do not act on plane trees since plane trees must have an
even number of half-edges. However, they do act on objects like plane trees that
have n whole edges and an unpaired half-edge labeled n+ 1. This half-edge forms
a small loop or bulge between the half-edges labeled n and n+ 2. Figure 15 gives
an example. As with the maps s B

i on tableaux, the action on these modified plane
trees always fixes the bulge n+ 1.

We leave these investigations for future research, for instance in the following
questions.

Question 6.1. What are the orbits of the action of involutions s B
i ? What is a natural

collection of involutions to represent mutations on strands with several bulges
(namely fixing several integers)?

Speculative connections between Weyl groups of classical types and biology. We
extended local moves combinatorially from Sn to other Weyl groups of classical
types. We end with speculative comments and questions about whether the maps
we defined are observed in any biological contexts.

We begin with possible biological interpretations of type-C local moves. The
product of DNA transcription, messenger RNA (mRNA) carries genetic information
contained in DNA from the cell nucleus to the cytoplasm, where protein synthesis
takes place. During the normal process of translation, a ribosome reads an mRNA
strand from the 5′ end of the base sequence to the 3′ end, decoding three bases into
one amino acid molecule at a time. Whereas type-A local moves act by twisting
RNA strands at a particular location, we think of a type-C local move as exchanging
two triples of base pairs at some point in the translation process, a development
that may completely change the sequence of amino acids.

We conjecture that the type-C local moves may correspond to certain RNA
mutations. When i = n, the map sC

i replaces stacked bases with their Watson–Crick
complement; otherwise, the maps sC

i exchange adjacent sets of stacked bases while
preserving their bonds. Figure 16 illustrates an example of the twisting mechanism
when sC

2 is applied for n = 4. (Applying sC
4 in this example would exchange 4 and

5 instead.)
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sC
2 = s2s6

Figure 16. The map sC
i for an element of the Weyl group of type

C acting on RNA base pairs.

Like the Weyl group of type C , the elements of the Weyl group of type B
correspond to mutations on an RNA strand. But the type-B model is different
because the stacked bases now contain a bulge, namely the sequence of unmatched
nucleotides corresponding to the half-edge n+ 1.

Question 6.2. Are any processes like this observed biologically?
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