involve

 a journal of mathematicsOn G-graphs of certain finite groups
Mohammad Reza Darafsheh and Safoora Madady Moghadam

On G-graphs of certain finite groups

Mohammad Reza Darafsheh and Safoora Madady Moghadam
(Communicated by Kenneth S. Berenhaut)

Abstract

The notion of G-graph was introduced by Bretto et al. and has interesting properties. This graph is related to a group G and a set of generators S of G and is denoted by $\Gamma(G, S)$. In this paper, we consider several types of groups G and study the existence of Hamiltonian and Eulerian paths and circuits in $\Gamma(G, S)$.

1. Introduction

Let G be a finitely generated group with a generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. The left transversal of the left cosets of the subgroup $\left\langle s_{i}\right\rangle$ in G is denoted by $T_{\left\langle s_{i}\right\rangle}$. This means that $\left\{\left\langle s_{i}\right\rangle x \mid x \in T_{\left\langle s_{i}\right\rangle}\right\}$ is the set of all the distinct left cosets of $\left\langle s_{i}\right\rangle$ in G. A simple graph $\Gamma(G, S)$ is defined as follows: the vertex set of $\Gamma(G, S)$ is the set $\left\{\left\langle s_{i}\right\rangle x_{j} \mid x_{j} \in T_{\left\langle s_{i}\right\rangle}\right\}$, and two distinct vertices $\left\langle s_{i}\right\rangle x_{j}$ and $\left\langle s_{k}\right\rangle x_{l}$ are joined by an edge if $\left\langle s_{i}\right\rangle x_{j} \cap\left\langle s_{k}\right\rangle x_{l} \neq \varnothing$.

The G-graphs were introduced in [Bretto and Faisant 2005] to study the group isomorphism problem. They also defined a similar graph $\bar{\Gamma}(G, S)$, which differs from $\Gamma(G, S)$ by the fact that there are p edges between $\left\langle s_{i}\right\rangle x_{j}$ and $\left\langle s_{k}\right\rangle x_{l}$ if $\left|\left\langle s_{i}\right\rangle x_{j} \cap\left\langle s_{k}\right\rangle x_{l}\right|=p$. In this paper, we are more concerned with the simple graph $\Gamma(G, S)$. For more information on the subject see, for example, [Bretto et al. 2007; Bretto and Gillibert 2005]. By [Bretto et al. 2007], if S is a generating set of G, then $\Gamma(G, S)$ is a connected graph. We always choose S such that $G=\langle S\rangle$.

The existence of Hamiltonian paths and circuits in $\Gamma(G, S)$ was the main interest of [Bretto and Faisant 2011]. In [Bauer et al. 2008] the authors considered various classes of finite groups G and studied the Eulerianness and Hamiltonicity of the graph $\Gamma(G, S)$. For instance, they studied the Hamiltonicity of certain G-graphs on the groups $Z_{m} \times Z_{n}$ and $D_{2 n}$, the dihedral group of order $2 n$. In this paper we will consider the groups $Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{k}}$ such that $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$, the dicyclic group $T_{4 n}$ of order $4 n$ with presentation

$$
T_{4 n}=\left\langle a, b \mid a^{2 n}=e, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle,
$$

MSC2010: primary 05C25, 20F05; secondary 05C45.
Keywords: G-graphs, finite group, Hamiltonian circuit, graphs, paths, circuits.
$V_{8 n}$, a group of order $8 n$ with presentation

$$
V_{8 n}=\left\langle a, b \mid a^{2 n}=b^{4}=e, b a=a^{-1} b^{-1}, b^{-1} a=a^{-1} b\right\rangle
$$

and obtain the conditions under which $\Gamma(G, S)$ is Eulerian or Hamiltonian.

2. Preliminaries

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a generating set for the group G. Let

$$
V_{s_{i}}=\left\{\left\langle s_{i}\right\rangle x_{j} \mid x_{j} \in T_{\left\langle s_{i}\right\rangle}\right\}, \quad 1 \leqslant i \leqslant n,
$$

where $T_{\left\langle s_{i}\right\rangle}$ is a complete set of left transversals of $\left\langle s_{i}\right\rangle$ in G. Then by definition the vertex set of $\Gamma(G, S)$ is $V(\Gamma(G, S))=\bigsqcup_{i=1}^{n} V_{S_{i}}$. The graph $\Gamma(G, S)$ is connected and n-partite. We recall some results which will be used in this paper.
Result 1 [Bondy and Murty 1976]. Let Γ be a nontrivial connected graph. Then:
(a) Γ has an Eulerian circuit if and only if every vertex of Γ has even degree.
(b) Γ has an Eulerian path if and only if Γ has exactly two vertices of odd degree. Furthermore, the path begins at one of the vertices of odd degree and terminates at the other one.

Result 2 [Bauer et al. 2008]. Let G be a group with a generating set given by $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Let $S_{i j}=\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|$. Then the degree of the vertex $\left\langle s_{i}\right\rangle$ in the $\operatorname{graph} \Gamma(G, S)$ is equal to $\operatorname{deg}\left(\left\langle s_{i}\right\rangle\right)=\sum_{i=1}^{n}\left(o\left(s_{i}\right) / S_{i j}\right)-1$, where $o\left(s_{i}\right)$ denotes the order of the element $s_{i} \in G$. Note that for all elements $x_{j}\left\langle s_{i}\right\rangle$ in V_{i} we have $\operatorname{deg}\left(x_{j}\left\langle s_{i}\right\rangle\right)=\operatorname{deg}\left(\left\langle s_{i}\right\rangle\right)$.
Result 3 [Bauer et al. 2008]. Let $G=Z_{n} \times Z_{m}$ and $S=\{(1,0),(0,1)\}$. Then $\Gamma(G, S)$ has a Hamiltonian path if and only if $|m-n| \leqslant 1$.

In the following we generalize Result 3 to obtain a necessary condition for a Hamiltonian circuit of $\Gamma(G, S)$.
Theorem 2.1. Let $G=\langle a, b\rangle, S=\{a, b\}$ and $X=|G| / o(a)$ and $Y=|G| / o(b)$. If $\Gamma(G, S)$ has a Hamiltonian path, then $|X-Y| \leqslant 1$.
Proof. Let $V_{a}=\left\{a_{1}, a_{2} \cdots a_{X}\right\}$ and $V_{b}=\left\{b_{1}, b_{2} \cdots b_{Y}\right\}$.
Case 1: Assume that the Hamiltonian path begins from a vertex in V_{a}. Call this vertex $a_{i_{1}}$. The next vertex can't be from V_{a}. Thus it is from V_{b}. Call this vertex $b_{i_{1}}$. In this way, the Hamiltonian path can be represented as $a_{i_{1}}, b_{i_{1}}, a_{i_{2}}, b_{i_{2}}, \ldots$

If this Hamiltonian path ends with a vertex from V_{a}, it is represented as

$$
a_{i_{1}}, b_{i_{1}}, a_{i_{2}}, b_{i_{2}}, \ldots, a_{i_{X-1}}, b_{i_{X-1}}, a_{i_{X}}
$$

Now notice that $b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{X-1}}$ should exhaust all the vertices of V_{b} exactly once. So $\left\{b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{X-1}}\right\}=\left\{b_{1}, b_{2}, \ldots, b_{Y}\right\}$; hence $X-1=Y$, which implies
$X-Y=1$. But if this path ends with a vertex of V_{b}, it is represented as $a_{i_{1}}, b_{i_{1}}, a_{i_{2}}$, $b_{i_{2}}, \ldots, a_{i_{X}}, b_{i_{X}}$. Similarly, $\left\{b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{X}}\right\}=\left\{b_{1}, b_{2}, \ldots, b_{Y}\right\}$, so $X=Y$.
Case 2: Assume that the Hamiltonian path begins with a vertex from V_{b}. In the same manner as above, this path can be represented as $b_{i_{1}}, a_{i_{1}}, b_{i_{2}}, a_{i_{2}}, \ldots$

If this path ends with a vertex from V_{a}, it is represented by $b_{i_{1}}, a_{i_{1}}, b_{i_{2}}, a_{i_{2}}, \ldots$, $b_{i_{Y}}, a_{i_{Y}}$. Notice that $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{Y}}$ should exhaust all the vertices of V_{a} exactly once, so $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{Y}}\right\}=\left\{a_{1}, a_{2}, \ldots, a_{X}\right\}$; hence $Y=X$. But if this path, ends with a vertex from V_{b}, it is represented by $b_{i_{1}}, a_{i_{1}}, b_{i_{2}}, a_{i_{2}}, \ldots, b_{i_{Y-1}}, a_{i_{Y-1}}, b_{i_{Y}}$. Similarly, $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{Y-1}}\right\}=\left\{a_{1}, a_{2}, \ldots, a_{X}\right\}$, so $Y-1=X$, implying $Y-X=1$.

Thus in the general case the inequality $|X-Y| \leqslant 1$ holds.
Result 4. Let $G=Z_{n} \times Z_{m}$ and $S=\{(1,0),(0,1)\}$. Then $\Gamma(G, S)$ has a Hamiltonian circuit if and only if $m=n$.

A generalization of Result 4 for the existence of a Hamiltonian circuit is given in the following theorem.
Theorem 2.2. Let $G=\langle a, b\rangle, S=\{a, b\}$ and $X=|G| / o(a)$ and $|G| / o(b)$. If $\Gamma(G, S)$ has Hamiltonian circuit, then $X=Y$.
Proof. Let $V_{a}=\left\{a_{1}, a_{2}, \ldots, a_{X}\right\}$ and $V_{b}=\left\{b_{1}, b_{2}, \ldots, b_{Y}\right\}$, and assume this circuit starts from a vertex in V_{a}, which is called $a_{i_{1}}$. The next vertex can't be from V_{a}, so it should be from V_{b}; call this vertex $b_{i_{1}}$. Therefore this circuit can be represented by $a_{i_{1}}, b_{i_{1}}, a_{i_{2}}, b_{i_{2}}, \ldots, a_{i_{X}}, b_{i_{X}}, a_{i_{1}}$. Now notice that $b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{X}}$ should exhaust all the vertices of V_{b} exactly once. So $\left\{b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{X}}\right\}=\left\{b_{1}, b_{2}, \ldots, b_{Y}\right\}$; hence $X=Y$.

3. Finite abelian groups

From [Rotman 1995] it's well known that every finite abelian group G is isomorphic to a direct product of cycle groups, say $G \cong Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{k}}$, where $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$. We choose

$$
S=\{(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)\}
$$

as a generating set of G. The vector $(0, \ldots, 1, \ldots, 0)$ with 1 in the i-th position is denoted by e_{i}, and the zero vector is denoted by $0=(0,0, \ldots, 0)$.

We are going to generalize the results of Section 3 in [Bauer et al. 2008] and obtain necessary and sufficient conditions in order that $\Gamma(G, S)$ contains an Eulerian path or circuit.
Theorem 3.1. Let G be a finite abelian group which can be represented by $G \cong$ $Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{k}}$, where $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$. Let $S=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. Then $\Gamma(G, S)$ has an Eulerian circuit if and only if k is odd or n_{1} is even. Furthermore $\Gamma(G, S)$ has an Eulerian path if and only if $G \cong Z_{1} \times Z_{1}$ or $G \cong Z_{1} \times Z_{2}$.

$$
(0)+0 \quad(0)+0
$$

Figure 1. $\Gamma\left(Z_{1} \times Z_{1}, S\right)$.

Figure 2. $\Gamma\left(Z_{1} \times Z_{2}, S\right)$.

Proof. Let us check the vertices $\left\langle e_{i}\right\rangle+0(1 \leqslant i \leqslant k)$ of $\Gamma(G, S)$:

$$
\begin{aligned}
\left(e_{1}\right)+0 & =\left(0, e_{1}, 2 e_{1}, \ldots,\left(n_{1}-1\right) e_{1}\right) \\
\left(e_{2}\right)+0 & =\left(0, e_{2}, 2 e_{2}, \ldots,\left(n_{2}-1\right) e_{2}\right) \\
& \vdots \\
\left(e_{k}\right)+0 & =\left(0, e_{k}, 2 e_{k}, \ldots,\left(n_{k}-1\right) e_{k}\right)
\end{aligned}
$$

For all i, j such that $1 \leqslant i, j \leqslant k, i \neq j$, we have $\left(\left(e_{i}\right)+0 \cap\left(e_{j}\right)+0\right)=0$, so $\left|\left(e_{i}\right)+0 \cap\left(e_{j}\right)+0\right|=1$. Thus for all $\left(e_{i}\right)+x$ and $\left(e_{j}\right)+y$ such that $\left(e_{i}\right)+x \in V_{e_{i}}$ and $\left(e_{j}\right)+y \in V_{e_{j}}$, if $\left|\left(e_{i}\right)+0 \cap\left(e_{j}\right)+0\right| \neq 0$, then $\left|\left(e_{i}\right)+0 \cap\left(e_{j}\right)+0\right|=1$. So in the simple graph $\Gamma(G, S)$, we have $\operatorname{deg}\left(\left(e_{i}\right)+x\right)=(k-1) n_{i}$ for every $\left(e_{i}\right)+x$ from vertices of $\Gamma(G, S)$ (Result 2). Now consider the following cases:

Case 1: If k is odd, then the degree of every vertex of $\Gamma(G, S)$ is even. On the other hand, $G=\langle(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)\rangle$. Thus $\Gamma(G, S)$ is connected, so it has an Eulerian circuit but it doesn't have any Eulerian paths (Result 1).

Case 2: Assume that k is even:
Case 2.1: If n_{1} is even, then n_{i} is even for each $1 \leqslant i \leqslant k$, because $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$. So the degree of every vertex of $\Gamma(G, S)$ is even; thus it has an Eulerian circuit but it doesn't have any Eulerian paths (Result 1).
Case 2.2: If n_{1} is odd and $G \cong Z_{1} \times Z_{1}$, then $\Gamma(G, S)$ is given in Figure 1. It has an Eulerian path, but it doesn't have any Eulerian circuits (Result 1).
Case 2.3: If n_{1} is odd and $G \cong Z_{1} \times Z_{2}$, then $\Gamma(G, S)$ is given in Figure 2. It has an Eulerian path, but it doesn't have any Eulerian circuits.

Case 2.4: If n_{1} is odd, $n_{1} \geqslant 3$ and $G=Z_{n_{1}} \times Z_{n_{2}}$, then $n_{1} \mid n_{2}$, so $n_{2} \geqslant 3$. On the other hand, the number of vertices of $V_{e_{1}}$ is $|G| / o\left(e_{1}\right)=n_{2}$. So $\Gamma(G, S)$ has at least three vertices of odd order. Thus it doesn't have any Eulerian paths or circuits (Result 1).
Case 2.5: If $G=Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{k}}$ such that n_{1} is odd and $k>2$, then $\Gamma(G, S)$ doesn't have any Eulerian paths or circuits: the number of vertices of $V_{e_{1}}$ is $|G| / o\left(e_{1}\right)=\prod_{j=2}^{k} n_{i_{j}}$.

If $\prod_{j=2}^{k} n_{i_{j}}=1$, then $G=Z_{1} \times \cdots \times Z_{1} \times Z_{1}$, so $\Gamma(G, S)$ has k vertices of odd degree (the degree is $k-1$). Thus $\Gamma(G, S)$ has at least four vertices of odd degree, and hence it doesn't have any Eulerian paths or circuits (Result 1).

If $\prod_{j=2}^{k} n_{i_{j}}=2$, then $G=Z_{1} \times \cdots \times Z_{1} \times Z_{2}$, so

$$
\sum_{r=1}^{k-1}\left|V_{e_{r}}\right|=\sum_{r=1}^{k-1} \frac{|G|}{o\left(e_{r}\right)}=2(k-1) \geqslant 6
$$

Thus $\Gamma(G, S)$ has at least six vertices of odd degree (the degree is $k-1$), so it doesn't have any Eulerian paths or circuits (Result 1).

If $\prod_{j=2}^{k} n_{i_{j}} \geqslant 3$, then $\Gamma(G, S)$ has at least three vertices of odd degree (the degree is $n_{1}(k-1)$), so it doesn't have any Eulerian paths or circuits (Result 1). Therefore the theorem is proved.

4. Dicyclic group

Let G be the dicyclic group whose presentation is

$$
\begin{equation*}
T_{4 n}=\left\langle a, b \mid a^{2 n}=e, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle \tag{1}
\end{equation*}
$$

which is a group of order $4 n$. We want to check the existence of Eulerian and Hamiltonian circuits and paths in the graph $\Gamma(G, S)$ for a suitable subset S of G.

Theorem 4.1. Let G be the group (1) and $S=\{a, b\}$. If n is even, $\Gamma(G, S)$ has an Eulerian circuit and doesn't have any Eulerian paths. If n is odd, $\Gamma(G, S)$ has an Eulerian path and doesn't have any Eulerian circuits.
Proof. Clearly $o(b)=4$. Now we check the vertices (a) e and (b) e, where e is the identity element of G :

$$
\begin{aligned}
& \text { (a) } e=\left(e, a, a^{2}, \ldots, a^{2 n-1}\right) \\
& \text { (b) } e=\left(e, b, b^{2}, b^{3}\right)=\left(e, b, a^{n}, a^{n} b\right)
\end{aligned}
$$

So $(a) e \cap(b) e=\left\{e, a^{n}\right\}$, and thus $|(a) e \cap(b) e|=2$. Now we know that if (a) $x \cap(b) y \neq \varnothing$, then by [Bauer et al. 2008], $|(a) x \cap(b) y|=2$. Notice that the number of vertices of V_{a} is $|G| / o(a)=(4 n) /(2 n)=2$. On the other hand $o(b)=4$, so $\operatorname{deg}((b) y)=4$ for every $(b) y \in V_{b}$. Thus every vertex of V_{b} has exactly

Figure 3. $\Gamma\left(T_{8},\{a, b\}\right)$.

Figure 4. $\Gamma\left(T_{12},\{a, b\}\right)$.
two edges to every vertex of V_{a}. Also we know that the number of vertices of V_{b} is $|G| / o(b)=4 n / 4=n$; thus $\bar{\Gamma}(G, S)$ is isomorphic to $K_{n, 2}^{2}$, so $\Gamma(G, S) \cong K_{n, 2}$.

Next if n is even, then $\operatorname{deg}(v)$ is even for every vertex v of $\Gamma(G, S)$; hence $\Gamma(G, S)$ has an Eulerian circuit and it doesn't have any Eulerian paths (Result 1).

But if n is odd, then $\operatorname{deg}(b) y$ is 2 for every $(b) y$ in V_{b}, and $\operatorname{deg}(a) x$ is n, which is odd for every $(a) x$ in V_{a}. So $\Gamma(G, S)$ has exactly two vertices of odd order; thus it has an Eulerian path and it doesn't have any Eulerian circuits (Result 1).

Theorem 4.2. Let G be the group (1) and $S=\{a, b\}$. If $n=2$, then $\Gamma(G, S)$ has a Hamiltonian path and circuit. If $n=1$ or 3 , then $\Gamma(G, S)$ has Hamiltonian path but it doesn't have any Hamiltonian circuits. If $n \neq 1,2,3$, then $\Gamma(G, S)$ doesn't have any Hamiltonian paths or circuits.

Proof. Assume that $\Gamma(G, S)=K_{n, 2}$ has a Hamiltonian path; then $|n-2| \leqslant 1$ (Theorem 2.1). Therefore just one of the following cases happens:

Case 1: $n=2$. So $\Gamma(G, S)$ is as in Figure 3. Thus its Hamiltonian path is $(a) e$, (b) $a,(a) b,(b) e$, and the Hamiltonian circuit is (a)e, (b)a, (a)b, (b)e, (a)e.

Case 2: $(n-2=1) \Rightarrow(n=3)$. So $\Gamma(G, S)$ is as in Figure 4. Thus its Hamiltonian path is (b) $e,(a) e,(b) a,(a) b,(b) a^{2}$, but it doesn't have any Hamiltonian circuits because $n \neq 2$ (Theorem 2.2).

Figure 5. $\Gamma\left(T_{4},\{a, b\}\right)$.
Case 3: $(2-n=1) \Rightarrow(n=1)$. So $\Gamma(G, S)$ is as in Figure 5. Thus its Hamiltonian path is (a) e, (b)e, (a)b, but it doesn't have any Hamiltonian circuits because $n \neq 2$ (Theorem 2.2).

So $\Gamma(G, S)$ has a Hamiltonian circuit if and only if $n=2$, and it has a Hamiltonian path if and only if $n=1$ or 3 .
Theorem 4.3. Let G be the group (1) and $S=\{a b, b\}$. Then $\Gamma(G, S)$ has Eulerian and Hamiltonian circuits, and the Hamiltonian circuit is just the Eulerian circuit. Also $\Gamma(G, S)$ has a Hamiltonian path, but it doesn't have any Eulerian paths.
Proof. Clearly $o(a b)=4$. Now let us check the vertices of V_{b} :

$$
\begin{aligned}
(b) e & =\left(e, b, b^{2}, b^{3}\right) \\
(b) a & =\left(a, b a, b^{2}, b^{3} a\right) \\
(b) a^{2} & =\left(a^{2}, b a^{2}, b^{2}, b^{3} a^{2}\right) \\
& \vdots \\
(b) a^{n-1} & =\left(a^{n-1}, b a^{n-1}, b^{2}, b^{3} a^{n-1}\right) .
\end{aligned}
$$

Now notice that $b a^{i}=a^{2 n-i} b,(b)^{2} a^{i}=a^{n+i}$ and $(b)^{3} a^{i}=a^{n-i} b$. So

$$
\begin{aligned}
(b) e & =\left(e, b, a^{n},(a)^{n} b\right), \\
(b) a & =\left(a, a^{2 n-1} b, a^{n+1},(a)^{n-1} b\right), \\
(b) a^{2} & =\left(a^{2}, a^{2 n-2} b, a^{n+2},(a)^{n-2} b\right), \\
& \vdots \\
(b) a^{n-1} & =\left(a^{n-1}, a^{n+1} b, a^{2 n-1}, a b\right) .
\end{aligned}
$$

Next let us see the vertices of $V_{a b}$:

$$
\begin{aligned}
(a b) e & =\left(e, a b,(a b)^{2},(a b)^{3}\right) \\
(a b) a & =\left(a, a b a,(a b)^{2} a,(a b)^{3} a\right) \\
(a b) a^{2} & =\left(a^{2}, a b a^{2},(a b)^{2} a^{2},(a b)^{3} a^{2}\right) \\
& \vdots \\
(a b) a^{n-1} & =\left(a^{n-1}, a b a^{n-1},(a b)^{2} a^{n-1},(a b)^{3} a^{n-1}\right)
\end{aligned}
$$

Figure 6. $\Gamma\left(T_{4 n},\{a b, b\}\right)$.
Since $a b a^{i}=a\left(b a^{i}\right)=a^{2 n-1+i}$, we know $(a b)^{2} a^{i}=a_{n} a^{i}=a^{n+i}$ and $(a b)^{3} a^{i}=$ $a^{n+1} b a^{i}=a^{n-i+1}$. So

$$
\begin{aligned}
(a b) e & =\left(e, a b,(a)^{n},(a)^{n+1} b\right) \\
(a b) a & =\left(a, b,(a)^{n+1},(a)^{n} b\right) \\
(a b) a^{2} & =\left(a^{2}, a^{2 n-1} b,(a)^{n+2},(a)^{n-1} b\right) \\
& \vdots \\
(a b) a^{n-1} & =\left(a^{n-1}, a^{n+2} b,(a)^{2 n-1},(a)^{2} b\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
(a b) a^{i} \cap(b) a^{i} & =\left\{a^{i}, a^{n+i}\right\} \\
(a b) a^{i+1} \cap(b) a^{i} & =\left\{a^{2 n-i}, a^{n-i} b\right\} \\
(a b) e \cap(b) a^{n-1} & =\left\{a b, a^{n+1} b\right\}
\end{aligned}
$$

Therefore $\Gamma(G, S)$ is as shown in Figure 6.
Hence the Eulerian and Hamiltonian circuit is
(ab) e, (b) $e,(a b) a,(b) a,(a b) a^{2},(b) a^{2}, \ldots,(a b) a^{n-1},(b) a^{n-1},(a b) e$,
the Hamiltonian path is

$$
(a b) e,(b) e,(a b) a,(b) a,(a b) a^{2},(b) a^{2}, \ldots,(a b) a^{n-1},(b) a^{n-1}
$$

and $\Gamma(G, S)$ doesn't have any Eulerian paths because the degree of every vertex of $\Gamma(G, S)$ is even (Result 1).

Theorem 4.4. Let G be the group (1) and $S=\{a, a b\}$. If n is even, $\Gamma(G, S)$ has an Eulerian circuit and it doesn't have any Eulerian paths, and if n is odd, $\Gamma(G, S)$ has an Eulerian path and it doesn't have any Eulerian circuits.
Proof. Let us check the vertices $(a) e$ and $(a b) e$:

$$
\begin{aligned}
(a) e & =\left(e, a, a^{2}, \ldots, a^{2 n-1}\right) \\
(b) e & =\left(e, a b, a^{n}, a^{n+1} b\right)
\end{aligned}
$$

Figure 7. $\Gamma\left(T_{8},\{a, a b\}\right)$.

Figure 8. $\Gamma\left(T_{12},\{a, a b\}\right)$.

So $(a) e \cap(a b) e=\left\{e, a^{n}\right\}$; thus $|(a) e \cap(a b) e|=2$. We know that for $(a) x \in V_{a}$ and (ab) $y \in V_{a b}$, if $(a) x \cap(a b) y \neq \varnothing$, then by [Bauer et al. 2008], $|(a) x \cap(a b) y|=2$. On the other hand $o(a b)=4$ so $\operatorname{deg}(a b) x=4$ for every $(a b) x \in V_{a b}$, and also we know that the number of vertices of V_{a} is $|G| / o(a)=(4 n) /(2 n)=2$. Thus in $\Gamma(G, S)$, every vertex of V_{b} has an edge to every vertex of V_{a}, so $\Gamma(G, S)$ is $K_{n, 2}$. Now if n is even, the degree of every vertex of $\Gamma(G, S)$ is even, so it has an Eulerian circuit and doesn't have any Eulerian paths (Result 1).

But if n is odd, $\Gamma(G, S)$ has exactly two vertices of odd degree ($(a) e$ and (a)b), so it has an Eulerian path and doesn't have any Eulerian circuits (Result 1).

Theorem 4.5. Let G be the group (1) and $S=\{a, a b\}$. If $n=2$, then $\Gamma(G, S)$ has a Hamiltonian path and circuit, if $n=1$ or $n=3$, then $\Gamma(G, S)$ has a Hamiltonian path and it doesn't have any Hamiltonian circuits, and if $n \neq 1,2,3$, then $\Gamma(G, S)$ doesn't have any Hamiltonian paths or circuits.

Proof. The G-graph $\Gamma(G, S)$ is isomorphic to $K_{n, 2}$ (as we have already proved). Assume that it has a Hamiltonian path; then $|n-2| \leqslant 1$ (Theorem 2.1). So just one of the following cases happens:

Case 1: $n=2$. So $\Gamma(G, S)$ is as in Figure 7. Therefore its Hamiltonian path is $(a) e$, $(a b) e,(a) b,(a b) a$, and its Hamiltonian circuit is $(a) e,(a b) e,(a) b,(a b) a,(a) e$.

Figure 9. $\Gamma\left(T_{4},\{a, a b\}\right)$.
Case 2: $(n-2=1) \Rightarrow(n=3)$. So $\Gamma(G, S)$ is as in Figure 8. Therefore its Hamiltonian path is $(a b) e,(a) e,(a b) a,(a) b,(a b) a^{2}$. But it doesn't have any Hamiltonian circuits because $n \neq 2$ (Theorem 2.2).
Case 3: $(2-n=1) \Rightarrow(n=1)$. So $\Gamma(G, S)$ is as in Figure 9. Therefore its Hamiltonian path is $(a) e,(a b) e,(a) b$. But it doesn't have any Hamiltonian circuits because $n \neq 2$ (Theorem 2.2). So $\Gamma(G, S)$ has a Hamiltonian circuit if and only if $n=2$, and it has a Hamiltonian path if and only if $n=1$ or 3 .

5. The group $V_{8 n}$ of order $8 n$

The group $G=V_{8 n}$ has presentation

$$
\begin{equation*}
V_{8 n}=\left\langle a, b \mid a^{2 n}=b^{4}=e, b a=a^{-1} b^{-1}, b^{-1} a=a^{-1} b\right\rangle \tag{2}
\end{equation*}
$$

We want to check the existence of Eulerian and Hamiltonian paths and circuits in $\Gamma(G, S)$.
Theorem 5.1. Let G be the group (2) and $S=\{a, b\}$. Then $\Gamma(G, S)$ always has an Eulerian circuit and never has Eulerian paths.
Proof. Let us check (a) e and (b) e :

$$
\begin{aligned}
& \text { (a) } e=\left(e, a, a^{2}, \ldots, a^{2 n-1}\right) \\
& (b) e=\left(e, b, b^{2}, b^{3}\right)
\end{aligned}
$$

So, $(a) e \cap(b) e=\{e\} ;$ thus $|(a) e \cap(b) e|=1$. Hence, for every $(a) x \in V_{a}$ and (b) $y \in V_{b}$, if $(a) x \cap(b) y \neq \varnothing$, then $|(a) x \cap(b) y|=1$ [Bauer et al. 2008]. Now notice that $o(a)=2 n$, so the number of vertices of V_{a} is $|G| / o(a)=(8 n) /(2 n)=4$. Also we know that $o(b)=4$, so $\operatorname{deg}(b) y=4$ for every $(b) y \in V_{b}$. Thus every vertex of V_{b} has exactly one edge to every vertex of V_{a}. On the other hand, the number of vertices of V_{b} is $|G| / o(b)=8 n / 4=2 n$, so $\Gamma(G, S)=K_{2 n, 4}$.

Hence the degree of every vertex of $\Gamma(G, S)$ is even ($2 n$ or 4), so it has an Eulerian circuit but it doesn't have any Eulerian paths (Result 1).
Theorem 5.2. Let G be the group (2) and $S=\{a, b\}$. Then $\Gamma(G, S)$ has a Hamiltonian circuit if and only if $n=2$.

Figure 10. $\Gamma\left(V_{16},\{a, b\}\right)$.

Proof. The G-graph $\Gamma(G, S)$ is isomorphic to $K_{2 n, 4}$. Assume that it has a Hamiltonian path, so $|2 n-4| \leqslant 1$ (Theorem 2.1); hence one of the following cases happens:
Case 1: $(2 n=4) \Rightarrow(n=2)$. So $\Gamma(G, S)$ is as in Figure 10. The Hamiltonian path is $(a) e,(b) e,(a) b,(b) a,(a) b^{2},(b) a^{2},(a) b^{3},(b) a^{3}$, and the Hamiltonian circuit is (a) $e,(b) e,(a) b,(b) a,(a) b^{2},(b) a^{2},(a) b^{3},(b) a^{3},(a) e$.

Case 2: $(4-2 n=1) \Rightarrow(2 n=3)$, which is not possible.
Case 3: $(2 n-4=1) \Rightarrow(2 n=5)$, which is not possible.
Notice that if $n \neq 2$, then $\Gamma(G, S)$ doesn't have any Hamiltonian circuits (Theorem 2.2). So $\Gamma(G, S)$ has a Hamiltonian path and circuit if and only if $n=2$.

Theorem 5.3. Let G be the group (2) and $S=\{b, a b\}$. Then $\Gamma(G, S)$ always has an Eulerian circuit and doesn't have any Eulerian paths.

Proof. Clearly $o(a b)=2$. Now notice that $a b a^{i}=b^{3} a^{i-1}$ and $a b^{2} a^{i}=b^{2} a^{i+1}$. Next let us check the vertices of $V_{a b}$:

$$
\begin{aligned}
(a b) e & =(e, a b)=\left(e, b^{3} a^{2 n-1}\right), \\
(a b) a & =(a, a b a)=\left(a, b^{3}\right), \\
(a b) a^{2} & =\left(a^{2}, a b a\right)=\left(a, b^{3} a\right), \\
& \vdots \\
(a b) a^{2 n-1} & =\left(a^{2 n-1}, a b a\right)=\left(a, b^{3} a^{2 n-2}\right), \\
(a b) b & =\left(b, a b^{2}\right)=\left(b, b^{2} a\right), \\
(a b) b a & =\left(b a, a b^{2} a\right)=\left(b a, b^{2} a^{2}\right), \\
(a b) b a^{2} & =\left(b a^{2}, a b^{2} a^{2}\right)=\left(b a^{2}, b^{2} a^{3}\right), \\
& \vdots \\
(a b) b a^{2 n-1} & =\left(b a^{2 n-1}, a b^{2} a^{2 n-1}\right)=\left(b a^{2 n-1}, b^{2}\right)
\end{aligned}
$$

Figure 11. $\Gamma\left(V_{8 n},\{b, a b\}\right)$.

Let us also check those of V_{b} :

$$
\begin{aligned}
(b) e & =\left(e, b, b^{2}, b^{3}\right) \\
(b) a & =\left(a, b a, b^{2} a, b^{3} a\right) \\
(b) a^{2} & =\left(a^{2}, b a^{2}, b^{2} a^{2}, b^{3} a^{2}\right) \\
& \vdots \\
(b) a^{2 n-1} & =\left(a^{2 n-1}, b a^{2 n-1}, b^{2} a^{2 n-1}, b^{3} a^{2 n-1}\right)
\end{aligned}
$$

So we have $(a b) a^{i} \cap(b) a^{i}=\left\{a^{i}\right\}$ and $(a b) a^{i+1} \cap(b) a^{i}=\left\{b^{3} a^{i}\right\}$ and $(a b) b a^{i} \cap$ (b) $a^{i}=\left\{b a^{i}\right\}$ and $(a b) b a^{i-1} \cap(b) a^{i}=\left\{b^{2} a^{i}\right\}$. Hence in $\Gamma(G, S)$, the degree of every vertex of $V_{a b}$ is 2 , and the degree of every vertex of V_{b} is 4 . So the degree of every vertex of $\Gamma(G, S)$ is even. On the other hand $G=V_{8 n}=\langle a b, b\rangle$, so $\Gamma(G, S)$ is connected [Bretto et al. 2007]. Thus $\Gamma(G, S)$ is a connected graph such that the degree of every vertex is even, so it has an Eulerian circuit and it doesn't have any Eulerian paths (Result 1). The Eulerian circuit in $\Gamma(G, S)$ is

$$
\begin{aligned}
& (b) a^{2 n-1},(a b) e,(b) e,(a b) a,(b) a,(a b) a^{2},(b) a^{2} \\
& \ldots,(a b) a^{2 n-2},(b) a^{2 n-2},(a b) a^{2 n-1},(b) a^{2 n-1},(a b) b a^{2 n-1} \\
& (b) e,(a b) e,(b) a,(a b) b a,(b) a^{2},(a b) b a^{2} \\
& \ldots,(b) a^{2 n-2},(a b) b a^{2 n-2},(b) a^{2 n-1}
\end{aligned}
$$

Theorem 5.4. Let G be the group (2) and $S=\{b, a b\}$. Then $\Gamma(G, S)$ doesn't have any Hamiltonian paths or circuits.

Proof. The number of vertices of V_{b} is $|G| / o(b)=8 n / 4=2 n$, and the number of vertices of $V_{a b}$ is $|G| / o(a)=8 n / 2=4 n$. Now assume that $\Gamma(G, S)$ has a Hamiltonian path, so $|4 n-2 n| \leqslant 1$ (Theorem 2.1). Hence one of the following cases will happen:

Figure 12. $\Gamma\left(V_{8 n},\{a, a b\}\right)$.
Case 1: $(4 n=2 n) \Rightarrow(n=0)$.
Case 2: $(4 n-2 n=1) \Rightarrow(2 n=1) \Rightarrow\left(n=\frac{1}{2}\right)$.
Case 3: $(2 n-4 n=1) \Rightarrow(2 n=-1) \Rightarrow\left(n=-\frac{1}{2}\right)$.
Obviously none of these cases can happen, so $\Gamma(G, S)$ doesn't have any Hamiltonian paths, and thus it doesn't have any Hamiltonian circuits.
Theorem 5.5. Let G be the group (2) and $S=\{a, a b\}$. Then $\Gamma(G, S)$ has an Eulerian circuit and doesn't have any Eulerian paths.

Proof. Notice that $o(a)=2 n$ and $o(a b)=2$. Also notice that $(a b) e=(e, a b)$ and (a) $e=\left(e, a, a^{2}, \cdots, a_{2 n-1}\right)$, so (ab) $e \cap(a) e=\{e\}$. Thus, for every (a) $x \in V_{a}$ and (ab) $y \in V_{a b}$, if $(a) x \cap(a b) y \neq \varnothing$, then $|(a) x \cap(a b) y|=1$ [Bauer et al. 2008]. So the degree of every vertex of V_{a} is $2 n$, and the degree of every vertex of $V_{a b}$ is 2 .

On the other hand $G=\langle a, a b\rangle$, so $\Gamma(G, S)$ is connected [Bretto et al. 2007]. Thus, $\Gamma(G, S)$ is a connected graph such that the degree of every vertex is even. So it has an Eulerian circuit and doesn't have any Eulerian paths (Result 1).

Theorem 5.6. Let G be the group (2) and $S=\{a, a b\}$. Then $\Gamma(G, S)$ has a Hamiltonian path and circuit if and only if $n=1$.
Proof. The number of vertices of V_{a} is $|G| / o(a)=(8 n) /(2 n)=4$, and the number of vertices of $V_{a b}$ is $|G| / o(a b)=8 n / 2=4 n$. Now assume that $\Gamma(G, S)$ has a Hamiltonian path, so $|4 n-4| \leqslant 1$ (Theorem 2.1). Hence one of the following cases happens:
Case 1: $(4 n-4=1) \Rightarrow(4 n=5)$, which is impossible.
Case 2: $(4-4 n=1) \Rightarrow(4 n=3)$, which is impossible.
Case 3: $(4 n-4=0) \Rightarrow(4 n=4) \Rightarrow(n=1)$. In this case, the image of $\Gamma(G, S)$ is shown in Figure 13. Its Hamiltonian path is $(a b) e,(a) b^{3},(a b) b a,(a) b^{2},(a b) b$,

Figure 13. $\Gamma\left(V_{8},\{a, a b\}\right)$.
$(a) b,(a b) a,(a) e$, and its Hamiltonian circuit is $(a b) e,(a) b^{3},(a b) b a,(a) b^{2},(a b) b$, (a) $b,(a b) a,(a) e,(a b) e$. If $\Gamma(G, S)$ doesn't have any Hamiltonian paths, then it doesn't have any Hamiltonian circuits; thus $\Gamma(G, S)$ has a Hamiltonian path and circuit if and only if $n=1$.

6. Conclusion

In this paper we investigated the existence of Eulerian circuits and paths in the G-graphs of finite abelian groups. Also we checked the existence of Hamiltonian and Eulerian circuits and paths in the G-graphs of some nonabelian finite groups. Our method can be applied to other finite groups as well.

References

[Bauer et al. 2008] C. M. Bauer, C. K. Johnson, A. M. Rodriguez, B. D. Temple, and J. R. Daniel, "Paths and circuits in G-graphs", Involve 1:2 (2008), 135-144. MR Zbl
[Bondy and Murty 1976] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier, New York, 1976. MR Zbl
[Bretto and Faisant 2005] A. Bretto and A. Faisant, "Another way for associating a graph to a group", Math. Slovaca 55:1 (2005), 1-8. MR Zbl
[Bretto and Faisant 2011] A. Bretto and A. Faisant, "Cayley graphs and G-graphs: some applications", J. Symbolic Comput. 46:12 (2011), 1403-1412. MR Zbl
[Bretto and Gillibert 2005] A. Bretto and L. Gillibert, "Symmetry and connectivity in G-graphs", Electron. Notes Disc. Math. 22 (2005), 481-486. Zbl
[Bretto et al. 2007] A. Bretto, A. Faisant, and L. Gillibert, " G-graphs: a new representation of groups", J. Symbolic Comput. $42: 5$ (2007), 549-560. MR Zbl
[Rotman 1995] J. J. Rotman, An introduction to the theory of groups, 4th ed., Graduate Texts in Mathematics 148, Springer, 1995. MR Zbl

Received: 2016-10-13 Revised: 2017-03-07 Accepted: 2017-07-18

darafsheh@ut.ac.ir	School of Mathematics, Statistics and Computer Science,
	College of Science, University of Tehran, Tehran, Iran
madadi.safoora@ut.ac.ir	School of Mathematics, Statistics and Computer Science,
	University of Tehran, Tehran, Iran

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 / y e a r$ for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
-I mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

involve
 no. 3

A mathematical model of treatment of cancer stem cells with 361
immunotherapyZachary J. Abernathy and Gabrielle Epelle
RNA, local moves on plane trees, and transpositions on tableaux 383Laura Del Duca, Jennifer Tripp, JuliannaTymoczko and Judy Wang
Six variations on a theme: almost planar graphs 413
Max Lipton, Eoin Mackall, Thomas W. Mattman, Mike Pierce, Samantha Robinson, Jeremy Thomas and Ilan Weinschelbaum
Nested Frobenius extensions of graded superrings 449
Edward Poon and Alistair Savage
On G-graphs of certain finite groups 463
Mohammad Reza Darafsheh and Safoora Madady MOGHADAM
The tropical semiring in higher dimensions 477John Norton and Sandra Spiroff
A tale of two circles: geometry of a class of quartic polynomials 489
Christopher Frayer and Landon Gauthier
Zeros of polynomials with four-term recurrence 501
Khang Tran and Andres Zumba
Binary frames with prescribed dot products and frame operator 519 Veronika Furst and Eric P. Smith

