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We discuss the generalization, in higher dimensions, of the tropical semiring,
whose two binary operations on the set of real numbers together with infinity
are defined to be the minimum and the sum of a pair, respectively. In particular,
our objects are closed convex sets, and for any pair, we take the convex hull of
their union and their Minkowski sum, respectively, as the binary operations. We
consider the semiring in several different cases, determined by a recession cone.

Introduction

The tropical semiring is 〈R∪ {∞},⊕,�〉, with the two operations defined by

x ⊕ y =min(x, y) and x � y = x + y.

The fact that this is a semiring comes from the lack of inverses under ⊕, as the
additive neutral object is infinity. The multiplicative neutral object, i.e., under
the operation �, is zero. Inspired by [Speyer and Sturmfels 2009, p. 165], we
generalize the tropical semiring to higher dimensions. In particular, our elements
are polyhedra, or more generally, closed convex sets, in Rn with a fixed recession
cone, i.e., the directions in which the set recedes, and the two operations are defined
by taking the convex hull of the union and by the Minkowski sum. Indeed, when
n = 1 and the recession cone is R+ = {ξ : ξ ≥ 0}, then this definition reduces to
the tropical semiring [Maclagan and Sturmfels 2015; Speyer and Sturmfels 2009]
as described above: the real numbers x and y represent the sets of solutions to the
inequalities t ≥ x and t ≥ y, respectively; i.e., they correspond to the polyhedra in R

given by the positive rays with vertices at x, y. In particular, for each, the recession
cone is the nonnegative ray emanating from the origin, or R+. Clearly, the union
of these two sets is represented by the inequality t ≥min(x, y) and likewise, the
Minkowski sum is given by the inequality t ≥ x+ y. Careful consideration must be
given to the neutral objects in this setting.
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As suggested in [Speyer and Sturmfels 2009], the set of convex polyhedra in Rn

with fixed recession cone will form a semiring. We explore this idea in detail,
considering various recession cones. In particular, we first consider the case of
bounded polyhedra, i.e., convex polytopes, in Rn. In this case, the common recession
cone is {0} and the properties follow quite nicely. Furthermore, we can generalize
this case to that of compact (convex) sets in Rn. These proofs are the content of the
second section.1 Prior to that, we provide the necessary background on recession
cones and asymptotic cones, and include examples to demonstrate the possible
pathology of ⊕ and � if the recession cone is not fixed. The main portion of the
paper is dedicated to establishing the axioms of the various semirings, and most
especially, those dealing with the closure of the two operations. The final section of
the paper considers unbounded closed convex sets. We demonstrate the semirings
of closed convex polyhedra and general convex sets, both with recession cone equal
to the nonnegative orthant Rn

+
.

1. Background: polyhedra, recession cones, and asymptotic cones

Some general references for the material in this section are [Rockafellar 1970;
Ziegler 1995; Border 1985; 2002].

Definition 1.1 [Rockafellar 1970, p. 10]. A subset P of Rn is convex if it satisfies
the following property: for every x, y ∈ P and λ ∈ R, 0 < λ < 1, the element
λx + (1− λ)y is in P.

Fact 1.2 [Rockafellar 1970, §2]. Given a subset S of Rn, the convex hull of S,
denoted by conv S, is the intersection of all the convex sets containing S. It is
the smallest convex set containing S. In particular, it is the set of all convex
combinations of the elements of S; i.e.,

conv S =
{
λ1s1+ · · ·+ λksk : si ∈ S, λi ≥ 0, λ1+ · · ·+ λk = 1, k ∈ N

}
.

Definition 1.3 [Rockafellar 1970, p. 61]. Given a nonempty convex set P in Rn,
the recession cone is the set of all y ∈Rn such that p+ y ∈ P for all p ∈ P. Denoted
by 0+P, the recession cone is the set of all directions in which P recedes, i.e., is
unbounded.

Fact 1.4 [Rockafellar 1970, Theorem 8.4]. A nonempty closed convex set P in Rn

is bounded if and only if its recession cone 0+P consists of the zero vector alone.

Example 1.5. In the case of n = 2, the following sets have recession cone equal to
the first quadrant of the plane R2

+
= {x = (ξ1, ξ2) : ξ1 ≥ 0, ξ2 ≥ 0}.

(1) P =
{
(x, y) : x ≥−5, y ≥−18, y ≥− 5

3 x + 2
}
;

1Section 2 and part of Section 3 are the basis for Norton’s undergraduate thesis for the Honors
College at the University of Mississippi.
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(2) Q =
{
(x, y) : x ≥−3, y ≥−15, y ≥−6x − 16, y ≥− 1

2 x − 8
}
;

(3) [Rockafellar 1970, Example p. 62] {(x, y) : x > 0, y ≥ 1/x}.

Definition 1.6 [Rockafellar 1970, p. 170; Ziegler 1995, p. 28; Aliprantis and Border
2006, p. 232]. A polyhedral convex set in Rn is a set which can be expressed as
the intersection of some finite collection of closed half spaces; i.e., it is the set
of solutions to some finite system of inequalities Ax ≤ b. A convex polytope is a
bounded polyhedron; i.e., the convex hull of a finite set.

Fact 1.7 [Ziegler 1995, Proposition 1.12]. If P is a polyhedral convex set in Rn,
then 0+P is the set of solutions to the system of inequalities Ax ≤ 0.

Definition 1.8 [Rockafellar 1970, p. 162]. A point x in a convex set P is an extreme
point if the only way to express x as the convex combination (1− λ)y + λz for
y, z ∈ P and 0< λ < 1 is by taking y = z = x . Denote the set of extreme points
of P by ext(P).

Fact 1.9 [Rockafellar 1970, Corollary 19.1.1]. If P is a polyhedral convex set, then
ext(P) is finite.

In Example 1.5, the first two sets are polyhedra (see Figure 2), but the third one
is not. The finite system of inequalities associated to P is−1 0

0 −1
−

5
3 −1

[x
y

]
≤

 5
18
−2

,
so that 0+P = {(x, y) : x ≥ 0, y ≥ 0}, and ext(P)=

{(
−5, 31

3

)
, (12,−18)

}
.

For a set that is not convex, there is a generalization of the notion of a recession
cone. While we only consider convex sets, this new cone is relevant since the two
definitions coincide when the convex set is closed; hence we may apply related
results in the literature in our cases. We apply this material in the last section.

Definition 1.10 [Border 1985, Definition 2.34]. The asymptotic cone of a set P
in Rn, denoted by AP, is the set of all possible limits of sequences of the form
{αi xi }i , where each xi ∈ P, αi > 0, and αi → 0.

Some properties of the asymptotic cone will be necessary to our proof:

Fact 1.11 [Debreu 1959, §1.9; Border 2002, Lemma 4]. The following hold for
sets E, F in Rn:

(1) AE is a cone.

(2) AE ⊆ AF if E ⊆ F.

(3) 0+E ⊆ AE .

(4) AE ⊆ A(E + F).



480 JOHN NORTON AND SANDRA SPIROFF

(5) AE is closed.

(6) AE is convex if E is convex.

(7) 0+E = AE if E is closed and convex.

(8) AE + AF ⊆ A(E + F) if E + F is convex.

(9) A set E is bounded if and only if AE = {0}.

Fact 1.12 [Shveidel 2001, proof of Theorem 2.3]. For a set P ⊆ Rn, we have
AP = AP .

Example 1.13 [Woo 2013]. In R2, let

P = {(x, y) : 0≤ x ≤ 1, 0≤ y ≤ 1} ∪ {(x, y) : 0≤ x < 1, y ≥ 1}.

Although P is unbounded, 0+P = {0}; however, P is not closed (see Fact 1.7). On
the other hand, 0+P = {(0, y) : y ≥ 0} = AP = AP.

As the above definitions and results are important to establishing the closure of
the operation ⊕, the following definition and result are helpful in establishing the
closure of the operation �.

Fact 1.14 [Schneider 2014, Theorem 1.1.2]. Let P, Q be convex subsets of Rn.
Then conv(P) = P, and the Minkowski sum P + Q of P and Q is convex. In
particular, if P, Q are nonempty, then P + Q = {p + q : p ∈ P, q ∈ Q}, and
P +∅=∅.

Definition 1.15 [Debreu 1959, 1.9 m., p. 22]. The cones C1,C2, . . . ,Ck in Rn are
positively semi-independent if, for any ci ∈ Ci , the condition c1+ c2+· · ·+ ck = 0
implies that each ci = 0.

Fact 1.16 [Border 2002, Theorem 8]. For closed and convex sets E, F ⊆Rn whose
asymptotic cones AE and AF are positively semi-independent, the Minkowski
sum E + F is closed and A(E + F)⊆ AE + AF.

Example 1.17 [Border 2002, Example 2]. In R2, set E = {(x, y) : x > 0, y ≥ 1/x}
and F = {(x, y) : x < 0, y ≥−1/x}. Note that both E and F are closed sets, but
E + F = {(x, y) : y > 0}, which is not closed.

Finally, Carathéodory’s theorem (see, e.g., [Schneider 2014, Theorem 1.1.4])
will be helpful when considering the elements of convex sets.

Carathéodory’s theorem. If a point x lies in the convex (hull of a) set P ⊆ Rn,
then x can be written as a convex combination of no more than n+ 1 points in P;
i.e., there are p0, p1, . . . , pn ∈ P and λi ≥ 0 such that λ0+ λ1+ · · ·+ λn = 1 and
x = λ0 p0+ · · ·+ λn pn .
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Figure 1. A convex polytope (left) and a nonconvex set (right) in R2.

2. The tropical semiring in higher dimensions: the bounded case

The semiring of convex polytopes. Recall that a convex polytope in Rn is a bounded
polyhedral set; i.e., the convex hull of a finite number of points in Rn. See Figure 1.
In particular, these sets are those convex polyhedra in Rn with recession cone equal
to the zero vector.

Theorem 2.1. The set of all convex polytopes P, Q in Rn, with operations shown
below, is a semiring:

P ⊕ Q = conv(P ∪ Q) P � Q = P + Q = {p+ q : p ∈ P, q ∈ Q}. (2-1)

Proof. Let P, Q, R be convex polytopes in Rn. Note that the empty set satisfies the
convexity property vacuously, and as the solution set of any inconsistent system, it
is a polytope. In particular, if P, Q are nonempty, set P = conv(p1, . . . , ps) and
Q = conv(q1, . . . , qt).

Claim 2.1A. The set of all convex polytopes in Rn under the operation of ⊕ is a
commutative monoid.

• The operation ⊕ is closed; i.e., conv(P ∪ Q) is a convex polytope:2 First of all,
P ⊕∅ = conv(P ∪∅) = conv(P) = P, as P is convex, and likewise for ∅⊕ Q.
Moreover, ∅⊕∅=∅. Thus, we may assume that P, Q are both nonempty. We
will show that conv(P ∪ Q)= conv(p1, . . . , ps, q1, . . . , qt). Let z ∈ conv(P ∪ Q).
By Carathéodory’s theorem, z =

∑n
i=0 λi yi , where each λi ≥ 0,

∑n
i=0 λi = 1 and

yi ∈ P ∪ Q. For each yi ∈ P, one can write yi =
∑s

j=1 δi j pj , where δi j ≥ 0 for

2This fact appears in several books without proof. Therefore, we provide an argument, for the
benefit of the undergraduate reader. (Likewise, for some other proofs in this section.) For algorithms
that compute the convex hull of a finite set of points in the plane, for example, Graham’s scan and
Jarvis’s march, see, e.g., [Cormen et al. 2001, Chapter 33, Section 3].
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all j and
∑s

j=1 δi j = 1. If all yi ∈ P, then

z =
n∑

i=0

(
λi

s∑
j=1

δi j pj

)

=

s∑
j=1

( n∑
i=0

λiδi j

)
pj ∈ conv(p1, . . . , ps)⊆ conv(p1, . . . , ps, q1, . . . , qt);

it is similar if all yi ∈ Q. Thus, let m ∈ N, m < n, such that y0, . . . , ym−1 ∈ P \ Q
and ym, . . . , yn ∈ Q. Then

z =
n∑

i=0

λi yi =

m−1∑
i=0

( s∑
j=1

λiδi j pj

)
+

n∑
i=m

( t∑
k=1

λiδikqk

)
is a convex combination of {p1, . . . , qt }; hence, conv(P ∪ Q)⊆ conv(p1, . . . , qt).
Since the containment ⊇ is clear, conv(P∪Q)= conv(p1, . . . , ps, q1, . . . , qt), and
the latter, by Definition 1.6, is a polytope.

• The operation ⊕ is associative; i.e., (P ⊕ Q)⊕ R = P ⊕ (Q ⊕ R): Regarding
(P ⊕ Q)⊕ R = P ⊕ (Q⊕ R), we wish to prove

conv[conv(P ∪ Q)∪ R] = conv[P ∪ conv(Q ∪ R)]. (2-2)

If any one or more of the sets is the empty set, then it is easy to see that the
equality holds. Otherwise, it suffices to show that each of these sets is equal to
conv(P∪Q∪R). Consider the set on the left. Since P∪Q∪R⊆ conv(P∪Q)∪R,
we have conv(P ∪ Q ∪ R)⊆ conv[conv(P ∪ Q)∪ R].

Conversely, as conv(P∪Q), R⊆ conv(P∪Q∪R), we have conv(P∪Q)∪R⊆
conv(P ∪ Q ∪ R). Take the convex hull of both sides: conv[conv(P ∪ Q)∪ R] ⊆
conv(P∪Q∪ R). This establishes that conv(P∪Q∪ R)= conv[conv(P∪Q)∪ R].
The argument for conv[P ∪ conv(Q ∪ R)] is analogous; hence we have (2-2).

• The operation ⊕ is commutative: order does not matter in unions of sets.

• There exists a neutral object O for addition such that for any convex polytope P
in Rn, P⊕O=O⊕ P = P : take O to be the empty set ∅, since conv(P ∪∅)= P.

Claim 2.1B. The set of all convex polytopes in Rn under the operation of � is a
commutative monoid.

• The operation� is closed; i.e., P+Q is a convex polytope: First of all, P�∅=∅
since P + ∅ = ∅ in Minkowski addition, and likewise for ∅� Q. Moreover,
∅�∅=∅. Thus, we may assume that P, Q are both nonempty. We will show that
P + Q = conv({pj + qk : 1≤ j ≤ s, 1≤ k ≤ t}), as per the hint in [Aliprantis and
Border 2006, proof of Lemma 5.124]. Let p ∈ P and q ∈ Q. Write p=

∑s
j=1 λj pj
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and q =
∑t

k=1 µkqk , where λj , µk ≥ 0 and
∑s

j=1 λj = 1=
∑t

k=1 µk . Then,

p+ q =
s∑

j=1

λj pj +

t∑
k=1

µkqk

=

( t∑
k=1

µk

) s∑
j=1

λj pj +

( s∑
j=1

λj

) t∑
k=1

µkqk =

s∑
j=1

t∑
k=1

λjµk(pj + qk)

is a convex combination of {pj + qk : 1≤ j ≤ s, 1≤ k ≤ t}.
Conversely, let

∑n
i=0 λi (xi+ yi ) be a convex combination of {pj+qk : 1≤ j ≤ s,

1≤ k ≤ t}; i.e., xi = pj for some j and yi = qk for some k, λi ≥ 0, and
∑n

i=0 λi = 1.
Then

n∑
i=0

λi (xi + yi )=

n∑
i=0

λi xi +

n∑
i=0

λi yi ,

where the first sum is in conv(p1, . . . , ps) and the second sum is in conv(q1, . . . , qt).
Thus, P+Q= conv({pj+qk |1≤ j ≤ s, 1≤ k≤ t}), and the latter, by Definition 1.6,
is a convex polytope.

• The operation � is associative: addition in Rn is associative.

• The operation � is commutative: addition in Rn is commutative.

• There exists a neutral object I for multiplication such that for any convex poly-
tope P in Rn, P�I = I� P = P : Take I to be conv({0})= {0}, which is a convex
polytope by Definition 1.6, and the common recession cone of all nonempty convex
polytopes P in Rn. Then P + 0= P, by definition of 0+P, and ∅+ 0=∅.

Claim 2.1C. The operation � is distributive over ⊕; i.e.,

P � (Q⊕ R)= (P � Q)⊕ (P � R).

We wish to establish that P + conv(Q ∪ R) = conv[(P + Q) ∪ (P + R)]. If
P = ∅ or more than two of the sets are empty, then both expressions equal ∅,
and if only Q =∅ or only R =∅, then both expressions equal P + R or P + Q
respectively. Thus, assume all three are nonempty.

First of all, take p+ z, where p ∈ P and z ∈ conv(Q ∪ R). Then z =
∑n

i=0 λi yi ,
where λi ≥ 0,

∑n
i=0 λi = 1, and yi ∈ Q ∪ R. Therefore, we have

p+ z = 1p+
n∑

i=0

λi yi =

( n∑
i=0

λi

)
p+

n∑
i=0

λi yi =

n∑
i=0

λi (p+ yi ).

The elements p+ y j are in P + Q or P + R, and possibly both. Therefore, the
last expression is in conv[(P+Q)∪(P+R)]; i.e., p+z ∈ conv[(P+Q)∪(P+R)].
Since p and z are arbitrary, we have P+conv(Q∪ R)⊆ conv[(P+Q)∪ (P+ R)].
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Conversely, since P + Q, P + R ⊆ P + conv(Q ∪ R), it follows that P +
conv(Q ∪ R) contains (P + Q)∪ (P + R). Take the convex hull of both sides:

conv[(P+Q)∪(P+R)]⊆conv[P+conv(Q∪R)]=conv(P)+conv[conv(Q∪R)],

where the equality follows by Fact 1.14. Now since both terms in the last sum are
convex, the expression simplifies to P + conv(Q ∪ R). This establishes the other
inclusion, and therefore, P + conv(Q ∪ R)= conv[(P + Q)∪ (P + R)].

Claim 2.1D. The additive neutral object O is an absorbing element for �; i.e., for
any convex polytope P in Rn, O� P = P �O =O.

This follows from the fact that, in Minkowski addition, ∅+ P =∅. �

The semiring of convex compact sets. In this section, we generalize the above
work with convex polytopes to general convex compact subsets of Rn. Of import is
the Heine–Borel theorem (see, e.g., [Aliprantis and Border 2006, Theorem 3.19]):

Heine–Borel theorem. Subsets of Rn are compact if and only if they are closed
and bounded.

Proposition 2.2. The set of all compact convex sets P, Q in Rn, with the operations
as in (2-1), is a semiring.

Proof. We note that the arguments for many of the claims above do not change. In
particular, the empty set is compact; hence it remains the neutral element under ⊕.
However, closure of the two operations must be considered. Therefore, let P, Q be
compact convex sets in Rn.

• The operation ⊕ is closed; i.e., conv(P ∪ Q) is a compact convex set: The union
of finitely many compact sets is compact. Thus, P∪Q is compact. Next, the convex
hull of a compact set in Rn remains compact (see, e.g., [Aliprantis and Border 2006,
Corollary 5.18]); thus, conv(P ∪ Q) is a compact convex set.

• The operation � is closed; i.e., P + Q is a compact convex set: As per [Border
2002, Corollary 11], the summation of a closed set and a compact set is closed. As
such, P � Q = P + Q is closed, and convex. Moreover, P + Q is bounded since
P, Q are bounded. Apply the Heine–Borel theorem. �

3. The tropical semiring in higher dimensions: the unbounded case

The semiring of convex polyhedra. We consider the set of convex polyhedra in Rn

with the operations⊕ and� as in (2-1). Although convex polyhedra are necessarily
closed (see, e.g., [Rockafellar 1970, Theorem 19.1]), the convex hull of the union
of two convex polyhedral sets need not be polyhedral or closed, as evinced by
Example 3.1 below, that is, if their recession cones do not coincide. Therefore,
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we restrict our sets to those with the same recession cone, namely the nonnega-
tive orthant Rn

+
= {x = (ξ1, . . . , ξn) : ξ1 ≥ 0, . . . , ξn ≥ 0}. This restriction is a

generalization of the nonnegative ray in the tropical semiring when n = 1.

Example 3.1 [Rockafellar 1970, p. 177]. In R2, let P ={(−1, 0)} and Q={(x, y) :
x, y ≥ 0}. Then conv(P ∪ Q) = {(−1, 0)} ∪ {(x, y) : −1 < x, 0 ≤ y}, which is
neither polyhedral nor closed. However, 0+P is the origin, while 0+Q = Q = R2

+
.

Proposition 3.2. Let P be the set of all convex polyhedra in Rn with recession cone
equal to the nonnegative orthant Rn

+
. Then 〈P∪{∅},⊕,�〉, with operations defined

in (2-1), is a semiring.

Proof. It suffices to address the issues regarding closure of the two operations for
convex polyhedra P, Q in Rn with recession cone equal to Rn

+
, and the multiplicative

neutral object, since the earlier arguments for the remaining properties apply here.

• The operation ⊕ is closed; i.e., conv(P ∪ Q) is a convex polyhedron in Rn

with recession cone equal to Rn
+

: Since conv(P ∪ Q) is convex, it remains to
establish that conv(P ∪ Q) is polyhedral with a recession cone equal to the non-
negative orthant. The fact that the recession cone of conv(P ∪ Q) is equal to
Rn
+

follows from [Rockafellar 1970, Theorem 9.8.1]; therefore, it only remains
to show that conv(P ∪ Q) is polyhedral. By Definition 1.6, P is the irredundant
intersection of some finite collection of closed half spaces, including those of the
form {x : 〈x, (0, . . . , 0, 1, 0, . . . , 0)〉 ≥ ai } for some ai ∈ R, i.e., xi ≥ ai , since
0+P = Rn

+
. Likewise, 0+Q = Rn

+
; hence, for each i , the half-spaces defining Q

include xi ≥ ci for some ci ∈ R. Thus, every element of P ∪ Q satisfies the set of
inequalities

{x : 〈x, (0, . . . , 0, 1, 0, . . . , 0)〉 ≥min(ai , ci )}.

Moreover, if z ∈ conv(P ∪ Q) \ (P ∪ Q), then z is in the finite region bounded
by the (necessarily finite set of) extreme points of P and Q. See Figure 2 for an
example. Thus, conv(P ∪ Q) = conv(ext(P) ∪ ext(Q))+ Rn

+
, and the latter, by

[Ziegler 1995, Theorem 1.2], is polyhedral.

• The operation � is closed; i.e., P + Q is a convex polyhedron with recession
cone equal to Rn

+
: By [Rockafellar 1970, Corollary 19.3.2], the Minkowski sum

of two polyhedral convex sets in Rn is polyhedral, and it is convex. Therefore, it
remains to show that 0+(P + Q)= Rn

+
. Since polyhedral convex sets are closed,

their recession cones are equal to their asymptotic cones. Hence by Fact 1.11(8),
AP + AQ ⊆ A(P + Q). Next, as AP = AQ = Rn

+
, it follows that if y ∈ AP\{0},

then −y /∈ AQ. In other words, AP and AQ are positively semi-independent, as
per Definition 1.15. Thus, by Fact 1.16, A(P + Q) ⊆ AP + AQ and the result
follows.
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Figure 2. The graphs of polyhedra P (top left) and Q (top right)
from Example 1.5, and P ∪ Q (bottom left) and conv(P ∪ Q)
(bottom right).

• There exists a neutral object I for multiplication: Take I to be Rn
+

, which is
not only an element of P, but also the common recession cone of all nonempty
polyhedra P in P. Thus P+Rn

+
= P, by the definition of 0+P, and ∅+Rn

+
=∅. �

Remark 3.3. While the set of real numbers R1 is in one-to-one correspondence
with the set of all nonempty closed convex polyhedra in the real number line, the
same is not true for Rn when n ≥ 2. As mentioned in the Introduction, r ↔ [r,∞),
in the case that n = 1, but an ordered pair (r1, r2) does not correspond to a unique
closed convex polyhedron in R2.

The semiring of closed convex sets with a fixed recession cone. Finally, we gen-
eralize the above work to closed convex subsets of Rn with a fixed recession cone C .
As evinced in Example 1.13, pathology arises if the convex sets are not assumed
to be closed. However, despite taking two convex sets that are closed, neither the
convex hull of the union nor the Minkowski sum need be closed, as demonstrated by
Examples 3.1 and 1.17, respectively, that is, if their recession cones do not coincide.
Moreover, our earlier work hints at the possible necessity of taking C such that
AC ∩ (−AC)= {0}.
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Theorem 3.4. Let S be the set of all closed convex sets in Rn with fixed recession
cone C satisfying either of the conditions below:

(1) AC ∩ (−AC)= {0}.
(2) C is a closed half-space containing the origin.

Then 〈S ∪ {∅},⊕,�〉, with operations defined in (2-1), is a semiring.

Proof. Again, the earlier arguments for the most of the properties apply here;
therefore, we address the issues regarding closure of the two operations for closed
convex sets P, Q of Rn with fixed recession cone C satisfying either of the two
conditions. The fact that conv(P∪Q) is a closed convex subset in Rn with recession
cone C follows from [Rockafellar 1970, Theorem 9.8.1]. If C satisfies condition (1),
then we may apply our previous argument. If C satisfies condition (2), then P
and Q are parallel to C , and hence so is P + Q. The result follows. �

To tie this theorem to our earlier work, we make note of the following:

Corollary 3.5. The empty set, together with the set of all closed convex sets in Rn

with recession cone equal to Rn
+

, and operations defined in (2-1), is a semiring.

Remark 3.6. The set of all closed convex sets in Rn with recession cone C equal
to Rn is the trivial semiring {C}.
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