

A tale of two circles: geometry of a class of quartic polynomials Christopher Frayer and Landon Gauthier

A tale of two circles: geometry of a class of quartic polynomials

Christopher Frayer and Landon Gauthier

(Communicated by Michael Dorff)

Let \mathcal{P} be the family of complex-valued polynomials of the form $p(z) = (z-1)(z-r_1)(z-r_2)^2$ with $|r_1| = |r_2| = 1$. The Gauss–Lucas theorem guarantees that the critical points of $p \in \mathcal{P}$ will lie within the unit disk. This paper further explores the location and structure of these critical points. For example, the unit disk contains two "desert" regions, the open disk $\{z \in \mathbb{C} : |z - \frac{3}{4}| < \frac{1}{4}\}$ and the interior of $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$, in which critical points of p cannot occur. Furthermore, each c inside the unit disk and outside of the two desert regions is the critical point of at most two polynomials in \mathcal{P} .

1. Introduction

Given a complex-valued polynomial p(z), the Gauss–Lucas theorem guarantees that its critical points lie in the convex hull of its roots. Critical points of polynomials of the form

$$p(z) = (z - 1)(z - r_1)(z - r_2)$$

with $|r_1| = |r_2| = 1$ are studied in [Frayer et al. 2014]. For such a polynomial, a critical point almost always determines p uniquely, and the unit disk contains a *desert*, the open disk $\{z \in \mathbb{C} : |z - \frac{2}{3}| < \frac{1}{3}\}$, in which critical points of p cannot occur.

This paper extends the results of [Frayer et al. 2014] to a family of polynomials of the form

$$\mathcal{P} = \{ p : \mathbb{C} \to \mathbb{C} : p(z) = (z-1)(z-r_1)(z-r_2)^2, \ |r_1| = |r_2| = 1 \}.$$

We used GeoGebra to investigate the critical points of $p(z) = (z-1)(z-r_1)(z-r_2)^2$. In Figure 1, we set r_1 and r_2 in motion around the unit circle and traced the loci of the critical points with the color gray. Much to our surprise, the unit disk contained

MSC2010: 30C15.

Keywords: geometry of polynomials, critical points, Gauss-Lucas theorem.

Figure 1. Letting the roots vary and tracking the loci of the critical points yields a very surprising result.

two desert regions. In this paper we determine the boundary equations of the desert regions and characterize the critical points of polynomials in \mathcal{P} .

2. Preliminary information

Circles tangent to the line x = 1 will appear frequently throughout this paper. We let T_{α} denote the circle of diameter α passing through 1 and $1 - \alpha$ in the complex plane. That is,

$$T_{\alpha} = \left\{ z \in \mathbb{C} : \left| z - \left(1 - \frac{1}{2} \alpha \right) \right| = \frac{1}{2} \alpha \right\}.$$

For example, T_2 is the unit circle. A key result from [Frayer et al. 2014] will be used to analyze critical points of a polynomial in \mathcal{P} .

Theorem 1 [Frayer et al. 2014]. Suppose $f(z) = (z - 1)(z - r_1) \cdots (z - r_n)$ with $|r_k| = 1$ for each k. Let c_1, c_2, \ldots, c_n denote the critical points of f(z), and suppose that $1 \neq c_k \in T_{\alpha_k}$ for each k. Then

$$\sum_{k=1}^{n} \frac{1}{\alpha_k} = n. \tag{1}$$

An additional fact of interest is related to fractional linear transformations. Functions of the form

$$f(z) = e^{i\theta} \frac{z - \alpha}{\bar{\alpha}z - 1}$$

with $|\alpha| < 1$ are the only one-to-one analytic mappings of the unit disk onto itself [Saff and Snider 1993, p. 334]. Therefore, the only fractional linear transformations sending the unit circle to the unit circle are of the form f(z) or 1/f(z). In either case, writing $e^{i\theta} = e^{i\theta/2}/e^{-i\theta/2}$ leads to the following result.

Theorem 2. A fractional linear transformation *T* sends the unit circle to the unit circle if and only if

$$T(z) = \frac{\bar{\alpha}z - \bar{\beta}}{\beta z - \alpha}$$

for some $\alpha, \beta \in \mathbb{C}$ with $|\alpha/\beta| \neq 1$.

3. Critical points

A polynomial of the form

$$p(z) = (z-1)(z-r_1)(z-r_2)^2 \in \mathcal{P}$$

has three critical points: one trivial critical point at the repeated root r_2 , and two additional critical points. Differentiation yields

$$p'(z) = (z - r_2)(4z^2 - (3r_1 + 2r_2 + 3)z + r_1r_2 + 2r_1 + r_2).$$

Definition 3. We define the *nontrivial* critical points of p to be the two roots of

$$q(z) = 4z^{2} - (3r_{1} + 2r_{2} + 3)z + r_{1}r_{2} + 2r_{1} + r_{2}.$$

We begin by analyzing a few special cases for future reference.

Example 4. Let $p \in \mathcal{P}$ have a nontrivial critical point at z = 1. Then p must have a repeated root at z = 1. Therefore, $p \in \mathcal{P}$ has a nontrivial critical point at z = 1 if and only if $p(z) = (z - 1)^2(z - r)^2$ or $p(z) = (z - 1)^3(z - r)$ for some $r \in T_2$.

Now that we know which polynomials in \mathcal{P} have a nontrivial critical point at c = 1, we will assume that $c \neq 1$ as necessary throughout the remainder of the paper.

Example 5. Let $p \in \mathcal{P}$ have a nontrivial critical point at $c \in T_2$, where $c \neq 1$. The Gauss–Lucas theorem implies that c is a root of p. In order for c to be a nontrivial critical point, p must have a triple root at c. Therefore, $p \in \mathcal{P}$ has a nontrivial critical point at $c \in T_2$, where $c \neq 1$, if and only if $p(z) = (z - 1)(z - c)^3$. In this case, $p'(z) = 4(z - 1)^2 \left(z - \left(\frac{3}{4} + \frac{1}{4}c\right)\right)$ and the other nontrivial critical point, $\frac{3}{4} + \frac{1}{4}c \in T_{1/2}$, lies on the line segment 1c. In fact, whenever p has two distinct roots, due to repeated roots, then the critical points of p lie on the line segment between the two roots.

The Gauss–Lucas theorem guarantees that the nontrivial critical points of $p \in \mathcal{P}$ lie within the unit disk. But we can say more; there is a *desert*, the open disk $\{z : z \in T_{\alpha} \text{ with } 0 < \alpha < \frac{1}{2}\}$, in which critical points of p cannot occur. This desert corresponds to the white disk in Figure 1.

Theorem 6. No polynomial $p \in \mathcal{P}$ has a critical point strictly inside $T_{1/2}$.

Proof. Let $c_1, c_2 \neq 1$ be nontrivial critical points of $p(z) = (z - 1)(z - r_1)(z - r_2)^2$ with $c_1 \in T_{\alpha}$ and $c_2 \in T_{\beta}$. As the trivial critical point lies on T_2 , Theorem 1 gives

$$\frac{1}{2} + \frac{1}{\alpha} + \frac{1}{\beta} = 3.$$
 (2)

Suppose for the sake of contradiction that $\alpha < \frac{1}{2}$. Then

$$\frac{1}{\beta} < \frac{5}{2}-2 = \frac{1}{2}$$

implies $\beta > 2$, which violates the Gauss–Lucas theorem.

A similar analysis leads to the following theorem.

Theorem 7. Let $c_1, c_2 \neq 1$ be nontrivial critical points of $p \in \mathcal{P}$. If c_1 lies on $T_{4/5}$ so does c_2 . Otherwise, c_1 and c_2 lie on opposite sides of $T_{4/5}$.

Proof. Let $c_1 \in T_{\alpha}$ and $c_2 \in T_{\beta}$. Then, (2) implies $1/\alpha + 1/\beta = \frac{5}{2}$. Therefore, $\alpha = \frac{4}{5}$ if and only if $\beta = \frac{4}{5}$ and $\alpha > \frac{4}{5}$ if and only if $\beta < \frac{4}{5}$.

4. The second desert

Figure 1 suggests the existence of two desert regions in which critical points cannot occur. Methods from [Frayer et al. 2014] quickly identify the desert region $\{z : z \in T_{\alpha} \text{ with } 0 < \alpha < \frac{1}{2}\}$. See Theorem 6. Determining the second desert, the white region enclosed by the "bean"-shaped curve in Figure 1, requires a significant amount of analysis.

To begin this analysis we investigate the relationship between the roots and nontrivial critical points of a polynomial in \mathcal{P} . Given $p(z) = (z-1)(z-r_1)(z-r_2)^2$ with a nontrivial critical point at *c*, we have

$$0 = q'(c) = 4c^2 - (3r_1 + 2r_2 + 3)c + r_1r_2 + 2r_1 + r_2.$$

Direct calculations give

$$r_1 = \frac{(1-2c)r_2 + 4c^2 - 3c}{-r_2 + 3c - 2}$$
 and $r_2 = \frac{(2-3c)r_1 + 4c^2 - 3c}{-r_1 + 2c - 1}$.

Definition 8. Given $c \in \mathbb{C}$, define

$$f_{1,c}(z) = \frac{(1-2c)z+4c^2-3c}{-z+3c-2}$$
 and $f_{2,c}(z) = \frac{(2-3c)z+4c^2-3c}{-z+2c-1}$

and let $S_1 = f_{1,c}(T_2)$ and $S_2 = f_{2,c}(T_2)$.

Observe that $f_{1,c}$ and $f_{2,c}$ are fractional linear transformations with $f_{1,c}(r_2) = r_1$ and $f_{2,c}(r_1) = r_2$. We have established the following theorem.

Theorem 9. The polynomial $p(z) = (z - 1)(z - r_1)(z - r_2)^2 \in \mathcal{P}$ has a nontrivial critical point at $c \neq 1$ if and only if $f_{1,c}(r_2) = r_1$ and $f_{2,c}(r_1) = r_2$.

When c = 1,

$$f_{1,c}(z) = f_{2,c}(z) = \frac{-z+1}{-z+1} = 1.$$

If $c \neq 1$, then $f_{1,c}$ and $f_{2,c}$ are one-to-one with $(f_{1,c})^{-1} = f_{2,c}$. Furthermore, $f_{1,c}(r_2) = r_1 \in T_2$, so that $r_1 \in S_1 \cap T_2$, and $f_{2,c}(r_1) = r_2 \in T_2$, so that $r_2 \in S_2 \cap T_2$. We can use these facts to classify the polynomials in \mathcal{P} having a critical point at $c \neq 1$ in the closed unit disk. We will show that $|S_1 \cap T_2| = |S_2 \cap T_2|$ (Lemma 10) and that the cardinality of $S_1 \cap T_2$ is the number of polynomials in \mathcal{P} having a nontrivial critical point at c (Lemma 11).

As fractional linear transformations map circles and lines to circles and lines, S_1 is a circle or line. Therefore, $S_1 = T_2$ or $|S_1 \cap T_2| \le 2$. We will show that $S_1 \ne T_2$. If $S_1 = T_2$, then $f_{1,c}(T_2) = T_2$. Since

$$f_{1,c}(z) = \frac{(1-2c)z + 4c^2 - 3c}{-z + 3c - 2},$$

Theorem 2 implies that $\overline{1-2c} = 2 - 3c$ and $\overline{4c^2 - 3c} = 1$. The second equation implies $4c^2 - 3c = 1$ and it follows that

$$0 = 4c^2 - 3c - 1 = (4c + 1)(c - 1)$$

so that $c = -\frac{1}{4}$ or c = 1. However, $c = -\frac{1}{4}$ does not satisfy the equation $\overline{1-2c} = 2-3c$, and when c = 1, we know $f_{1,1}(z) = 1$ does not satisfy the hypothesis of Theorem 2. Therefore, $S_1 \neq T_2$. Likewise, as $(f_{1,c})^{-1} = f_{2,c}$, there is no *c* for which $S_2 = T_2$.

Lemma 10. If $c \neq 1$, then $|S_1 \cap T_2| = |S_2 \cap T_2| \in \{0, 1, 2\}$.

Proof. Without loss of generality, suppose $|S_1 \cap T_2| = 1$ and $S_2 \cap T_2 = \{a, b\}$ with $a \neq b$. By definition of S_2 , there exist $a_0, b_0 \in T_2$ with $f_{2,c}(a_0) = a$, $f_{2,c}(b_0) = b$ and $a_0 \neq b_0$. Hence, $f_{1,c}(f_{2,c}(a_0)) = f_{1,c}(a)$ and $f_{1,c}(f_{2,c}(b_0)) = f_{1,c}(b)$, which implies

$$f_{1,c}(a) = a_0$$
 and $f_{1,c}(b) = b_0$

so that $|S_1 \cap T_2| > 1$; a contradiction. Therefore, $|S_1 \cap T_2| = |S_2 \cap T_2|$.

The following lemma characterizes the three possible cardinalities of $S_1 \cap T_2$.

Lemma 11. Suppose $c \neq 1$.

- (1) If S_1 and T_2 are disjoint, then no $p \in \mathcal{P}$ has a critical point at c.
- (2) If S_1 and T_2 are tangent, then *c* is the nontrivial critical point of exactly one $p \in \mathcal{P}$.
- (3) If S_1 and T_2 intersect in two distinct points, then c is the nontrivial critical point of exactly two polynomials in \mathcal{P} .

Proof. Suppose $c \neq 1$. If $S_1 \cap T_2 = \emptyset$, then no point in \mathbb{C} is eligible to be r_1 or r_2 and it follows that no $p \in \mathcal{P}$ has a critical point at c. If $S_1 \cap T_2 = \{a\}$, it follows from Lemma 10 that $S_2 \cap T_2 = \{b\}$. By the definitions of S_1 and S_2 , there exist $a_0, b_0 \in T_2$ with $f_{1,c}(a_0) = a$ and $f_{2,c}(b_0) = b$. As $(f_{1,c})^{-1} = f_{2,c}$, we have

$$a_0 = f_{2,c}(a)$$
 and $b_0 = f_{1,c}(b)$.

Therefore $a_0 = b$ and $b_0 = a$. By Theorem 9, *c* is a nontrivial critical point of $p(z) = (z-1)(z-a)(z-b)^2$. Furthermore, as $r_1 \in S_1 \cap T_2 = \{a\}$ and $r_2 \in S_2 \cap T_2 = \{b\}$, no other $p \in \mathcal{P}$ has a nontrivial critical point at *c*.

If $S_1 \cap T_2 = \{a, b\}$ with $a \neq b$, it follows from Lemma 10 that $S_2 \cap T_2 = \{d, e\}$ with $d \neq e$. By the definition of S_1 , there exist $a_0, b_0 \in T_2$ with $f_{1,c}(a_0) = a$, $f_{1,c}(b_0) = b$ and $a_0 \neq b_0$. Hence, $a_0 = f_{2,c}(a)$ and $b_0 = f_{2,c}(b)$ and it follows that $\{a_0, b_0\} = \{d, e\}$. Therefore, $f_{2,c}(a) = a_0$ and $f_{1,c}(a_0) = a$. Theorem 9 implies that *c* is a nontrivial critical point of $p_1(z) = (z - 1)(z - a)(z - a_0)^2$. Likewise, $f_{2,c}(b) = b_0$ and $f_{1,c}(b_0) = b$ implies that *c* is also a nontrivial critical point of $p_2(z) = (z - 1)(z - b)(z - b_0)^2$. Moreover, as $r_1 \in S_1 \cap T_2 = \{a, b\}$, we have exhausted the potential candidates for r_1 and no other $p \in \mathcal{P}$ has a nontrivial critical point at *c*. When $|S_1 \cap T_2| = 2$, there are exactly two polynomials in \mathcal{P} with a nontrivial critical point at *c*.

In light of Lemmas 10 and 11, S_1 alone is sufficient to characterize the nontrivial critical points of polynomials in \mathcal{P} .

4.1. *Analyzing* S_1 . To determine the boundary equation of the second desert region, we need to further explore S_1 . Let $1 \neq c \in \mathbb{C}$. Since

$$f_{1,c}(z) = \frac{(1-2c)z + 4c^2 - 3c}{-z + 3c - 2}$$

is a fractional linear transformation, S_1 will be a line when there exists $z \in T_2$ with -z + 3c - 2 = 0. This occurs when

$$|3c-2| = |z| = 1 \iff |c-\frac{2}{3}| = \frac{1}{3}.$$

Therefore, S_1 is a line whenever $c \in T_{2/3}$. We now investigate an example for future reference.

Example 12. Let $c \in T_{2/3}$. Then, S_1 is a line passing through $f_{1,c}(1) = \frac{1}{3}(4c-1)$ and $f_{1,c}(-1) = (4c^2 - c - 1)/(3c - 1)$. Moreover,

$$f_{1,c}(1) - f_{1,c}(-1) = \frac{4 - 4c}{9c - 3}.$$
(3)

Substituting $c = \frac{2}{3} + \frac{1}{3}e^{i\theta}$ into (3) and simplifying yields $\operatorname{Re}(f_c(1) - f_c(-1)) = 0$. When $c \in T_{2/3}$, we have S_1 is a vertical line through $f_{1,c}(1) = \frac{1}{3}(4c-1) \in T_{8/9}$. For $c \notin T_{2/3}$, we will determine the center and radius of S_1 . By definition, $z \in S_1$ if and only if there exists a $w \in T_2$ with $f_{1,c}(w) = z$. That is, $w = (f_{1,c})^{-1}(z) = f_{2,c}(z) \in T_2$, which is true if and only if $|f_{2,c}(z)| = 1$. Equivalently,

$$\left|\frac{(2-3c)(z)+4c^2-3c}{-z+2c-1}\right| = 1.$$

Therefore, $z \in S_1$ if and only if

$$|z - (2c - 1)| = |2 - 3c| \left| z - \frac{3c - 4c^2}{2 - 3c} \right|.$$
 (4)

For $k \neq 1$, the solution set of

$$|z - u| = k|z - v|$$

is a circle with center C and radius R satisfying

$$C = v + \frac{v - u}{k^2 - 1}$$
 and $R^2 = |C|^2 - \frac{k^2 |v|^2 - |u|^2}{k^2 - 1}$.

Observe that when k = |2 - 3c| = 1,

$$\left|\frac{2}{3} - c\right| = \frac{1}{3} \iff c \in T_{2/3}$$

and by Example 12, S_1 is a line. When $c \in T_{\alpha}$ with $\alpha \neq \frac{2}{3}$, we have $k = |2 - 3c| \neq 1$ and routine calculations establish the following lemma.

Lemma 13. Suppose $c \neq 1$ and $c \in T_{\alpha}$ with $\alpha \neq \frac{2}{3}$. Then, S_1 is a circle with center γ and radius r given by

$$\gamma = \frac{4c-1}{3} + \frac{2\alpha}{9\alpha - 6} \quad and \quad r = \frac{2\alpha}{3|3\alpha - 2|}$$

We now study a special case.

Example 14. Suppose $c \in T_2$ with $c \neq 1$. Direct calculations give

$$f_{1,c}(c) = c$$
, $f_{1,c}(1) = \frac{4c-1}{3}$ and $f_{1,c}(-1) = \frac{4c^2 - c - 1}{3c - 1}$,

so that

$$\left|f_{1,c}(z) - \frac{4}{3}c\right| = \frac{1}{3}$$

for $z \in \{c, \pm 1\}$. Therefore, for $c \in T_2$ with $c \neq 1$, we have S_1 is a circle with radius $\frac{1}{3}$ and center $\frac{4}{3}c$, which is externally tangent to T_2 at c. See Figure 2.

When $1 \neq c \in T_2$, it follows from Example 5 that the other nontrivial critical point, $c_2 = \frac{3}{4} + \frac{1}{4}c \in T_{1/2}$, lies on the line segment $\overline{1c}$. Similar calculations show that for $c_2 = \frac{3}{4} + \frac{1}{4}c$, we have S_1 is a circle with radius $\frac{1}{3}$ and center $\frac{2}{3}c$, which is internally tangent to T_2 at c. See Figure 2.

Figure 2. Left: for $c \in T_2$ with $c \neq 1$, the circle S_1 is externally tangent to T_2 at c. Right: for the corresponding nontrivial critical point, c_2 , the circle S_1 is internally tangent to T_2 at c.

4.2. When is S_1 tangent to T_2 ? Let $1 \neq c \in \mathbb{C}$. When $S_1 \cap T_2 = \emptyset$, Lemma 11 implies that *c* is not the critical point of any $p \in \mathcal{P}$. To better understand this case, we will determine when $|S_1 \cap T_2| = 1$. That is, for what *c* in the unit disk will S_1 and T_2 be tangent? By Example 14, if $c \in T_{1/2}$, where $T_{1/2}$ is the boundary of the first desert region, then S_1 is internally tangent to T_2 . Additionally, if $c \in T_{\alpha}$ with $\alpha < \frac{1}{2}$, it follows from Theorem 6 that S_1 and T_2 are disjoint.

For $1 \neq c \in T_{\alpha}$ with $\frac{1}{2} \leq \alpha \leq 2$, if S_1 is internally tangent to T_2 , then

$$|\gamma| + r = 1. \tag{5}$$

See Figure 3. For $R = 2\alpha/(9\alpha - 6)$, the circle S_1 has center $\gamma = \frac{1}{3}(4c - 1) + R$ and radius r = |R|. Substituting into (5) and setting c = x + iy gives

$$(4x - 1 + 3R)^{2} + 16y^{2} = 9(1 - |R|)^{2}.$$
 (6)

Since *R* depends upon α , we denote (6) by D_{α} .

Since r > 0, (5) is satisfied if and only if S_1 is internally tangent to T_2 or $S_1 = T_2$. Recalling that there is no *c* for which $S_1 = T_2$, we obtain the following result.

Figure 3. When $|\gamma| + r = 1$, the circle S_1 will be internally tangent to T_2 .

Lemma 15. Let $c \neq 1$ and $\frac{1}{2} \leq \alpha \leq 2$. Then, S_1 is internally tangent to T_2 if and only if $c \in T_{\alpha} \cap D_{\alpha}$.

To apply Lemma 15 we need to determine when and where the circles T_{α} and D_{α} intersect, that is, the values of α for which $T_{\alpha} \cap D_{\alpha} \neq \emptyset$, and the corresponding points of intersection. Because of the $|R| = |2\alpha/(9\alpha - 6)|$ appearing in (6), we consider three cases:

- (1) $\frac{1}{2} \le \alpha < \frac{2}{3};$
- (2) $\alpha = \frac{2}{3};$
- (3) $\frac{2}{3} < \alpha \le 2$.

In the first case, |R| = -R and (6) becomes

$$\left(x - \left(1 - \frac{11\alpha - 6}{12\alpha - 8}\right)\right)^2 + y^2 = \left(\frac{11\alpha - 6}{12\alpha - 8}\right)^2.$$

For $\frac{1}{2} \leq \alpha < \frac{2}{3}$, circles T_{α} and D_{α} intersect if and only if $\alpha = \frac{1}{2}$. When $\alpha = \frac{1}{2}$, $T_{1/2} = D_{1/2}$ and by Lemma 15, when $c \in T_{1/2}$, we have S_1 is internally tangent to T_2 . See Example 14.

In the second case, $\alpha = \frac{2}{3}$ and D_{α} is undefined. By Example 12, when $c \in T_{2/3}$, S_1 is a vertical line passing through $f_{1,c}(1) = \frac{1}{3}(4c-1) \in T_{8/9}$ and S_1 is not tangent to T_2 .

In the third case, |R| = R and (6) becomes

$$\left(x - \left(-\frac{1}{2} + \frac{7\alpha - 6}{12\alpha - 8}\right)\right)^2 + y^2 = \left(\frac{7\alpha - 6}{12\alpha - 8}\right)^2.$$

For $\frac{2}{3} < \alpha \le 2$, the circles T_{α} and D_{α} intersect if and only if $1 \le \alpha \le \frac{3}{2}$. To determine the values of *c* where S_1 is internally tangent to T_2 , we need to find the intersection of the circles D_{α} and T_{α} . Upon simplification, these equations become

$$(4x - 1 + 3R)^{2} + 16y^{2} = 9(1 - R)^{2},$$

$$\alpha(1 - x) - (1 - x)^{2} = y^{2}.$$

By setting $R = 2\alpha/(9\alpha - 6)$ and using substitution, we eventually obtain

$$x = \frac{2(\alpha - 1)^2}{(2\alpha - 1)(\alpha - 2)}$$
 and $y = \pm \frac{\alpha \sqrt{(3 - 2\alpha)(\alpha - 1)}}{(2\alpha - 1)(\alpha - 2)}$. (7)

As α varies from 1 to $\frac{3}{2}$, a parametric curve is formed. See Figure 4. For each value of *c* on the parametric curve, *S*₁ is internally tangent to *T*₂. Using resultant methods, see [Sederberg et al. 1984], the curve can be implicitized. Substituting $t = \alpha - 1$ into (7) implies $0 \le t \le \frac{1}{2}$ and

$$x = \frac{2t^2}{2t^2 - t - 1}$$
 and $y^2 = \frac{-2t^4 - 3t^3 + t}{4t^4 - 4t^3 - 3t^2 + 2t + 1}$, (8)

Figure 4. Left: when $1 \le \alpha \le \frac{3}{2}$, we have $|D_{\alpha} \cap T_{\alpha}| = 2$. Right: as α varies from 1 to $\frac{3}{2}$, parametric equations (7) trace the boundary of the second desert.

so that

$$f = (2x - 2)t^{2} + (-x)t + (-x) = 0,$$

$$g = (4y^{2} + 2)t^{4} + (-4y^{2} + 3)t^{3} + (-3y^{2})t^{2} + (2y^{2} - 1)t + y^{2} = 0.$$

The resultant of f and g with respect to t,

$$\operatorname{Res}(f,g;t) = \begin{vmatrix} 2x-2 & -x & -x & 0 & 0 & 0 \\ 0 & 2x-2 & -x & -x & 0 & 0 \\ 0 & 0 & 2x-2 & -x & -x & 0 \\ 0 & 0 & 0 & 2x-2 & -x & -x \\ 4y^2+2 & -4y^2+3 & -3y^2 & 2y^2-1 & y^2 & 0 \\ 0 & 4y^2+2 & -4y^2+3 & -3y^2 & 2y^2-1 & y^2 \end{vmatrix},$$

eliminates the variable t and is the implicit form of the curve. With the assistance of Mathematica, we find

$$\operatorname{Res}(f, g; t) = 2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4$$

and the cartesian representation of (7) is

$$2x^{4} - 3x^{3} + x + 4x^{2}y^{2} - 3xy^{2} + 2y^{4} = 0.$$
 (9)

Equation (9) represents the boundary of the second desert region.

Theorem 16. No polynomial in \mathcal{P} has a critical point strictly inside $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$.

Proof. Let $c = x + iy \in T_{\alpha}$ with $\alpha \in [1, \frac{3}{2}]$. Then, c lies inside $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$ whenever

$$(4x - 1 + 3R)^2 + 16y^2 < 9(1 - R)^2$$
 and $x + iy \in T_{\alpha}$.

Figure 5. The bold semicircle lies strictly inside the circle $(4x - 1 + 3R)^2 + 16y^2 = 9(1 - R)^2$ and on T_{α} .

See Figure 5. Equivalently, (5) and (6) imply $|\gamma| + r < 1$ and $c \in T_{\alpha}$. Therefore, S_1 and T_2 are disjoint. By Lemma 11, *c* is not the critical point of any $p \in \mathcal{P}$.

The analysis of the circles D_{α} and T_{α} has established the following result.

Lemma 17. The circle S_1 is internally tangent to T_2 if and only if c = x + iy is on $T_{1/2}$ or $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$.

Furthermore, for $c \in T_{\alpha}$ with $\frac{1}{2} \le \alpha \le 2$, the circle S_1 will be externally tangent to T_2 if and only if $|\gamma| - r = 1$. A similar, but less involved, analysis leads to the following result.

Lemma 18. The circle S_1 is externally tangent to T_2 if and only if $c \in T_2$.

5. Main result

We are now ready to characterize the critical points of a polynomial in \mathcal{P} . Let O represent the region strictly inside the closed unit disk and outside of $T_{1/2}$ and $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$. That is, O is the gray shaded region in Figure 1. Denote the closure of O by \overline{O} .

Theorem 19. *Let* $c \in \mathbb{C}$ *.*

- (1) The polynomial $p \in \mathcal{P}$ has a nontrivial critical point at c = 1 if and only if $p(z) = (z-1)^2(z-r)^2$ or $p(z) = (z-1)^3(z-r)$ for some $r \in T_2$.
- (2) If $c \notin \overline{O}$, there is no $p \in \mathcal{P}$ with a critical point at c.
- (3) If $1 \neq c \in \overline{O} O$, there is a unique $p \in \mathcal{P}$ with a nontrivial critical point at c.
- (4) If $c \in O$, there are exactly two polynomials in \mathcal{P} with a nontrivial critical point at c.

Proof. A polynomial $p \in \mathcal{P}$ has a nontrivial critical point at c = 1 if and only if p has a repeated root at 1, that is, $p(z) = (z - 1)^2(z - r)^2$ or $p(z) = (z - 1)^3(z - r)$ for some $r \in T_2$. See Example 4.

Let *c* lie strictly inside $T_{1/2}$, strictly inside $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$, or strictly outside T_2 . Then, it follows from Theorems 6, 16 and the Gauss–Lucas theorem respectively, that no $p \in \mathcal{P}$ has a critical point at *c*.

Let $c \neq 1$ lie on T_2 , $T_{1/2}$, or $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$. Lemmas 17 and 18 imply that S_1 is tangent to T_2 . Therefore, by Lemma 11, there is exactly one $p \in \mathcal{P}$ with a nontrivial critical point at c.

Lastly, we need to show that for $c \in O$, we have $|S_1 \cap T_2| = 2$. This follows from a "root dragging" argument. Without loss of generality, suppose $S_1 \cap T_2 = \emptyset$ with S_1 contained inside of T_2 . As we "drag" c to T_2 along a line segment contained in O, S_1 is continuously transformed into a circle externally tangent to T_2 . By continuity, there exists a c_0 on the line segment with S_1 internally tangent to T_2 . As c never crosses $T_{1/2}$ or $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$, this contradicts Lemma 17. Therefore, $|S_1 \cap T_2| = 2$ and by Lemma 11 there are exactly two polynomials in \mathcal{P} with a nontrivial critical point at c.

This completes the characterization of critical points of polynomials in \mathcal{P} . Our results can be extended to polynomials of the form

$$p(z) = (z - 1)^{k} (z - r_{1})^{m} (z - r_{2})^{n}$$

with $|r_1| = |r_2| = 1$ and $\{k, m, n\} \subseteq \mathbb{N}$. Similar to \mathcal{P} , when $m \neq n$, the unit disk contains two "desert" regions in which critical points cannot occur, and each *c* inside the unit disk and outside of the desert regions is the critical point of exactly two such polynomials. However, some questions remain unanswered. For example, if a polynomial has four or more distinct roots, all of which lie on the unit circle, how many desert regions will be in the unit disk?

Acknowledgment

We are grateful to Dave Boyles for showing us how to use resultant methods to implicitize the boundary equation of the second desert region.

References

[Saff and Snider 1993] E. B. Saff and A. D. Snider, *Fundamentals of complex analysis for mathematics, science, and engineering*, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1993. Zbl

[[]Sederberg et al. 1984] T. W. Sederberg, D. C. Anderson, and R. N. Goldman, "Implicit representation of parametric curves and surfaces", *Comp. Vis. Graph. Image Proc.* 28:1 (1984), 72–84. Zbl

Received: 2017-02-21	Revised: 2017-06-05	Accepted: 2017-06-13
frayerc@uwplatt.edu	Department of I Platteville, WI, U	Mathematics, University of Wisconsin, Jnited States
gauthierl@uwplatt.edu	University of Wis	sconsin, Platteville, WI, United States

mathematical sciences publishers

[[]Frayer et al. 2014] C. Frayer, M. Kwon, C. Schafhauser, and J. A. Swenson, "The geometry of cubic polynomials", *Math. Mag.* 87:2 (2014), 113–124. MR Zbl

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	YF. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US \$190/year for the electronic version, and \$250/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2018 Mathematical Sciences Publishers

2018 vol. 11 no. 3

A mathematical model of treatment of cancer stem cells with			
immunotherapy			
ZACHARY J. ABERNATHY AND GABRIELLE EPELLE			
RNA, local moves on plane trees, and transpositions on tableaux			
Laura Del Duca, Jennifer Tripp, Julianna			
TYMOCZKO AND JUDY WANG			
Six variations on a theme: almost planar graphs			
MAX LIPTON, EOIN MACKALL, THOMAS W. MATTMAN,			
MIKE PIERCE, SAMANTHA ROBINSON, JEREMY THOMAS			
and Ilan Weinschelbaum			
Nested Frobenius extensions of graded superrings			
Edward Poon and Alistair Savage			
On G-graphs of certain finite groups			
Mohammad Reza Darafsheh and Safoora Madady			
Moghadam			
The tropical semiring in higher dimensions			
JOHN NORTON AND SANDRA SPIROFF			
A tale of two circles: geometry of a class of quartic polynomials	489		
CHRISTOPHER FRAYER AND LANDON GAUTHIER			
Zeros of polynomials with four-term recurrence			
Khang Tran and Andres Zumba			
Binary frames with prescribed dot products and frame operator			
VERONIKA FURST AND ERIC P. SMITH			

