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We present a simple mathematical model of the development and progression
of breast cancer based on evolutionary game theory. Four types of cellular
populations are considered: stromal (native) cells, macrophages, benign tumor
cells, and motile (malignant) tumor cells. Despite the relative simplicity of the
model, it provides a way to explore the interactions between the various cell types
and suggests potential approaches to managing and treating cancer.

1. Introduction

The third most common cancer in the world is breast cancer, succeeding lung and
stomach cancer [Ford et al. 1998]. In women worldwide it is the leading cancer
and there are more than 106 new cases each year. There are many genes associated
with an increased probability of a person developing breast cancer, more commonly
known amongst which are the BRCA1 and BRCA2 genes [Ford et al. 1998; Slamon
et al. 1987].

There has been a substantial amount of research which makes use of mathematical
models based on evolutionary game theory (EGT) and attempts to gain insight
into the principal mechanisms that govern the development of cancer; see for
example [Basanta et al. 2012; Orlando et al. 2012; Bach et al. 2001; Tomlinson
and Bodmer 1997]. EGT, introduced in the 1970s by John Maynard Smith, was
first used to analyze contests between rival species, competing for an important
resource (e.g., food, territory, etc.). If one takes the view of tumor and stromal
(native) cells as species, the same type of mathematical techniques, previously
used in an ecological context, can be applied to study the progression of cancer.
In recent years this approach has been applied to study various aspects of cancer.
For example, [Basanta et al. 2012] uses a three cell species model to investigate
prostate cancer tumor-stroma interaction; [Bach et al. 2001] and [Liu and Liu 2012]
develop respectively two and three species models to study the synergistic effects of
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interactions between stromal cells and tumor cells, which often result in malignancy.
Gatenby and Vincent [2003] conducted a study on tumor cells and used game theory
to improve an existing linear model. In other studies, Mansury et al. [2006] and
Basanta et al. [2008] employed game theory to model tumor growth in the brain.

Our proposed game-theoretical model of breast cancer builds on the model of
[Liu and Liu 2012]. As in that paper, our model incorporates the growth-factor
secreting stromal cells (native cells), motile tumor cells and proliferative cells
(benign tumor cells). However, our model also incorporates macrophages, which
play an important role in the development of breast cancer [Qian and Pollard 2012;
Lamagna et al. 2006; Qian et al. 2009; Chen et al. 2011]. Macrophages have been
shown to have a complex interaction with tumor cells and act in a dual role — in
the beginning stages of cancer, they act as a defense mechanism against cancer
by attacking tumor cells; however, they also produce growth factor, which in later
stages can actually promote tumor growth [Lamagna et al. 2006; Chen et al. 2011].

Macrophages are large blood cells, produced as a result of the differentiation
of monocytes. Monocytes travel through the blood stream and are produced in
bone marrow. Once monocytes leave the blood stream, they turn into macrophages.
These cells travel the body ingesting and destroying bacteria, cleaning up cellular
debris, other harmful particles, dead cells and microbes [Børresen-Dale 2003].
Macrophages play an important role in the development of tumor cells. They
ingest and destroy the cells. After they ingest the tumor cells, they use some of the
materials in the cell for survival. They produce a growth factor that the macrophages
and the tumor cells both benefit from [Mansury et al. 2006].

2. Model

We will assume there are four different types of cells in the body:

(a) the native cells (NC), which are the healthy stromal cells;

(b) the macrophages (M8), which are part of the immune system;

(c) the benign tumor cells (BTC), lump-forming cancer cells that lack the ability
to metastasize;

(d) the motile tumor cells (MTC), metastatic cancer cells that can invade neigh-
boring tissues.

The concentrations of the various types of cells are denoted by %NC, %M8, %BTC

and %MTC respectively. The concentrations are between 0 and 1 and satisfy %NC+

%M8+ %BTC+ %MTC = 1.
We will now set up costs and benefits for each type of cell. Both the native cells

and macrophages produce growth factor, which benefits all types of cells. As in
[Archetti 2013], the cost of producing the growth factor, cG, and the benefits of the
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symbol meaning

%NC concentration of native cells
%M8 concentration of macrophages
%BTC concentration of benign tumor cells
%MTC concentration of motile tumor cells
cG cost of producing the growth factor
bG benefits of receiving the growth factor
cS cost of sharing the spaces
cM,M8 cost of the ability to move for M8

cM,MTC cost of the ability to move for MTC
bR benefits of reproducing quickly
cD cost of being destroyed by macrophages
WX net benefit for a given type of cells X ∈ {NC, M8, BTC, MTC}

Table 1. Model parameters and notation.

growth factor, bG, will be assumed to be the same for all types of the cells. The
macrophages and motile tumor cells can move and we will assume that the ability
comes at the costs cM,M8, and cM,MTC respectively. The native cells and benign
tumor cells stay in place and thus have to share the resources with other native and
benign tumor cells, which comes at the cost cS. The cancer cells can reproduce
faster than native cells or macrophages, which we model by additional benefit bR to
the cancer cells, but the cancer cells can be destroyed by macrophages, which we
model by additional cost cD to the cancer cells. Overall, when the concentrations of
the cells are %NC, %M8, %BTC and %MTC, the net benefits (benefits minus the costs)
to each type of the cells are

WNC = bG(%NC+ %M8)− cG− cS(%NC+ %BTC), (1)

WM8 = bG(%NC+ %M8)− cG− cM,M8, (2)

WBTC = bR+ bG(%NC+ %M8)− cS(%NC+ %BTC)− cD%M8, (3)

WMTC = bR+ bG(%NC+ %M8)− cM,MTC− cD%M8. (4)

For example, (1) reads that a native cell (a) benefits from the growth factor produced
by (other) native cells and the macrophages, shown by the term bG(%NC+ %M8),
(b) pays the cost of producing the growth factor itself, shown by the term cG, and
(c) pays the cost of sharing the space with other native cells and benign tumor cells,
shown by the term cS(%NC+ %BTC).

The notation and model parameters are summarized in Table 1.
Similarly to the models presented in [Basanta et al. 2008; Liu and Liu 2012;

Bach et al. 2001], the situation described by (1)–(4) could be modeled as a matrix
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game when the interactions between individual cells are assumed to be pairwise
and the payoff matrix is given by

encounter with→payoff to↓ MTC M8 NC BTC
MTC bR−cM,MTC bR−cM,MTC−cD+bG bR−cM,MTC+bG bR−cM,MTC

M8 −cG−cM,M8 bG−cG−cM,M8 bG−cG−cM,M8 −cG−cM,M8

NC −cG bG−cG bG−cG−cS bG−cG−cS

BTC bR bR+bG−cD bR+bG−cS bR−cS

(5)

To make sure that the entries of matrix (5) are nonnegative, it is customary to
add a fixed number (for example 1) to all of them.

3. Results

We are interested in deriving conditions which ensure that the cancer cells (or at
least the metastatic tumor cells) eventually die out.

3.1. Coexistence of native cells and macrophages. We first derive conditions on
the parameters which ensure a healthy organism; i.e., the coexistence of native cells
and macrophages (with no tumor cells) is an evolutionarily stable state (ESS). The
assumption that there are only native cells and macrophages requires that %BTC = 0
and %MTC = 0 and consequently %NC+ %M8 = 1. Subtracting (2) from (1) yields

WNC−WM8 = cM,M8− cS%NC. (6)

Recall that the net benefit from interaction (fitness) for the native cells is denoted
by WNC and for the macrophages, by WM8. It follows from (6) that

WNC T WM8 if and only if %NC S
cM,M8

cS

(in other words, native cells do better than macrophages if there are too many
macrophages, and vice versa). Consequently, the only candidates for the stable
healthy proportion of the cells are %NC = cM,M8/cS and %M8 = (cS− cM,M8)/cS.

Since, in this scenario, we would like for the ESS to include no tumor cells, we
need to derive the conditions which ensure that tumor cells (in tiny amounts) still
do worse than the native cells. Subtracting (1) from (3) yields

WBTC−WNC = bR+ cG− cD%M8, (7)

while subtracting (2) from (4) yields

WMTC−WM8 = bR+ cG+ (cM,M8− cM,MTC)− cD%M8. (8)
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Figure 1. If (9) is satisfied, then the tumor cells eventually extinct.
In this figure the values of the parameters are as follows: bR = 1,
cG = 2, bG = 4, cD = 7, cM,MTC = cM,M8 = 1, cS = 2.

It follows that, in a healthy body where %M8 = (cS− cM,M8)/cS, both the benign
tumor cells and the motile tumor cells do worse than healthy cells if and only if

bR+ cG+max{0, cM,M8− cM,MTC}< cD
cS− cM,M8

cS
. (9)

In particular, increasing the value of cD (or the ability of macrophages to destroy
tumor cells) or decreasing the value of bR (the reproductive advantage of the tumor
cells) ensures that the fitness of both types of tumor cells is smaller than the fitness
of the native cells and the macrophages and that the body will stay healthy.

Moreover, when condition (9) is satisfied, and the initial state of the system
involves relatively small amounts of tumor cells, the tumor cells eventually go
extinct; see for example Figure 1, which shows the evolution of the four cell types
under the replicator dynamics [Hofbauer and Sigmund 1998]

d
dt

%cell type = %cell type(Wcell type−W ), (10)

where W is the average fitness, given by

W =
∑

i

%i Wi .

The summation index i varies over all four cell types.

3.2. Coexistence of native cells, macrophages, and benign tumor cells. We note
that if cM,M8 ≤ cM,MTC, then by (7) and (8), motile tumor cells do worse than
benign tumor cells in a healthy body. It is thus possible that the body will be able to
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Figure 2. If (13) holds, then the motile tumor cells eventually
extinct even when the benign tumor cells can stay in the body.
The parameters are as follows: bR = 1, cG = 2, bG = 4, cD = 7,
cM,MTC = 1, cM,M8 = 0.8, cS = 1.2

get rid of the dangerous motile tumor cells even if it is not able to get rid of the less
dangerous benign tumor cells. This is the situation that we will investigate now.

More precisely, we will want to see under what conditions it is possible to have
%MTC = 0 as a stable condition. As in Section 3.1, subtracting (2) from (1) yields

WNC−WM8 = cM,M8− cS(%NC+ %BTC). (11)

An ESS requires that the fitnesses of each of the coexisting types of cells be
equal to each other. In particular, WNC = WM8 and since %MTC = 0, we also get
%NC+ %BTC = 1− %M8. Thus, it follows from (11) that, as in Section 3.1,

%M8 =
cS− cM,M8

cS
. (12)

Since subtracting (2) from (4) still yields (8), we get that no motile tumor cells
are possible only if

bR+ cG+ cM,M8− cM,MTC < cD
cS− cM,M8

cS
. (13)

Thus, if it is difficult to ensure that condition (9) is satisfied for a patient, one can
still attempt to satisfy (13), for example by increasing the value of cM,MTC (the cost
of movement for the tumor cells) or decreasing the value of cM,M8 (the cost of move-
ment for the macrophages), and thus prevent the development of metastatic cancer.

Figure 2 shows the evolution of the concentrations of the four cell types as a
function of time under the replicator dynamics (10) when (9) is not satisfied but
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(13) still holds. We can see that the benign tumor cells stay in the body but the
motile tumor cells die out.

Note that in the case when cM,MTC < cM,M8, the motile tumor cells can thrive in
the body whenever benign tumor cells can.

4. Conclusions and discussion

In this paper we presented and analyzed a game-theoretical model of breast cancer.
We have extended the model of [Liu and Liu 2012] by explicitly incorporating
the macrophages. As observed in [Qian and Pollard 2012; Lamagna et al. 2006;
Qian et al. 2009; Chen et al. 2011] and confirmed by the analysis of our model, the
macrophages indeed play a crucial role in the development and prevention of cancer.

Our model suggests at least three possible ways of cancer treatment. One is
to increase the damage to the tumor cells caused by macrophages (or in a similar
fashion, increase the ability of macrophages to destroy tumor cells). Another way
is to decrease the reproductive advantage of the tumor cells, i.e., their ability to
reproduce much more quickly than healthy cells. And a third way is to increase the
cost of mobility for the tumor cells. The last scenario may not completely prevent
the cancer from developing in the body, but it may prevent dangerous metastatic
tumors.
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