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We consider the isoperimetric problem for the sum of two Gaussian densities in
the line and the plane. We prove that the double Gaussian isoperimetric regions
in the line are rays and that if the double Gaussian isoperimetric regions in the
plane are half-spaces, then they must be bounded by vertical lines.

1. Introduction

Sudakov and Tsirelson, and independently Borell, see [Morgan 2009, 18.2], proved
that for Rn endowed with a Gaussian measure, half-spaces bounded by hyperplanes
are isoperimetric, i.e., minimize weighted perimeter for given weighted volume.
Cañete et al. [2010, Question 6], in response to a question of Brancolini, conjectured
that for Rn endowed with a finite sum of Gaussian measures centered on the x-axis,
half-spaces bounded by vertical hyperplanes are isoperimetric. We consider the
case of two such Gaussians in R1 and R2. Our Theorem 3.16 proves that on the
double Gaussian line, rays are isoperimetric. Section 4 provides evidence that on
the double Gaussian plane, half-spaces are isoperimetric.

1.1. The double Gaussian line. Theorem 3.16 states that the isoperimetric regions
in the double Gaussian line are rays. We may assume that the two Gaussians have
centers at 1 and −1. For small variances, the theorem follows by comparison
with the single Gaussian. For larger variances, additional quantitative and stability
arguments are needed to rule out certain nonray cases.

1.2. The double Gaussian plane. A conjecture of Cañete et al. [2010, Question 6],
appearing in this paper as Conjecture 4.1, states that isoperimetric regions in the
double Gaussian plane are half-planes bounded by vertical lines. We use variational
arguments to show that horizontal and vertical lines are the only lines that are
candidates, and that vertical lines always beat horizontal lines.
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2. First and second variations

Formulas 2.3 and 2.6 state standard first and second variation formulas, analogous
to the first and second derivative conditions for local minima of twice-differentiable
real functions.

Definition 2.1. A density eψ on Rn is a positive, continuous function used to weight
volume and hypersurface area. Given a density eψ, the (weighted) volume of a
region R is given by ∫

R
eψ dV0.

The (weighted) hypersurface area of its boundary ∂R is given by∫
∂R

eψ d A0.

R is called isoperimetric if no other region of the same weighted volume has a
boundary with smaller hypersurface area.

We now assume that the density eψ is smooth. The existence and regularity of
isoperimetric regions for densities of finite total volume is standard.

Existence and Regularity 2.2 [Morgan 2009, 5.5, 9.1, 8.5]. Suppose that eψ is a
density in the line or plane such that the line or plane has finite measure A0. Then
for any 0 < A < A0, an isoperimetric region R of weighted volume A exists and
is a finite union of intervals bounded by finitely many points in the line or a finite
union of regions with smooth boundaries in the plane.

Let eψ be a smooth density on Rn+1. Let R be a smooth region in Rn+1. Let ϕt

be a smooth, one-parameter family of deformations on Rn+1 such that ϕ0 is the
identity. For a given x ∈ ∂R, the deformation ϕt(x) traces out a small path in Rn+1

beginning at x and ϕt(∂R) is a curve for each t . Therefore {ϕt }, where |t | < ε,
describes a perturbation of ∂R. Define

V (t)=
∫
ϕt (R)

eψ dV0 and P(t)=
∫
ϕt (∂R)

eψ d A0.

First Variation Formulas 2.3 [Rosales et al. 2008, Lemma 3.1]. Suppose that n
and H are the inward unit normal and mean curvature of ∂R. Let X be the vector
field dϕt/dt and u = 〈X, n〉. Then we have that

V ′(0)=−
∫
∂R

eψu d A0 and P ′(0)=−
∫
∂R
(nH −〈∇ψ, n〉)eψu d A0.

Since any isoperimetric curve is a local minimum among all curves enclosing a
certain volume A, it satisfies P ′(0)= 0 for any ϕt such that V (t)= A for small t .
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Corollary 2.4. If a curve ∂R is isoperimetric, then (nH − 〈∇ψ, n〉) is constant
on ∂R.

Proof. If a curve ∂R is isoperimetric, then it satisfies P ′(0)= 0. By Formula 2.3,
this occurs if and only if (nH −〈∇ψ, n〉) is constant on ∂R. �

Definition 2.5. Let C be a boundary in the line or plane with unit inward normal n
and let κ denote the standard curvature. For a density eψ, we call κψ = κ − dψ/dn
the generalized curvature of C .

By Corollary 2.4, all isoperimetric curves have constant generalized curvature.
In the real line, n = 0, so isoperimetric curves have 〈∇ψ, n〉 constant. For the
interval [a, b], the generalized curvature evaluated at b is equal to ψ ′(b), while the
generalized curvature evaluated at a is equal to −ψ ′(a).

Second Variation Formula 2.6 [Rosales et al. 2008, Proposition 3.6]. Let the real
line be with smooth density eψ. If a one-dimensional boundary l = ∂R satisfies
P ′(0)= 0 for any volume-preserving {ϕt }, then

(P − κψV )′′(0)=
∫

l
f u2

(
d2ψ

dx2

)
da.

Proof. This formula comes from Proposition 3.6 in [Rosales et al. 2008], where the
second variation is stated for arbitrary dimensions. Some terms from the general
formula cancel in the one-dimensional case. �

Corollary 2.7. Let S be a subset of the real line such that ψ ′′(x)≤ 0 for all x ∈ S
with equality holding at no more than one point. If B is an isoperimetric boundary
contained in S, then B is connected and thus a single point.

Proof. If B has at least two connected components, then since by Existence and
Regularity 2.2 B consists of a finite union of points, there is a nontrivial volume-
preserving flow on B given by moving one component so as to increase the volume
and the other so as to decrease it. By Formula 2.6, the second variation satisfies

(P − κψV )′′(0)=
∫

B
f u2(ψ ′′(x)) da < 0.

This contradicts that B is isoperimetric. �

3. Isoperimetric regions on the double Gaussian line

Theorem 3.16 states that for the real line with density given by the sum of two
Gaussians with the same variance a2, isoperimetric regions are rays bounded by
single points. This theorem is a necessary condition for Conjecture 4.1, which states
that isoperimetric regions in the double Gaussian plane are half-planes bounded by
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vertical lines. Propositions 3.4, 3.14, and 3.15 treat the cases a2
≥ 1, 1> a2 > 1

2 ,
and 1

2 ≥ a2 > 0.
Lemma 3.5 shows that if the Gaussians have the same variance, we can reduce

the problem to ruling out a few noninterval, but still symmetrical, cases. When the
Gaussians have different variances, the problem is harder and not treated by our
results.

Let gc,a denote the Gaussian density with mean c and variance a2, and let

fc,a(x)=
1
2

(
e−(x−c)2/(2a2)

+ e−(x+c)2/(2a2)

a
√

2π

)
=

1
2(gc,a(x)+ g−c,a(x)).

Let
f (x)= 1

2( f1(x)+ f2(x))= 1
2(g1,a(x)+ g−1,a(x)).

In one dimension, the regions are unions of intervals and their boundaries are
points. Since the total measure is finite, isoperimetric regions exist by Existence and
Regularity 2.2. For a given weighted length A, we seek to find the set of points
with the smallest total density which bounds a region of weighted length A. Since
the complement of a region of weighted length A has weighted length 1− A, we
can assume that our regions have weighted length 0≤ A ≤ 1

2 .
The following proposition shows that it suffices to consider the density f .

Proposition 3.1. Suppose B is an isoperimetric boundary enclosing a region L
of weighted length A for the density f1,a(x). Then for any b > 0, we have bB
is an isoperimetric boundary enclosing region bL of weighted length A for the
density fb,ab(x).

Proof. Let g denote the standard Gaussian density.
First, we show that for any boundary P enclosing a region Q, the weighted

length of bQ for the density fb,ab(x) is the same as the weighted length of Q for
the density f1,a(x). We have that

|Q| =
∫

Q
f1,a(x) dx = 1

2

∫
Q

g1,a(x) dx + 1
2

∫
Q

g−1,a(x) dx

=
1
2

∫
(Q−1)/a

g(x) dx + 1
2

∫
(Q+1)/a

g(x) dx

=
1
2

∫
(bQ−b)/(ab)

g(x) dx + 1
2

∫
(bQ+b)/(ab)

g(x) dx

=
1
2

∫
Q

gb,ab(x) dx + 1
2

∫
Q

g−b,ab(x) dx = |bQ|,

where | · | denotes the weighted length in the appropriate densities.
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Figure 1. Plots of f (left) and ψ (right). The purple curves are
for a2

= 0.16, the blue curves for a2
=

1
2 , and the green curves for

a2
= 1.

Second, for any two boundaries P1 and P2, we have fb,ab(bx)= (1/b) f1,a(x)
for x ∈ Pi . Thus, |P1| ≥ |P2| in the density f1,a(x) exactly when |bP1| ≥ |bP2| in
the density fb,ab(x).

Therefore |bL|= A in the density fb,ab(x), and if any other boundary P enclosing
region Q satisfies |Q| = A in the density fb,ab(x), then since B is isoperimetric,
we have |B| ≤ |P/b| in the density f1,a(x). Therefore |bB| ≤ |P| in the density
fb,ab(x), so bP is isoperimetric. �

As a result of Proposition 3.1, it suffices to consider the density

f = 1
2( f1+ f2)=

1
2(g1,a + g−1,a).

Proposition 3.2. Let X be the disjoint union of two real-lines X1 and X2, each with
a standard Gaussian density scaled so that it has weighted length 1

2 . For any given
length 0 < A < 1

2 , the isoperimetric region in X of length A is a ray contained
entirely in X1 or X2.

Proof. Let B be an isoperimetric boundary and Bi its intersection with X i . If B1

and B2 are nonempty, then they each must be a single point since the isoperimetric
boundaries for the single Gaussian are always single points. Assume, in contra-
diction to the proposition, that Bi = {bi } for i = 1, 2 is the i-th component on the
i-th Gaussian bounding a ray L i of weighted length Ai . Since A1 + A2 <

1
2 , it

is possible to put a point b′1 on the first Gaussian at the same height as that of b2

bounding a ray L ′1 disjoint from L1 and with weighted length A2. Consider the
boundary B ′ = {b1, b′1}, which has the same weighted perimeter as that of B. There
exists a single point on B1 bounding a ray of area A and with weighted density
smaller than |B ′| = |B|. This contradicts the fact that B is isoperimetric. �

Proposition 3.3. For the double Gaussian density f , the log derivative ψ ′ is given
by

ψ ′(x)= a−2
(
−x + tanh x

a2

)
.
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Proof. We have

ψ ′(x)=

−e−(−1+x)2/(2a2)(−1+ x)
a2 +

−e−(1+x)2/(2a2)(1+ x)
a2

e−(−1+x)2/(2a2)+ e−(1+x)2/(2a2)
.

By using the substitution

tanh
( x

a2

)
=

ex/a2
− e−x/a2

ex/a2
+ e−x/a2 ,

we get

ψ ′(x)= a−2
(
−x + tanh x

a2

)
. �

Proposition 3.4. For the double Gaussian density f , if a ≥ 1, isoperimetric bound-
aries are single points.

Proof. For any given a, we have

ψ ′(x)= a−2
(
−x + tanh x

a2

)
,

ψ ′′(x)= a−4
(
−a2
+ sech2 x

a2

)
,

ψ ′′′(x)=−2a−6 sech2 x
a2 tanh x

a2 .

As shown in Figure 2, ψ ′′′(x) is positive for any x < 0 and negative for x > 0,
so ψ ′′(x) achieves its unique maximum at x = 0 for any given a. We have ψ ′′(0)=
(1− a2)/a4, so ψ ′′(0) is greater than 0 for a < 1, and less than or equal to 0 for
a ≥ 1. If a ≥ 1, by Corollary 2.7, isoperimetric boundaries are always connected.
Since isoperimetric boundaries consist of finite unions of points, they must be single
points. �

Lemma 3.5. Let p and q be two real functions with p(0)= q(0). Suppose p and q
satisfy

(1) p′(0)= q ′(0)≥ 0,

(2) q ′′(0)≥ p′′(0),

(3) q ′′(0)≥ 0, and

(4) p′′′ < 0 and q ′′′ > 0 on (0,∞).

For any a, b > 0, if p(a)= q(b), then q ′(b) > p′(a).

Proof. As in Figure 3, for all x > 0, by (2) and (4) we have q ′′(x) > p′′(x) and
by (3) and (4) we have q ′′(x) > 0. If we choose a′ so that q ′(a′)= p′(a), we will
have a′ < a.



THE ISOPERIMETRIC PROBLEM IN THE PLANE 555

-4 -2 2 4

-20

-10

10

20

-4 -2 2 4

10

20

30

-4 -2 2 4

-200

-100

100

200

Figure 2. Plots of ψ ′ (top), ψ ′′ (bottom left), and ψ ′′′ (bottom
right). The purple curves are for a2

= 0.16, the blue curves for
a2
=

1
2 , and the green curves for a2

= 1.

b a
Figure 3. The purple curve is q ′, and the blue curve p′. When the
areas are equal, as in the picture, q ′ is higher.

Since by (4) p′ is concave and q ′ is convex,

q(a′)=
∫ a′

0
q ′(t) dt ≤ 1

2(a
′
∗q ′(a′)) < 1

2(a ∗ p′(a))≤
∫ a′

0
q ′(t) dt = p(a)= q(b).

Therefore b > a′, so q ′(b) > p′(a), as asserted. �

Proposition 3.6. Suppose [a, b] is an interval of f -weighted length 0 < A < 1
2

with −1< a < b < 1. Then there exists a union of rays B = (−∞, c] ∪ [d,∞] of
f1-weighted length A such that f1(c) < f1(b) < f (b) and f1(d) < f2(a) < f (a).
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a b c d

Figure 4. Left: an interval in the double Gaussian. Right: two
rays in the single Gaussian. The total areas are the same, but the
heights in the right graph are slightly lower.

s t

Figure 5. Left: ray in the single Gaussian. Right: ray in the double
Gaussian. The total areas are the same, but the height in the right
graph is slightly lower.

Proof. Since 2+a = 1+ (a− (−1)), we have f1(2+a)= f2(a). The union of rays
(−∞, b] ∪ [2+ a,∞) has greater f1-weighted length than the f -weighted length
of [a, b]. Therefore there exists c < t and d > 2+ a such that (−∞, c] ∪ [d,∞)
has f1-weighted length A, and

f1(c)+ f1(d) < f1(b)+ f2(a) < f (b)+ f (a).
See Figure 4. �

Proposition 3.7. If [s,∞) has
( 1

2

)
f1-weighted length 0< A ≤ 1

4 , then there exists
t > s such that [t,∞) has f -weighted length A.

Proof. If [s,∞) has
( 1

2

)
f1-weighted length 0 < A ≤ 1

4 , then s ≥ 1. The interval
[s,∞) has f -weighted length greater than A. Therefore there exists t > s such that
[t,∞) has f -weighted length A. See Figure 5. �

Now we begin analyzing the case where the variance satisfies 0< a2 < 1.

Proposition 3.8. If a2 satisfies 0 < a2
≤ 1, then ψ ′′(x) = 0 exactly when x =

±a2 arccosh(1/a).

Proof. This follows from the formula for ψ ′′(x) given in Proposition 3.4. �
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- 4 - 2 2 4

Figure 6. On the graph of ψ = log f , there are at most three points
with x > 0 with the same value for |ψ ′(x)|.

Suppose that a2 is a variance. In the proof of the following proposition, we will
use the quantity

ca = a2 arccosh(1/a).

Proposition 3.9. Suppose 0 < a2
≤ 1 and B is an isoperimetric boundary with

at least one point s in [0, c], where c = ca , enclosing a region of weighted-length
0< A < 1

2 . Then the boundary B is one of the following:

(1) a single point s enclosing the ray [s,∞),

(2) {s, t}, where t > s, enclosing the interval [s, t],

(3) {s, t}, where s > 0> t , enclosing the interval [t, s],

(4) {s,−s, t} enclosing [−s, s] ∪ (−∞, t], [−s, s] ∪ [t,∞) or [s, t] ∪ (−∞,−s].

The analogous claims apply if s ∈ [−c, 0].

Proof. Since B is isoperimetric, it can contain at most one point x at which
ψ ′′(x) < 0. If it contained two such points, then by slightly shifting the two points
we could create a new region with the same weighted length. By Formula 2.6, the
boundary of this region would have a smaller total density. Therefore B can contain
at most one point outside of [−c, c].

In addition, B has constant curvature, so |ψ ′| is constant on B (see Figure 6).
Since ψ ′′(s) is positive on [0, c) and negative on (c,∞], there exists one point
t > s > 0 such that ψ ′(t)=ψ ′(s) and one point u > t > s > 0 such that −ψ ′(u)=
ψ ′(s). Therefore B is a subset of {s, t, u,−s,−t,−u}. Suppose B is not (1). If B
contains no points outside of [−c, c], then B is (3). Suppose B contains one point
y outside of [−c, c]. If t > 0, then the only possibilities are (2) or (4). If t < 0,
then the only possibilities are (3) or (4). The regions enclosed follow from the fact
that we assume 0< A < 1

2 . �

Proposition 3.10. Suppose B is an isoperimetric boundary with at least one point
s ∈ [−c, c]. If B is of type (3) in Proposition 3.9 and 0< a2

≤
1
2 , then the region R

enclosed by B has f -weighted length no more than 1
4 .
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Figure 7. ψ ′(s)−ψ ′(1− s).

Proof. We have

d
dx
(x − arccosh(x))= 1−

1
√

x − 1
√

1+ x
> 0

for x>
√

2, so x−arccosh(x) is increasing on (
√

2,∞). If y=1/x , then the function
y− arccosh(y)− 1

2 decreases on (0, 1/
√

2). Since
√

2− arccosh(
√

2)− 1
2 > 0, we

have arccosh(y) < y− 1
2 on (0, 1/

√
2). Therefore

c < a− a2

2
≤

1
√

2
−

1
4
<

1
2
.

Consider the function

I (x)=
∫ x

x−1
f1(x) dx +

∫ x

x−1
f2(x) dx

which sends x to the weighted length of [x − 1, x]. Then

I ′(x)= f1(x)− f1(x − 1)+ f2(x)− f2(x − 1)

= [ f2(x)− f1(x − 1)] + [ f1(x)− f2(x − 1)].

For |x |< 1
2 , both the bracketed quantities are negative, so I is decreasing on [0, c].

We have

I (0)=
∫ 0

−1
f2(x) dx +

∫ x

−1
f1(x) dx =

∫ 1

−1
f2(x) dx <

∫
∞

−1
f2(x) dx = 1

4 .

Therefore if we can show that s− t ≤ 1, we will have that the f -weighted length
of [s, t] is less than I (s)≤ 1

4 and be done. This follows immediately when t =−s,
since s ≤ c < 1

2 . When t 6= −s, we observe that s − 1 is to the left of −c, so it
suffices to show that ψ ′(s− 1)≥ ψ ′(t)=−ψ ′(s). Thus we want to show that

ψ ′(s− 1)+ψ ′(s)= ψ ′(s)−ψ ′(1− s)

= ([(1− s)− s] + [tanh(s/a2)− tanh((1− s)/a2)])/(a2)≥ 0

on
[
0, 1

2

]
; see Figure 7.
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This is equivalent to showing that

γ (s) :=
(
[(1− s)− s] +

[
tanh

( s
a2

)
− tanh

(1−s
a2

)])
≥ 0

on [0, c]. Since | tanh |< 1, we have γ (0) > 0. In addition, γ
( 1

2

)
= 0. Therefore

it suffices to show that γ achieves its minimum value on
[
0, 1

2

]
at s = 1

2 . We will
do this by using the first derivative test to show that there is only one other local
extremum in the interval and further demonstrating that this local extremum is not
the minimum point.

We have

γ ′(s)=
sech2(s/a2)

a2 +
sech2((1− s)/a2)

a2 − 2.

Since 1/a2
≥ 2, we have γ ′(0) > 0. In addition,

γ ′
( 1

2

)
=

2 sech2(1/(2a2))

a2 − 2.

By using the substitution

sech2(x)=
4

e2x + e−2x + 2
,

we get

sech2
( x

2

)
=

4
e1/x + e−1/x + 2

≤
4

e1/x + 2
.

Therefore

sech2
( x

2

)(1
x

)
≤

4
xe1/x + 2x

.

We have
α(x) := (xe1/x

+ 2x)′ = (2+ e1/x
− e1/x/x).

When 0< x ≤ 1
2 , we have

α(x)≤ 2+ e1/x
− 2e1/x

= 2− e1/x
≤ 2− e2 < 0.

Therefore α(x) attains a minimum value of 1
2 e2
+ 1> 4 on

(
0, 1

2

]
. This shows that

sech2
( x

2

)(1
x

)
≤

4
xe1/x + 2x

< 1

on
(
0, 1

2

]
, so γ ′

( 1
2

)
< 0.

By the intermediate value theorem, there exists z1 ∈
(
0, 1

2

)
such that γ ′(z1)= 0.

It follows that z2 = 1− z1 >
1
2 is also a zero of γ ′. Now sech2(x) = sech2(−x)

tends to 0 as x tends to∞, so γ ′ < 0 for some s� 0. Therefore there exists z3 in
(−∞, 0) such that γ ′(z3)= 0, and z4 = 1− z3 > 1 is also a zero of γ ′.
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a b c d
(A) an interval in the double Gaussian (B) two rays in the single Gaussian

s t
(C) a ray in the single Gaussian (D) a ray in the double Gaussian

Figure 8. When all the areas are the same, we have (A)>(B)>(C)
and (D) > (C).

Again using the substitution

sech2(x)=
4

e2x + e−2x + 2
,

we see that γ ′(s) is a rational function of e2s/a2
whose numerator is quartic. There-

fore γ ′ has at most four zeros, so z1 is the only zero of γ ′ in
(
0, 1

2

)
. Since γ ′(0) > 0,

γ (z1) > γ (0) > γ
( 1

2

)
,

so γ (s)≥ γ
( 1

2

)
= 0 for s ∈

[
0, 1

2

]
. �

Proposition 3.11. If the variance satisfies 0 < a2
≤

1
2 , then the isoperimetric

boundaries B with one point b in [0, c] cannot be of type (3) in Proposition 3.9.

Proof. Let A be the weighted length of B. If, in contradiction to the proposition,
B is of type (3) in Proposition 3.9, then B is of the form [a, b], where −1< a <
b < 1, as shown in Figure 8(A). By Proposition 3.6, there exists a union of rays
(−∞, c]∪[d,∞)with f1-weighted length A such that f1(c)+ f1(d)< f (a)+ f (b).
This is shown in Figure 8(B). By the solution to the single Gaussian isoperimetric
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a b c d

Figure 9. Left: original ray. Right: reflected ray.

problem, there exists a ray [s,∞), as shown in Figure 8(C), with f1-weighted
length A such that f1(t) < f1(c)+ f1(d). By Proposition 3.10, A≤ 1

4 , so s ≥ 1. By
Proposition 3.7, there exists a ray [t,∞), as shown in Figure 8(D), with f -weighted
length A such that t > s.

To get a contradiction to the fact that B is isoperimetric, we show ( f (a)+ f (b))−
f (t) > 0. Write

( f (a)+ f (b))− f (t)= [( f (a)+ f (b))− ( f1(c)+ f1(d))]

+ [( f1(c)+ f1(d))− f1(s)] + [ f1(s)− f (t)].

Since [( f1(c) + f1(d)) − f1(s)] > 0, it suffices to show that [( f (a) + f (b)) −
( f1(c)+ f1(d))]> [ f (t)− f1(s)]. Since f (a) > f1(d), we have

[( f (a)+ f (b))− ( f1(c)+ f1(d))]> f (b)− f1(c) > f (b)− f1(b)= f2(b).

Since f (t) < f (s), we have

[ f (t)− f1(s)]< f (s)− f1(s)= f2(s).

Since −1< b < 1< s, we have f2(s) < f2(b), and this proves the claim. �

Proposition 3.12. If the variance satisfies a2
≤

1
2 , then the isoperimetric boundaries

B with one point b > 0 in [−c, c] cannot be of type (2) in Proposition 3.9.

Proof. We know f (a) < f (b) (recall the concavity/convexity argument), and since
f2(b) < f2(a), we must have f1(a) < f1(b).

Pick d > c such that f1(c)= f1(b) and f1(d)= f1(a). In other words, we get
[c, d] by reflecting [a, b] over the line x = 1. See Figure 9. Since a < 1, we either
have c < 1< d or 1< d < c.

In the first case, we have that [c, d] has the same f1-length as [a, b], and since
c>a and d>b, we have f2(c)< f2(a) and f2(d)< f2(b). Therefore f (c)+ f (d)<
f (a)+ f (b). At the same time, the f2-length of [c, d] is less than that of [a, b].
This difference is at most the f2-length of [a,∞). Since f1(d) = f1(a) > f2(a),
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we can find e > d such that [c, e] has f -length A. In addition, f (c)+ f (e) <
f (c)+ f (d) < f (a)+ f (b), so [a, b] is not isoperimetric.

In the second case, we have that [d, c] has the same f1-length as [a, b], and since
d, c > a, b, we have f2(d) < f2(a) and f2(c) < f2(b). Therefore f (c)+ f (d) <
f (a)+ f (b). At the same time, the f2-length of [d, c] is less than that of [a, b].
This difference is at most the f2-length of [a,∞). Since f1(c) = f1(a) > f2(a),
we can find e > c such that [d, e] has the f -length A. In addition, f (c)+ f (e) <
f (c)+ f (d) < f (a)+ f (b), so [a, b] is not isoperimetric. �

Proposition 3.13. If the variance satisfies a2
≤

1
2 , then the isoperimetric boundaries

B with one point b in [−c, c] cannot be of type (4) in Proposition 3.9.

Proof. We may assume without loss of generality that b ≥ 0. Suppose B is of
type (4) in Proposition 3.9. Then the region L enclosed by B consists of the union
of an interval of type (2) or (3) in Proposition 3.9 and a ray. Apply Propositions 3.11
and 3.12 to get a new region L ′ that beats the interval. Since A < 1

2 , L ′ may be
chosen to not intersect the ray. Then the union of L ′ and the ray beats L . �

Proposition 3.14. If B is an isoperimetric boundary and the variance satisfies
a2
≤

1
2 , then B is a single point.

Proof. If B does not contain a point s ∈ [−c, c], then by Corollary 2.7, then B is a
single point. Otherwise, apply Propositions 3.11–3.13 to complete the proof. �

Proposition 3.15. For the line endowed with density f (x), if the variance a2 is
such that 1

2 ≤ a2 < 1, then isoperimetric regions R are always rays with boundary
B consisting of a single point.

Proof. By Proposition 3.8, we have that ψ ′′(x) = 0 exactly when x is c =
±a2 arccosh(1/a). Since ψ ′′′(x) > 0 for x < 0 and ψ ′′′(x) < 0 for x > 0, we
have that ψ ′′ is negative outside of [−c, c] and is positive in (−c, c).

Suppose that B is an isoperimetric boundary containing more than two points. By
Corollary 2.7, B does not lie entirely outside [−c, c]. Since ψ ′′(x) > 0 on (−c, c)
and ψ ′′(±c)= 0, the maximum and minimum of ψ ′(x) on [−c, c] are achieved at
c and −c with ψ ′(−c) negative and ψ ′(c) positive. Since ψ ′(x) tends to −∞ as x
approaches∞, there exists a unique point b > c such that f (±b)= f (±c). Since
b > c, we have ψ ′′(x) < 0 outside of [−b, b].

We claim that B must lie in [−b, b]. Since |ψ ′(x)| is constant on B, to show
that B ⊂ [−b, b] it suffices to show that the maximum and minimum of ψ ′(x) on
[−b, b] are achieved at −b and b. Since 0 is a local minimum for f (x), it suffices
to show that |ψ ′(b)| > |ψ ′(c)|. Since ψ ′(c) is postive and ψ ′′(x) < 0 for x > c,
there exists a unique point d > c where ψ ′(d)= 0 and ψ ′ changes from positive
to negative at d. To apply Lemma 3.5, consider functions p and q denoting the
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Figure 10. 2 f (0, a) for various values of a.

increase in ψ moving left of d and the decrease in ψ moving right of d:

p(x)= ψ(d)−ψ(d − x),

q(x)= g(x)= ψ(d)−ψ(d + x),

which satisfy the hypotheses of Lemma 3.5. Since ψ(c)= ψ(b), we have

|ψ ′(c)| = ψ ′(c)= p′(d − c) < g′(b− d)−ψ ′(b)= |ψ ′(b)|.

There are five candidates for the minimum points of f (x) on [−b, b]: ±b, 0,
and ±d. Since d > c, we have ψ ′′(d) < 0, so ±d is not a candidate. Since,
also by the preceding paragraph, ψ ′(x) is positive between 0 and c, we have
f (b)= f (c) > f (0). Therefore the minimum on this interval is f (0). We have

d
da
( f (0, a))=−

√
1/a2(−1+ a2)e−1/(2a2)

a3
√

2π
> 0

for all a ∈ [−1/
√

2, 1). Therefore we have

2 f (0, a)≥ 2 f (0, 1/
√

2)≈ 0.415107 . . . .

See Figure 10.
To finish the proof, we must show that f (x, a) < 0.415107 . . . for all x and all

a ∈ [1/
√

2, 1). Consider the numerator n of f given by

n(x)= e−(x−1)2/(2a2)
+ e−(x+1)2/(2a2).

For a given x , we have n increases when a increases, so

n(x)≤ m(x)= e−(x−1)2/2
+ e−(x+1)2/2.

Since
d

dx
(log m(x))= tanh(x)− x,
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which has the same sign as −x , we see that m(x) is maximized at 0. Therefore
n(x)≤ m(0) < 1.22, so

f (x) <
m(0)

2
√

2πa
≤

1.22
2
√
π
≈ 0.345.

This means that there is a ray which beats B, contradicting the fact that B is
isoperimetric. �

Theorem 3.16. The isoperimetric boundaries for the double Gaussian density f
are always single points enclosing rays.

Proof. To cover the three cases, apply Propositions 3.4, 3.14, and 3.15. �

4. Isoperimetric regions on the double Gaussian plane

This section describes evidence for the conjecture of Cañete et al., given here as
Conjecture 4.1, which states that double Gaussian isoperimetric boundaries in the
plane are vertical lines. Proposition 4.4 proves that horizontal and vertical lines are
the only stationary lines. Proposition 4.5 proves that vertical lines are better than
horizontal lines. First we prove some incidental symmetry results (Propositions 4.2
and 4.3).

Conjecture 4.1 [Cañete et al. 2010, Question 6]. Let f (x, y) = eψ(x,y) be the
normalized sum of two Gaussian densities with the same variance and different
centers. Isoperimetric regions are half-planes enclosed by lines perpendicular to
the line connecting the two centers.

By the planar analogue of Proposition 3.1, it suffices to prove this conjecture in
the case where the centers are c1 = (1, 0) and c2 = (−1, 0).

Then we have

f (x, y)= eψ(x,y) =
1

4πa2 e−y2/(2a2)(e−(x−1)2/(2a2)
+ e−(x+1)2/(2a2)).

The next two propositions describe some symmetry properties of isoperimetric
curves. For a curve C, let AC denote the weighted area enclosed by C.

Proposition 4.2. Consider a density g symmetric about the x-axis. If a closed,
embedded curve C encloses the same weighted area above and below the x-axis,
then there is a curve C ′ which is symmetric about the x-axis, encloses the same
weighted area, and has weighted perimeter no greater than that of C.

Proof. Let C1 and C2 be the parts of C in the open upper and lower half-planes
chosen so that the weighted perimeter of C1 is no bigger than that of C2. Consider
the curve C ′ formed by joining C1 with its reflection over the x-axis and taking the



THE ISOPERIMETRIC PROBLEM IN THE PLANE 565

closure. Let w denote the part of C on the x-axis and w1 denote the part of C ′ on
the x-axis. Since g is symmetric about the x-axis, AC = AC ′ . In addition,

|C ′| − |C | = (2|C1| + |w1|)− (|C1| + |C2| + |w|)= (|C1| − |C2|)+ (|w1| − |w|).

We have |C1| − |C2| ≤ 0 by assumption, and since the part of C which intersects
the x-axis must include w1, we know |w1| − |w|< 0. Therefore |C ′| − |C | ≤ 0. �

Proposition 4.3. Consider a density symmetric about the x-axis. If C is a closed
embedded planar curve symmetric about the x-axis, then the part C ′ of C in the
open upper half-plane encloses half as much weighted area with half the weighted
length.

Proof. Suppose that C is a curve that is symmetric about the x-axis and encloses
area A. Since C is symmetric about the x-axis, C cannot have nonzero perimeter
on the x-axis. Then C ′ encloses area 1

2 AC in the upper half-plane and has weighted
perimeter 1

2 |C |. �

Proposition 4.4. If the plane is endowed with density f , then horizontal and vertical
lines have generalized curvature 0 and are the only lines which have constant
generalized curvature.

Proof. Let ψ = ln f . Then

∇ψ(x, y)=
(
−x + tanh(x/a2)

a2 ,
−y
a2

)
.

In addition, the normal to the line y = cx + b is (−c, 1)/
√

c2+ 1 at all points of
the line. Therefore the generalized curvature of such a line evaluated at (0, b) is

0−∇ψ(0, b) ·
(−c, 1)
√

c2+ 1
=

b

a2
√

1+ c2
,

and by an analogous computation the generalized curvature evaluated at (1, c+ b)
is

c+ b

a2
√

1+ c2
+

c(−1+ tanh(1/a2))

a2
√

1+ c2
.

Thus the generalized curvatures at (0, b) and (1, c + b) are equal exactly when
c = 0. This shows that only nonvertical lines that could possibly have constant
curvature are the horizontal lines y = b. Such lines have normal (0, 1), and this,
combined with our formula with the gradient, shows that horizontal lines have
constant curvature b/a2.

An explicit computation of the same variety shows that the vertical line x = b
has constant curvature

b− tanh(b/a2)

a2 . �
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Figure 11. Left: symmetric rays. Right: nonsymmetric rays. When
the purple areas are equal, the two nonsymmetric rays are more
efficient than the two symmetric rays. The efficiency increases as
the disparity between the rays increases, and the limiting case is a
single ray, which is the isoperimetric region.

Proposition 4.5. In the plane with double Gaussian density f , vertical lines enclose
a given area with less perimeter than horizontal lines.

Proof. We now compare the perimeters of and areas enclosed by the horizontal line
x = b and the vertical line y = c. By symmetry and the fact that we may assume
the areas are less than 1

2 , we can assume that b and c are positive and consider the
areas of the regions x > b and y > c.

The area enclosed by the vertical line is∫
∞

b

∫
∞

−∞

f (x, y) dy dx =
∫
∞

b

e−(x−1)2/(2a2)
+ e−(x+1)2/(2a2)

2a
√

2π
,

which is the same as the weighted length of the ray Rb = [b,∞) on the double
Gaussian line. The perimeter of the vertical line is∫

∞

−∞

f (b, y) dy =
e−(b−1)2/(2a2)

+ e−(b+1)2/(2a2)

2a
√

2π
,

which is exactly the cost of Rb on the double Gaussian line.
The area enclosed by the horizontal line is∫

∞

c

∫
∞

−∞

f (x, y) dx dy =
∫
∞

c

e−y2/(2a2)

2a
√

2π
dy,

which is the same as the weighted length of the ray Rc = [c,∞) on the single
Gaussian (of total weighted-length 1) line. The perimeter of the horizontal line is∫

∞

−∞

f (x, c) dx =
e−c2/(2a2)

2a
√

2π
,

which is exactly the cost of Rc on the single Gaussian line.
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Therefore it suffices to show that a ray on the double Gaussian line of length A
costs less than a ray on the single Gaussian line of the same weighted length.
Consider the line with density g given by a single Gaussian of total length 1

2 . The
ray on the single Gaussian is equivalent to the union of two disjoint, symmetric
rays on the g-line. The ray on the double Gaussian is equivalent to the union of
two disjoint, nonsymmetric rays on the g-line. By applying the first and second
variation arguments to a single Gaussian density, we see that two nonsymmetric
rays are always better than two symmetric rays of the same total weighted-length.
See Figure 11. �

Therefore if the isoperimetric curve corresponding to area A is a line, then it is a
vertical line.
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