0

 involve

 involve} a journal of mathematics

Finiteness of homological filling functions
Joshua W. Fleming and Eduardo Martínez-Pedroza

Finiteness of homological filling functions

Joshua W. Fleming and Eduardo Martínez-Pedroza
(Communicated by Kenneth S. Berenhaut)

Abstract

Let G be a group. For any $\mathbb{Z} G$-module M and any integer $d>0$, we define a function $\mathrm{FV}_{M}^{d+1}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$ generalizing the notion of $(d+1)$-dimensional filling function of a group. We prove that this function takes only finite values if M is of type $F P_{d+1}$ and $d>0$, and remark that the asymptotic growth class of this function is an invariant of M. In the particular case that G is a group of type $F P_{d+1}$, our main result implies that its $(d+1)$-dimensional homological filling function takes only finite values.

1. Introduction

For a contractible cellular complex X and an integer $d>0$, the homological filling function $\mathrm{FV}_{X}^{d+1}: \mathbb{N} \rightarrow \mathbb{N}$ measures the difficulty of filling cellular d-cycles with $(d+1)$-chains; a precise definition is below. They are higher-dimensional homological generalizations of isoperimetric functions. For a group G admitting a compact classifying space $K(G, 1)$ with universal cover X, the equivalence growth rate of the function FV_{X}^{d+1} provides an invariant of the group. The initial motivation of this work was to provide a direct argument that FV_{X}^{d+1} takes only finite values for such complex X, addressing what the authors perceived as a gap in the literature. In this article we provide a self-contained proof based on the algebraic approach to define the homological filling functions from [Hanlon and Martínez-Pedroza 2016], and on our way, we prove a more general result that defines a new collection of invariants for $\mathbb{Z} G$-modules.

The topological perspective. We assume all spaces are combinatorial complexes and all maps are combinatorial; see for example [Bridson and Haefliger 1999, Part I, Chapter 8, Appendix]. A G-action on a complex X is proper if for all compact subcomplexes K of X the collection $\{g \in G \mid K \cap g(K) \neq \varnothing\}$ is finite. The G-action is cocompact if there is a compact subcomplex K of X such that the collection $\{g K \mid g \in G\}$ covers X. For a complex X, the cellular d-dimensional chain group

[^0]$C_{d}(X, \mathbb{Z})$ is a free \mathbb{Z}-module with a natural ℓ_{1}-norm induced by a basis formed by the collection of all d-dimensional cells of X, each cell with a chosen orientation from each pair of opposite orientations. This norm, denoted by $\|\cdot\|_{1}$, is the sum of the absolute value of the coefficients in the unique representation of the chain as a linear combination of elements of the basis. Let $Z_{d}(X, \mathbb{Z})$ denote the \mathbb{Z}-module of integral d-cycles, and $\partial_{d+1}: C_{d+1}(X, \mathbb{Z}) \rightarrow Z_{d}(X, \mathbb{Z})$ be the boundary map. The $(d+1)$-dimensional filling function of X is the function $\mathrm{FV}_{X}^{d+1}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$ defined as
$$
\mathrm{FV}_{X}^{d+1}(k)=\sup \left\{\|\gamma\|_{\partial} \mid \gamma \in Z_{d}(X, \mathbb{Z}),\|\gamma\|_{1} \leq k\right\}
$$
where
$$
\|\gamma\|_{\partial}=\inf \left\{\|\mu\|_{1} \mid \mu \in C_{d+1}(X, \mathbb{Z}), \partial(\mu)=\gamma\right\}
$$
where the supremum and infimum of the empty set are defined as zero and ∞ respectively. In words, $\mathrm{FV}_{X}^{d+1}(k)$ is the most efficient upper bound on the size of fillings by $(d+1)$-chains of d-cycles of norm at most k. A complex X is d-acyclic if the reduced homology groups $\bar{H}_{i}(X, \mathbb{Z})$ are trivial for $0 \leq i \leq d$. As mentioned above, the initial motivation of this work was to provide a proof of Theorem 1.1, which the authors perceived as a gap in the literature. The main contribution of this note is a generalization to an algebraic framework of the following statement; see Theorem 1.3.

Theorem 1.1. Let d be a positive integer and let G be a group acting properly and cocompactly by cellular automorphisms on a d-acyclic complex X. Then $F V_{X}^{d+1}(m)$ is finite for all $m \in \mathbb{N}$.

Theorem 1.1 was known to hold in the following cases:

- For $d=1$, it is a result of [Gersten 1999, Proposition 2.4].
- For $d \geq 1$ and under the extra assumption that G admits a combing, it follows from [Epstein et al. 1992, Theorem 10.3.6]; see also [Behrstock and Druţu 2015, Lemma 3.7].
- For $d \geq 3$, Hanlon and the second author observed in [Hanlon and MartínezPedroza 2016, Section 3.3] that Theorem 1.1 holds using results of Alonso, Pride and Wang [Alonso et al. 1999] in conjunction with an argument from Abrams, Brady, Dani and Young [Abrams et al. 2013]. The results in [Alonso et al. 1999] rely on nontrivial machinery from homotopy theory. The failure of the argument for $d=2$ relies on an application of the Hurewicz theorem; for details see [Hanlon and Martínez-Pedroza 2016, Section 3.3].

Current results in the literature leave open the statement of Theorem 1.1 for the case $d=2$. Our argument in this note proving Theorem 1.1 does not rely on previous results, it is valid for all $d>0$, and it is elementary. The argument might be known to the experts, but to our knowledge does not appear in the literature, and
this note fills this gap. Let us sketch the argument from a topological perspective; for an algebraic proof see Section 2.
Sketch of the proof of Theorem 1.1, from a topological perspective. Consider the combinatorial path metric on the 1 -skeleton of X, and for any d-cycle σ (which is a formal finite sum of d-cells) define its diameter $\operatorname{diam}(\sigma)$ as the diameter of the set consisting of vertices (0 -cells) which are in the closure of at least one d-cell defining σ. A d-cycle σ is called connected if the subcomplex of X formed by taking the closure of the union of d-cells defining σ is connected (and has no cut-points).

Let $m>0$. Since G acts properly and cocompactly on X, there is an integer $C \geq 0$ that bounds the diameter of any d-cell of X, and hence for any connected d-cycle σ,

$$
\operatorname{diam}(\sigma) \leq C\|\sigma\|_{1}
$$

From here, it follows that the induced G-action on the set of connected d-cycles with ℓ_{1}-norm $\leq m$ has finitely many G-orbits. Since X is d-acyclic, $\|\sigma\|_{\partial}<\infty$ for each d-cycle σ. Therefore, there is an integer $M=M(m)$ such that

$$
\sigma \text { is connected and }\|\sigma\|_{1} \leq m \quad \Longrightarrow \quad\|\sigma\|_{\partial} \leq M
$$

Let σ be an arbitrary d-cycle with ℓ_{1}-norm $\leq m$. Then one shows that σ can be decomposed as a sum of connected d-cycles $\sum_{i=1}^{k} \sigma_{i}$, where $k \leq\|\sigma\|_{1}=\sum_{i=1}^{k}\left\|\sigma_{i}\right\|_{1}$. Hence

$$
\|\sigma\|_{\partial} \leq \sum_{i=1}^{k}\left\|\sigma_{i}\right\|_{\partial} \leq k \cdot M \leq m \cdot M
$$

Therefore $\mathrm{FV}_{X}^{d+1}(m) \leq m \cdot M<\infty$.
Remark 1.2. Under the assumptions of Theorem 1.1, it is known that the growth rate of the function FV_{X}^{d+1} is a quasi-isometry invariant of the group G. This was first addressed by Fletcher [1998, Theorem 2.1] under the assumption that X is the universal cover of $K(G, 1)$. Young [2011, Lemma 1] provided a proof of the quasi-isometry invariance in the general context of Theorem 1.1. Notably, these works do not address that these functions are finite.

The algebraic perspective, and our main result. Our main result is an algebraic analog of Theorem 1.1. Recall that for a group G, a $\mathbb{Z} G$-module M is of type $F P_{n}$ if there exists a partial resolution of $\mathbb{Z} G$-modules

$$
P_{n} \xrightarrow{\varphi_{n}} P_{n-1} \xrightarrow{\varphi_{n-1}} \cdots \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \rightarrow M \rightarrow 0
$$

such that each P_{i} is a finitely generated projective $\mathbb{Z} G$-module. For a $\mathbb{Z} G$-module M of type $F P_{d+1}$ we define the $(d+1)$-filling function FV_{M}^{d+1} of M, see Definition 2.5, and prove the following result.

Recall that the growth rate class of a function $\mathbb{N} \rightarrow \mathbb{N}$ is defined as follows. Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, define the relation $f \preceq g$ if there is $C>0$ such that $f(n) \leq C g(C n+C)+C n+C$ for all $n \in \mathbb{N}$, and let $f \sim g$ if both $f \preceq g$ and $g \preceq f$. This yields an equivalence relation where the equivalence class of a function f is called the growth rate class of f.

Theorem 1.3. Let M be a $\mathbb{Z} G$-module of type $F P_{d+1}$:
(1) For all positive integers d and k, we have $\mathrm{FV}_{M}^{d+1}(k)<\infty$.
(2) The growth rate of the function $\mathrm{FV}_{M}^{d+1}: \mathbb{N} \rightarrow \mathbb{N}$ only depends on M.

This result provides a new collection of invariants for $\mathbb{Z} G$-modules that remains to be studied. The invariant is interesting even in the case that $M=\mathbb{Z}$ and G is suitable. In this case, the filling functions $\mathrm{FV}_{\mathbb{Z}}^{d+1}$ correspond to the filling invariants of the group G, usually denoted by FV_{G}^{d+1}, in the context of Theorem 1.1 and Remark 1.2. There are computations by Young [2016] in the case that G corresponds to a discrete Heisenberg group answering a conjecture of Gromov [1993, Chapter 5], estimations in the case that G is the special linear group $\operatorname{SL}(n, \mathbb{Z})$ by Epstein and Thurston [1992, Chapter 10], and general results in the case that G is a hyperbolic group by Gersten [1996] and Mineyev [2000], among others. In [Hanlon and MartínezPedroza 2016, Remark 3.4], it was observed that there was no proof in the literature that if G is of type $F P_{3}$ (i.e., \mathbb{Z} is of type $F P_{3}$ as a module over $\mathbb{Z} G$) then FV_{G}^{3} is finite-valued; observe that this is a consequence of Theorem 1.3.

This note contains a proof of the first statement of Theorem 1.3. The proof of the second statement appears in [Hanlon and Martínez-Pedroza 2016, Theorem 3.5] for the case that $M=\mathbb{Z}$, but the argument works verbatim for the general case.

Organization. The rest of the paper is organized as follows: Section 2 contains some preliminary definitions including the definition of FV_{M}^{d+1}, the statement of the main technical result of the article, Proposition 2.4, and arguments implying Theorems 1.1 and 1.3. Section 3 is devoted to the proof of Proposition 2.4. Section 4 discusses some geometric examples illustrating some matters about Theorem 1.1.

2. Main technical result and proofs of the main theorems

Let G be a group and let S be a G-set. The set of all orbits of S under the G-action is denoted by S / G. The free abelian group $\mathbb{Z}[S]$ with S as a free generating set can be made into a $\mathbb{Z} G$-module that we shall call the permutation module on S. The \mathbb{Z}-basis S induces a G-equivariant norm, called the ℓ_{1}-norm, given by $\left\|\sum_{s \in S} n_{s} s\right\|_{S}=\sum_{s \in S}\left|n_{s}\right|$, where $n_{s} \in \mathbb{Z}$.

If the G-action on S is free, then $\mathbb{Z}[S]$ is a free module over $\mathbb{Z} S$. Conversely, if F is a free $\mathbb{Z} G$-module with a chosen $\mathbb{Z} G$-basis $\left\{\alpha_{i} \mid i \in I\right\}$, then F is isomorphic
to the permutation module $\mathbb{Z}[S]$, where $S=\left\{g \alpha_{i} \mid g \in G, i \in I\right\}$ with the natural G-action. In this case the $\mathbb{Z} G$-basis $\left\{\alpha_{i} \mid i \in I\right\}$ of F induces an ℓ_{1}-norm as before.

Definition 2.1 (Gersten's filling norms). Let $\eta: F \rightarrow M$ be a surjective morphism of $\mathbb{Z} G$-modules where F is finitely generated and free with a chosen finite $\mathbb{Z} G$-basis, and the induced filling norm on M is defined by

$$
\|m\|_{\eta}=\min \left\{\|x\|_{F} \mid x \in F, \eta(x)=m\right\}
$$

where $\|\cdot\|_{F}$ denotes the induced ℓ_{1}-norm on F.
Remark 2.2 (induced ℓ_{1}-norms are filling norms). Let $\mathbb{Z}[S]$ be a permutation $\mathbb{Z} G$-module such that G acts freely on S and the quotient S / G is finite. Then $\mathbb{Z}[S]$ is a finitely generated free $\mathbb{Z} G$-module and the ℓ_{1}-norm $\|\cdot\|_{S}$ is a filling norm. This statement holds without the assumption that G acts freely on S. Since we do not use this fact, we leave its verification to the reader.

Definition 2.3. Let $\rho: \mathbb{Z}[S] \rightarrow \mathbb{Z}[T]$ be a morphism of permutation $\mathbb{Z} G$-modules such that the kernel $K=\operatorname{ker} \rho$ is finitely generated. Let $\|\cdot\|_{K}$ denote a filling norm on K and let $\|\cdot\|_{S}$ denote the ℓ_{1}-norm on $\mathbb{Z}[S]$ induced by S. Define the function $\mathrm{FV}_{\rho}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$ as

$$
\operatorname{FV}_{\rho}(n)=\sup \left\{\|x\|_{K} \mid x \in K,\|x\|_{S} \leq n\right\}
$$

Proposition 2.4. Let $\rho: \mathbb{Z}[S] \rightarrow \mathbb{Z}[T]$ be a morphism. Suppose that S / G and T / G are finite, T has finite G-stabilizers for all $t \in T$, and $\operatorname{ker} \rho$ is finitely generated. Then $\mathrm{FV}_{\rho}(n)<\infty$ for all $n \in \mathbb{N}$.

In the rest of this section, we deduce Theorems 1.1 and 1.3 from Proposition 2.4.
Proof of Theorem 1.1. Let G be a group acting properly and compactly by cellular automorphisms on a d-connected complex X. The free abelian groups $C_{d}(X)$ and $C_{d+1}(X)$ are permutation $\mathbb{Z} G$-modules over the G-sets of d-cells and $(d+1)$-cells of X, respectively. Observe that the definition of $F V_{X}^{d+1}$ coincides with Definition 2.3 of $F V_{\partial_{d}}$ for the boundary map $C_{d}(X) \xrightarrow{\partial_{d}} C_{d-1}(X)$. The proof concludes by verifying the hypothesis of Proposition 2.4 for this morphism.

Since the G-action on X is cocompact, there are finitely many G-orbits of d-cells and ($d+1$)-cells; in particular $C_{d+1}(X)$ is a finitely generated $\mathbb{Z} G$-module. Since X is d-acyclic, the sequence

$$
C_{d+1}(X) \xrightarrow{\partial_{d+1}} C_{d}(X) \xrightarrow{\partial_{d+1}} C_{d-1}(X)
$$

is exact and hence $\operatorname{ker}\left(\partial_{d}\right)$ is a finitely generated $\mathbb{Z} G$-module. Since the G-action is proper, the stabilizer of each d-cell of X is finite.

Definition 2.5. Let M be a $\mathbb{Z} G$-module of type $F P_{d+1}$. The ($d+1$)-filling function of M is the function

$$
\mathrm{FV}_{M}^{d+1}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}
$$

defined as follows. Let

$$
P_{d+1} \xrightarrow{\varphi_{d+1}} P_{d} \xrightarrow{\varphi_{d}} \cdots \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \rightarrow M \rightarrow 0
$$

be a $F P_{d+1}$-resolution for M. Chose filling norms on P_{d+1} and P_{d} denoted by $\|\cdot\|_{P_{d+1}}$ and $\|\cdot\|_{P_{d}}$ respectively. Then

$$
\mathrm{FV}_{M}^{d+1}(k)=\sup \left\{\|x\|_{\varphi_{d+1}} \mid x \in \operatorname{ker} \varphi_{d},\|x\|_{P_{d}} \leq k\right\}
$$

where

$$
\|x\|_{\varphi_{d+1}}=\min \left\{\|y\|_{P_{d+1}} \mid y \in P_{d+1}, \varphi_{d+1}(y)=x\right\}
$$

The proof of Theorem 1.3 uses the following lemma.
Lemma 2.6 [Brown 1982, Chapter VIII, Proposition 4.3]. A $\mathbb{Z} G$-module M is of type $F P_{d}$ if and only if M admits a partial resolution of free finitely generated $\mathbb{Z} G$-modules of the form

$$
F_{d+1} \rightarrow F_{d} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

Proof of Theorem 1.3. Since M is of type $F P_{d+1}$, by Lemma 2.6, there exists a partial resolution of free and finitely generated $\mathbb{Z} G$-modules

$$
F_{d+1} \xrightarrow{\varphi_{d+1}} F_{d} \xrightarrow{\varphi_{d}} \cdots \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \rightarrow M \rightarrow 0
$$

such that $\operatorname{ker} \varphi_{n}$ is finitely generated for n such that $d \geq n \geq 0$. Consider the finitely generated free modules F_{d} and F_{d-1} as permutation modules $\mathbb{Z}[S]$ and $\mathbb{Z}[T]$ respectively. Finite generation and freeness implies that we can assume that G acts freely and with finitely many orbits on both S and T. Since the induced ℓ_{1}-norms on $\mathbb{Z}[S]$ and $\mathbb{Z}[T]$ are in particular filling norms, the definition of FV_{M}^{d+1} coincides with Definition 2.3 of $\mathrm{FV}_{\varphi_{d+1}}$. Then the first statement of the theorem on the finiteness of FV_{M}^{d+1} follows by applying Proposition 2.4 to $\mathrm{FV}_{\varphi_{d+1}}$.

The proof of the second statement that the growth rate of FV_{M}^{d+1} is independent of the choice of partial resolution and filling norms appears in [Hanlon and MartínezPedroza 2016, Theorem 3.5] for the case that $M=\mathbb{Z}$ and G is a group of type $F P_{d+1}$. The argument for arbitrary M follows verbatim by replacing each occurrence of \mathbb{Z} by M. Let us remark that the heart of the argument is the fact that any two projective resolutions of M are chain homotopy equivalent [Brown 1982, p. 24, Theorem 7].

3. Finiteness

This section contains the proof Proposition 2.4. Let S and T be G-sets. For $x \in \mathbb{Z}[S]$ with $x=\sum_{s \in S} n_{s} s$, we denote by $\langle x, s\rangle$ the integer n_{s}. For $x \in \mathbb{Z}[T]$ and $t \in T$ we define analogously $\langle x, t\rangle$.

Definition 3.1 (x is a part of y). Let $x, y \in \mathbb{Z}[S]$. We say x is a part of y, denoted by $x \preceq_{S} y$, to mean that for each $s \in S$ if $\langle x, s\rangle>0$ then $\langle x, s\rangle \leq\langle y, s\rangle$, and if $\langle x, s\rangle<0$ then $\langle y, s\rangle \leq\langle x, s\rangle$. Note that this is equivalent to $\langle x, s\rangle\langle y, s\rangle \geq\langle x, s\rangle^{2}$ for all $s \in S$.
Definition 3.2 (S-intersect). For $x, y \in \mathbb{Z}[S]$, the S-intersection of x and y is defined as $x \cap_{S} y=\{s \in S \mid\langle x, s\rangle\langle y, s\rangle<0\}$.
Remark 3.3. Let $x, y \in \mathbb{Z}[S]$. Then $\|x+y\|_{S}=\|x\|_{S}+\|y\|_{S}$ if and only if $x \cap_{s} y=\varnothing$. Indeed,

$$
\|x+y\|_{S}=\sum_{s \in S}|\langle x, s\rangle+\langle y, s\rangle| \leq \sum_{s \in S}|\langle x, s\rangle|+\sum_{s \in S}|\langle y, s\rangle|=\|x\|_{S}+\|y\|_{S}
$$

with equality if and only if $\langle x, s\rangle$ and $\langle y, s\rangle$ have the same sign for all $s \in S$.
Throughout the rest of this section, let

$$
\mathcal{D}_{1}=S \cup\{-s \mid s \in S\}
$$

Furthermore, let $\rho: \mathbb{Z}[S] \rightarrow \mathbb{Z}[T]$ denote a morphism of $\mathbb{Z} G$-modules.
Definition 3.4 (ρ-intersect). A pair of elements $x, y \in \mathbb{Z}[S]$ have nontrivial ρ intersection, denoted by $x \cap_{\rho} y \neq \varnothing$, if there exists $x_{1}, y_{1} \in \mathcal{D}_{1}$ such that $\rho\left(x_{1}\right) \cap_{T}$ $\rho\left(y_{1}\right) \neq \varnothing$ where $x_{1} \preceq_{s} x$ and $y_{1} \preceq_{s} y$.

Definition 3.5 (ρ-connected). For each integer $n \geq 1$, let \mathcal{D}_{n} be the collection of elements of $\mathbb{Z}[S]$ of the form $x=\sum_{i=1}^{n} x_{i}$, where each $x_{i} \in \mathcal{D}_{1}$ and for every $k<n$ the elements $\sum_{i=1}^{k} x_{i}$ and x_{k+1} have trivial S-intersection and nontrivial ρ-intersection. An element $x \in \mathbb{Z}[S]$ is ρ-connected if $x \in \mathcal{D}_{n}$ for some $n \geq 1$.
Remark 3.6. For $x \in \mathbb{Z}[S]$, we have $x \in \mathcal{D}_{n}$ if and only if x is ρ-connected and $\|x\|=n$.

Lemma 3.7. If $0 \neq z \in \operatorname{ker} \rho$, then there exists x such that
(1) $x \preceq_{s} z$, in particular, $\|z-x\|_{S}<\|z\|_{S}$,
(2) $x \in \operatorname{ker} \rho$, and
(3) x is ρ-connected.

Proof. Let $0 \neq z \in \operatorname{ker} \rho$ be an arbitrary element. Consider the set

$$
\Omega=\left\{x \preceq_{s} z \mid x \neq 0, x \text { is } \rho \text {-connected }\right\} ;
$$

this is a nonempty finite set partially ordered by \preceq_{s}. Let $x \in \Omega$ be a maximal element. We claim that $x \in \operatorname{ker} \rho$. Suppose that $x \notin \operatorname{ker} \rho$. We have $\rho(x)$ and $\rho(z-x)$ are nonzero and satisfy

$$
\rho(x)+\rho(z-x)=0 .
$$

Since $\rho(x) \neq 0$ there exists $t \in T$ such that $\langle\rho(x), t\rangle \neq 0$. Therefore

$$
\langle\rho(z-x), t\rangle=-\langle\rho(x), t\rangle
$$

Since $\rho(z-x) \neq 0$, there exists $s \in S$ for which

$$
\langle z-x, s\rangle\langle\rho(s), t\rangle\langle\rho(z-x), t\rangle>0
$$

This implies

$$
\langle z-x, s\rangle\langle\rho(s), t\rangle\langle\rho(x), t\rangle<0
$$

Now define $\lambda=\langle z-x, s\rangle /|\langle z-x, s\rangle|$. We show $x+\lambda s$ is ρ-connected. First observe that $x \cap_{S} \lambda s=\varnothing$ since $x \preceq_{s} z$ and $\lambda s \preceq_{S} z$. Moreover, note that $x \cap_{\rho} \lambda s \neq \varnothing$ since

$$
\langle\rho(x), t\rangle\langle\rho(\lambda s), t\rangle=\langle\rho(x), t\rangle\langle\rho(s), t\rangle \lambda<0
$$

Therefore $x+\lambda s$ is ρ-connected and $x \npreceq s x+\lambda s \preceq_{s} z$. This contradicts the maximality of x and therefore $x \in \operatorname{ker} \rho$.
Proposition 3.8. For all nonzero $z \in \operatorname{ker} \rho$, there exist ρ-connected elements $x_{1} \ldots, x_{n} \in \operatorname{ker} \rho$ such that
(1) $z=x_{1}+\cdots+x_{n}$,
(2) $x_{i} \preceq_{S} z$ for each i.

Proof. Applying Lemma 3.7 to $z \in \operatorname{ker} \rho$, there exists a ρ-connected element $x_{1} \in \operatorname{ker} \rho$ such that $x_{1} \leq s z$. If $z-x_{1} \neq 0$ then there exists a ρ-connected element $x_{2} \in \operatorname{ker} \rho$ such that $x_{2} \preceq_{S} z-x_{1} \prec_{S} z$. If $z-x_{1}-x_{2} \neq 0$ then there exists a ρ-connected element $x_{3} \in \operatorname{ker} \rho$ such that $x_{3} \preceq_{s} z-x_{1}-x_{2} \prec z-x_{1} \prec z$. This process must terminate for some positive integer n since

$$
\left\|z-x_{1}-\cdots-x_{k}\right\|>\left\|z-x_{1}-\cdots-x_{k}-x_{k+1}\right\| \geq 0
$$

if $z-x_{1}-\cdots-x_{k} \neq 0$. Hence we obtain ρ-connected elements $x_{1}, \ldots, x_{n} \in \operatorname{ker} \rho$ such that $x_{i} \preceq_{S} z$ for each i, and $z=x_{1}+\cdots+x_{n}$.
Remark 3.9. For $x, y \in \mathbb{Z}[S]$, the relations $x \preceq_{s} y, x \cap_{S} y \neq \varnothing$, and $x \cap_{\rho} y \neq \varnothing$ are preserved by the G-action on $\mathbb{Z}[S]$. Thus, if $x \in \mathcal{D}_{n}$ and $g \in G$ then $g x \in \mathcal{D}_{n}$. It follows that \mathcal{D}_{n} is a G-set.

Proposition 3.10. Suppose that S and T have finitely many G-orbits and each element of T has finite G-stabilizer. Then for every $n \geq 1$, the set \mathcal{D}_{n} has finitely many G-orbits.

Before the proof of the Proposition 3.10, we introduce the following lemmas.
Lemma 3.11. Suppose S has finitely many G-orbits, and each element of T has finite G-stabilizer. Then for every $t \in T$, the set $S(t)=\{s \in S \mid\langle\rho(s), t\rangle \neq 0\}$ is finite.

Proof. For any $t \in T, s \in S$, and $g \in G$, we have $\langle\rho(g s), g t\rangle=\langle\rho(s), t\rangle$. For each $s \in S$, let $T(s)=\{t \in T \mid\langle\rho(s), t\rangle \neq 0\}$. As ρ is a morphism, $T(s)$ is a finite set for all $s \in S$. Now, fix $t \in T$ and let s_{1}, \ldots, s_{m} be representatives of G-orbits of S. Then

$$
S(t)=\bigcup_{i=1}^{m}\left\{g s_{i} \mid g \in G,\left\langle\rho\left(s_{i}\right), g^{-1} t\right\rangle \neq 0\right\}=\bigcup_{i=1}^{m} \bigcup_{r \in T\left(s_{i}\right)}\left\{g s_{i} \mid g \in G, g^{-1} t=r\right\}
$$

Observe that the set $\left\{g \in G \mid g^{-1} t=r\right\}$ is in one-to-one correspondence with $G_{t}=\{g \in G \mid g t=t\}$. By assumption, G_{t} is finite and thus for each $i \in\{1, \ldots, m\}$ and $r \in T\left(s_{i}\right)$ the set $\left\{g s_{i} \mid g \in G, g^{-1} t=r\right\}$ is finite. Therefore, the set $S(t)$ is finite.

Lemma 3.12. Suppose S has finitely many G-orbits and that T has finite G stabilizers for each $t \in T$. Then for all $n \in \mathbb{Z}_{+}$and for all $y \in \mathcal{D}_{n}$ the set $\left\{x \in \mathcal{D}_{1} \mid x \cap_{\rho} y \neq \varnothing\right\}$ is finite.

Proof. For $y \in \mathbb{Z}[S]$ denote by $\mathcal{D}_{1}(y)$ the set $\left\{x \in \mathcal{D}_{1} \mid x \cap_{\rho} y \neq \varnothing\right\}$. Let $y \in \mathcal{D}_{n}$. By definition, $y=\sum_{i=1}^{n} x_{i}$, where each $x_{i} \in \mathcal{D}_{1}$ and for each $k<n$, the elements $\sum_{i=1}^{k} x_{i}$ and x_{k+1} have trivial S-intersection and nontrivial ρ-intersection. It follows from the definition of ρ-intersect that

$$
\mathcal{D}_{1}(y)=\left\{x \in \mathcal{D}_{1} \mid x \cap_{\rho} y \neq \varnothing\right\}=\bigcup_{i=1}^{n}\left\{x \in \mathcal{D}_{1} \mid x \cap_{\rho} x_{i} \neq \varnothing\right\}=\bigcup_{i=1}^{n} \mathcal{D}_{1}\left(x_{i}\right)
$$

Therefore, to conclude it is enough to show that $\mathcal{D}_{1}(s)$ is finite for every $s \in \mathcal{D}_{1}$.
Let $s \in \mathcal{D}_{1}$. Observe that

$$
\mathcal{D}_{1}(s)=\bigcup_{t \in T}\left\{x \in \mathcal{D}_{1} \mid\langle\rho(x), t\rangle\langle\rho(s), t\rangle<0\right\} \subset \bigcup_{t \in T}\left\{x \in \mathcal{D}_{1} \mid\langle\rho(x), t\rangle\langle\rho(s), t\rangle \neq 0\right\} .
$$

It is immediate that $\{t \in T \mid\langle\rho(s), t\rangle \neq 0\}$ is finite. Hence the union on the right is over a collection with finitely many nonempty sets. By Lemma 3.11, for any $t \in T$ the set $\left\{x \in \mathcal{D}_{1} \mid\langle\rho(x), t\rangle \neq 0\right\}$ is finite, and hence $\left\{x \in \mathcal{D}_{1} \mid\langle\rho(x), t\rangle\langle\rho(s), t\rangle \neq 0\right\}$ is finite. Therefore the expression on the right is the union of a finite collection of finite sets, and we conclude that $\mathcal{D}_{1}(s)$ is finite.

Proof of Proposition 3.10. We prove by induction on n. For $n=1$ the result follows from the assumption that S has finitely many G-orbits and the definition of \mathcal{D}_{1}.

Suppose \mathcal{D}_{n} has finitely many G-orbits with representatives y_{1}, \ldots, y_{ℓ}. For each $1 \leq k \leq \ell$, let A_{k} be the collection of elements A_{k} of \mathcal{D}_{1} such that

$$
y_{k} \cap_{S} z=\varnothing \quad \text { and } \quad y_{k} \cap_{\rho} z \neq \varnothing
$$

By Lemma 3.12, the collection A_{k} is finite. The proof concludes with the verification of the following claim.

Claim. The set

$$
\left\{y_{k}+z \mid 1 \leq k \leq \ell \text { and } z \in A_{k}\right\}
$$

is a collection of representatives of G-orbits of \mathcal{D}_{n+1}.
Let $x \in \mathcal{D}_{n+1}$. Then $x=\sum_{i=1}^{n+1} x_{i}$, where each $x_{i} \in \mathcal{D}_{1}$ and for every $k<n$ the elements $\sum_{i=1}^{k} x_{i}$ and x_{k+1} have trivial S-intersection and nontrivial ρ-intersection. By definition, $\sum_{i=1}^{n} x_{i}$ is in \mathcal{D}_{n}. Hence $\sum_{i=1}^{n} x_{i}=g y_{j}$ for some $g \in G$ and some $1 \leq j \leq \ell$. It follows that $x=g y_{j}+x_{n+1}$ and therefore $g^{-1} x=y_{j}+g^{-1} x_{n+1}$. By Remark 3.9, we have that $z=g^{-1} x_{n+1}$ is an element of A_{j}. Therefore $x=$ $g y_{i}+g z=g\left(y_{i}+z\right)$. This proves the claim.

Proof of Proposition 2.4. Let K denote ker ρ, and let $\|\cdot\|_{K}$ denote a chosen filling norm on K. By Proposition 3.10, for each positive integer n, the G-set $\bigcup_{i=1}^{n} \mathcal{D}_{i}$ has finitely many G-orbits. Therefore, for each $n \in \mathbb{Z}_{+}$there is an integer B_{n} such that for every $x \in \bigcup_{i=1}^{n} \mathcal{D}_{i}$, we have $\|x\|_{K} \leq B_{n}$.

Let $0 \neq z \in K$ such that $\|z\|_{S} \leq n$. By Proposition 3.8 , there exist ρ-connected elements $x_{1}, \ldots, x_{m} \in K$ such that $m \leq n, z=x_{1}+\cdots+x_{m}$, and $x_{i} \prec z, i=1, \ldots, m$. By Remark 3.6, each $x_{i} \in \mathcal{D}_{n}$. Therefore, by the triangle inequality,

$$
\|z\|_{K} \leq \sum_{i=1}^{m}\left\|x_{i}\right\|_{K} \leq m \cdot B_{n} \leq n \cdot B_{n}
$$

This shows that $\mathrm{FV}_{\rho}(n) \leq n \cdot B_{n}<\infty$.
Remark 3.13. Observe that Proposition 2.4 can be generalized as follows. Consider the sequence of modules ker $\rho \rightarrow \mathbb{Z}[S] \xrightarrow{\rho} \mathbb{Z}[T]$, where $|S / G|,|T / G|<\infty$ and T has finite G-stabilizers for all $t \in T$. Let $\|\cdot\|_{K}$ be a G-invariant norm on K; then for all $n \in \mathbb{N}$,

$$
\sup \left\{\|x\|_{K} \mid x \in K,\|x\|_{S} \leq n\right\}<\infty
$$

In particular, K being finitely generated induces a filling norm which is G-invariant.

4. Examples

A graph Γ is called fine if for every edge e and each integer $n>0$, the number of circuits of length at most n which contain e is finite. By a circuit we mean a
closed edge path that does not pass through a vertex more than once. The length of a circuit is defined as the number of edges.

Theorem 4.1 [Martínez-Pedroza 2016, Theorem 1.3]. Let X be a cocompact G-cell complex with finite stabilizers of 1-cells. The following two statements are equivalent:
(1) X has fine 1-skeleton and the homology group $H_{1}(X, Z)$ is trivial.
(2) $\mathrm{FV}_{X}(k)<\infty$ for any integer k.

This result allows us to exhibit examples that contrast with Theorem 1.1 as follows:

- There is a group G acting cocompactly, not properly, and by cellular automorphisms on a simply connected complex X for which $\mathrm{FV}_{X}^{2}(m)$ is finite for all $m \in \mathbb{N}$.

In particular, the converse of Theorem 1.1 does not hold.

- There is a group G acting cocompactly by cellular automorphisms on a simply connected complex X for which $F V_{X}^{2}(m)$ is infinite for some $m \in \mathbb{N}$. In particular, the properness assumption in Theorem 1.1 cannot be removed.

The two examples are based on the notion of coned-off Cayley complex. We use the version from [Groves and Manning 2008], which we briefly recall below; for another version see [Martínez-Pedroza 2017, Section 3].

Let G be a group and let P be a subgroup. The group G is finitely generated relative to P if there is a finite subset $S \subset G$ such that the natural map $F(S) * P \rightarrow G$ is surjective, where $F(S)$ denotes the free group on S, and $F(S) * P$ denotes the free product of $F(S)$ and P. In this case S is called a finite relative generating set of G with respect to P.

Suppose that S is a finite relative generating set of G with respect to P. Without loss of generality assume that S is closed under inverses. The coned-off Cayley $\operatorname{graph} \widehat{\Gamma}=\widehat{\Gamma}(G, P, S)$ is the graph with vertex set consisting of all elements of G and all left cosets of P; the edge set is the collection of pairs $(g, g s) \in G \times G$ for $g \in G$ and $s \in S$, and pairs $(g, g P)$ for $g \in G$. Observe that the left action of G on itself extends to a left action on $\widehat{\Gamma}$. Vertices of $\widehat{\Gamma}$ of the form $g P$ are called cone-vertices. Observe that the G-stabilizers of cone-vertices correspond to conjugates of P; in particular, if P is infinite, the action is not proper. Moreover, the G-stabilizers of 1-cells of $\widehat{\Gamma}$ are trivial. It is well known that the assumption that S is a relative generating set implies that $\widehat{\Gamma}$ is path-connected as a combinatorial complex; in fact, this is an equivalence, as remarked in [Hruska 2010].

Under the assumptions, the group G is finitely presented relative to P if there is a finite subset $R \subset F(S) * P$ such that the kernel of the map $F(S) * P \rightarrow G$ is the

Figure 1. The coned-off Cayley graph $\widehat{\Gamma}(G, P, S)$, where G is the free group in two letters $S=\{a, b\}$ and P is the cyclic subgroup $\langle b\rangle$.
smallest normal subgroup containing R. In this case, we say that

$$
\begin{equation*}
\langle S, P \mid R\rangle \tag{1}
\end{equation*}
$$

is a finite relative presentation of G with respect to P. It is an exercise to show that if G is finitely presented and P is finitely generated, then G is finitely presented relative to P. We refer the reader to [Osin 2006] for an exposition on finite relative presentations.

Assume that P is finitely generated, that (1) is a finite relative presentation of G with respect to P, and that $S \cap P$ is a generating set of P. The coned-off Cayley complex $\widehat{C}=\widehat{C}(G, P, S, R)$ is the 2-dimensional complex with 1-skeleton the coned-off Cayley graph $\widehat{\Gamma}(G, P, S)$ obtained by equivariantly attaching 2-cells as follows. For each word $r \in R$ correspond a loop in $\widehat{\Gamma}$. Attach a 2-cell with trivial stabilizer to each such loop, and extend in a manner equivariant under the G-action

Figure 2. The coned-off Cayley graph $\widehat{\Gamma}(G, P, S)$, where G is the free abelian group in two letters $S=\{a, b\}$ and P is the cyclic subgroup $\langle b\rangle$.
on $\widehat{\Gamma}$. Similarly, for each $P \in \mathcal{P}$, for each generator in $s \in S \cap P$ and each $g \in G$, we have a corresponding loop in $\widehat{\Gamma}$ of length 3 passing through the vertices $g, g s, g P$. Attach a 2 -cell with trivial stabilizer to each such loop, equivariantly under the G-action. The resulting G-complex \widehat{C} is simply connected [Groves and Manning 2008, Lemma 2.48], the G-action is cocompact by construction, and if P is infinite, the G-action is not proper. Now we consider the 2 -dimensional filling function $F V_{\widehat{C}}^{2}$ of \widehat{C}.
Example 4.2. Let G be the free group of rank 2 , let $S=\{a, b\}$ be a free generating set, and let P be the cyclic subgroup generated by b. It is an observation that the coned-off Cayley graph $\widehat{\Gamma}(G, P, S)$, see Figure 1, is a fine graph and hence Theorem 4.1 implies that $\mathrm{FV}_{\widehat{C}}^{2}(m)<\infty$ for every $m \in \mathbb{N}$. Similar examples can be constructed by considering relatively hyperbolic groups.
Example 4.3. Let G be the free abelian group of rank 2, let $S=\{a, b\}$ be a generating set, and let P be the cyclic subgroup generated by b. The coned-off Cayley graph $\widehat{\Gamma}(G, P, S)$, see Figure 2 , is not fine since there are infinitely many circuits of length 6 passing through the edge from b to P. By Theorem 4.1, we have that $\mathrm{FV}_{\widehat{C}}^{2}(m)=\infty$ for some $m \in \mathbb{N}$. In fact, one can verify that $\mathrm{FV}_{\widehat{C}}^{2}(6)=\infty$.
Remark 4.4. Theorem 1.1 does not hold for $d=0$ in the natural setting of defining FV_{X}^{1} by taking $Z_{0}(X, \mathbb{Z})$ to be the kernel of the augmentation map. Consider a finitely generated infinite group G acting properly and cocompactly on a connected
graph X; for example, take X to be the Cayley graph of G with respect to a finite generating set. Then X is infinite, and the formal difference $\gamma=b-a$ between two distinct vertices a and b of X is a 0 -cycle for which $|\gamma|_{\partial}$ can be made arbitrarily large by taking a and b sufficiently far apart; roughly speaking, a 1 -chain μ such that $\partial \mu=b-a$ contains a combinatorial edge path from a to b and hence $\|\mu\|_{1}$ is at least the length of the shortest edge path from a to b. Hence $\mathrm{FV}_{X}^{1}(2)=\infty$ in this case.

Acknowledgments

Fleming was funded by a Science Undergraduate Research Award (SURA) of Memorial University during a part of this project. Martínez-Pedroza is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We thank the referee for comments on the article, and Lana Martínez-Aoki for assistance during this work.

References

[Abrams et al. 2013] A. Abrams, N. Brady, P. Dani, and R. Young, "Homological and homotopical Dehn functions are different", Proc. Natl. Acad. Sci. USA 110:48 (2013), 19206-19212. MR Zbl
[Alonso et al. 1999] J. M. Alonso, X. Wang, and S. J. Pride, "Higher-dimensional isoperimetric (or Dehn) functions of groups", J. Group Theory 2:1 (1999), 81-112. MR Zbl
[Behrstock and Druţu 2015] J. Behrstock and C. Druţu, "Combinatorial higher dimensional isoperimetry and divergence", preprint, 2015. arXiv
[Bridson and Haefliger 1999] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Math. Wissenschaften 319, Springer, 1999. MR Zbl
[Brown 1982] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer, 1982. MR Zbl
[Epstein et al. 1992] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston, Word processing in groups, Jones and Bartlett, Boston, 1992. MR Zbl
[Fletcher 1998] J. L. Fletcher, Homological group invariants, Ph.D. thesis, University of Utah, 1998, available at https://search.proquest.com/docview/304455841.
[Gersten 1996] S. M. Gersten, "Subgroups of word hyperbolic groups in dimension 2", J. London Math. Soc. (2) 54:2 (1996), 261-283. MR Zbl
[Gersten 1999] S. M. Gersten, "Homological Dehn functions and the word problem", preprint, 1999, available at http://www.math.utah.edu/~sg/Papers/df9.pdf.
[Gromov 1993] M. Gromov, "Asymptotic invariants of infinite groups", pp. 1-295 in Geometric group theory, II (Sussex, 1991), edited by G. A. Niblo and M. A. Roller, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993. MR Zbl
[Groves and Manning 2008] D. Groves and J. F. Manning, "Dehn filling in relatively hyperbolic groups", Israel J. Math. 168 (2008), 317-429. MR Zbl
[Hanlon and Martínez-Pedroza 2016] R. G. Hanlon and E. Martínez-Pedroza, "A subgroup theorem for homological filling functions", Groups Geom. Dyn. 10:3 (2016), 867-883. MR Zbl
[Hruska 2010] G. C. Hruska, "Relative hyperbolicity and relative quasiconvexity for countable groups", Algebr. Geom. Topol. 10:3 (2010), 1807-1856. MR Zbl
[Martínez-Pedroza 2016] E. Martínez-Pedroza, "A note on fine graphs and homological isoperimetric inequalities", Canad. Math. Bull. 59:1 (2016), 170-181. MR Zbl
[Martínez-Pedroza 2017] E. Martínez-Pedroza, "Subgroups of relatively hyperbolic groups of Bredon cohomological dimension 2", J. Group Theory (online publication July 2017).
[Mineyev 2000] I. Mineyev, "Higher dimensional isoperimetric functions in hyperbolic groups", Math. Z. 233:2 (2000), 327-345. MR Zbl
[Osin 2006] D. V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 843, 2006. MR Zbl
[Young 2011] R. Young, "Homological and homotopical higher-order filling functions", Groups Geom. Dyn. 5:3 (2011), 683-690. MR Zbl
[Young 2016] R. Young, "High-dimensional fillings in Heisenberg groups", J. Geom. Anal. 26:2 (2016), 1596-1616. MR Zbl

Received: 2016-09-15 Accepted: 2017-07-22
jwf572@mun.ca Memorial University of Newfoundland, St. John's, NL, Canada
emartinezped@mun.ca Memorial University of Newfoundland, St. John's, NL, Canada

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 / y e a r$ for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
-I mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers
Modeling of breast cancer through evolutionary game theory 541
Ke’ Yona Barton, Corbin Smith, Jan Rychtář and Tsvetanka SEndova
The isoperimetric problem in the plane with the sum of two Gaussian densities 549
John Berry, Matthew Dannenberg, Jason Liang and Yingyi Zeng
Finiteness of homological filling functions 569Joshua W. Fleming and Eduardo Martínez-Pedroza
Explicit representations of 3-dimensional Sklyanin algebras associated to a 585
point of order 2Daniel J. Reich and Chelsea Walton
A classification of Klein links as torus links 609Steven Beres, Vesta Coufal, Kaia Hlavacek, M. KateKearney, Ryan Lattanzi, Hayley Olson, Joel Pereira andBryan Strub
Interpolation on Gauss hypergeometric functions with an application 625
Hina Manoj Arora and Swadesh Kumar Sahoo
Properties of sets of nontransitive dice with few sides 643
Levi Angel and Matt Davis
Numerical studies of serendipity and tensor product elements for eigenvalue 661 problemsAndrew Gillette, Craig Gross and Ken PlackowskiConnectedness of two-sided group digraphs and graphs679Patreck Chikwanda, Cathy Kriloff, Yun Teck Lee, TaylorSandow, Garrett Smith and Dmytro Yeroshkin
Nonunique factorization over quotients of PIDs 701
Nicholas R. Baeth, Brandon J. Burns, Joshua M. Covey and James R. Mixco
Locating trinomial zeros 711
Russell Howell and David Kyle

[^0]: MSC2010: primary 20F65, 20J05; secondary 16P99, 28A75, 57M07.
 Keywords: Dehn functions, homological filling function, isoperimetric inequalities, finiteness properties of groups.

