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Let G be a group. For any ZG-module M and any integer d > 0, we define a
function FVd+1

M : N→ N∪ {∞} generalizing the notion of (d+1)-dimensional
filling function of a group. We prove that this function takes only finite values if
M is of type FPd+1 and d > 0, and remark that the asymptotic growth class of
this function is an invariant of M. In the particular case that G is a group of type
FPd+1, our main result implies that its (d+1)-dimensional homological filling
function takes only finite values.

1. Introduction

For a contractible cellular complex X and an integer d > 0, the homological
filling function FVd+1

X : N→ N measures the difficulty of filling cellular d-cycles
with (d+1)-chains; a precise definition is below. They are higher-dimensional
homological generalizations of isoperimetric functions. For a group G admitting a
compact classifying space K (G, 1) with universal cover X, the equivalence growth
rate of the function FVd+1

X provides an invariant of the group. The initial motivation
of this work was to provide a direct argument that FVd+1

X takes only finite values
for such complex X, addressing what the authors perceived as a gap in the literature.
In this article we provide a self-contained proof based on the algebraic approach to
define the homological filling functions from [Hanlon and Martínez-Pedroza 2016],
and on our way, we prove a more general result that defines a new collection of
invariants for ZG-modules.

The topological perspective. We assume all spaces are combinatorial complexes
and all maps are combinatorial; see for example [Bridson and Haefliger 1999, Part I,
Chapter 8, Appendix]. A G-action on a complex X is proper if for all compact
subcomplexes K of X the collection {g ∈G | K ∩g(K ) 6=∅} is finite. The G-action
is cocompact if there is a compact subcomplex K of X such that the collection
{gK | g ∈ G} covers X. For a complex X, the cellular d-dimensional chain group
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Cd(X,Z) is a free Z-module with a natural `1-norm induced by a basis formed by
the collection of all d-dimensional cells of X, each cell with a chosen orientation
from each pair of opposite orientations. This norm, denoted by ‖ · ‖1, is the sum of
the absolute value of the coefficients in the unique representation of the chain as a
linear combination of elements of the basis. Let Zd(X,Z) denote the Z-module of
integral d-cycles, and ∂d+1 : Cd+1(X,Z)→ Zd(X,Z) be the boundary map. The
(d+1)-dimensional filling function of X is the function FVd+1

X : N→ N ∪ {∞}

defined as
FVd+1

X (k)= sup{‖γ ‖∂ | γ ∈ Zd(X,Z), ‖γ ‖1 ≤ k},
where

‖γ ‖∂ = inf{‖µ‖1 | µ ∈ Cd+1(X,Z), ∂(µ)= γ },

where the supremum and infimum of the empty set are defined as zero and ∞
respectively. In words, FVd+1

X (k) is the most efficient upper bound on the size of
fillings by (d+1)-chains of d-cycles of norm at most k. A complex X is d-acyclic
if the reduced homology groups Hi (X,Z) are trivial for 0≤ i ≤ d. As mentioned
above, the initial motivation of this work was to provide a proof of Theorem 1.1,
which the authors perceived as a gap in the literature. The main contribution of this
note is a generalization to an algebraic framework of the following statement; see
Theorem 1.3.

Theorem 1.1. Let d be a positive integer and let G be a group acting properly
and cocompactly by cellular automorphisms on a d-acyclic complex X. Then
FV d+1

X (m) is finite for all m ∈ N.

Theorem 1.1 was known to hold in the following cases:

• For d = 1, it is a result of [Gersten 1999, Proposition 2.4].

• For d ≥ 1 and under the extra assumption that G admits a combing, it follows
from [Epstein et al. 1992, Theorem 10.3.6]; see also [Behrstock and Druţu 2015,
Lemma 3.7].

• For d ≥ 3, Hanlon and the second author observed in [Hanlon and Martínez-
Pedroza 2016, Section 3.3] that Theorem 1.1 holds using results of Alonso, Pride
and Wang [Alonso et al. 1999] in conjunction with an argument from Abrams,
Brady, Dani and Young [Abrams et al. 2013]. The results in [Alonso et al. 1999]
rely on nontrivial machinery from homotopy theory. The failure of the argument
for d = 2 relies on an application of the Hurewicz theorem; for details see [Hanlon
and Martínez-Pedroza 2016, Section 3.3].

Current results in the literature leave open the statement of Theorem 1.1 for
the case d = 2. Our argument in this note proving Theorem 1.1 does not rely on
previous results, it is valid for all d > 0, and it is elementary. The argument might
be known to the experts, but to our knowledge does not appear in the literature, and



FINITENESS OF HOMOLOGICAL FILLING FUNCTIONS 571

this note fills this gap. Let us sketch the argument from a topological perspective;
for an algebraic proof see Section 2.

Sketch of the proof of Theorem 1.1, from a topological perspective. Consider the
combinatorial path metric on the 1-skeleton of X, and for any d-cycle σ (which is a
formal finite sum of d-cells) define its diameter diam(σ ) as the diameter of the set
consisting of vertices (0-cells) which are in the closure of at least one d-cell defining
σ. A d-cycle σ is called connected if the subcomplex of X formed by taking the
closure of the union of d-cells defining σ is connected (and has no cut-points).

Let m > 0. Since G acts properly and cocompactly on X, there is an integer
C ≥ 0 that bounds the diameter of any d-cell of X, and hence for any connected
d-cycle σ,

diam(σ )≤ C‖σ‖1.

From here, it follows that the induced G-action on the set of connected d-cycles
with `1-norm ≤ m has finitely many G-orbits. Since X is d-acyclic, ‖σ‖∂ <∞ for
each d-cycle σ. Therefore, there is an integer M = M(m) such that

σ is connected and ‖σ‖1 ≤ m =⇒ ‖σ‖∂ ≤ M.

Let σ be an arbitrary d-cycle with `1-norm ≤ m. Then one shows that σ can be
decomposed as a sum of connected d-cycles

∑k
i=1 σi , where k≤‖σ‖1=

∑k
i=1 ‖σi‖1.

Hence

‖σ‖∂ ≤

k∑
i=1

‖σi‖∂ ≤ k ·M ≤ m ·M.

Therefore FVd+1
X (m)≤ m ·M <∞. �

Remark 1.2. Under the assumptions of Theorem 1.1, it is known that the growth
rate of the function FVd+1

X is a quasi-isometry invariant of the group G. This was
first addressed by Fletcher [1998, Theorem 2.1] under the assumption that X is
the universal cover of K (G, 1). Young [2011, Lemma 1] provided a proof of the
quasi-isometry invariance in the general context of Theorem 1.1. Notably, these
works do not address that these functions are finite.

The algebraic perspective, and our main result. Our main result is an algebraic
analog of Theorem 1.1. Recall that for a group G, a ZG-module M is of type FPn

if there exists a partial resolution of ZG-modules

Pn
ϕn
−→ Pn−1

ϕn−1
−−→· · ·

ϕ2
−→ P1

ϕ1
−→ P0→ M→ 0

such that each Pi is a finitely generated projective ZG-module. For a ZG-module M
of type FPd+1 we define the (d+1)-filling function FVd+1

M of M , see Definition 2.5,
and prove the following result.
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Recall that the growth rate class of a function N→ N is defined as follows.
Given two functions f, g : N→ N, define the relation f � g if there is C > 0 such
that f (n) ≤ Cg(Cn + C)+ Cn + C for all n ∈ N, and let f ∼ g if both f � g
and g � f . This yields an equivalence relation where the equivalence class of a
function f is called the growth rate class of f .

Theorem 1.3. Let M be a ZG-module of type FPd+1:

(1) For all positive integers d and k, we have FVd+1
M (k) <∞.

(2) The growth rate of the function FVd+1
M : N→ N only depends on M.

This result provides a new collection of invariants for ZG-modules that remains to
be studied. The invariant is interesting even in the case that M =Z and G is suitable.
In this case, the filling functions FVd+1

Z correspond to the filling invariants of the
group G, usually denoted by FVd+1

G , in the context of Theorem 1.1 and Remark 1.2.
There are computations by Young [2016] in the case that G corresponds to a discrete
Heisenberg group answering a conjecture of Gromov [1993, Chapter 5], estimations
in the case that G is the special linear group SL(n,Z) by Epstein and Thurston
[1992, Chapter 10], and general results in the case that G is a hyperbolic group
by Gersten [1996] and Mineyev [2000], among others. In [Hanlon and Martínez-
Pedroza 2016, Remark 3.4], it was observed that there was no proof in the literature
that if G is of type FP3 (i.e., Z is of type FP3 as a module over ZG) then FV3

G is
finite-valued; observe that this is a consequence of Theorem 1.3.

This note contains a proof of the first statement of Theorem 1.3. The proof of
the second statement appears in [Hanlon and Martínez-Pedroza 2016, Theorem 3.5]
for the case that M = Z, but the argument works verbatim for the general case.

Organization. The rest of the paper is organized as follows: Section 2 contains
some preliminary definitions including the definition of FVd+1

M , the statement of
the main technical result of the article, Proposition 2.4, and arguments implying
Theorems 1.1 and 1.3. Section 3 is devoted to the proof of Proposition 2.4. Section 4
discusses some geometric examples illustrating some matters about Theorem 1.1.

2. Main technical result and proofs of the main theorems

Let G be a group and let S be a G-set. The set of all orbits of S under the G-action
is denoted by S/G. The free abelian group Z[S] with S as a free generating
set can be made into a ZG-module that we shall call the permutation module
on S. The Z-basis S induces a G-equivariant norm, called the `1-norm, given by∥∥∑

s∈S nss
∥∥

S =
∑

s∈S |ns |, where ns ∈ Z.
If the G-action on S is free, then Z[S] is a free module over ZS. Conversely, if

F is a free ZG-module with a chosen ZG-basis {αi | i ∈ I }, then F is isomorphic
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to the permutation module Z[S], where S = {gαi | g ∈ G, i ∈ I } with the natural
G-action. In this case the ZG-basis {αi | i ∈ I } of F induces an `1-norm as before.

Definition 2.1 (Gersten’s filling norms). Let η : F→ M be a surjective morphism
of ZG-modules where F is finitely generated and free with a chosen finite ZG-basis,
and the induced filling norm on M is defined by

‖m‖η =min{‖x‖F | x ∈ F, η(x)= m},

where ‖ · ‖F denotes the induced `1-norm on F.

Remark 2.2 (induced `1-norms are filling norms). Let Z[S] be a permutation
ZG-module such that G acts freely on S and the quotient S/G is finite. Then Z[S]
is a finitely generated free ZG-module and the `1-norm ‖ ·‖S is a filling norm. This
statement holds without the assumption that G acts freely on S. Since we do not
use this fact, we leave its verification to the reader.

Definition 2.3. Let ρ : Z[S] → Z[T ] be a morphism of permutation ZG-modules
such that the kernel K = ker ρ is finitely generated. Let ‖ · ‖K denote a filling norm
on K and let ‖ · ‖S denote the `1-norm on Z[S] induced by S. Define the function
FVρ : N→ N∪ {∞} as

FVρ(n)= sup{‖x‖K | x ∈ K , ‖x‖S ≤ n}.

Proposition 2.4. Let ρ :Z[S]→Z[T ] be a morphism. Suppose that S/G and T/G
are finite, T has finite G-stabilizers for all t ∈ T, and ker ρ is finitely generated.
Then FVρ(n) <∞ for all n ∈ N.

In the rest of this section, we deduce Theorems 1.1 and 1.3 from Proposition 2.4.

Proof of Theorem 1.1. Let G be a group acting properly and compactly by
cellular automorphisms on a d-connected complex X. The free abelian groups
Cd(X) and Cd+1(X) are permutation ZG-modules over the G-sets of d-cells and
(d + 1)-cells of X, respectively. Observe that the definition of FV d+1

X coincides
with Definition 2.3 of FV∂d for the boundary map Cd(X)

∂d
−→Cd−1(X). The proof

concludes by verifying the hypothesis of Proposition 2.4 for this morphism.
Since the G-action on X is cocompact, there are finitely many G-orbits of d-cells

and (d+1)-cells; in particular Cd+1(X) is a finitely generated ZG-module. Since
X is d-acyclic, the sequence

Cd+1(X)
∂d+1
−−→Cd(X)

∂d+1
−−→Cd−1(X)

is exact and hence ker(∂d) is a finitely generated ZG-module. Since the G-action
is proper, the stabilizer of each d-cell of X is finite. �
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Definition 2.5. Let M be a ZG-module of type FPd+1. The (d+1)-filling function
of M is the function

FVd+1
M : N→ N∪ {∞}

defined as follows. Let

Pd+1
ϕd+1
−−→ Pd

ϕd
−→· · ·

ϕ2
−→ P1

ϕ1
−→ P0→ M→ 0

be a FPd+1-resolution for M. Chose filling norms on Pd+1 and Pd denoted by
‖ · ‖Pd+1 and ‖ · ‖Pd respectively. Then

FVd+1
M (k)= sup{‖x‖ϕd+1 | x ∈ kerϕd , ‖x‖Pd ≤ k},

where

‖x‖ϕd+1 =min{‖y‖Pd+1 | y ∈ Pd+1, ϕd+1(y)= x}.

The proof of Theorem 1.3 uses the following lemma.

Lemma 2.6 [Brown 1982, Chapter VIII, Proposition 4.3]. A ZG-module M is of
type FPd if and only if M admits a partial resolution of free finitely generated
ZG-modules of the form

Fd+1→ Fd → · · · → F1→ F0→ M→ 0.

Proof of Theorem 1.3. Since M is of type FPd+1, by Lemma 2.6, there exists a
partial resolution of free and finitely generated ZG-modules

Fd+1
ϕd+1
−−→ Fd

ϕd
−→· · ·

ϕ2
−→ F1

ϕ1
−→ F0→ M→ 0

such that kerϕn is finitely generated for n such that d ≥ n ≥ 0. Consider the
finitely generated free modules Fd and Fd−1 as permutation modules Z[S] and
Z[T ] respectively. Finite generation and freeness implies that we can assume that
G acts freely and with finitely many orbits on both S and T. Since the induced
`1-norms on Z[S] and Z[T ] are in particular filling norms, the definition of FVd+1

M
coincides with Definition 2.3 of FVϕd+1 . Then the first statement of the theorem on
the finiteness of FVd+1

M follows by applying Proposition 2.4 to FVϕd+1 .
The proof of the second statement that the growth rate of FVd+1

M is independent of
the choice of partial resolution and filling norms appears in [Hanlon and Martínez-
Pedroza 2016, Theorem 3.5] for the case that M=Z and G is a group of type FPd+1.
The argument for arbitrary M follows verbatim by replacing each occurrence of
Z by M. Let us remark that the heart of the argument is the fact that any two
projective resolutions of M are chain homotopy equivalent [Brown 1982, p. 24,
Theorem 7]. �
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3. Finiteness

This section contains the proof Proposition 2.4. Let S and T be G-sets. For x ∈Z[S]
with x =

∑
s∈S nss, we denote by 〈x, s〉 the integer ns . For x ∈ Z[T ] and t ∈ T we

define analogously 〈x, t〉.

Definition 3.1 (x is a part of y). Let x, y ∈ Z[S]. We say x is a part of y, denoted
by x �S y, to mean that for each s ∈ S if 〈x, s〉 > 0 then 〈x, s〉 ≤ 〈y, s〉, and if
〈x, s〉< 0 then 〈y, s〉 ≤ 〈x, s〉. Note that this is equivalent to 〈x, s〉〈y, s〉 ≥ 〈x, s〉2

for all s ∈ S.

Definition 3.2 (S-intersect). For x, y∈Z[S], the S-intersection of x and y is defined
as x ∩S y = {s ∈ S | 〈x, s〉〈y, s〉< 0}.

Remark 3.3. Let x, y ∈ Z[S]. Then ‖x + y‖S = ‖x‖S + ‖y‖S if and only if
x ∩s y =∅. Indeed,

‖x + y‖S =
∑
s∈S

|〈x, s〉+ 〈y, s〉| ≤
∑
s∈S

|〈x, s〉| +
∑
s∈S

|〈y, s〉| = ‖x‖S +‖y‖S

with equality if and only if 〈x, s〉 and 〈y, s〉 have the same sign for all s ∈ S.

Throughout the rest of this section, let

D1 = S ∪ {−s | s ∈ S}.

Furthermore, let ρ : Z[S] → Z[T ] denote a morphism of ZG-modules.

Definition 3.4 (ρ-intersect). A pair of elements x, y ∈ Z[S] have nontrivial ρ-
intersection, denoted by x ∩ρ y 6=∅, if there exists x1, y1 ∈ D1 such that ρ(x1)∩T

ρ(y1) 6=∅ where x1 �S x and y1 �S y.

Definition 3.5 (ρ-connected). For each integer n ≥ 1, let Dn be the collection of
elements of Z[S] of the form x =

∑n
i=1 xi , where each xi ∈ D1 and for every

k < n the elements
∑k

i=1 xi and xk+1 have trivial S-intersection and nontrivial
ρ-intersection. An element x ∈ Z[S] is ρ-connected if x ∈ Dn for some n ≥ 1.

Remark 3.6. For x ∈ Z[S], we have x ∈ Dn if and only if x is ρ-connected and
‖x‖ = n.

Lemma 3.7. If 0 6= z ∈ ker ρ, then there exists x such that

(1) x �S z, in particular, ‖z− x‖S < ‖z‖S ,

(2) x ∈ ker ρ, and

(3) x is ρ-connected.

Proof. Let 0 6= z ∈ ker ρ be an arbitrary element. Consider the set

�= {x �S z | x 6= 0, x is ρ-connected};
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this is a nonempty finite set partially ordered by �S . Let x ∈ � be a maximal
element. We claim that x ∈ ker ρ. Suppose that x /∈ ker ρ. We have ρ(x) and
ρ(z− x) are nonzero and satisfy

ρ(x)+ ρ(z− x)= 0.

Since ρ(x) 6= 0 there exists t ∈ T such that 〈ρ(x), t〉 6= 0. Therefore

〈ρ(z− x), t〉 = −〈ρ(x), t〉.

Since ρ(z− x) 6= 0, there exists s ∈ S for which

〈z− x, s〉〈ρ(s), t〉〈ρ(z− x), t〉> 0.

This implies
〈z− x, s〉〈ρ(s), t〉〈ρ(x), t〉< 0.

Now define λ=〈z−x, s〉/|〈z− x, s〉|. We show x+λs is ρ-connected. First observe
that x ∩S λs =∅ since x �S z and λs �S z. Moreover, note that x ∩ρ λs 6=∅ since

〈ρ(x), t〉〈ρ(λs), t〉 = 〈ρ(x), t〉〈ρ(s), t〉λ < 0.

Therefore x + λs is ρ-connected and x �S x + λs �S z. This contradicts the
maximality of x and therefore x ∈ ker ρ. �

Proposition 3.8. For all nonzero z ∈ ker ρ, there exist ρ-connected elements
x1. . . . , xn ∈ ker ρ such that

(1) z = x1+ · · ·+ xn ,

(2) xi �S z for each i .

Proof. Applying Lemma 3.7 to z ∈ ker ρ, there exists a ρ-connected element
x1 ∈ ker ρ such that x1 �S z. If z− x1 6= 0 then there exists a ρ-connected element
x2 ∈ ker ρ such that x2 �S z − x1 ≺S z. If z − x1 − x2 6= 0 then there exists a
ρ-connected element x3 ∈ ker ρ such that x3 �S z − x1 − x2 ≺ z − x1 ≺ z. This
process must terminate for some positive integer n since

‖z− x1− · · ·− xk‖> ‖z− x1− · · ·− xk − xk+1‖ ≥ 0

if z− x1−· · ·− xk 6= 0. Hence we obtain ρ-connected elements x1, . . . , xn ∈ ker ρ
such that xi �S z for each i , and z = x1+ · · ·+ xn . �

Remark 3.9. For x, y ∈ Z[S], the relations x �S y, x ∩S y 6=∅, and x ∩ρ y 6=∅
are preserved by the G-action on Z[S]. Thus, if x ∈Dn and g ∈ G then gx ∈Dn . It
follows that Dn is a G-set.

Proposition 3.10. Suppose that S and T have finitely many G-orbits and each
element of T has finite G-stabilizer. Then for every n ≥ 1, the set Dn has finitely
many G-orbits.
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Before the proof of the Proposition 3.10, we introduce the following lemmas.

Lemma 3.11. Suppose S has finitely many G-orbits, and each element of T has
finite G-stabilizer. Then for every t ∈ T, the set S(t) = {s ∈ S | 〈ρ(s), t〉 6= 0} is
finite.

Proof. For any t ∈ T, s ∈ S, and g ∈ G, we have 〈ρ(gs), gt〉 = 〈ρ(s), t〉. For each
s ∈ S, let T (s) = {t ∈ T | 〈ρ(s), t〉 6= 0}. As ρ is a morphism, T (s) is a finite set
for all s ∈ S. Now, fix t ∈ T and let s1, . . . , sm be representatives of G-orbits of S.
Then

S(t)=
m⋃

i=1

{
gsi

∣∣ g ∈ G, 〈ρ(si ), g−1t〉 6=0
}
=

m⋃
i=1

⋃
r∈T (si )

{gsi | g ∈ G, g−1t=r}.

Observe that the set {g ∈ G | g−1t = r} is in one-to-one correspondence with
G t = {g ∈ G | gt = t}. By assumption, G t is finite and thus for each i ∈ {1, . . . ,m}
and r ∈ T (si ) the set {gsi | g ∈ G, g−1t = r} is finite. Therefore, the set S(t) is
finite. �

Lemma 3.12. Suppose S has finitely many G-orbits and that T has finite G-
stabilizers for each t ∈ T. Then for all n ∈ Z+ and for all y ∈ Dn the set
{x ∈ D1 | x ∩ρ y 6=∅} is finite.

Proof. For y ∈ Z[S] denote by D1(y) the set {x ∈ D1 | x ∩ρ y 6= ∅}. Let y ∈ Dn .
By definition, y =

∑n
i=1 xi , where each xi ∈ D1 and for each k < n, the elements∑k

i=1 xi and xk+1 have trivial S-intersection and nontrivial ρ-intersection. It follows
from the definition of ρ-intersect that

D1(y)= {x ∈ D1 | x ∩ρ y 6=∅} =
n⋃

i=1

{x ∈ D1 | x ∩ρ xi 6=∅} =
n⋃

i=1

D1(xi ).

Therefore, to conclude it is enough to show that D1(s) is finite for every s ∈ D1.
Let s ∈ D1. Observe that

D1(s)=
⋃
t∈T

{
x ∈D1

∣∣ 〈ρ(x), t〉〈ρ(s), t〉<0
}
⊂

⋃
t∈T

{
x ∈D1

∣∣ 〈ρ(x), t〉〈ρ(s), t〉 6=0
}
.

It is immediate that {t ∈ T | 〈ρ(s), t〉 6= 0} is finite. Hence the union on the right is
over a collection with finitely many nonempty sets. By Lemma 3.11, for any t ∈ T
the set {x ∈D1 | 〈ρ(x), t〉 6= 0} is finite, and hence {x ∈D1 | 〈ρ(x), t〉〈ρ(s), t〉 6= 0}
is finite. Therefore the expression on the right is the union of a finite collection of
finite sets, and we conclude that D1(s) is finite. �

Proof of Proposition 3.10. We prove by induction on n. For n = 1 the result follows
from the assumption that S has finitely many G-orbits and the definition of D1.
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Suppose Dn has finitely many G-orbits with representatives y1, . . . , y`. For each
1≤ k ≤ `, let Ak be the collection of elements Ak of D1 such that

yk ∩S z =∅ and yk ∩ρ z 6=∅.

By Lemma 3.12, the collection Ak is finite. The proof concludes with the verification
of the following claim.

Claim. The set
{yk + z | 1≤ k ≤ ` and z ∈ Ak}

is a collection of representatives of G-orbits of Dn+1.

Let x ∈ Dn+1. Then x =
∑n+1

i=1 xi , where each xi ∈ D1 and for every k < n the
elements

∑k
i=1 xi and xk+1 have trivial S-intersection and nontrivial ρ-intersection.

By definition,
∑n

i=1 xi is in Dn . Hence
∑n

i=1 xi = gyj for some g ∈ G and some
1 ≤ j ≤ `. It follows that x = gyj + xn+1 and therefore g−1x = yj + g−1xn+1.
By Remark 3.9, we have that z = g−1xn+1 is an element of Aj . Therefore x =
gyi + gz = g(yi + z). This proves the claim. �

Proof of Proposition 2.4. Let K denote ker ρ, and let ‖ · ‖K denote a chosen filling
norm on K. By Proposition 3.10, for each positive integer n, the G-set

⋃n
i=1 Di

has finitely many G-orbits. Therefore, for each n ∈ Z+ there is an integer Bn such
that for every x ∈

⋃n
i=1 Di , we have ‖x‖K ≤ Bn .

Let 0 6= z ∈ K such that ‖z‖S ≤ n. By Proposition 3.8, there exist ρ-connected
elements x1, . . . , xm ∈K such that m≤n, z= x1+· · ·+xm , and xi ≺ z, i=1, . . . ,m.
By Remark 3.6, each xi ∈ Dn . Therefore, by the triangle inequality,

‖z‖K ≤

m∑
i=1

‖xi‖K ≤ m · Bn ≤ n · Bn.

This shows that FVρ(n)≤ n · Bn <∞. �

Remark 3.13. Observe that Proposition 2.4 can be generalized as follows. Consider
the sequence of modules ker ρ→ Z[S] ρ

−→Z[T ], where |S/G|, |T/G|<∞ and
T has finite G-stabilizers for all t ∈ T. Let ‖ · ‖K be a G-invariant norm on K ; then
for all n ∈ N,

sup{‖x‖K | x ∈ K , ‖x‖S ≤ n}<∞.

In particular, K being finitely generated induces a filling norm which is G-invariant.

4. Examples

A graph 0 is called fine if for every edge e and each integer n > 0, the number
of circuits of length at most n which contain e is finite. By a circuit we mean a
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closed edge path that does not pass through a vertex more than once. The length of
a circuit is defined as the number of edges.

Theorem 4.1 [Martínez-Pedroza 2016, Theorem 1.3]. Let X be a cocompact G-cell
complex with finite stabilizers of 1-cells. The following two statements are equiva-
lent:

(1) X has fine 1-skeleton and the homology group H1(X, Z) is trivial.

(2) FVX (k) <∞ for any integer k.

This result allows us to exhibit examples that contrast with Theorem 1.1 as
follows:

• There is a group G acting cocompactly, not properly, and by cellular automor-
phisms on a simply connected complex X for which FV2

X (m) is finite for all
m ∈ N.

In particular, the converse of Theorem 1.1 does not hold.

• There is a group G acting cocompactly by cellular automorphisms on a simply
connected complex X for which FV 2

X (m) is infinite for some m ∈ N. In
particular, the properness assumption in Theorem 1.1 cannot be removed.

The two examples are based on the notion of coned-off Cayley complex. We use
the version from [Groves and Manning 2008], which we briefly recall below; for
another version see [Martínez-Pedroza 2017, Section 3].

Let G be a group and let P be a subgroup. The group G is finitely generated
relative to P if there is a finite subset S⊂G such that the natural map F(S)∗P→G
is surjective, where F(S) denotes the free group on S, and F(S) ∗ P denotes the
free product of F(S) and P. In this case S is called a finite relative generating set
of G with respect to P.

Suppose that S is a finite relative generating set of G with respect to P. Without
loss of generality assume that S is closed under inverses. The coned-off Cayley
graph 0̂ = 0̂(G, P, S) is the graph with vertex set consisting of all elements of
G and all left cosets of P; the edge set is the collection of pairs (g, gs) ∈ G×G
for g ∈ G and s ∈ S, and pairs (g, g P) for g ∈ G. Observe that the left action
of G on itself extends to a left action on 0̂. Vertices of 0̂ of the form g P are
called cone-vertices. Observe that the G-stabilizers of cone-vertices correspond to
conjugates of P; in particular, if P is infinite, the action is not proper. Moreover,
the G-stabilizers of 1-cells of 0̂ are trivial. It is well known that the assumption that
S is a relative generating set implies that 0̂ is path-connected as a combinatorial
complex; in fact, this is an equivalence, as remarked in [Hruska 2010].

Under the assumptions, the group G is finitely presented relative to P if there is
a finite subset R ⊂ F(S) ∗ P such that the kernel of the map F(S) ∗ P→ G is the
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Figure 1. The coned-off Cayley graph 0̂(G, P, S), where G is the
free group in two letters S={a, b} and P is the cyclic subgroup 〈b〉.

smallest normal subgroup containing R. In this case, we say that

〈S, P|R〉 (1)

is a finite relative presentation of G with respect to P. It is an exercise to show that
if G is finitely presented and P is finitely generated, then G is finitely presented
relative to P. We refer the reader to [Osin 2006] for an exposition on finite relative
presentations.

Assume that P is finitely generated, that (1) is a finite relative presentation of G
with respect to P, and that S ∩ P is a generating set of P. The coned-off Cayley
complex Ĉ = Ĉ(G, P, S, R) is the 2-dimensional complex with 1-skeleton the
coned-off Cayley graph 0̂(G, P, S) obtained by equivariantly attaching 2-cells as
follows. For each word r ∈ R correspond a loop in 0̂. Attach a 2-cell with trivial
stabilizer to each such loop, and extend in a manner equivariant under the G-action
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w1 w2 w3 w4 w5 w6

Figure 2. The coned-off Cayley graph 0̂(G, P, S), where G is the
free abelian group in two letters S = {a, b} and P is the cyclic
subgroup 〈b〉.

on 0̂. Similarly, for each P ∈P, for each generator in s ∈ S∩ P and each g ∈G, we
have a corresponding loop in 0̂ of length 3 passing through the vertices g, gs, g P.
Attach a 2-cell with trivial stabilizer to each such loop, equivariantly under the
G-action. The resulting G-complex Ĉ is simply connected [Groves and Manning
2008, Lemma 2.48], the G-action is cocompact by construction, and if P is infinite,
the G-action is not proper. Now we consider the 2-dimensional filling function
FV 2

Ĉ
of Ĉ .

Example 4.2. Let G be the free group of rank 2, let S = {a, b} be a free generating
set, and let P be the cyclic subgroup generated by b. It is an observation that
the coned-off Cayley graph 0̂(G, P, S), see Figure 1, is a fine graph and hence
Theorem 4.1 implies that FV2

Ĉ(m) <∞ for every m ∈ N. Similar examples can be
constructed by considering relatively hyperbolic groups.

Example 4.3. Let G be the free abelian group of rank 2, let S = {a, b} be a
generating set, and let P be the cyclic subgroup generated by b. The coned-off
Cayley graph 0̂(G, P, S), see Figure 2, is not fine since there are infinitely many
circuits of length 6 passing through the edge from b to P. By Theorem 4.1, we
have that FV2

Ĉ(m)=∞ for some m ∈ N. In fact, one can verify that FV2
Ĉ(6)=∞.

Remark 4.4. Theorem 1.1 does not hold for d = 0 in the natural setting of defining
FV1

X by taking Z0(X,Z) to be the kernel of the augmentation map. Consider a
finitely generated infinite group G acting properly and cocompactly on a connected
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graph X ; for example, take X to be the Cayley graph of G with respect to a finite
generating set. Then X is infinite, and the formal difference γ = b−a between two
distinct vertices a and b of X is a 0-cycle for which |γ |∂ can be made arbitrarily
large by taking a and b sufficiently far apart; roughly speaking, a 1-chain µ such
that ∂µ= b− a contains a combinatorial edge path from a to b and hence ‖µ‖1 is
at least the length of the shortest edge path from a to b. Hence FV1

X (2) =∞ in
this case.
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