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The representation theory of a 3-dimensional Sklyanin algebra S depends on its
(noncommutative projective algebro-) geometric data: an elliptic curve E in P2,
and an automorphism σ of E given by translation by a point. Indeed, by a result
of Artin, Tate, and van den Bergh, we have that S is module-finite over its center
if and only if σ has finite order. In this case, all irreducible representations of S
are finite-dimensional and of at most dimension |σ |.

In this work, we provide an algorithm in Maple to directly compute all irre-
ducible representations of S associated to σ of order 2, up to equivalence. Using
this algorithm, we compute and list these representations. To illustrate how
the algorithm developed in this paper can be applied to other algebras, we use
it to recover well-known results about irreducible representations of the skew
polynomial ring C−1[x, y].

1. Introduction

We work over the ground field C. The motivation of this work is to study, up
to equivalence, irreducible finite-dimensional representations (irreps) of Sklyanin
algebras S of global dimension 3 (Definition 1.2). Past work on this problem
includes results on bounds on the dimension of irreps of S [Walton 2012], and on a
geometric parametrization of (trace-preserving) irreps of S [De Laet and Le Bruyn
2015]. The focus of this paper is to determine, for a class of Sklyanin algebras, all
explicit irreps up to equivalence. Namely, we compute irreducible matrix solutions
to the defining equations of S, up to an action of a general linear group. A geometric
parametrization of the set of irreps of S is also presented, as this is the typical
approach to understanding aspects of Sklyanin algebras.
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Remark 1.1. We directly compute the irreps via a Maple algorithm. A more
conceptual technique, using noncommutative projective algebraic geometry (and
Clifford theory for these particular Sklyanin algebras), can be used to solve this
problem. We nevertheless hold to the computational approach because it can be
adapted (much more easily in some cases) to other algebras; for further discussion
of the complexity of this approach, see Remarks 1.10 and 1.11.

To begin, let us define the algebra under investigation.

Definition 1.2 [Artin et al. 1990]. The 3-dimensional Sklyanin algebra S :=
S(a, b, c) over C is generated by three noncommuting variables x , y, z subject to
the relations

ayz+ bzy+ cx2
= azx + bxz+ cy2

= axy+ byx + cz2
= 0. (1.3)

Here, [a : b : c] ∈ P2
C

, with abc 6= 0 and (3abc)3 6= (a3
+ b3
+ c3)3.

This algebra is rather resistant to noncommutative Gröbner basis methods; that
is, it is difficult to write down a C-vector space basis of S (consisting of monomials
in x, y, z). See, for instance, [Bellamy et al. 2016, Exercise 1.7]. (The reader may
also be interested in [Iyudu and Shkarin 2017].) In fact, it is common practice
to consider the geometric data of S in the context of noncommutative projective
algebraic geometry [Artin et al. 1990; Bellamy et al. 2016; Stafford and Van
den Bergh 2001] to analyze its ring-theoretic behavior. By [Artin et al. 1990,
Equations 1.6 and 1.7], the geometric data of S(a, b, c) consists of an elliptic curve
E := Ea,b,c ⊂ P2

C
defined the equation

Ea,b,c : (a3
+ b3
+ c3)(uvw)− (abc)(u3

+ v3
+w3)= 0, (1.4)

and an automorphism of this elliptic curve σ := σa,b,c given by

σa,b,c([u : v : w])= [acv2
− b2uw : bcu2

− a2vw : abw2
− c2uv]. (1.5)

Here, the automorphism is given by translation of the point [a : b : c] ∈ Ea,b,c,
where [1 : −1 : 0] is the origin of Ea,b,c. The order of σ , denoted by |σ |, is the
smallest n ∈N such that σ n

= idE . If no such n exists, then |σ | =∞. Consider the
following terminology.

Definition 1.6. We say that a Sklyanin algebra S(a, b, c) is associated to a point
([a : b : c] ∈ Ea,b,c) of order n if the automorphism σa,b,c has order n.

The role of this geometric data for our work will be explained towards the end
of this section.

Now let us recall some basic representation theory terminology. Take n to be a
positive integer. An n-dimensional representation of S := S(a, b, c) is an algebra
homomorphismψ : S→End(V ), where V is a C-vector space of dimension n. Since
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End(V ) is isomorphic to Matn(C), there is a one-to-one correspondence between the
n-dimensional representations of S(a, b, c) and the n×n matrix solutions (X, Y, Z)
to the system of equations (1.3). Here, X = ψ(x), Y = ψ(y), and Z = ψ(z).

Next, we discuss irreducibility. Given a representation ψ : S → End(V ), a
subspace W of V is called S-stable if ψ(s)(w) ∈W for all s ∈ S, w ∈W. Such a
subspace W yields a subrepresentation of S, given as ψ ′ : S→ End(W ). We say
that ψ is irreducible if the only S-stable subspaces of V are {0} and itself, that is,
if there are no proper subrepresentations ψ ′ of ψ . Similarly, there is a notion of
irreducibility for a matrix solution (X, Y, Z) to (1.3); see Lemma 2.1.

Now we recall when two representations/matrix solutions of S are equivalent. We
say that n-dimensional representations ψ, φ : S→ End(V ) are equivalent if there
exists a matrix Q ∈ GLn(C) such that ψ(s)= Qφ(s)Q−1 for all s ∈ S. Likewise,
two matrix solutions (X0, Y0, Z0) and (X1, Y1, Z1) to (1.3) are equivalent if there
exists Q ∈ GLn(C) such that Q−1 X0 Q = X1, Q−1Y0 Q = Y1, and Q−1 Z0 Q = Z1.
Note that two equivalent representations/matrix solutions are either both irreducible
or both reducible.

As the reader can imagine, studying explicit finite-dimensional representations
of the algebras S(a, b, c) is difficult computationally. Now by [Walton 2012,
Theorem 1.3], we only have nontrivial finite-dimensional representations of S when
the automorphism σ of (1.5) has finite order. So, we refine our goal: we study the
irreps of S(a, b, c) associated to a point [a : b : c] ∈ Ea,b,c of order 2. Note that the
order-1 case is precisely the case when S is commutative (Lemma 2.4).

Lemma 1.7 (Lemma 2.5). A Sklyanin algebra S(a, b, c) is associated to a point
[a : b : c] ∈ Ea,b,c of order 2 if and only if a = b.

In this case, we assume that a = b = 1 by rescaling. Therefore, our goal is to
study the representation theory of the 3-dimensional Sklyanin algebra S(1, 1, c),
where by Definition 1.2, c 6= 0, c3

6= 1,−8. By Lemma 2.6, all 1-dimensional
irreps of S(1, 1, c) are trivial, and all irreps of S(1, 1, c) are finite-dimensional, of
at most dimension 2. Thus, we only need to compute the irreps of dimension 2; we
achieve this as follows.

Theorem 1.8. The nontrivial explicit irreps (or matrix solutions) of the 3-dimen-
sional Sklyanin algebra S(1, 1, c) are of dimension 2. They are classified up to
equivalence; the representatives of equivalence classes of irreps of S(1, 1, c) are
provided in (5.1)–(5.2) and (6.1)–(6.5) in Sections 5 and 6, respectively.

In Section 2, we provide background material and some preliminary results.
In Section 3, we give an outline (Steps 0–2, 3a, 3b) of our algorithm to prove
Theorem 1.8. The algorithm then begins in Section 4, where we determine all of
the 2-dimensional representations of S(1, 1, c), and exclude “families” of reducible
representations; this is Steps 0–2 of the algorithm. In Sections 5 and 6, we determine
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representatives of equivalence classes of 2-dimensional irreps of S(1, 1, c); this is
Steps 3a and 3b of the algorithm.

The study of the irreps of S(1, 1, c) ends in Section 7, where for completion, we
discuss a geometric parametrization of equivalence classes of irreps of S(1, 1, c);
e.g., we illustrate the Azumaya locus of S(1, 1, c) over the center of S(1, 1, c).
Namely we have the result below.

Theorem 1.9 (Theorem 7.1). The set of equivalence classes of irreps of S(1, 1, c)
is in bijective correspondence with the points of the 3-dimensional affine variety:

Xc := V
(
g2
− c2(u3

1+ u3
2+ u3

3)− (c
3
− 4)u1u2u3

)
⊆ C4

{u1,u2,u3,g}.

In particular, Xc \ {0} is the Azumaya locus of S over its center (i.e., points of
Xc\{0} correspond to 2-dimensional irreps of S ), and the origin of Xc corresponds
to the trivial representation of S.

Remark 1.10. We would like to point out that one can adjust our algorithm to
prove Theorem 1.8 to examine equivalence classes of irreps of other algebras with
generators and relations, especially those that are module-finite over their center.
Although, the run-time and complexity of the output of the algorithm is in direct
correlation with the number of generators and relations of the algebra, along with
the algebra’s polynomial identity degree (PI degree), if applicable.

We illustrate the remark above in Section 8, where we tailor our algorithm to
examine irreps of the skew polynomial ring

C−1[x, y] := C〈x, y〉/(xy+ yx).

Like S(1, 1, c), it is well known that all irreps of C−1[x, y] are finite-dimensional,
of dimension at most 2 (Lemma 8.1(c)). See Proposition 8.3 and Corollary 8.5 for
the results on the representation theory of C−1[x, y].

Remark 1.11. Part of the novelty of this work is that we obtain noncommutative
algebraic/representation-theoretic results with Maple, which is a computer algebra
system that is used typically for commutative computations. We hope that in the
future the task of determining equivalence classes of irreps of noncommutative
algebras (presented by generators and relations) can be achieved easily using a
computer algebra system that handles noncommutative Gröbner bases, such as GAP
[Cohen and Knopper 2016].

Remark 1.12. Unless stated otherwise, computational results in this work are
performed with the computer algebra system Maple (version 16). All code (including
comments) is available on the authors’ professional websites, and in the preprint
version of this work available on the ArXiv: http://arxiv.org/abs/1512.09167.

http://arxiv.org/abs/1512.09167
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2. Preliminaries

We begin with a result on the irreducibility of a representation/matrix solution of a
Sklyanin algebra S = S(a, b, c). This result is well known, and we will use it often
without mention.

Lemma 2.1. Let ψ : S→ End(V ) be an n-dimensional representation of S, with
corresponding matrix solution (X, Y, Z) to the system of equations (1.3). Then, the
following are equivalent:

(a) ψ is irreducible.

(b) The corresponding S-module V (where S acts on V via ψ) is simple.

(c) ψ is surjective.

(d) ψ(S) generates End(V )∼=Matn(C) as a C-algebra.

(e) Every matrix in Matn(C) can be expressed as a noncommutative polynomial in
(X, Y, Z) over C. �

If any of the above conditions hold, we say that the matrix solution (X, Y, Z) is
irreducible.

On the other hand, we can determine when a matrix solution of S is reducible
by using Lemma 2.1.

Corollary 2.2. An n × n matrix solution (X, Y, Z) to (1.3) (corresponding to a
representation ψ of S ) is reducible if and only if there exists a subspace W of V
of dimension m < n with X ·w, Y ·w, Z ·w ∈W for all w ∈W. Here, we embed W
into V so that · is given by matrix multiplication. �

If S is a Sklyanin algebra associated to a point of infinite order, then by [Walton
2012, Theorem 1.3(i)], we have that all finite-dimensional irreps of S are trivial.
On the other hand, Sklyanin algebras associated to points of finite order have an
interesting representation theory, due to the following result.

Proposition 2.3. Let S(a, b, c) be a Sklyanin algebra associated to a point of finite
order. Then, all irreducible representations of S(a, b, c) are finite-dimensional, of
at most dimension |σa,b,c|.

Proof. In this case, we have that the Sklyanin algebra S(a, b, c) is module-finite
over its center by [Artin et al. 1991, Theorem 7.1]. Further, S(a, b, c) has PI
degree |σa,b,c| by [Walton 2012, Proposition 1.6]. Hence, the irreducible represen-
tations of S(a, b, c) are all finite-dimensional by [McConnell and Robson 2001,
Theorem 13.10.3(a)], of dimension at most |σa,b,c| by [Brown and Goodearl 1997,
Proposition 3.1]. �

Now we analyze parameters (a, b, c) ∈ C3 so that the automorphism σa,b,c from
(1.5) has finite order. Recall that two projective points [m1 :m2 :m3], [n1 :n2 :n3]∈P2

C
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are equal if and only if m1n2−m2n1 = m1n3−m3n1 = m2n3−m3n2 = 0 if and
only if ni = λmi for all i = 1, 2, 3, for some nonzero λ∈C. Omitting the conditions
on parameters a, b, c for now, it is worth noting the following the result.

Lemma 2.4. The automorphism σa,b,c from (1.5) has order 1 if and only if a = 1,
b = −1, c = 0. In this case, S(1,−1, 0) is the commutative polynomial ring
C[x, y, z].

Proof. If σ has order 1, then we obtain [acv2
−b2uw :bcu2

−a2vw :abw2
−c2uv]=

[u : v : w]. Therefore, bcu2w − (a2
+ ab)vw2

+ c2uv2
= 0, which (by taking

the coefficient of uv2) implies c = 0. Without loss of generality, take a = 1.
Now, [−b2uw : −vw : bw2

] = [u : v : w], and we must have that b = −1 since
−vw2

= bvw2. Therefore, the forward direction holds. For the converse, note that
σ1,−1,0([u : v :w])= [−uw : −vw : −w2

] = [u : v :w], so σ1,−1,0 has order 1. The
last statement is clear. �

Consider the following preliminary results about Sklyanin algebras associated to
a point of order 2.

Lemma 2.5. Take S= S(a, b, c) to be a 3-dimensional Sklyanin algebra associated
to the automorphism σa,b,c of (1.5). Then, |σa,b,c| = 2 if and only if a = b.

Proof. Without loss of generality, take a = 1. The code for this result (see
Remark 1.12) implies that b = 1 and there are no conditions on c (other than
those in Definition 1.2).

The converse is clear by the computation above, but we can verify this directly.
If a = b = 1, then σ1,1,c([u : v : w])= [cv2

− uw : cu2
− vw : w2

− c2uv]. So,

σ 2
1,1,c([u : v : w])=

[
u(c3u3

+c3v3
+w3
−3c2uvw) : v(c3u3

+c3v3
+w3
−3c2uvw)

: w(c3u3
+c3v3

+w3
−3c2uvw)

]
= [u : v : w],

as desired. �

Hence, to work with Sklyanin algebras S(a, b, c) associated to a point of order 2,
we take a = b = 1.

Lemma 2.6. We have the following statements for the Sklyanin algebra S(1, 1, c).

(a) The only 1-dimensional representation of S(1, 1, c) is the trivial representation.

(b) All irreducible representations of S(1, 1, c) are finite-dimensional, of at most
dimension equal to 2.

Proof. (a) One can compute this directly, or by using a short routine; see Remark 1.12.

(b) This follows from Proposition 2.3 and Lemma 2.5. �
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3. Methodology and terminology

In this section, we provide an outline of the algorithm used to prove Theorem 1.8;
see Sections 4–6 for the full details. The goal is to obtain irreducible representative
families of S(1, 1, c) as defined below.

Definition 3.1. We say that a set of matrix solutions of the defining equations of
S(1, 1, c) (or of equations (1.3) with a = b= 1) is a representative family of matrix
solutions, if no two members within the set are equivalent. Further, we call this set
an irreducible representative family if all of its members are irreducible matrix
solutions of S(1, 1, c).

Note that we aim to have the parameter c of S(1, 1, c) free. So due to Maple’s
default alpha ordering, we refer to c as zc in the code below.

First, we make the following simplification.

Step 0: assume the matrix X is in Jordan form. Due to Lemma 2.6 we know that all
nontrivial irreps of S(1, 1, c) are of dimension 2. Hence, we only study 2×2 matrix
solutions (X, Y, Z) of (1.3) with (a, b, c)= (1, 1, c). Initially, the entries of X, Y, Z
are x`, y`, z` for `= 1, 2, 3, 4. We further simplify the problem by assuming that X
is in Jordan form. This simplification is made because we wish to classify the irreps
up to equivalence, and equivalence is determined by simultaneous conjugation by an
invertible matrix. So, we take X to be either a single 2×2 Jordan block or diagonal so
that we have 3 or 2 less unknowns, respectively. We consider these cases separately.

Step 1: find all families of matrix solutions. Now, we solve (1.3) with (a, b, c)=
(1, 1, c) for 2×2 matrices (X, Y, Z). The output consists of 2-dimensional (matrix
solution) families of S(1, 1, c). The solutions are grouped according to the default
behavior of Maple. We refer to these groups as Families.

Step 2: eliminate reducible matrix solutions. We run this step now to cut down on
the run-time of the algorithm and the complexity of its output. Given a family of
matrix solutions, we use Corollary 2.2 to determine if all members of this family
are reducible. Namely, we let w =«p,q» be a basis of a 1-dimensional subspace W
of C2. Note that if p= p1+ p2i and q=q1+q2i for i :=

√
−1 and p1, p2, q1, q2∈R,

then (p, q) 6= (0, 0) precisely when p p̄+ qq̄ 6= 0. We examine when W is stable
under the action of S(1, 1, c); namely, we need each of Xw, Yw, Zw to be a scalar
multiple of w. So, we solve for p, q subject to the conditions

• W is not the zero subspace . . . . . . p*conjugate(p)+q*conjugate(q)<>0,
• X W ⊂W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p*Xw[2][1]-q*Xw[1][1]=0,
• Y W ⊂W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p*Yw[2][1]-q*Yw[1][1]=0,
• Z W ⊂W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p*Zw[2][1]-q*Zw[1][1]=0,
• conditions on c.
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If there is a solution, then this implies that all members of the specified family
are reducible. We remove such families from further computations by forming a
list NonRedFams consisting of families for which there is no p, q satisfying the
conditions above.

Steps 3a and 3b are independent of each other, and either can be run after Step 2.

Step 3a: account for equivalence between families. For the remaining fami-
lies of matrix solutions, we determine conditions when members of one family
NonRedFams[i] is equivalent to members of another family NonRedFams[j].
These conditions are collected in the list BetweenFams.

We do so as follows. First, we force variables of NonRedFams[i] to be in terms
of u`, v`, w` instead of x`, y`, z` for `= 1, 2, 3, 4; this is executed with

eval(NonRedFams[...],ChangeVars).

Next, we conjugate the relabeled matrices simultaneously by a 2× 2 matrix Q
to form Xconj, Yconj, Zconj. Then, we solve for variables u`, v`, w`, x`, y`, z`
subject to the conditions

• Xconj is equal to the X -matrix Xj of NonRedFams[j] . . . . . . . . . Equiv1=0,

• Yconj is equal to the Y -matrix Yj of NonRedFams[j] . . . . . . . . . . Equiv2=0,

• Zconj is equal to the Z -matrix Zj of NonRedFams[j] . . . . . . . . . . Equiv3=0,

• conditions on c and invertibility of Q.

The output is [i,j,{conditions on u`, v`, w`, x`, y`, z`}], which we interpret as
follows.

Interpretation: We can eliminate NonRedFams[i] from our consideration if all
of its members are equivalent to members of NonRedFams[j] for some j 6= i . This
occurs if we get an output

[i, j, ...{each of u`, v`, w` is free }...] for i < j, or

[j, i, ...{each of x`, y`, z` is free }...] for j < i.

We obtain that NonRedFams[i] forms a representative family if we get output

[i,i,...{restrictions on u`, v`, w`, x`, y`, z` }...]

under one of the following conditions:

• (i) each of x`, y`, z` is free and (ii) each of u`, v`, w` is free, or depends only
on x`, y`, z`; or

• (i) each of u`, v`, w` is free and (ii) each of x`, y`, z` is free, or depends only
on u`, v`, w`.
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In either case above, we set the free variables in (ii) equal to 1 to obtain repre-
sentative families. Otherwise, a careful examination is needed.

Conditions u`, v`, w`, x`, y`, z` may depend on entries of the matrix Q. In this
case, we can conclude that such variables are free as long as this does not violate
invertibility of Q.

Step 3b: check for full irreducibility conditions. Here, we run the same code as in
Step 2 except that we solve for p, q along with all variables x`, y`, z`. The conditions
are collected in a list called IrConditions. If the output for NonRedFams[i] is
[i] (or empty), then all members of NonRedFams[i] are irreducible.

4. Families of nonreducible representations of S(1, 1, c)

Here, we execute Steps 0–2 of the algorithm discussed in the previous section.
Namely, we find all 2-dimensional representations of S(1, 1, c) by determining
2×2 matrix solutions (X, Y, Z) to (1.3) with a = b= 1. Here, X is in Jordan form,
either one Jordan block or two Jordan blocks (diagonal). Moreover, we eliminate the
families of solutions for which all of its members are reducible. See Remark 1.12
and we obtain the results below.

We start with the output of Steps 0–2 for NonRedFams when X is one Jordan
block. For all matrix solutions, we have

X =
(

0 1
0 0

)
. (4.1)

The rows below show the matrices Y , Z for the five matrix solutions:(
−y4

(
y2

4+(y
4
4−8y4z3

4)
1/2
)
/(2cz2

4)

−cz2
4 y4

)
,

(
−z4 0

1
2 c
(
y2

4+(y
4
4−8y4z3

4)
1/2
)
−cy2

4 z4

)
;

(
−y4 −

(
−y2

4+(y
4
4−8y4z3

4)
1/2
)
/(2cz2

4)

−cz2
4 y4

)
,

(
−z4 0

−
1
2 c
(
−y2

4+(y
4
4−8y4z3

4)
1/2
)
−cy2

4 z4

)
;

(
α/(cz3) −

(
−cz2

2z3−cz2z2
4+2αz4/(cz3)

)
/z3

−cz2z3−cz2
4 −α/(cz3)

)
,

(
−z4 z2

z3 z4

)
;

(
−β/(cz3) −

(
−cz2

2z3−cz2z2
4+2βz4/(cz3)

)
/z3

−cz2z3−cz2
4 β/(cz3)

)
,

(
−z4 z2

z3 z4

)
;

(
−y4 y2

4/(cz2
4)

−cz2
4 y4

)
,

(
−z4 2y4/(cz4)

0 z4

)
;

(4.2)

where,

α = c2z2z3z4+ c2z3
4+

(
3c4z2

2z2
3z2

4+ 3c4z2z3z4
4+ c4z6

4− cz3
3+ c4z3

3z3
2

)1/2
,

β =−c2z2z3z4− c2z3
4+

(
3c4z2

2z2
3z2

4+ 3c4z2z3z4
4+ c4z6

4− cz3
3+ c4z3

3z3
2

)1/2
.

(4.3)
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When X is two Jordan blocks, NonRedFams gives six matrix solutions:

X =
(

cz2
4/(2y4) 0

0 −cz2
4/(2y4)

)
, Y =

(
−y4 −(y3

4 − z3
4)/(y4 y3)

y3 y4

)
,

Z =
(
−z4 −z4(8y3

4 + c3z3
4)/(4y2

4 y3)

0 z4

)
;

X =
(
−x4 0

0 x4

)
, Y =

(
0 0
y3 0

)
, Z =

(
0 −cx2

4/y3

0 0

)
;

X =
(

cy2
4/(2z4) 0

0 −cy2
4/(2z4)

)
, Y =

(
−y4 −y4(8z3

4+ c3 y3
4)/(4z3z2

4)

0 y4

)
,

Z =
(
−z4 (y3

4 − z3
4)/(z4z3)

z3 z4

)
;

X =
(
−x4 0

0 x4

)
, Y =

(
0 −cx2

4/z3

0 0

)
, Z =

(
0 0
z3 0

)
;

X =
(
γ /(c2 y3z3) 0

0 −γ /(c2 y3z3)

)
, Y =

(
−y4 −

(
2z4γ /(c2 y3z3)+ cy2

4

)
/(cy3)

y3 y4

)
,

Z =
(
−z4 −

(
−2γ y4/(c2 y3z3)+ cz2

4

)
/(cz3)

z3 z4

)
;

X =
(
−δ/(c2 y3z3) 0

0 δ/(c2 y3z3)

)
, Y =

(
−y4 −

(
2z4δ/(c2 y3z3)+ cy2

4

)
/(cy3)

y3 y4

)
,

Z =
(
−z4 −

(
2δy4/(c2 y3z3)+ cz2

4

)
/(cz3)

z3 z4

)
;

(4.4)

where

γ =−z2
3z4−y2

3 y4+
(
z4

3z2
4+2z2

3z4 y2
3 y4+y4

3 y2
4+c3 y3z3

3 y2
4+c3 y3

3 z3z2
4−2c3 y2

3 z2
3 y4z4

)1/2
,

δ= z2
3z4+y2

3 y4+
(
z4

3z2
4+2z2

3z4 y2
3 y4+y4

3 y2
4+c3 y3z3

3 y2
4+c3 y3

3 z3z2
4−2c3 y2

3 z2
3 y4z4

)1/2
.

(4.5)

5. Equivalence and irreducibility: one-Jordan-block case

We wish to classify the matrix solutions from Steps 0–2 (in the previous section) up
to equivalence and extract the irreducible equivalence classes. So, we would like
to know under what conditions is a matrix solution equivalent to a member of the
same/different solution family. We then specify conditions for which the represen-
tative of an equivalence class of matrix solutions is irreducible. This achieved with
Steps 3a and 3b, respectively, as described in Section 3. In this section, we continue
the algorithm of Section 4 in the case when X is one Jordan block; see Remark 1.12.
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The output of Steps 0–3a can be viewed by entering the following:

for i from 1 to nops(BetweenFams) do print(BetweenFams[i]): end do:

For interpretation, consider the snippets of output

[1, 2, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = v4, w4 = w4,

3 3 1/2
-4 w4 + v4 - v4 %1 4 q1 w4

y4 = -----------------------, z4 = -w4, zc = - ----------------}],
2 1/2 2 1/2

v4 - %1 q2 (v4 - %1 )

4 3
%1 := v4 - 8 w4 v4

2
zc q2 w4

[1, 5, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = 0, w4 = w4, y4 = ---------,
q1

z4 = w4, zc = zc}]

In the first snippet, one sees that with a choice of q1 and q2, the parameter c can
be considered free without violating the invertibility of Q. We can also conclude
that any member of NonRedFams[1] is equivalent to a member of NonRedFams[2],
except when v2

4−(v
4
4−8w3

4v4)
1/2
= 0, or equivalently when v4 or w4= 0. From the

second snippet of output, we see that any member of NonRedFams[1] is equivalent
to a member of NonRedFams[5] when v4 = 0. Moreover by (4.1)–(4.3), we
have that in NonRedFams[1] w4 (identified with z4) cannot be 0. So, we exclude
NonRedFams[1] from further computation.

Now consider another two snippets of output:

[2, 4, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = v4, w4 = w4, z2 = z2,

2
(2 RootOf(_Z + 1 + _Z) w4 q2 - q1 z2) q1

z3 = -----------------------------------------,
2

q2

2
RootOf(_Z + 1 + _Z) w4 q2 - q1 z2

z4 = - ----------------------------------,
q2

2
2 (2 RootOf(_Z + 1 + _Z) w4 q2 - q1 z2) q1

zc = - -------------------------------------------}]
2 4 3 1/2 2

(v4 + (v4 - 8 w4 v4) ) q2

2
zc q2 w4

[2, 5, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = 0, w4 = w4, y4 = ---------,
q1

z4 = w4, zc = zc}]

Through a choice of q1 and q2, we consider c to be free in [2,4,...]. We
conclude that any member of NonRedFams[2] is equivalent to a member of
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NonRedFams[4] for all values of v4 and w4 except when v2
4+(v

4
4−8w3

4v4)
1/2
= 0,

or equivalently when v4 or w4 = 0. From the second snippet of output, we
see that if v4 = 0, any member of NonRedFams[2] is equivalent to a member
of NonRedFams[5]. From (4.1)–(4.3), we see that w4 (identified with z4) in
NonRedFams[2] cannot be 0. So, we exclude NonRedFams[2] from further com-
putation.

Now take into account the following snippets of output:

[3, 4, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, w2 = w2, w3 = w3, w4 = w4,

2 2
2 q1 w4 q2 + w2 q1 - w3 q2 -w3 q2 + q1 w4

z2 = ----------------------------, z3 = w3, z4 = --------------, zc = zc}]
2 q1

q1

[4, 5]

This implies NonRedFams[3] is equivalent to NonRedFams[4]. So, we exclude
NonRedFams[3] from further computation. Further, no member of NonRedFams[4]
is equivalent to a member of NonRedFams[5].

Finally, we determine when the remaining families are representative families.
Consider

[4, 4, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, w2 = w2, w3 = w3, w4 = w4,

2 2
2 q1 w4 q2 + w2 q1 - w3 q2 -w3 q2 + q1 w4

z2 = ----------------------------, z3 = w3, z4 = --------------, zc = zc}]
2 q1

q1

q1 (-y4 + v4)
[5, 5, {q1 = q1, q2 = - -------------, q3 = 0, q4 = q1, v4 = v4, w4 = w4,

2
zc w4

y4 = y4, z4 = w4, zc = zc}]

We get that a member of NonRedFams[5] is equivalent to another member
of this family for any value of y4. Without loss of generality, set y4 = 1. So,
NonRedFams[5] is a representative family with y4 = 1.

In NonRedFams[4], we obtain any value for z4, say a, by setting

q2 = (w4− a)q1/w3.

(Note that by (4.1)–(4.3), z3, identified by w3, is not equal to 0.) This choice of
q2 does not violate the invertibility of Q. Further, it is easy to check that in this
case, z2 = w2. Thus, without loss of generality, set z4 = 1. So, NonRedFams[4] is
a representative family with z4 = 1.
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Given the results above, we only need to execute Step 3b for NonRedFams[4] and
NonRedFams[5], but we complete this for the whole list NonRedFams as follows:

IrConditions:=[]:
for i from 1 to nops(NonRedFams) do
Xw:=Multiply(NonRedFams[i][1][1],w): Yw:=Multiply(NonRedFams[i][1][2],w):
Zw:=Multiply(NonRedFams[i][1][3],w):
Ir:=solve([p*conjugate(p)+q*conjugate(q)<>0,

p*Xw[2][1]-q*Xw[1][1],p*Yw[2][1]-q*Yw[1][1],p*Zw[2][1]-q*Zw[1][1],
zc<>0,zc^3<>1,zc^3<>-8]):

IrConditions:=[op(IrConditions),[i,Ir]]:
end do:

To see the output, enter

for i from 1 to nops(IrConditions) do print(IrConditions[i]): end do:

One gets that, for each i , all members of NonRedFams[i] are irreducible matrix
solutions of S(1, 1, c).

Now by entering
eval(NonRedFams[4],[z4=1]); eval(NonRedFams[5],[y4=1]);

one obtains the representatives of equivalence classes of irreducible matrix solutions
(X, Y, Z) of equations (1.3), where X is assumed to be one Jordan block. The
output is as follows:

X=
(

0 1
0 0

)
, Y=

(
−β/(cz3) −

(
−cz2

2z3−cz2+2β/(cz3)
)
/z3

−cz2z3−c β/(cz3)

)
, Z=

(
−1 z2

z3 1

)
;

X =
(

0 1
0 0

)
, Y =

(
−1 1/(cz2

4)

−cz2
4 1

)
, Z =

(
−z4 2/(cz4)

0 z4

)
;

(5.1)

where
β =−c2z2z3− c2

+
(
3c4z2

2z2
3+ 3c4z2z3+ c4

− cz3
3+ c4z3

3z3
2

)1/2
. (5.2)

6. Equivalence and irreducibility: two-Jordan-block case

As in the one-Jordan-block case, we wish to classify the matrix solutions from
Steps 0–2 (in Section 4) up to equivalence and extract the irreducible equivalence
classes. So, we would like to know under what conditions a matrix solution is
equivalent to a member of the same/different solution family. We then specify
conditions for which the representative of an equivalence class of matrix solutions
is irreducible. This achieved with Steps 3a and 3b, respectively, as described in
Section 3. In this section, we continue the algorithm of Section 4 in the case when
X is two Jordan blocks.

To execute Step 3a, as described in Section 3, enter the code for Step 3a used
in Section 5 (see Remark 1.12). (The memory and time for this operation was
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27068.0 MB and 523.78 seconds, respectively.) The output of Steps 0–3a can be
viewed by entering the following:

for i from 1 to nops(BetweenFams) do print(BetweenFams[i]): end do:

Consider the following snippet of output:
v3 q4

[1, 1, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v3 = v3, v4 = y4, w4 = z4,
y3

y3 = y3, y4 = y4, z4 = z4, zc = zc}]

Note that y3 6= 0 in NonRedFams[1] by (4.4)–(4.5). So, NonRedFams[1] is
a representative family with y3 (identified with v3) equal to 1 without loss of
generality.

Now take
v3 q4

[2, 2, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, u4 = x4, v3 = v3, x4 = x4,
y3

y3 = y3, zc = zc}]

Note that y3 6= 0 in NonRedFams[2] by (4.4)–(4.5). So, NonRedFams[2] is
a representative family with y3 (identified with v3) equal to 1 without loss of
generality.

Consider the output
w3 q4

[3, 3, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v4 = y4, w3 = w3, w4 = z4,
z3

y4 = y4, z3 = z3, z4 = z4, zc = zc}]

Note that z3 6= 0 in NonRedFams[3] by (4.4)–(4.5). So, NonRedFams[3] is
a representative family with z3 (identified with w3) equal to 1 without loss of
generality.

Next, consider the snippet of output below:
2

zc x4 q3
[2, 4, {q1 = 0, q2 = - ---------, q3 = q3, q4 = 0, u4 = -x4, v3 = v3,

z3 v3

x4 = x4, z3 = z3, zc = zc}]

By (4.4)–(4.5), we have that z3 6= 0 for NonRedFams[4]. So by the output
above, we get that any member of NonRedFams[4] is equivalent to a member
NonRedFams[2]. We exclude NonRedFams[4] from further computation.

Consider the output:
v3 q4 z3 v3

[5, 5, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v3 = v3, v4 = y4, w3 = -----,
y3 y3

w4 = z4, y3 = y3, y4 = y4, z3 = z3, z4 = z4, zc = zc}]
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We have that y3 6= 0 in NonRedFams[5] by (4.4)–(4.5). Without loss of gen-
erality, we can take y3 (identified with v3) to be 1. In this case, w3 = z3. So,
NonRedFams[5] is a representative family with y3 = 1.

Now let us take
v3 q4 z3 v3

[5, 6, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v3 = v3, v4 = y4, w3 = -----,
y3 y3

w4 = z4, y3 = y3, y4 = y4, z3 = z3, z4 = z4, zc = zc}]

Note that by (4.4)–(4.5), we have y3 6= 0 for NonRedFams[6]. So by the output
above, we get that any member of NonRedFams[6] is equivalent to a member
NonRedFams[5]. We exclude NonRedFams[6] from further computation.

We still need to analyze the equivalence between members of NonRedFams[1],
NonRedFams[2], NonRedFams[3], and NonRedFams[5]. In this case, the output
is easier to interpret if we run Step 3b before Step 3a again.

Given the results above, we only need to execute Step 3b for NonRedFams[1],
NonRedFams[2], NonRedFams[3], and NonRedFams[5], but we complete this
for the whole list NonRedFams by entering the code for Step 3b (see Remark 1.12).
Consider the snippets

y4 q
[1, {p = - ----, q = q, y3 = y3, y4 = y4, z4 = 0, zc = zc}]

y3

[2, {p = 0, q = q, x4 = 0, y3 = y3, zc = zc}]

z4 q
[3, {p = - ----, q = q, y4 = 0, z3 = z3, z4 = z4, zc = zc}]

z3

2
[5, {p = 0, q = q, y3 = 0, y4 = RootOf(_Z + 1 + _Z) z4, z3 = z3, z4 =

z4, zc = zc},

z4 q z4 y3
{p = - ----, q = q, y3 = y3, y4 = -----, z3 = z3, z4 = z4, zc = zc}]

z3 z3

We obtain that

• members of NonRedFams[1], NonRedFams[2], and NonRedFams[3] are ir-
reducible precisely when z4 6= 0, x4 6= 0, and y4 6= 0, respectively, and

• members of NonRedFams[5] are irreducible precisely when {y3 6= 0, y4 6=

e±2π i/3z4} or {y3z4 6= y4z3}.

We execute Step 3a again for the families highlighted above; we refer to the code
in Remark 1.12. From the output, we obtain that z4 = 0 in NewNonRedFams[1]
precisely when any member of NewNonRedFams[1] is equivalent to a member of
NewNonRedFams[2]. On the other hand, we have that x4=0 in NewNonRedFams[2]
precisely when any member of NewNonRedFams[2] is equivalent to a member of
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NewNonRedFams[1]. However, we know members of NewNonRedFams[1] and
NewNonRedFams[2] are reducible when z4 = 0 and x4 = 0, respectively.

Now by a choice of q2, q3, we can consider c to be free in [1,3,...]. So, we
get that z4 = ζ y4 for ζ 3

= 1 in NewNonRedFams[3] precisely when any member
of NewNonRedFams[3] is equivalent to a member of NewNonRedFams[1].

Putting this together we conclude that:

• NewNonRedFams[1]=eval(NonRedFams[1],[y3=1]) is an irreducible repre-
sentative family when z4 6= 0;

• NewNonRedFams[2]=eval(NonRedFams[2],[y3=1]) is an irreducible repre-
sentative family when x4 6= 0;

• NewNonRedFams[3]=eval(NonRedFams[3],[z3=1]) is an irreducible repre-
sentative family when y4 6= 0, and there is no overlap with NewNonRedFams[1]
when z4 6= ζ y4 for ζ 3

= 1;

• NewNonRedFams[4]=eval(NonRedFams[5],[y3=1]) is an irreducible repre-
sentative family when y4 6= e±2π i/3z4 and z4 6= y4z3.

We obtain the following representatives of equivalence classes of irreducible
matrix solutions (X, Y, Z) of equations (1.3), where X is assumed to be two Jordan
blocks:

X =
(

cz2
4/(2y4) 0

0 −cz2
4/(2y4)

)
, Y =

(
−y4 −(y3

4 − z3
4)/y4

1 y4

)
,

Z =
(
−z4 −z4(8y3

4 + c3z3
4)/(4y2

4)

0 z4

) (6.1)

for z4 6= 0,

X =
(
−x4 0

0 x4

)
, Y =

(
0 0
1 0

)
, Z =

(
0 −c2x2

4
0 0

)
(6.2)

for x4 6= 0,

X =
(

cy2
4/(2z4) 0

0 −cy2
4/(2z4)

)
, Y =

(
−y4 −y4(8z3

4+ c3 y3
4)/(4z2

4)

0 y4

)
,

Z =
(
−z4 (y3

4 − z3
4)/z4

1 z4

) (6.3)

for y4 6= 0, z4 6= ζ y4, ζ 3
= 1, and

X =
(
γ /(c2z3) 0

0 −γ /(c2z3)

)
, Y =

(
−y4 −

(
2z4γ /(c2z3)+ cy2

4

)
/c

1 y4

)
,

Z =
(
−z4 −

(
−2γ y4/(c2z3)+ cz2

4

)
/cz3

z3 z4

) (6.4)
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for y4 6= e±2π i/3z4, z4 6= y4z3, where

γ =−z2
3z4− y4+

(
z4

3z2
4+2z2

3z4 y4+ y2
4 + c3z3

3 y2
4 + c3z3z2

4−2c3z2
3 y4z4

)1/2
. (6.5)

7. Geometric parametrization of irreducible representations of S(1, 1, c)

Since the Sklyanin algebra S = S(1, 1, c) is module finite over its center, we
can use the center Z of S to provide a geometric parametrization of the set of
equivalence classes of irreducible representations of S. (Recall by Definition 1.2,
c 6= 0, c3

6= 1,−8.) Namely, we depict the Azumaya locus of S(1, 1, c) over its
center [Brown and Goodearl 2002, III.1.7]. We refer the reader to [Smith et al.
2000] for an introduction to affine varieties.

Theorem 7.1. Let Z be the center of the Sklyanin algebra S = S(1, 1, c).

(a) We have that Z is generated by u1 = x2, u2 = y2, u3 = z2,

g = cy3
+ yxz− xyz− cx3,

subject to the degree-6 relation

F := g2
− c2(u3

1+ u3
2+ u3

3)− (c
3
− 4)u1u2u3 = 0.

(b) The set of equivalence classes of irreducible representations of S is in bijective
correspondence with the set of maximal ideals of the center Z of S. Here, a
representative ψ of an equivalence class of an irrep of S corresponds to (kerψ)∩Z ,
a maximal ideal of Z.

(b) The geometric parametrization of the set of equivalence classes of irreducible
representations of S is the 3-dimensional affine variety (3-fold)

Xc := V(F) ∈ C4
{u1,u2,u3,g}.

In particular, Xc\ {0} is the Azumaya locus of S over Z. Indeed, points of Xc\ {0}
(the smooth locus of Xc) correspond to irreducible 2-dimensional representations
of S, and the origin of Xc corresponds to the trivial representation of S.

Taking a value of c, say 5, we can visualize the 3-fold Xc by taking 2-dimensional
slices at various values of u1. See Figure 1 below.

Proof of Theorem 7.1. (a) We have that Z is generated by three algebraically
independent elements u1, u2, u3 of degree 2 and one element g of degree 3, subject
to one relation F of degree 6, by [Smith and Tate 1994, Theorems 3.7, 4.6, and 4.7].
Now part (a) follows by direct computation in the algebra S(1, 1, c). One can do
this by hand, but we execute this with the computer algebra software GAP using
the GBNP package for noncommutative Gröbner bases [Cohen and Knopper 2016].
We check that u1, u2, u3, g commute with each of x1 := x , y1 := y, z1 := z; the
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u2

u3

u2

u3

u2

u3

u2

u3

Figure 1. Real part of
√

25(u3
1+ u3

2+ u3
3)+ 21u1u2u3 at u1 =

0, 0.3, 1, 3 (clockwise from the top left).

code for this is publicly available, see Remark 1.12. To view g, for instance, enter
PrintNP(g);. The output of the last twelve lines are all 0. Thus, u1, u2, u3, g are
all central elements of S(1, 1, 5). One can replace c = 5 with various values of
c 6= 0, 1,−8, and this yields the same output.

Now to see that F is the relation of Z , more care is needed. Enter

PrintNP(MulQA(g,g,GB));
PrintNP(MulQA(u1,MulQA(u1,u1,GB),GB));
PrintNP(MulQA(u2,MulQA(u2,u2,GB),GB));
PrintNP(MulQA(u3,MulQA(u3,u3,GB),GB));
PrintNP(MulQA(u1,MulQA(u2,u3,GB),GB));

and compare terms to derive the coefficients of F as claimed.

(b) The arguments below are standard in ring theory and in representation theory,
but we provide details for the reader’s convenience. Recall from Lemma 2.6 that
all nontrivial irreducible representations of S are of dimension 2. Let maxSpec(A)
denote the set of maximal ideals of an algebra A. Moreover, a primitive ideal of A
is an ideal that arises as the kernel of an irreducible representation of A; denote the
set of such ideals by prim(A). Take [Irrep(A)] to be the set of equivalence classes
of irreducible representations of A.

Since S is PI, we see that there is a bijective correspondence between [Irrep(S)]
and prim(S) as follows. Equivalent representations of S have the same kernel, so
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we get a surjective map φ: [Irrep(S)]→ prim(S), given by ψ 7→ kerψ . On the other
hand, take P ∈ prim(S), that is, the kernel of an irreducible representation ψ of S.
Then, ψ is also an irreducible representation of S/P. Now S/P ∼= Matt(C) for
t = 1 or 2 by [Brown and Goodearl 2002, Theorem I.13.5(1)], and all irreducible
representations of matrix algebras are equivalent to the identity representation by
the Skolem–Noether theorem. So, P ∈ prim(S) has a unique preimage φ−1(P) in
[Irrep(S)].

Moreover, we see that there is a bijective correspondence between [Irrep(S)]
and maxSpec(S) as follows. Maximal ideals are primitive. On the other hand, take
P to be a nonzero primitive ideal of S. Again, by [Brown and Goodearl 2002,
Theorem I.13.5(1)], S/P is isomorphic to a matrix ring, which is simple. Thus, P
is a maximal ideal of S. So it suffices to show that the ideals of maxSpec(S) and of
maxSpec(Z ) are in bijective correspondence.

Consider the map

η :maxSpec(S)→maxSpec(Z ), M 7→ M ∩ Z .

The map η is well-defined and surjective by [Brown and Goodearl 2002, Proposi-
tion III.1.1(5)]. Now by Lemma 2.6, the trivial representation of S corresponds to
the augmentation (maximal) ideal S+ := (x, y, z) of S, and the set of equivalence
classes of nontrivial irreducible representations of S corresponds to the maximal
ideals M of S not equal to S+. Thus, η(S+)= Z+, and it suffices to show that the
ideals of maxSpec(S)\S+ and of maxSpec(Z )\Z+ are in bijective correspondence.

Take Az(S) to be the set of maximal ideals m of Z so that (i) m=M∩ Z for M ∈
maxSpec(S), and (ii) M is the kernel of a 2-dimensional irreducible representation
of S. Namely, Az(S) is the Azumaya locus of S over Z . Consider the map

ρ : Az(S)→maxSpec(S), m 7→mS.

We get that ηρ(m) = η(mS) = (mS)∩ Z = m; the last equality holds by [Brown
and Goodearl 2002, Theorem III.1.6(3)]. So, η is bijective on ρ(Az(S)). Since
Az(S) = maxSpec(Z )\Z+ by Lemma 2.6, and since ρ is injective, we conclude that
η is bijective on maxSpec(S)\S+, as desired.

(c) To see that the claim follows from parts (a) and (b), we have to show that the
smooth locus of Xc consists of all nonzero points. This is achieved by using [Smith
et al. 2000, Theorem 6.2]; namely, we verify that the common zero set of the
vanishing of all partial derivatives of F is the origin of Xc:

F:=g^2-c^2*(u1^3+u2^3+u3^3) - (c^3-4)*u1*u2*u3;
solve([diff(F,g),diff(F,u1),diff(F,u2),diff(F,u3)],[g,u1,u2,u3]);
> [[g = 0, u1 = 0, u2 = 0, u3 = 0]]

This completes the proof. �
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Remark 7.2. One may push the result above further and study the moduli space
(or GIT quotient) that parametrizes the set of equivalence classes of irreducible
representations of S. But this is not the focus of this work here. On the other hand,
if one wants to understand irreducible representations of S topologically, then one
could consider the Jacobson topology (or hull-kernel topology) on the set prim(S).

Remark 7.3. The code available via Remark 1.12 verifies that the irreps produced
in (5.1)–(5.2) and (6.1)–(6.5) indeed correspond to points on Xc. One must first run
the algorithm in the previous sections: Sections 4 and 5 for the one-Jordan-block
case, and Sections 4 and 6 for the two-Jordan-block case.

By evaluating simplify(U1);, simplify(U2);, simplify(U3);, and
simplify(G); for each of the six irreducible representative families above,
we obtain the corresponding points on the 3-fold Xc = V(F)⊂ C4

{u1,u2,u3,g}.

8. Irreducible representations of C−1[x, y] := C〈x, y〉/(x y+ yx)

The purpose of this section is to illustrate our algorithm of Sections 3-6 (Steps 0–2,
3a, 3b) by replacing the Sklyanin algebra S(1, 1, c) with a class of algebras that
are much better understood. Here, we study irreducible representations of the skew
polynomial ring

C−1[x, y] := C〈x, y〉/(xy+ yx),

up to equivalence; these results are well known. At the end of the section, we provide
a geometric parametrization of these irreps, akin to Theorem 7.1 for S(1, 1, c). Now
we remind the reader of a few preliminary results.

Lemma 8.1. (a) The 1-dimensional irreps of C−1[x, y] are, up to equivalence, of
the form

ρα : C−1[x, y] → C, x 7→ α, y 7→ 0 for α ∈ C,

ρβ : C−1[x, y] → C, x 7→ 0, y 7→ β for β ∈ C.
(8.2)

(b) All irreducible representations of C−1[x, y] are finite-dimensional, of at most
dimension 2.

Proof. (a) This follows by an easy computation.

(b) By [Brown and Goodearl 1997, Proposition 3.1; 2002, Example I.14.3(1)], an
irrep of C−1[x, y] is of at most dimension 2. �

With the lemma above, we see that to classify irreps of C−1[x, y], we just need
to compute the 2-dimensional irreps

ψ : C−1[x, y] →Mat2(C), x 7→ X, y 7→ Y,

up to equivalence.
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Without loss of generality, we can assume that X is in Jordan form; that is, either
one Jordan block or diagonal. Now the code for this part (available publicly, see
Remark 1.12) was adapted from Sections 3–6 by removing all lines and conditions
involving the generator z, and by changing the defining relations of the algebra.

We obtain the result below.

Proposition 8.3. All irreducible representations φ of C−1[x, y] are of dimensions 1
or 2. In dimension 1, irreps are of the form (8.2). In dimension 2, all irreps, up to
equivalence, take the form

ψα,β : C−1[x, y] −→Mat2(C), x 7→
(
−α 0

0 α

)
, y 7→

(
0 1
β 0

)
(8.4)

for α, β ∈ C with αβ 6= 0.

Proof. The first two statements follow from Lemma 8.1. To get the last statement,
we run the adapted algorithm above. We only obtain reducible representations in
the one-Jordan-block case; just enter NonRedFams; and IrConditions; to see
this.

On the other hand, in the two-Jordan-block case, we first print off NonRedFams
(we’ve converted the output to standard format for readability):[

0 0
0 0

]
,

[
y1 y2

y3 y4

]
;

[
x1 0
0 0

]
,

[
0 0
0 y4

]
;[

0 0
0 x4

]
,

[
y1 0
0 0

]
;

[
x1 0
0 x4

]
,

[
0 0
0 0

]
;[

−x4 0
0 x4

]
,

[
0 y2

y3 0

]
.

Consider the following snippets of output from BetweenFams:

[2, 3, {q1 = 0, q2 = q2, q3 = q3, q4 = 0, u1 = x4, v4 = y1, x4 = x4,
y1 = y1}]

y3 q2 y2 q3
[5, 5, {q1 = 0, q2 = q2, q3 = q3, q4 = 0, u4 = -x4, v2 = -----, v3 = -----,

q3 q2
x4 = x4, y2 = y2, y3 = y3}]

So, any member of NonRedFams[3] is equivalent to a member of NonRedFams[2],
and therefore NonRedFams[3] is removed from our consideration.

Moreover, NonRedFams[5] forms an equivalence family as x4, y2, y3 are free.
Take into consideration the output from IrConditions:
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u2

u1

z

Figure 2. Affine 2-space parametrizing irreps of C−1[x, y]; axes
parametrize 1-dimensional irreps.

2 2
y3 p + p y4 q - y2 q

[1, {p = p, q = q, y1 = ----------------------, y2 = y2, y3 = y3, y4 = y4}]
p q

[2, {p = p, q = 0, x1 = x1, y4 = y4}]

[4, {p = p, q = 0, x1 = x1, x4 = x4}]

[5, {p = p, q = 0, x4 = x4, y2 = y2, y3 = 0},

{p = 0, q = q, x4 = x4, y2 = 0, y3 = y3},

2
y3 p

{p = p, q = q, x4 = 0, y2 = -----, y3 = y3}]
2

q

Now, we can conclude that NonRedFams[1], NonRedFams[2], NonRedFams[4]
consist of reducible representations, so these families are eliminated from our
consideration. Further, NonRedFams[5] forms an irreducible representative family
with y2 = 1; we can see this by adapting and running the algorithm for Step 3b in
Section 6 in this case. �

The geometric parametrization of the equivalence classes of irreducible repre-
sentations of C−1[x, y] is given as follows; see also Figure 2.

Corollary 8.5. We have the following statements.

(a) We have that the center Z of C−1[x, y] is the commutative polynomial ring
generated by u1 := x2 and u2 := y2.

(b) The set of equivalence classes of irreducible representations of S are in bijective
correspondence with the set of maximal ideals of C[x2, y2

].
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(c) The geometric parametrization of the set of equivalence classes of irreducible
representations of C−1[x, y] is the 2-dimensional affine space C2

{u1,u2}
. In particular

• points of C2
\V(u1u2) correspond to irreducible 2-dimensional representations

of C−1[x, y],

• points on the axes V(u1u2) not equal to the origin correspond to nontrivial
1-dimensional representations of C−1[x, y], and

• the origin corresponds to the trivial representation of C−1[x, y].

Proof. (a) The algebra C−1[x, y] has a C-vector space basis given by {x i y j
| i, j ∈N}.

Since (x i y j )x = (−1) j x i+1 y j
= x i+1 y j and y(x i y j ) = (−1)i x i y j+1

= x i y j+1

implies that i, j are even, the result is clear.

(b) This follows by the proof of Theorem 7.1(b).

(c) The first statement follows, as Spec(Z ) = C2
{u1,u2}

. Now the remaining statements
hold by (8.4) and (8.2), where u1 = α

2 and u2 = β. �
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