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We use some standard numerical techniques to approximate the hypergeometric
function

2 F1[a, b; c; x] = 1+
ab
c

x +
a(a+ 1)b(b+ 1)

c(c+ 1)
x2

2!
+ · · ·

for a range of parameter triples (a, b, c) on the interval 0 < x < 1. Some of
the familiar hypergeometric functional identities and asymptotic behavior of
the hypergeometric function at x = 1 play crucial roles in deriving the formula
for such approximations. We also focus on error analysis of the numerical
approximations leading to monotone properties of quotients of gamma functions
in parameter triples (a, b, c). Finally, an application to continued fractions of
Gauss is discussed followed by concluding remarks consisting of recent works
on related problems.

1. Introduction and preliminaries

For a complex number z and c 6= 0,−1,−2,−3, . . . , the hypergeometric series is
defined by

1+
∞∑

n=1

(a)n(b)n
(c)n(1)n

zn.

Here (a)n denotes the shifted factorial notation defined, in terms of the gamma
function, by

(a)n =
0(a+ n)
0(a)

=

{
a(a+ 1) · · · (a+ n− 1) if n ≥ 1,
1 if n = 0, a 6= 0.

Note that the hypergeometric series defines an analytic function, denoted by the
symbol 2 F1[a, b; c; z], in |z|< 1. As quoted in the historical remarks in [Anderson
et al. 1997, 1.55, p. 24], the concept of hypergeometric series was first introduced
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by J. Wallis in 1656 to refer to a generalization of the geometric series. Less than a
century later, Euler extensively studied the analytic properties of the hypergeometric
function and found, for instance, its integral representation; see [Anderson et al.
1997, Theorem 1.19(2)]. Gauss made his first contribution to the subject in 1812.
Due to the outstanding contribution made by Gauss to the field, the hypergeometric
function is also sometimes known as the Gauss hypergeometric function. Most
elementary functions which are solutions to certain differential equations can be
written in terms of the Gauss hypergeometric functions. One can easily verify by
using the Frobenius technique that the function 2 F1[a, b; c; z] is one of the solutions
of the hypergeometric differential equation [Andrews et al. 1999; Beals and Wong
2010; Rainville 1960]

z(1− z)w′′+ (c− (a+ b+ 1)z)w′− abw = 0.

We refer to [Rainville 1943; 1960] for Kummer’s 24 solutions to the hypergeometric
differential equation, and to [Beals and Wong 2010] for related applications. The
asymptotic behavior of 2 F1[a, b; c; z] near z = 1 reveals that

2 F1[a, b; c; 1] =
0(c− a− b)0(c)
0(c− a)0(c− b)

<∞, valid for Re (c− a− b) > 0. (1-1)

Interpolating polynomials for elementary real functions such as trigonometric
functions, logarithmic functions, exponential functions, etc. have already been
derived in undergraduate texts in numerical analysis; see for instance [Atkinson
1978]. These elementary functions are in fact hypergeometric functions with
specific parameters a, b, c; see for instance [Andrews et al. 1999; Rainville 1960].
Most of such polynomial approximations are computed when the functional values
at the given boundary points are possible. Hence the asymptotic behavior (1-1)
of the hypergeometric function near z = 1 motivates us to construct interpolat-
ing polynomials for real hypergeometric functions 2 F1[a, b; c; x], a, b, c ∈ R,
c 6∈ {0,−1,−2,−3, . . .}, of a real variable x using several numerical techniques
in the interval [0, 1]; however, the interval may be extended to [−1, 1] as the
hypergeometric series in x is convergent for |x |< 1 and it has a certain asymptotic
behavior near −1 as well, with suitable choices of the parameters a, b, c; see
for instance [Rainville 1960, Theorem 26]. More precisely, when we compute
an interpolating polynomial pn(x) of a hypergeometric function 2 F1[a, b; c; x]
on [0, 1] we take the value 2 F1[a, b; c; 1] in the sense that the hypergeometric
function defined at x = 1 by means of its asymptotic behavior at x = 1; see (1-1).
Several hypergeometric functional identities also play a crucial role in determining
functional values at the interpolating points.

The following lemmas are useful in describing the error analysis for the interpo-
lating polynomials that we obtained in this paper. Our subsequent paper(s) in this
series will cover the study of interpolating polynomials using other techniques.
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Lemma 1.1 [Anderson et al. 1997, Lemma 1.33(1), p. 13; see also Lemma 1.35(2)].
If a, b, c ∈ (0,∞), then 2 F1[a, b; c; x] is strictly increasing on [0, 1). In particular,
if c > a+ b then for x ∈ [0, 1] we have

2 F1[a, b; c; x] ≤
0(c)0(c− a− b)
0(c− a)0(c− b)

.

Lemma 1.2 [Anderson et al. 1997, Lemma 2.16(2), p. 36]. The gamma function
0(x) is a log-convex function on (0,∞). In other words, the logarithmic derivative,
0′(x)/0(x), of the gamma function is increasing on (0,∞).

Note that in all the plots in this paper, graphs drawn in blue represent the original
functions and graphs drawn in red represent interpolating polynomials.

2. Linear interpolation on 2 F1[a, b; c; x]

For performing linear interpolation of the function 2 F1[a, b; c; x] = f (x), we
consider the end points x0 = 0 and x1 = 1 of the interval [0, 1]. The functional
values at these points are respectively f (0)= 1 and f (1), described in (1-1). Hence,
the equation of the segment of the straight line joining 0 and 1 is

Pl(x)= f (x0)+
x−x0

x1−x0
( f (x1)− f (x0))=

0(c)0(c−a−b)−0(c−a)0(c−b)
0(c−a)0(c−b)

x+1,

when c− a− b > 0 and c 6= 0,−1,−2,−3, . . . . The polynomial Pl(x) represents
the linear interpolation of 2 F1[a, b; c; x] interpolating at 0 and 1.

Using Lemma 1.1, we obtain the following error estimate:

Lemma 2.1. Let a, b, c ∈ (−2,∞) with c− a− b > 2. The deviation of the given
function f (x)= 2 F1[a, b; c; x] from the approximating function Pl(x) for all values
of x ∈ [0, 1] is estimated by

|El( f, x)| = | f (x)− Pl(x)| ≤
|a(a+ 1)b(b+ 1)|

8
0(c)0(c− a− b− 2)
0(c− a)0(c− b)

.

Proof. Maximizing
|El( f, x)| = 1

2 x(1− x)| f ′′(x)|
in [0, 1] yields

1
8(1− 0)2 max

0≤x≤1
| f ′′(x)|,

where f (x) = 2 F1[a, b; c; x]. The following well-known derivative formula is
useful:

d
dx 2 F1[a, b; c; x] = ab

c 2 F1[a+ 1, b+ 1; c+ 1; x]. (2-1)

The proof follows from (1-1), Lemma 1.1, (2-1), and the fact that

0(x + 1)= x0(x). �
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Figure 1. Linear interpolation of 2 F1[1, 2; 6; x] at 0 and 1.

nodes xi 0 0.25 0.5 0.75 1

actual values 1 1.0936 1.2149 1.3843 1.6667
2 F1[1,2;6; xi ]

polynomial approx. 1 1.1667 1.3333 1.5000 1.6667by Pl(xi )

validity of error bounds 0 0.0731< 1.25 0.1184< 1.25 0.1157< 1.25 0by El( f, xi )

Table 1. Comparison of the functional and linear polynomial values.

Remark 2.2. It follows from Lemma 2.1 that there is no error for the choices a= 0,
a =−1, b = 0, b =−1. In other words, for these choices El( f, x) vanishes.

Figure 1 shows linear interpolation of the hypergeometric function at 0 and 1,
whereas Table 1 compares the values of the hypergeometric function up to four
decimal places with its interpolating polynomial values in the interval [0, 1] for the
choice of parameters a = 1, b = 2 and c = 6. Figure 1 and Table 1 also indicate
errors at various points within the unit interval except at the end points.

3. Quadratic interpolation on 2 F1[a, b; c; x]

Let the three points in consideration for quadratic interpolation be x0 = 0, x1 = 0.5
and x2=1. The functional values at x0=0 and x2=1 can be found easily in terms of
the parameters but the functional value at x1= 0.5 can be obtained through different
identities involving hypergeometric functions 2 F1[a, b; c; x] dealing with various
constraints on the parameters a, b, c. This section consists of two subsections and in
each subsection the method to obtain the functional value of 2 F1[a, b; c; x] at x=0.5
uses three different identities. Finally, we compare the resultant interpolations. In
fact we observe that the interpolating polynomial remains unchanged in two cases, al-
though the approaches are different (see the subsection on page 630 for more details).

Quadratic interpolation on 2 F1[a, 1− a; c; x]. This section deals with the value
2 F1

[
a, b; c; 1

2

]
, where a + b = 1 due to the following identity of Bailey [1935,
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p. 11] (see also [Rainville 1960, p. 69]):

2 F1
[
a, 1−a; c; 1

2

]
=

21−c 0(c) 0
( 1

2

)
0
( 1

2(c+a)
)
0
( 1

2(1+c−a)
) = 0

( 1
2 c
)
, 0
( 1

2(1+c)
)

0
( 1

2(c+a)
)
0
( 1

2(1+c−a)
) , (3-1)

where c is a positive integer. It follows from (3-1) that

0
( 1

2 c
)
0
( 1

2(1+ c)
)
= 21−c√π0(c), (3-2)

since 0
( 1

2

)
=
√
π . In this case, we obtain

f (x0)= f (0)= 2 F1[a, 1− a; c; 0] = 1,

f (x1)= f (0.5)= 2 F1
[
a, 1− a; c; 1

2

]
=

0
(1

2 c
)
0
( 1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
) ,

f (x2)= f (1)= 2 F1[a, 1− a; c; 1] =
0(c)0(c− 1)

0(c− a)0(c+ a− 1)
(c > 1).

Consider the well-known Lagrange fundamental polynomials

L0(x)=
(x−x1)(x−x2)

(x0−x1)(x0−x2)
,

L1(x)=
(x−x0)(x−x2)

(x1−x0)(x1−x2)
,

L2(x)=
(x−x0)(x−x1)

(x2−x0)(x2−x1)
.

Then the quadratic interpolation of f (x)= 2 F1[a, 1− a; c; x] becomes

Pq3(x)= f (x0)L0(x)+ f (x1)L1(x)+ f (x2)L2(x)

= (2x2
− 3x + 1)+ (−4x2

+ 4x)
0
(1

2 c
)
0
( 1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
)

+ (2x2
− x)

0(c)0(c− 1)
0(c− a)0(c+ a− 1)

.

This leads to the following result.

Theorem 3.1. Let a, b, c ∈ R be such that c > 1. Then

Pq1(x)=
(

2−
40
( 1

2 c
)
0
( 1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
) + 20(c)0(c− 1)

0(c− a)0(c+ a− 1)

)
x2

+

(
40
( 1

2 c
)
0
(1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
) − 0(c)0(c− 1)

0(c− a)0(c+ a− 1)
− 3
)

x + 1.

is a quadratic interpolation of 2 F1[a, 1− a; c; x] in [0, 1].
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Figure 2. The quadratic interpolation of 2 F1[0.9, 0.1; 1.5; x] at
0, 0.5, and 1.

Remark 3.2. It is evident that when a = 0, 1, then Pq1(x)= 2 F1[a, 1−a; c; x] = 1
for all x ∈ [0, 1] and for all c > 1. Moreover, for all c > 1, we have the following
three natural observations:

(i) If −1< a < 0, then Pq1(x) and 2 F1[a, 1− a; c; x] decrease together in [0, 1].

(ii) If 0< a < 1, then Pq1(x) and 2 F1[a, 1− a; c; x] increase together in [0, 1].

(iii) If 1< a < 2, then Pq1(x) and 2 F1[a, 1− a; c; x] decrease together in [0, 1].

Indeed, these follow from derivative test. More observations are stated later while
estimating the error (see Remark 3.10).

An interpolating polynomial Pq1(x) of 2 F1[a, 1− a; c; x] for certain choices of
parameters a and c is as shown in Figure 2.

Remark 3.3. Note that in Theorem 3.1, the parameter c cannot be chosen such that
c≤ 1

2(a+b+1) since the choice b= 1−a results in c≤ 1, which is a contradiction
to the assumption that c> 1. In particular, c 6= 1

2(a+b+1) in Theorem 3.1, which
is the negation of a constraint that will be considered in the next subsection.

Quadratic interpolation on 2 F1
[
a, b; 1

2(a + b+ 1); x
]
. In this section, f (x) =

2 F1[a, b; c; x], c= 1
2(a+ b+ 1), is first interpolated using the following quadratic

transformation obtained from [Andrews et al. 1999, (3.1.3)]; see also [Rainville
1960, Theorem 2.5].

Lemma 3.4. If 1
2(a+b+1) is a positive integer, and if |x |< 1 and |4x(1−x)|< 1,

then

2 F1
[
a, b; 1

2(a+ b+ 1); x
]
= 2 F1

[ 1
2a, 1

2 b; 1
2(a+ b+ 1); 4x(1− x)

]
. (3-3)

If we choose x = 0.5 then the right-hand side of (3-3) computes the asymptotic
behavior of the hypergeometric function at 1. Hence the functional value at x = 0.5
of the function f (x)= 2 F1

[
a, b; 1

2(a+ b+ 1); x
]

can be obtained with the help of
(1-1). Due to Lemma 3.4 and (1-1), in this case, the constraints on the parameters
are computed as
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• a+ b < 1;

• a+ b 6= −(2n+ 1) for n ∈ N∪ {0}.

One can easily obtain that

f (x0)= 2 F1
[
a,b; 1

2(a+b+1);0
]
=1;

f (x1)= 2 F1
[
a,b; 1

2(a+b+1); 1
2

]
=

√
π 0

(1
2(a+b+1)

)
0
( 1

2(a+1)
)
0
( 1

2(b+1)
) ,

f (x2)= 2 F1
[
a,b; 1

2(a+b+1);1
]
=
0
( 1

2(1−a−b)
)
0
( 1

2(a+b+1)
)

0
( 1

2(a+1−b)
)
0
( 1

2(b+1−a)
)= cos

(
π
2 (b−a)

)
cos
(
π
2 (b+a)

) ,
where f (x2) is obtained by the well-known Euler’s reflection formula (in nonintegral
variable x)

0(x)0(1− x)=
π

sin(πx)
.

This leads to the additional constraints on the parameters

a+ b 6= 1± 2n and a− b 6= −1± 2n, n ∈ Z or

a+ b 6= −1± 2n and a− b 6= 1± 2n, n ∈ Z.
(3-4)

(These constraints may be relaxed when one does not use Euler’s reflection formula!)
Thus, the first quadratic interpolation of f (x) = 2 F1

[
a, b; 1

2(a + b + 1); x
]

becomes

Pq2(x)= f (x0)L0(x)+ f (x1)L1(x)+ f (x2)L2(x)

= (2x2
− 3x + 1)+ (−4x2

+ 4x)
√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
( 1

2(b+ 1)
)

+ (2x2
− x)

cos
(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) .
This leads to the following result.

Theorem 3.5. Let a, b ∈ R and n ∈ N∪ {0} be such that a+ b 6= −(2n+ 1) and
a+ b < 1. If either a+ b 6= 1± 2n and a− b 6= −1± 2n, or a+ b 6= −1± 2n and
a− b 6= 1± 2n hold, then

Pq2(x)=

(
2−

4
√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
(1

2(b+ 1)
) + 2 cos

(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) )x2

+

(
4
√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
( 1

2(b+ 1)
) − cos

(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) − 3

)
x + 1

is a quadratic interpolation of 2 F1
[
a, b; 1

2(a+ b+ 1); x
]

in [0, 1].
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Secondly, we discuss quadratic interpolation of the same function 2 F1[a, b; c; x],
c = 1

2(a+ b+ 1), in [0, 1], but using a different hypergeometric identity. Finally,
we observe that both the interpolations are same except at a minor difference in
one of the constraints.

Recall the transformation formula [Rainville 1960, Theorem 20, p. 60]:

Lemma 3.6. If |x |< 1 and |x/(1− x)|< 1, then we have

2 F1[a, b; c; x] = (1− x)−a
2 F1

[
a, c− b; c;

−x
1− x

]
.

Note that −x/(1− x) = −1 for x = 0.5. This suggests that to find the value
f (0.5)= 2a

2 F1[a, c− b; c;−1] we can use the following identity [Rainville 1960,
Theorem 26, p. 68]; see also [Beals and Wong 2010].

Lemma 3.7. Let a′, b′ ∈ R. If 1+ a′− b′ 6= {0,−1,−2,−3, . . .} and b′ < 1, then
we have

2 F1[a′, b′; a′− b′+ 1;−1] =
0(a′− b′+ 1)0

( 1
2a′+ 1

)
0(a′+ 1)0

( 1
2a′− b′+ 1

) .
Comparison of the parameters a′ = a, b′ = c− b and a′− b′+ 1= c leads to

2 F1[a, c− b; c;−1] =
0(a− c+ b+ 1)0

( 1
2a+ 1

)
0(a+ 1)0

(1
2a− c+ b+ 1

) (3-5)

with the constraints

• 2c = a+ b+ 1;

• c 6= {0,−1,−2,−3, . . .} ⇐⇒ a+ b 6= −(2n+ 1), n ∈ N∪ {0};

• c− b < 1⇐⇒ a− b < 1.

Under these conditions, (3-5) leads to

f (x1)= f (0.5)= 2 F1
[
a, b; 1

2(a+ b+ 1); 1
2

]
= 2a0

( 1
2(a+ b+ 1)

)
0
(1

2a+ 1
)

0(a+ 1)0
( 1

2(b+ 1)
)

=
2a−1 0

( 1
2(a+ b+ 1)

)
0
(1

2a
)

0(a) 0
( 1

2(b+ 1)
) =

√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
(1

2(b+ 1)
) ,

where the last equality holds by (3-2). Also as discussed at the beginning of this
subsection, we have

f (x0)= f (0)= 2 F1
[
a, b; 1

2(a+ b+ 1); 0
]
= 1,

f (x2)= f (1)= 2 F1
[
a, b; 1

2(a+ b+ 1); 1
]
=

cos
(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) , a+ b < 1,

with additional constraints obtained in (3-4) (here also (3-4) may be relaxed!).
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Figure 3. The quadratic interpolation of 2 F1[0.1, 0.3; 0.7; x] at 0,
0.5, and 1.

Thus, the second quadratic interpolation of f (x) = 2 F1
[
a, b; 1

2(a+ b+ 1); x
]

remains same as the first quadratic interpolation obtained in Theorem 3.5 but with an
additional constraint a−b< 1. This shows that the quadratic interpolation obtained
by Theorem 3.5 is stronger than what was discussed so far using Lemmas 3.6 and 3.7.
A quadratic interpolation of 2 F1

[
a, b; 1

2(a+ b+ 1); x
]

is shown in Figure 3.

Error estimates. The error estimate in quadratic interpolation of 2 F1[a, b; c; x]
interpolating at 0, 0.5, 1 in [0, 1] is formulated as below:

Lemma 3.8. Let Pq(x) be a quadratic interpolation of f (x) = 2 F1[a, b; c; x]
interpolating at 0, 0.5, 1 in [0, 1]. If a, b, c ∈ (−3,∞) with c− a− b > 3, then the
deviation of f (x) from Pq(x) is estimated by

|Eq( f, x)| = | f (x)− Pq(x)|

≤
1
6 M

∣∣a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)
∣∣ 0(c)0(c− a− b− 3)
0(c− a)0(c− b)

for all values of x ∈ [0, 1], where M is defined by

M :=

{
1

12(3−
√

3)
(
−1+ 1

6(3−
√

3)
)(
−1+ 1

3(3−
√

3)
)
, x < 1

2 ,

−
1

12(3+
√

3)
(
−1+ 1

6(3+
√

3)
)(
−1+ 1

3(3+
√

3)
)
, x > 1

2 .
(3-6)

Proof. We need to estimate

max
0≤x≤1

1
6

∣∣x(x − 0.5)(x − 1)
∣∣ max

0≤x≤1
| f ′′′(x)|,

where f (x)= 2 F1[a, b; c; x]. Note that

max
0≤x≤1

|x(x − 0.5)(x − 1)| = M (≈ 0.0481125 . . . )

by (3-6). We apply the well known derivative formula (2-1) to maximize | f ′′′(x)|,
0≤ x ≤ 1. The proof follows from (1-1), Lemma 1.1, (2-1), and the fact that

0(x + 1)= x0(x). �
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The following result is an immediate consequence of Lemma 3.8 which estimates
the difference Eq1( f, x)= 2 F1[a, 1− a; c; x] − Pq1(x) in [0, 1].

Corollary 3.9. Let a, c ∈R be such that −3< a < 4 and c> 4. Then the deviation
of 2 F1[a, 1− a; c; x] from Pq1(x) is estimated by

|Eq1( f, x)| = | f (x)− Pq1(x)|

≤
1
6 M

∣∣a(a+ 1)(a+ 2)(1− a)(2− a)(3− a)
∣∣ 0(c)0(c− 4)
0(c− a)0(c+ a− 1)

for all values of x ∈ [0, 1], where M is obtained by (3-6).

Remark 3.10. It follows from Corollary 3.9 that there is no error for any of the
choices a =−2,−1, 0, 1, 2, 3. In other words, for any of these choices, Eq1( f, x)
vanishes.

Similarly, as a consequence of Lemma 3.8, we obtain:

Corollary 3.11. Let a, b ∈ R be such that −7< a+ b <−5. Then the deviation of
2 F1

[
a, b; 1

2(a+ b+ 1); x
]

from Pq2(x) is estimated by

|Eq2( f, x)| = | f (x)−Pq2(x)|

≤
1
6 M

∣∣a(a+1)(a+2)b(b+1)(b+2)
∣∣ 0(1

2(a+b+1)
)
0
( 1

2(−a−b−5)
)

0
( 1

2(b−a+1)
)
0
( 1

2(a−b+1)
)

for all values of x ∈ [0, 1], where M is obtained by (3-6).

Remark 3.12. It follows from Corollary 3.11 that since Eq2( f, x) vanishes for the
choices a =−2,−1, 0 and b=−2,−1, 0, there is no error for these choices of the
parameters a and b.

Now we describe a slightly deeper analysis on the error obtained in Corollary 3.9
through the following lemma, which is a consequence of Lemma 1.2. A similar
analysis can be described for Corollary 3.11.

Lemma 3.13. Let a, c ∈ R be such that c > 4. If either 1< a < 4 or −3< a < 0
holds, then the quotient

0(c)0(c− 4)
0(c− a)0(c+ a− 1)

decreases when c increases.

Proof. We use Lemma 1.2. Since c− a > c− 4> 0, on one hand we have

0′(c− 4)
0(c− 4)

−
0′(c− a)
0(c− a)

< 0.

On the other hand, since c < c+ a− 1, we have

0′(c)
0(c)

−
0′(c+ a− 1)
0(c+ a− 1)

< 0.
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Thus, if

g(c)=
0(c)0(c− 4)

0(c− a)0(c+ a− 1)
,

it follows that

g′(c)
g(c)

=
0′(c)
0(c)

+
0′(c− 4)
0(c− 4)

−
0′(c− a)
0(c− a)

−
0′(c+ a− 1)
0(c+ a− 1)

=

(
0′(c− 4)
0(c− 4)

−
0′(c− a)
0(c− a)

)
+

(
0′(c)
0(c)

−
0′(c+ a− 1)
0(c+ a− 1)

)
< 0.

By the definition of the gamma function, obviously, one can see that 0(x) > 0 for
x > 0. This shows that g(c) > 0 and hence g′(c) < 0. Thus, g(c) decreases for
1< a < 4< c.

For c > 4, if −3< a < 0 holds then we consider the rearrangement

g′(c)
g(c)

=

(
0′(c)
0(c)

−
0′(c− a)
0(c− a)

)
+

(
0′(c− 4)
0(c− 4)

−
0′(c+ a− 1)
0(c+ a− 1)

)
and show that g′(c)/g(c) < 0. �

Using Mathematica or other similar tools, one can see that Lemma 3.13 even
holds true for the remaining range 0≤ a≤ 1. This suggests the following conjecture.

Conjecture 3.14. Let a, c ∈ R be such that 0≤ a ≤ 1 and c > 4. Then the quotient

0(c)0(c− 4)
0(c− a)0(c+ a− 1)

decreases when c increases.

Thus, we observe that when c > 4 increases then the error Eq1( f, x) estimated
in Corollary 3.9 decreases (see also Figures 4 and 5).

Figures 4 and 5 describe the quadratic interpolation of the hypergeometric
functions 2 F1[a, 1− a, c, x] at 0, 0.5 and 1, whereas Tables 2 and 3 compare the
values of the hypergeometric function up to four decimal places with its interpolating

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The error estimate Eq1( f, x) when a = 3.9 and c
increases from 4.5 to 6.5.
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1.005

1.010

1.015

1.020

1.025

1.030
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1.005
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Figure 5. The error estimate Eq1( f, x) when a = 0.9 and c
increases from 4.1 to 6.1.

nodes xi 0 0.25 0.5 0.75 1

actual values 1 0.5372 0.2516 0.0998 0.0367
2 F1[3.9,−2.9;5; xi ]

polynomial approx. 1 0.5591 0.2516 0.0775 0.0367by Pq1(xi )

validity of error bounds 0 0.0219< 0.0274 0 0.0223< 0.0274 0by Eq1( f, xi )

actual values 1 0.6027 0.3358 0.1724 0.0845
2 F1[3.9,−2.9;6; xi ]

polynomial approx. 1 0.6163 0.3358 0.1585 0.0845by Pq1(xi )

validity of error bounds 0 0.0136< 0.0158 0 0.0139< 0.0158 0by Eq1( f, xi )

Table 2. Comparison of the functional and quadratic polynomial values.

nodes xi 0 0.25 0.5 0.75 1

actual values 1 1.0047 1.0099 1.0158 1.0227
2 F1[0.9,0.1;5; xi ]

polynomial approx. 1 1.0046 1.0099 1.0160 1.0227
by Pq1(xi )

validity of error bounds 0 0.0001< 0.0016 0 0.0002< 0.0016 0by Eq1( f, xi )

actual values 1 1.0039 1.0082 1.0128 1.0182
2 F1[0.9,0.1;6; xi ]

polynomial approx. 1 1.0038 1.0082 1.0129 1.0182by Pq1(xi )

validity of error bounds 0 0.0001< 0.0004 0 0.0001< 0.0004 0by Eq1( f, xi )

Table 3. Comparison of the functional and quadratic polynomial values.
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polynomial values in the interval [0, 1] for the choice of parameters a = 3.9, c = 5
and a = 0.9, c = 6 respectively. Figures 4 and 5 and Tables 2 and 3 also indicate
errors at various points within the unit interval except at the interpolating points at
x = 0, 0.5, 1.

The error estimate |Eq2( f, x)| for the function 2 F1
[
a, b; 1

2(a+b+1); x
]

can be
analyzed in a similar way, and hence we omit the proof.

4. An application

In this section, we briefly consider interpolation of a continued fraction that con-
verges to a quotient of two hypergeometric functions. Gauss used the contiguous
relations to give several ways to write a quotient of two hypergeometric functions
as a continued fraction. For instance, it is well known that

2 F1[a+ 1, b; c+ 1; x]

2 F1[a, b; c; x]
=

1

1+

(a−c)b
c(c+1)

x

1+

(b−c−1)(a+1)
(c+1)(c+2)

x

1+

(a−c−1)(b+1)
(c+2)(c+3)

x

1+

(b−c−2)(a+2)
(c+3)(c+4)

x

1+
. . .

, |x |< 1. (4-1)

On one hand, if we adopt the basic linear interpolation method that we discussed
in Section 2 (that is, linear interpolation directly) to the function

g(x)= 2 F1[a+ 1, b; c+ 1; x]

2 F1[a, b; c; x]

at x0 = 0 and x1 = 1, we obtain the linear interpolation of the above continued
fraction in the form

Rl(x)= g(x0)+
x − x0

x1− x0
(g(x)− g(x0))= 1+

(
b

c− b

)
x, c− b > a,

since g(x0) = 1 and g(x1) = c/(c− b). For the choice a = 1, b = 2, c = 6, this
approximation is also shown in Figure 6.

On the other hand, an application of linear interpolation of 2 F1[a, b; c; x] ob-
tained in Section 2 leads to the following approximation of the above continued
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Figure 6. Approximation of 2 F1[a+1,b;c+1; x]/2 F1[a,b;c; x]
through Rl(x).
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Figure 7. Approximation of 2 F1[a+1,b;c+1; x]/2 F1[a,b;c; x]
through Rr (x).

fraction in terms of ratio of polynomial approximation (we call this rational inter-
polation):

Rr (x)=
1

Pl(x)

(
0(c+1)0(c−a−b)−0(c−a)0(c−b+1)

0(c−a)0(c−b+1)
x+1

)

=

[
c0(c)0(c−a−b)/(c−b)−0(c−a)0(c−b)

]
x+0(c−a)0(c−b)[

0(c)0(c−a−b)−0(c−a)0(c−b)
]
x+0(c−a)0(c−b)

= 1+
b

c−b

[
0(c−a−b)0(c) x[

0(c)0(c−a−b)−0(c−a)0(c−b)
]
x+0(c−a)0(c−b)

]
,

where c−a−b> 0. For the choice a = 1, b= 2, c= 6, this approximation is also
shown in Figure 7.

Observe that

Rr (x0)= 1= Rl(x0) and Rr (x1)=
c

c− b
= Rl(x1)

and hence Rr also interpolates the continued fraction under consideration at 0 and 1.
Further we observe that both the approximations Rl(x) and Rr (x) of the continued
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fraction are easy to obtain and the first approximation, i.e., Rl(x), is in a simpler
form than Rr (x), as expected. Now, it would be interesting to know which one would
give the best approximation to the continued fraction under consideration. With the
special choice a= 1, b= 2, c= 6, we see from Figures 6 and 7 that Rl(x) is a better
approximation than Rr (x). One may ask: does it happen for arbitrary parameters
a, b, c? Since Rl(x)= Rr (x) if and only if 0(c)0(c− a− b)= 0(c− a)0(c− b),
the answer to this question is yes except when 0(c)0(c−a−b)=0(c−a)0(c−b).

This leads to the following result:

Theorem 4.1. Let Rl(x) and Rr (x) be respectively the linear interpolation and the
rational interpolation of the quotient 2 F1[a+ 1, b; c+ 1; x]/2 F1[a, b; c; x] (equiv-
alently, of the continued fraction (4-1)). Then Rl(x) and Rr (x) coincide with each
other if and only if 0(c)0(c− a− b)= 0(c− a)0(c− b) holds for c− a− b > 0.

5. Concluding remarks and future scope

Recall that, in this paper, we use some standard interpolation techniques to approxi-
mate the hypergeometric function

2 F1[a, b; c; x] = 1+
ab
c

x +
a(a+ 1)b(b+ 1)

c(c+ 1)
x2

2!
+ · · ·

for a range of parameter triples (a, b, c) on the interval 0 < x < 1. Some of
the familiar hypergeometric functional identities and asymptotic behavior of the
hypergeometric function at x = 1 played crucial roles in deriving the formula for
such approximations. One can expect similar formulae using other well-known
interpolations and obtain better approximations for the hypergeometric function;
however, we discuss such results in an upcoming manuscript(s). Different numerical
methods for the computation of the confluent and Gauss hypergeometric functions
were studied recently in [Pearson et al. 2017]. Such investigation may be extended to
the q-analog of the hypergeometric functions, namely, Heine’s basic hypergeometric
functions; for instance refer to [Chen and Fu 2011] for similar discussions.

We also focus on error analysis of the numerical approximations leading to
monotone properties of quotients of gamma functions in parameter triples (a, b, c).
Monotone properties of the gamma function and its quotients in different forms are
of recent interest to many researchers; see for instance [Alzer 1993; Anderson and
Qiu 1997; Bustoz and Ismail 1986; Chen and Zhou 2014; Giordano and Laforgia
2001; Gautschi 1959; Luo et al. 2017; Mortici and Dumitrescu 2017]. In this paper,
we also studied and stated a conjecture (see Conjecture 3.14) related to monotone
properties of quotients of gamma functions to analyze the error estimate of the
numerical approximations under consideration.
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Finally, an application to continued fractions of Gauss is also discussed. Ap-
proximations of continued fractions in different forms are also attractive to many
researchers; see [Lu et al. 2017; 2016].
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