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While the use of finite element methods for the numerical approximation of eigen-
values is a well-studied problem, the use of serendipity elements for this purpose
has received little attention in the literature. We show by numerical experiments
that serendipity elements, which are defined on a square reference geometry, can
attain the same order of accuracy as their tensor product counterparts while using
dramatically fewer degrees of freedom. In some cases, the serendipity method
uses only 50% as many basis functions as the tensor product method while still
producing the same numerical approximation of an eigenvalue. To encourage the
further use and study of serendipity elements, we provide a table of serendipity
basis functions for low-order cases and a Mathematica file that can be used to
generate the basis functions for higher-order cases.

1. Introduction

Computational approximation of eigenvalues is a topic of ongoing interest across
a broad spectrum of the applied mathematics community, due in part to the wide
variety of application areas where it is required. In this work, we compare two
finite element methods for the computation of eigenvalues of the Laplacian: tensor
product and serendipity. While tensor product finite element methods have been
used for decades to compute eigenvalues, the lesser known serendipity elements
have been employed rarely, if ever, in this context, despite the fact that they are
expected to require fewer computations to achieve the same order of accuracy.

The potential benefits of a serendipity element eigenvalue solver are obvious
from a rough estimate of the degrees of freedom required for a method with O(h p)

error decay. Here, h indicates the maximum diameter of an affinely mapped square
mesh element and p≥ 1 indicates the maximum exponent of any variable appearing
in a basis for the element. The tensor-product finite element method for H 1-
conforming problems in Rn uses (p+ 1)n basis functions per element, while the
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serendipity method uses roughly pn/n! for large p. Thus, for domains in R2, an
O(h p) serendipity method has about 50% of the number of basis functions as its
tensor product counterpart, while for domains in R3, an O(h p) serendipity method
has only 17% of the number of basis functions as a tensor product method. As we
show by numerical evidence, these computational savings are not restricted to an
asymptotic regime but can be realized even in domains in R2 and for values p ≤ 6.

The body of prior work studying finite element methods for eigenvalue approx-
imation dates back to the 1970s [Hackbusch 1979] and is quite large due to the
many options available when designing finite element schemes and the many kinds
of inquiries that could be made. An excellent survey of the research in this area was
given by Boffi [2010]. While many works are concerned with approximation of
the spectrum of the Laplacian (e.g., concerns about pollution and completeness of
the computed spectrum), here we focus on the accurate computation of individual
eigenvalues to a high order of accuracy with the goal of minimizing the number
of global degrees of freedom. A similar kind of study by Wang, Monk, and
Szabó [Wang et al. 1996] compared h- and p-refinement schemes on tetrahedra
for computing resonant modes in a cavity using tetrahedral elements. This work
focuses on square elements, which offer greater ability to reduce the number of
global degrees of freedom than simplicial elements.

In this paper, we carry out a series of numerical experiments to compare the
accuracy of serendipity and tensor product finite element methods in the context of
eigenvalue computation. We compare square and L-shaped domains, Dirichlet and
Neumann boundary conditions, and h- and p-refinement strategies. To ensure a fair
comparison, we implement basis functions for both tensor product and serendipity
elements using the construction process described in the work of Floater and Gillette
[2017], which uses interpolation conditions based on partial derivative data at edge
and cell midpoints. To the best of our knowledge, this is the first time such functions
have been tested numerically.

Our results show that a p-refinement strategy with serendipity elements is prefer-
able to the same strategy with tensor product elements in a variety of domain and
boundary condition scenarios. In particular, we find many specific instances where
the serendipity elements achieve the same order of accuracy as the corresponding
tensor product element with only 50% the number of degrees of freedom. The
results also show that an h-refinement strategy does not always favor serendipity
elements, meaning application context is essential when deciding between the use
of tensor product and serendipity elements.

The remainder of the paper is organized as follows. In Section 2, we review the
eigenvalue problem for the Laplace equation with Neumann and Dirichlet boundary
conditions, as well as the derivation of a Galerkin finite element method. Following
this is a discussion of the two families of finite elements studied in this paper:
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tensor product and serendipity. In Section 3, we state interpolation conditions that
involve both values and derivative values and compute the basis functions for both
the tensor product and the serendipity finite elements. We also discuss the relevant
components for implementation via Mathematica and MATLAB. In Section 4, we
provide a description of our results and a discussion of the comparison between
the tensor product and serendipity elements. This includes comparisons of the
aforementioned scenarios. In Section 5, we summarize our conclusions and give
some directions for future research. Finally, in the Appendix, we give tables of the
serendipity basis functions that we use and provide a link to a Mathematica code
that can be used for further studies.

2. Finite element methods for eigenvalue problems

Our focus in this work is the scalar-valued Laplace eigenvalue problem. With
Dirichlet boundary conditions, the problem is to find λ∈R and u ∈ H 2(�) such that{

−1u = λu in �,
u = 0 on ∂�.

(1)

With Neumann boundary conditions, the problem is to find λ ∈ R and u ∈ H 2(�)

such that {
−1u = λu in �,
du/dn= 0 on ∂�,

(2)

where n is the unit vector normal to the boundary of �.
We consider two subsets of R2 for the domain �: the unit square [0, 1]2 and

the L-shaped domain, [0, 2]2− (1, 2]2. On [0, 1]2, the eigenvalues for the Dirichlet
problem (1) are

(m2
+ n2)π2 for m, n ∈ {1, 2, . . .} and �= [0, 1]2.

For the Neumann problem (2) on [0, 1]2, the eigenvalues are

(m2
+ n2)π2 for m, n ∈ {0, 1, 2, . . .} and �= [0, 1]2;

the only difference being that m and n are allowed to have value 0. For (m, n) pairs
with m 6= n, the corresponding eigenvalue has multiplicity at least 2, while those
with m = n have multiplicity 1 and are called “simple”.

On the L-shaped domain, Dauge [2003] has given benchmark computations with
at least eight digits of accuracy for the lowest nonzero eigenvalues for the Neumann
problem. The first four of these are

λ(1) = 1.4756218450, λ(2) = 3.5340313683,

λ(3) = 9.8696044011, λ(4) = 11.389479398.
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Note that λ(3) = 2π2, which is also an eigenvalue for the Dirchlet problem. In our
experiments, we look at approximating 2π2 for each kind of boundary condition,
as well as the approximation of λ(1) for the Neumann case.

Discretization of (1) for numerical approximation begins with the weak form
of (1). Set V := H 1

0 (�) and find λ ∈ R and u ∈ V , u 6= 0, such that∫
�

∇u · ∇v = λ
∫
�

uv for all v ∈ V. (3)

A Galerkin finite element method seeks a solution to (3) that holds over a finite-
dimensional subspace Vh,p ⊂ V : find λh,p ∈R and uh,p ∈ Vh,p, uh,p 6= 0, such that∫

�

∇uh,p · ∇vh,p = λh,p

∫
�

uh,p vh,p for all vh,p ∈ Vh,p. (4)

The dimension of Vh,p is determined by the type of element used (tensor product
or serendipity, in our case) in addition to the parameters h and p. Here, h indicates
the maximum diameter of an element in the mesh and p indicates the maximum
exponent of any variable appearing in the monomial basis for the element. Hence,
as h→ 0 or p→∞, we have dim Vh,p→∞.

We consider two possible choices for Vh,p that are subsets of H 1(�) and are
associated to a partition of � into a mesh of squares. We will follow notational
conventions from the periodic table of the finite elements [Arnold and Logg 2014a;
2014b] to describe the two choices in terms of the local spaces on each square
element. The first choice for a local space is Q−p30(�2), more commonly known as
the tensor product element of order p on a square [Arnold et al. 2015]. This element
has 1 degree of freedom per vertex, (p − 1) degrees of freedom per edge, and
(p−1)2 degrees of freedom associated to the interior, for a total of (p+1)2 degrees
of freedom per square element. The second choice for a local space is Sp3

0(�2),
known as the serendipity element of order p on a square [Arnold and Awanou 2011].
The serendipity element has the same degrees of freedom associated to vertices and
edges of the square, but only 1

2(p− 3)(p− 2) degrees of freedom1 associated to
the interior of the square. It has a total of 1

2(p
2
+ 3p+ 6) degrees of freedom per

element.
In addition to the type of domain � (square or L-shaped), the family of element

(Q− or S), and the order of p selected, the dimension of Vh,p depends on the
maximum diameter of a mesh element. We only consider meshes where all elements
are squares of the same side length h, so that the maximum diameter of a mesh
element is

√
2h. By this convention, if h = 1/N for an integer N ≥ 1, the square

domain will have N 2 elements and the L-shaped domain will have 3N 2 elements.

1For p = 1, there are no interior degrees of freedom; the formula applies for any p ≥ 2.
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By counting the total number of vertices, edges, and elements in the mesh, we have
the formula

dim Vh,p = (# vertices)+ (p− 1) · (# edges)+
( # DoF

interior

)
· (# elements),

where the number of degrees of freedom (DoF) per interior depends on the choice
of Q− or S, as described above. Note that when Dirichlet boundary conditions are
used, the values of degrees of freedom associated to the boundary of the domain
are set to zero, which decreases the dimension of Vh,p.

The goal of the numerical experiments in this paper is to study the following
question: given a domain, a set of boundary conditions, a rough guess for an
eigenvalue λ, an h-refinement or p-refinement strategy, and a desire to attain a
precise estimate of λ while avoiding fruitless growth in dim Vh,p, is it better to use
Q− or S elements? Since the Sp3

0 and Q−p30 elements each contain polynomials
of total degree at most p and dimSp3

0 < dimQ−p30 for p ≥ 2, we might expect
that the serendipity elements would be preferable in every case. On the other hand,
perhaps the “extra” approximation power afforded by the larger basis in the tensor
product element provides better eigenvalue estimation overall. To make a fair
comparison, we implement serendipity and tensor product elements by the same
methodology, and then report their results when used in a series of computational
experiments.

3. Implementation of serendipity elements

Here, for the first time, we compute and employ the basis functions for Sp3
0(�2)

with Hermite-like interpolation conditions at edge midpoints, as described in [Floater
and Gillette 2017]. We review the degrees of freedom for these elements here and
explain how the process outlined in that paper was used to derive the basis functions
employed in our numerical experiments.

Serendipity degrees of freedom. The term “serendipity element” has appeared in
various mathematical and engineering texts since the 1970s [Brenner and Scott 1994;
Ciarlet 1978; Hughes 1987; Mandel 1990; Szabó and Babuška 1991; Strang and Fix
1973], referring to the fact that these elements seemed to achieve O(h p) accuracy
with fewer degrees of freedom than their tensor product counterparts. Arnold and
Awanou [2011] provided degrees of freedom in the classical finite element sense
for the H 1-conforming version of these spaces: for a d-dimensional face �d of an
n-cube �n , the order-p serendipity degrees of freedom for a scalar function u are

u 7→
∫
�d

uq for all q ∈ Pp−2d(�d), (5)
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where Pp−2d(�d) denotes the space of polynomials in n variables of degree≤ p−2d
on face �d . For n= 2 and p≥ 2, the space of polynomials associated to the degrees
of freedom (5) is denoted by Sp3

0(�2) and given by

Sp3
0(�2)= Pp(�2)⊕ span{x p y, xy p

}. (6)

It is shown in [Arnold and Awanou 2011] that the degrees of freedom (5) are
unisolvent for (6), but a consideration of how to construct suitable basis functions
for the implementation of these elements in applications was not provided.

Basis functions for serendipity elements. We use a procedure outlined by Floater
and Gillette [2017] to construct basis functions for the Sp3

0(�2) element. To the
best of our knowledge, these functions have not been constructed explicitly or used
in numerical experiments previously. The procedure is also used to construct bases
for the Q−p30(�2) element.

Given p ≥ 1, we first we define a set of p+1 functions over [−1, 1], denoted by

8p[x] := {φ1(x), . . . , φp+1(x)}.

Let D denote the endpoints and midpoint of [−1, 1], i.e., D = {−1, 0, 1}, and
denote the Kronecker delta function by

δi ( j)=
{

0 if i 6= j,
1 if i = j.

Define 81[x] := {(1− x)/2, (1+ x)/2}. For p ≥ 2, fix the interpolation properties2

φ1(x0)= δ−1(x0) ∀x0 ∈ D, (7)

φ2(x0)= δ0(x0) ∀x0 ∈ D, (8)

φp+1(x0)= δ1(x0) ∀x0 ∈ D, (9)

φ
(k)
i (0)= 0 ∀i ∈ {1, 2, p+ 1}, ∀k ∈ {1, . . . , p− 2}, (10)

φi (x0)= 0 ∀x0 ∈ D, ∀i ∈ {3, . . . , p}, (11)

φ
(i−2)
i (0)= 1 ∀i ∈ {3, . . . , p}, (12)

φ
(k)
i (0)= 0 ∀i ∈ {3, . . . , p}, ∀k ∈ {1, . . . , i − 3}. (13)

For i = 1 to p + 1, we find the lowest-degree polynomial φi that satisfies the
above constraints. Since there are at most p+ 1 constraints for each i , this process
uniquely defines a set of p+ 1 polynomials, each of degree at most p. Moreover,
φ1, φ2, and φp+1 are the only functions in the set that have nonzero values at −1,
0, and 1, respectively, while the functions φ3 through φp have linearly independent

2If a set of indices on the right is empty, the property should be treated as vacuous.
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p φ1(x) φ2(x) φ3(x) φ4(x) φ5(x), φ6(x)

1 −
1
2 (x−1) 1

2 (x+1)
2 1

2 (x−1)x 1−x2 1
2 x(x+1)

3 −
1
2 (x−1)x2 1−x2 x−x3 1

2 x2(x+1)
4 1

2 (x−1)x3 1−x4 x−x3
−

1
2 (x−1)x2(x+1) 1

2 x3(x+1)
5 −

1
2 (x−1)x4 1−x4 x−x5

−
1
2 (x−1)x2(x+1) − 1

6 (x−1)x3(x+1), 1
2 x4(x+1)

Table 1. Basis functions for 8p[x] with 1≤ p≤ 5.

constraints on their derivatives at 0. Thus, for each p ≥ 1, 8p[x] is a basis for
Pp([−1, 1]). The sets 81[x], . . . , 85[x] are listed explicitly in Table 1.

By taking tensor products of the 8p[x] sets, we can build out bases for tensor
product and serendipity spaces over [−1, 1]n for any n ≥ 1, although we consider
only n = 2 here. We fix the notation

8pq := {φi (x)φj (y) : φi (x) ∈8p[x], φj (y) ∈8q [y]},

where p and q need not be distinct. A basis for the tensor product space Q−p30(�2)

can be computed immediately as

basis for Q−p3
0(�2)=8pp.

A basis for the serendipity space Sp3
0(�2) is more involved to describe but only

slightly more difficult to compute. First, an addition operation on sets of the
type 8pq is defined as follows. To build the set 8pq+8rs , let M =max{p, q, r, s}
and build a square array of indices {1, . . . ,M+1}×{1, . . . ,M+1}. Associate the
function φi (x)φj (y) ∈8pq to index {k, `} according to the rule

φi (x)φj (y) 7→


{M + 1, j} if i = p+ 1, j < q + 1,

{i,M + 1} if i < p+ 1, j = q + 1,

{M + 1,M + 1} if i = p+ 1, j = q + 1,

{i, j} otherwise.

Associate the function φi (x)φj (y)∈8rs to indices according to the same rule, replac-
ing p by r and q by s. Initialize Apq,M as an (M+1)×(M+1) array of zeros, then
place the functions from8pq into Apq,M according to their index assignment. Define
Ars,M analogously, using functions from 8rs . The set 8pq +8rs is then defined to
be the set of nonzero entries of Apq,M+Ars,M . In practice, this reindexing and sum-
mation procedure is carried out by inserting rows or columns of zeros at appropriate
places into the arrays storing 8pq and 8rs and then adding the arrays together.
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A basis for Sp3
0(�2) can then be written as a linear combination of this addition

operation on some 8rs sets. For p= 1 through p= 6, these linear combinations are

S13
0(�2) basis=811, (14)

S23
0(�2) basis=821+812−811, (15)

S33
0(�2) basis=831+813−811, (16)

S43
0(�2) basis=841+814+822−(821+812), (17)

S53
0(�2) basis=851+815+832+823−(831+813+822), (18)

S63
0(�2) basis=861+816+842+824+833−(841+814+823+832). (19)

The derivation of these linear combinations is given in [Floater and Gillette 2017,
§5] using different notation. The techniques in that paper can produce bases in this
way for Sp3

0(�n) for any p ≥ 1 and n ≥ 1. As an example, in the Appendix, we
provide the two-dimensional serendipity basis functions for p = 1 to 4.

Implementation via Mathematica and MATLAB. We use Mathematica to com-
pute the bases for Q−p30(�2) and Sp3

0(�2) according to the procedure just de-
scribed and the process of basis generation is summarized below. The Mathematica
function InterpolatingPolynomial is used to produce the sets 8p[x] based on
conditions (7)–(13). For example, φ3(x) ∈83[x] should satisfy

φ3(−1)= φ3(0)= φ3(1)= 0,

as well as φ′3(0)= 1. The unique cubic polynomial satisfying these constraints is
computed by the command

InterpolatingPolynomial[{{-1, 0}, {0, 0, 1}, {1, 0}}, x].

We define a function interpolatingList[p] that creates the required inputs
to InterpolatingPolynomial for each φi ∈ 8p[x]. We also define a function
genTable2D[p,q,M] that builds the array Apq,M . Bases for Sp3

0(�2) are con-
structed by simplifying linear combinations of appropriate genTable2D[r,s,M]
arrays according to (14)–(19); the value of M is set to p for each term in the combina-
tion so that the output is a (p+1)×(p+1) array with exactly dimSp3

0(�2) nonzero
entries. The basis for Q−p30(�2) is built by the command genTable2D[p,p,p],
which generates a (p+ 1)× (p+ 1) array with all entries nonzero.

Once the basis functions are created, we pass them to a finite element solver in
MATLAB in order to compute approximate eigenvalues. The resulting finite element
problem is given by

λMv = Lv,
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where M is the mass matrix and L is the stiffness matrix with

M = [Mi, j ] such that Mi, j =

∫
�

ψiψj dA,

L = [L i, j ] such that L i, j =

∫
�

〈∇ψi ,∇ψj 〉 dA,

where ψi , ψj range over a basis for Q−p30(�2) or S−p 30(�2). The finite element
solver takes a local approach, making use of the basis functions defined over a
reference element as above (specifically [−1, 1]2). By calculating the desired
entries of the mass and stiffness matrices over the reference element, scaling, and
assembling on the global square or L-shaped domain, we produce global mass and
stiffness matrices.

Furthermore, in the derivation of the variational form of the problem, the imposi-
tion of the Neumann conditions is encoded by the vanishing of any integrals over
the boundary of the domain. To impose the Dirichlet conditions, it is necessary
to manipulate the equations in the discrete problem that solve for the coefficients
corresponding to boundary nodes. Traditionally, this is realized by setting each of
the coefficients corresponding to value interpolating nodes on the boundary equal
to zero. As the tensor product and serendipity basis functions that we use include
interpolation of some partial derivative values along the boundary, we also set to
zero the coefficients of the basis functions corresponding to those conditions.

4. Numerical experiments and results

Our numerical experiments are characterized by four choices: domain (square
or L-shaped), boundary conditions (Dirichlet or Neumann), eigenvalue λ being
approximated, and refinement strategy (p-refine with h fixed or h-refine with p
fixed). For each choice, we report the error in the numerical approximation of
λ as a function of the number of global degrees of freedom, i.e., the dimension
of Vh,p. Two data series are generated in this fashion: one for tensor product
elements and one for serendipity elements, using p = 1 through 6 for a fixed h
value (p-refinement), or for h = 1, 1

2 , . . . ,
1
5 for a fixed p value (h-refinement). The

results of these experiments are shown in Figures 1–10.

Square domain. Our first comparison of the tensor product and serendipity ele-
ments is on a square domain with Neumann boundary conditions. Figure 1 shows
the error in approximating the eigenvalue 2π2 when we fix h and allow p to vary.
Ignoring for now the outlier corresponding to one of the tensor product solutions,
we see that in nearly every case, using serendipity elements can match the accuracy
of the eigenvalue obtained by tensor product elements with much fewer degrees of
freedom. For example, in Figure 1, h= 1

4 , we see that we can obtain an approximate
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Figure 1. Square domain, Neumann conditions, λ = 2π2,
p-refinement experiments.

eigenvalue which differs by about 10−6 from the theoretical using both serendipity
and tensor elements. However, when using the serendipity elements, we see a
reduction in the number of degrees of freedom by approximately half compared to
the tensor product element.

We see similar behavior in the Dirichlet problem, depicted in Figure 2, with the
obvious difference of an overall reduction in the number of degrees of freedom.
Note that since we remove the degrees of freedom corresponding to the boundary,
not discretizing the mesh at all (i.e., when h= 1) results in having too few equations
to properly solve for a nonzero eigenvalue for small p.

When we consider the Neumann problem with p fixed and h varied, we see the
results depicted in Figure 3. In contrast to the previously discussed results, we see
that, in nearly every case, the tensor product elements achieve better accuracy than
serendipity while using fewer degrees of freedom. The only exception is when
p = 4, also depicted in Figure 3. Here, we note a large increase in error when
using tensor product elements. This effect can be seen in nearly every plot for
h-refinements and accounts for the large jumps in the tensor product results where
h is fixed. The reason for this error was undetermined in our experiments, but will
be revisited when the L-shaped results are discussed. We see the same behavior
for the Dirichlet problem in Figure 4. In results not displayed here, we analyze p-
and h-refinements in approximating the nonsimple Neumann eigenvalue 5π2. The
results are qualitatively similar to the previously discussed results.

We also note strange behavior when using elements of order 5 and 6. Exhibited
in the Neumann case on the square in Figure 3, p = 5 and p = 6, we see that as we
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Figure 2. Square domain, Dirichlet conditions, λ = 2π2,
p-refinement experiments.
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Figure 3. Square domain, Neumann conditions, λ = 2π2,
h-refinement experiments.

refine our mesh further, the error increases. The error sometimes increases higher
than lower-order elements solving the same problem, as seen in many of the plots
when h is fixed; the trend in error seems to “flair up” towards the end. The reason
for this behavior is likely due to numerical roundoff errors.

L-shaped domain. On the L-shaped domain, we see in Figures 5–8 nearly the same
patterns described above when approximating the eigenvalue 2π2. We note that
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Figure 4. Square domain, Dirichlet conditions, λ = 2π2,
h-refinement experiments.
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Figure 5. L-shaped domain, Neumann conditions, λ = 2π2,
p-refinement experiments.

when h is fixed, the savings achieved by serendipity elements is increased even
further. For example, with Neumann boundary conditions and h = 1

4 (Figure 5), for
the p = 5 case, both the serendipity and tensor product elements exhibit an error of
about 10−6. The number of degrees of freedom used in the serendipity case however
is less than half of that of the tensor case. With Dirichlet boundary conditions as
seen in Figure 6, h = 1

4 , this savings is further increased, with serendipity elements
using nearly a third of the degrees of freedom used by tensor product elements.
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Figure 6. L-shaped domain, Dirichlet conditions, λ = 2π2,
p-refinement experiments.
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Figure 7. L-shaped domain, Neumann conditions, λ = 2π2,
h-refinement experiments.

In addition to the plots described above, we have also added plots depicting the
results of approximating the Neumann eigenvalue numerically approximated as
1.4756218450. Figure 9 and Figure 10 show that these results mostly correspond
to the previously exhibited behavior with the exception that in Figure 9, the tensor
product elements also achieve better approximations when refining p. We also note
that in Figure 10, p = 4, the order-4 tensor product elements have a large decrease
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Figure 8. L-shaped domain, Dirichlet conditions, λ = 2π2,
h-refinement experiments.
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Figure 9. L-shaped domain, Neumann conditions, λ= 1.4756218450,
p-refinement experiments.

in error. This behavior contrasts the increase we saw when approximating 2π2 with
order-4 tensor product elements over the square and is, again, unexplained.

Spectrum comparison. We also compare the spectrum of eigenvalues that are
computed by the tensor product and serendipity elements on the square versus
the theoretical spectrum. The results are shown in Figure 11. We see that the
eigenvalues calculated by the tensor product and serendipity elements are nearly
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Figure 10. L-shaped domain, Neumann conditions, λ=1.4756218450,
h-refinement experiments.

0 20 40 60 80 100 120
−2000

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Theoretical

Tensor

Serendipity

Figure 11. Spectra for p= 3, h = 1
5 , tensor, and serendipity bases
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the same, and, as expected, as we attempt to approximate larger eigenvalues, the
results become less accurate.

5. Conclusion and future directions

A key takeaway message from our numerical experiments is that when seeking
eigenvalue estimates on a fixed mesh of squares, serendipity elements do appear to
fulfill their promise of producing as accurate a result as tensor product elements, de-
spite having roughly 50% the number of degrees of freedom. Since many application
contexts require a fixed domain mesh, it would be advantageous computationally to
use serendipity elements in such circumstances.
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Various additional experiments are planned. First, there are questions in regards
to differing behavior on the square versus the L-shaped domain, and the Neumann
versus Dirichlet boundary conditions. A study of serendipity elements for the
Poisson equation (i.e., with nonzero boundary conditions) or for more general
eigenvalue problems might help explain our results. A second issue is to resolve the
dramatic aberrations in the results for the case of tensor product basis functions for
the case p = 4. Further investigation into the pattern observed in the convergence
behavior depending on mesh discretization is in progress.

We also plan to investigate the observation that mesh discretization for high
degree polynomial basis functions sometimes results in less accurate approximations.
We suspect that this arises from numerical roundoff errors, as the results became
worse only after reaching a threshold on the order of 10−8.

As discussed in the Mathematica code accompanying this paper, similar con-
structions for serendipity basis functions in three dimensions were also determined.
In future work, we plan to extend the implementation of our finite element solver
to allow for three-dimensional domains, and implement these three-dimensional
serendipity basis functions in order to produce similar analysis and comparisons as
those that we have found for two dimensions.

Appendix: Serendipity basis functions

The following are the serendipity element basis functions in two-dimensions from
order 1 to 4. The basis functions are organized as they are calculated in Mathematica,
i.e., as the sum of reindexed arrays of basis functions as discussed in Section 3.
The Mathematica code that was used to generate these functions is available in the
online supplement:

S13
0(�2) basis=

(
1
4(1− x)(1− y) 1

4(1− x)(y+ 1)
1
4(x + 1)(1− y) 1

4(x + 1)(y+ 1)

)
,

S23
0(�2) basis=−

1
4 (x − 1)(y− 1)(x + y+ 1) 1

2 (x − 1)(y2
− 1) 1

4 (x − 1)(x − y+ 1)(y+ 1)
1
2 (x

2
− 1)(y− 1) 0 −

1
2 (x

2
− 1)(y+ 1)

1
4 (y− 1)(−x2

+ yx + y+ 1) − 1
2 (x + 1)(y2

− 1) 1
4 (x + 1)(y+ 1)(x + y− 1)

 ,
S33

0(�2) basis=
1
4 (x − 1)(y− 1)A3

1
2 (x − 1)(y2

− 1) 1
2 (x − 1)y(y2

− 1) − 1
4 (x − 1)(y+ 1)A3

1
2 (x

2
− 1)(y− 1) 0 0 −

1
2 (x

2
− 1)(y+ 1)

1
2 x(x2

− 1)(y− 1) 0 0 1
2 (x − x3)(y+ 1)

−
1
4 (x + 1)(y− 1)A3 −

1
2 (x + 1)(y2

− 1) 1
2 (x + 1)(y− y3) 1

4 (x + 1)(y+ 1)A3

 ,

http://msp.org/involve/2018/11-4/involve-v11-n4-x08-SerendipityBasisGeneration.nb
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where
A3 = x2

+ y2
− 1;

S43
0(�2) basis=

B11 B12 B13 B14 B15
1
2 (x

2
− 1)(x2

− y)(y− 1) (x2
− 1)(y2

− 1) 0 0 −
1
2 (x

2
− 1)(y+ 1)(x2

+ y)
1
2 x(x2

− 1)(y− 1) 0 0 0 1
2 (x − x3)(y+ 1)

1
4 (x − 1)x2(x + 1)(y− 1) 0 0 0 −

1
4 (x − 1)x2(x + 1)(y+ 1)

B51 B52 B53 B54 B55

 ,

where
B11 =−

1
4(x − 1)(y− 1)(x3

− (y+ 1)x + y(y2
− 1)),

B12 =
1
2(y

2
− 1)(−x2

+ y2x + x − y2),

B13 =
1
2(x − 1)y(y2

− 1),

B14 =
1
4(x − 1)(y− 1)y2(y+ 1),

B15 =
1
4(x − 1)(y+ 1)(x3

+ (y− 1)x − y3
+ y),

B51 =
1
4(x + 1)(y− 1)(−x3

+ yx + x + y3
− y),

B52 =−
1
2(y

2
− 1)(x2

+ y2x + x + y2),

B53 =
1
2(x + 1)(y− y3),

B54 =−
1
4(x + 1)(y− 1)y2(y+ 1),

B55 =
1
4(x + 1)(y+ 1)(x3

+ (y− 1)x + y(y2
− 1)).
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