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Two-sided group digraphs and graphs, introduced by Iradmusa and Praeger,
provide a generalization of Cayley digraphs and graphs in which arcs are deter-
mined by left and right multiplying by elements of two subsets of the group. We
characterize when two-sided group digraphs and graphs are weakly and strongly
connected and count connected components, using both an explicit elementary
perspective and group actions. Our results and examples address four open
problems posed by Iradmusa and Praeger that concern connectedness and valency.
We pose five new open problems.

1. Introduction

Two-sided group digraphs were introduced as a generalization of Cayley digraphs
by Iradmusa and Praeger [2016] and independently in [Anil Kumar 2012]; see
[Iradmusa and Praeger 2016, Remark 1.6]. Given a group G and a subset S of G,
the Cayley digraph Cay(G, S) has the elements of G as vertices and a directed
arc from g to h when gh−1

∈ S. Several authors have generalized this idea by
relaxing the group conditions or the nature of the multiplication; see [Annexstein
et al. 1990; Marušič et al. 1992; Gauyacq 1997; Kelarev and Praeger 2003]. The
two-sided group digraph 2S(G; L , R) also has elements of a group G as vertices,
but two nonempty subsets, L and R, of G are used to define an arc from vertex g to
vertex h in G when h = l−1gr for some l ∈ L and r ∈ R. As with Cayley digraphs,
by definition 2S(G; L , R) does not have multiple arcs between two vertices, even
though it is possible that l−1

1 gr1 = l−1
2 gr2 for l1 6= l2 and r1 6= r2 (see Section 2).

A Cayley digraph is undirected when S = S−1 and the digraph 2S(G; L , R) is
undirected when L−1gR = LgR−1 for all g ∈ G, but we do not assume this.
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It is worth noting that a continuous version of a two-sided group digraph has previ-
ously appeared in the context of Riemannian geometry as the study of biquotients. In-
troduced in [Gromoll and Meyer 1974], biquotients are viewed as the quotient space
of a two-sided Lie group action and have been studied systematically as a source
of manifolds with positive and nonnegative curvature since the work of Eschenburg
[1982; 1984]. We refer to [DeVito 2011] for a broader overview of the topic.

Iradmusa and Praeger explored several properties of two-sided group digraphs
and posed eight open problems. Here we address the first four problems, which
concern valency and connectedness. It would also be of interest to know whether
there exist vertex-transitive two-sided group digraphs that are not isomorphic to
Cayley digraphs since these would have potential applications to routing and com-
munication schemes in interconnection networks. Indeed, the remaining unresolved
questions in [Iradmusa and Praeger 2016] primarily address understanding when two-
sided group digraphs are vertex-transitive and when they are isomorphic to Cayley
digraphs. In addition, we propose five new problems related to our results below.

Our main focus is to generalize [Iradmusa and Praeger 2016, Theorem 1.8], which
gives necessary and sufficient conditions for a two-sided group digraph 2S(G; L , R)
to be connected, assuming that L and R are inverse-closed. Theorem 2.4 solves
Problem 4 in [loc. cit.] by characterizing when 2S(G; L , R) is connected without
the inverse-closed assumption on L and R. Examples 2.5 through 2.8 in Section 2
both illustrate Theorem 2.4 and address Problems 1 and 2 in [loc. cit.] by showing
that it is possible for 2S(G; L , R) to have constant out-valency but not constant
in-valency and to be regular of valency strictly less than |L| · |R|.

In Section 3B, building on results in Section 3A, we use elementary methods
similar to those in our proof of Theorem 2.4 to generalize further. In Theorems 3.13
and 3.16, under the assumption that elements in G can be factored appropriately,
we count weakly and strongly connected components, show such components
must all be of the same size, and characterize their vertices. The result that all
components have the same size addresses Problem 3 of [loc. cit.]. We also show
that the connected components are in fact isomorphic under a condition on the
normalizers of L and R. To illustrate we provide Corollaries 3.15 and 3.17 that give
simple characterizations of weak and strong connectedness and give Example 3.18
in which components are isomorphic and Example 3.19 in which they are not.

In Section 4 we drop the factorization assumptions and note that connected
components are contained within double cosets. Results analogous to those in
Section 3B apply within a given double coset and examples demonstrate that in
different double cosets the sizes of the connected components can differ.

A less explicit but more natural approach to counting strongly connected compo-
nents is to view the components as orbits under a group action and to use a standard
result that counts orbits. This is done in Section 5.



CONNECTEDNESS OF TWO-SIDED GROUP DIGRAPHS AND GRAPHS 681

In Section 6 we prove that when G is a semidirect product, G = H o K, it is
possible to determine whether 2S(G; L , R) is connected by analyzing connectedness
properties related to H in 2S(G; L , R) and a two-sided group digraph on K. We
also generalize this to the case where K is G/H for H a normal subgroup of G.

2. Preliminaries

Following some definitions, we begin with an initial result that characterizes when
a two-sided group digraph is strongly connected. After some examples we compare
Theorem 2.4 to [Iradmusa and Praeger 2016, Theorem 1.8].

Recall the following definition from [loc. cit.].

Definition 2.1. For nonempty subsets L and R of a group G, a two-sided group
digraph 2S(G; L , R) has vertex set G and a directed arc (g, h) from g to h if and
only if h = l−1gr for some l ∈ L and r ∈ R.

The digraph 2S(G; L , R) is undirected when L−1gR = LgR−1 for all g ∈ G,
but we work in the generality of directed graphs and consider this situation to be a
special case.

Definition 2.2. Let S be a nonempty subset of a group G. A word in S of (finite)
length n > 0 is a string s1s2 · · · sn , where s1, s2, . . . , sn ∈ S. In general, we denote a
word in S of length n by wS,n and write W(S) for the set containing all finite-length
words in S.

Note that the factors in a word need not be distinct, a single group element will
have numerous different representations as a word in S, and different words will be
denoted by varying subscripts for the set or length on the letter w.

Definition 2.3. If g and h are vertices in a digraph, then g is strongly connected
to h if there exists a directed path from g to h and a directed path from h to g. A
digraph is strongly connected if every pair of vertices is strongly connected.

Theorem 2.4. The two-sided group digraph 2S(G; L , R) is strongly connected if
and only if G=W(L−1)W(R)=W(L)W(R−1) and the identity element e satisfies
e = wL−1, i+1wR,i = wL−1, jwR, j+1 for some i, j ∈ N.

Proof. Assume that the two-sided group digraph 2S(G; L , R) is strongly connected.
Then given any g ∈ G, there exists a directed path from the identity element e
to g, meaning g = wL−1, newR,n = wL−1, nwR,n . Hence g ∈ W(L−1)W(R) and
G =W(L−1)W(R). Since there also exists a directed path from g to e, we know
e =wL−1,m gwR,m , which implies that g =w−1

L−1,mw
−1
R,m =wL ,mwR−1,m , and hence

G =W(L)W(R−1). In particular there exists a directed path from l−1 to e, where
l ∈ L , and hence e = wL−1, i l−1wR,i = wL−1, i+1wR,i for some i . Similarly, e =
wL−1, jwR, j+1 since there is a directed path from r to e, where r ∈ R.
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Conversely, suppose that G =W(L−1)W(R)=W(L)W(R−1) and the identity
element e satisfies e=wL−1, i+1wR,i =wL−1, jwR, j+1 for some i, j ∈N. It suffices
to show that there is a directed path from e to g and from g to e for all g ∈ G; i.e.,
g = wL−1,mwR,m = wL ,nwR−1,n for some m, n ∈ N.

Since G = W(L−1)W(R), we know g has an L−1 R factorization; i.e., g =
wL−1, awR,b for some a, b ∈ N. If a 6= b, it is possible to adjust the L−1 R factor-
ization of g so that both words have the same length by inserting the appropriate
factorization of e between the words from L−1 and R. For example, if a > b, then
insert e = wL−1, jwR, j+1 to obtain

g = wL−1, awR,b = wL−1, a(wL−1, jwR, j+1)wR,b = wL−1, a+ jwR,b+ j+1.

Repeating this process yields g = wL−1,mwR,m , where m = a+ (a− b) j .
To see that g also has an L R−1 factorization with words of the same length,

note that left and right multiplying by inverses of the words from L−1 and R
respectively converts e = wL−1, i+1wR,i = wL−1, jwR, j+1 into e = wL ,i+1wR−1,i =

wL , jwR−1, j+1. Repeatedly inserting the appropriate L R−1 factorization of e into an
L R−1 factorization of g shows g=wL ,nwR−1,n for any g ∈G. Hence 2S(G; L , R)
is strongly connected. �

The following examples illustrate Theorem 2.4 and also address the first two
problems posed in [Iradmusa and Praeger 2016].

Example 2.5. Consider 0 = 2S(A4; L , R), where A4 is the alternating group
on four elements, L = {e, (243)}, and R = {(234), (12)(34), (132), (14)(23)},
as shown in Figure 1. Since G is generated by words in R or R−1, we have
G =W(L−1)W(R)=W(L)W(R−1). Also e = e3

· [(12)(34)]2 = e · [(12)(34)]2,
so the hypotheses of Theorem 2.4 hold and thus 0 is strongly connected.

e
(123)

(13)(24)

(143)

(134)

(124)

(142)
(243)

(14)(23)

(132)

(12)(34)

(234)

Figure 1. 2S(A4; {e, (243)}, {(234), (12)(34), (132), (14)(23)}).
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g3

g2

g

g4g6

g5

e

Figure 2. 2S(C7; {g2, g3
}, {e, g}).

This example addresses Problem 1 of [Iradmusa and Praeger 2016], which
asks whether or not 2S(G; L , R) can have constant out-valency but not con-
stant in-valency. The digraph 0 has constant out-valency of 7; however the
vertices {(123), (132), (142), (143), (12)(34), (13)(24)} have in-valency 6 and the
vertices {e, (234), (243), (134), (124), (14)(23)} have in-valency 8. Furthermore
2S(A4; L−1, R−1) will have constant in-valency of 7 and out-valency of either 6
or 8 for the same sets as in 2S(G; L , R) because inverting L and R changes the
direction of each edge.

Problem 1. For 2S(G; L , R) with constant out-valency, what are the possible sets
of in-valencies? In particular, how large can they be and how much can they differ
from the out-valency?

Example 2.6. The two-sided group digraph 2S(C7; {g2, g3
}, {e, g}), where C7 is

the cyclic group of order 7 generated by g, satisfies the hypotheses of Theorem 2.4
and is connected. This example also addresses Problem 2 of [Iradmusa and
Praeger 2016], which asks whether or not 2S(G; L , R) can be a regular graph
of valency strictly less than |L| · |R|. Here |L| · |R| = 4, but as seen in Figure 2,
2S(C7; {g2, g3

}, {e, g}) is regular with valency 3. In fact 2S(C7; {g2, g3
}, {e, g})∼=

Cay(C7, {g4, g5, g6
}), with g5 arising in two different ways from the sets L−1 and R,

explaining the valency of 3.

Example 2.7. Consider the dihedral group D6 of order 12, generated by the reflec-
tion τ and the rotation σ of order 6. The undirected graph 2S(D6;{τ,τσ

5
},{τσ,τσ 2

})

is regular of valency 3 and |L| · |R| = 4 as in Example 2.6, but for a nonabelian
group. For any g ∈ D6, the set (L L−1)g ∩ (R R−1) = {e, σ, σ−1

} is of size 3 and
there is a reduction in valency by 1. See Figure 3 in Section 3B.

Example 2.8. The two-sided group digraph 2S(A4; A4, {(243), (12)(34)}) has
|L| · |R| = 24, but is in fact regular with valency 12 and forms a complete undirected
graph with loops. Here (L L−1)g ∩ (R R−1) = {e, (124), (142)} is of size 3 for
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each g, but the reduction in valency is much larger than in the previous examples
because L−1gR, viewed as a multiset, consists of 12 distinct elements, each with
multiplicity 2.

The set (L L−1)g∩(R R−1), where (L L−1)g = g−1L L−1g, is introduced in [Irad-
musa and Praeger 2016, Definition 1.4(3) and Theorem 1.5], and the condition
(L L−1)g ∩ (R R−1) = {e} is shown in Lemma 3.1 of that paper to guarantee the
valency of 2S(G; L , R) is exactly |L| · |R|. In Examples 2.6, 2.7, and 2.8 it is the
failure of this condition which causes a drop in valency. In general, if for h 6= e,
we have h = g−1l1l−1

2 g = r1r−1
2 for some l1, l2 ∈ L and some r1, r2 ∈ R, then

l−1
1 gr1= l−1

2 gr2, which causes a multiplicity greater than 1 in L−1gR considered as
a multiset. Since the elements and their multiplicities in the multiset L−1gR depend
on g, we did not search for necessary and sufficient conditions on L and R for a
two-sided group digraph to have valency strictly less than |L| · |R|, as requested in
Problem 2 of [Iradmusa and Praeger 2016]. Thus this aspect of their Problem 2
remains unresolved.

Theorem 2.4 is a generalization of the first part of the following result in [Iradmusa
and Praeger 2016] and also addresses Problem 4 of that paper.

Theorem 2.9 [Iradmusa and Praeger 2016, Theorem 1.8]. Let L and R be nonempty
inverse-closed subsets of a group G, and let 0 = 2S(G; L , R):

(1) The graph 0 is connected if and only if G = 〈L〉〈R〉 and there exist words in
L and R with lengths of opposite parity whose product is e.

(2) If G=〈L〉〈R〉 and there do not exist words in L and R with lengths of opposite
parity whose product is e then 0 is disconnected with exactly two connected
components.

Theorems 3.13 and 3.16 further generalize [Iradmusa and Praeger 2016, The-
orem 1.8] by providing more general counts and characterizations of connected
components. Theorem 3.13 also answers Problem 3 of that paper, by showing
there cannot exist G, L , and R satisfying the hypotheses of Theorem 2.9 such
that G = 〈L〉〈R〉 but 2S(G; L , R) has connected components of different sizes.
We show more generally that if G =W(L ∪ L−1)W(R ∪ R−1) then all connected
components of 2S(G; L , R) have the same size.

3. General connectedness results

3A. Connection length. In this section we lay the foundation for studying both
weakly and strongly connected components of 2S(G; L , R) in Section 3B.

Definition 3.1. In a digraph, a vertex g is weakly connected to vertex h if there is
a path g0, g1, . . . , gn such that g = g0, h = gn , and either (gi−1, gi ) or (gi , gi−1)



CONNECTEDNESS OF TWO-SIDED GROUP DIGRAPHS AND GRAPHS 685

is an arc of the digraph. A digraph is weakly connected if each pair of its vertices
is weakly connected.

If L and R are nonempty subsets of a group G, we let L = L ∪ L−1 and
R = R ∪ R−1 and use wL,m,a to denote a word that contains m factors from L
and a factors from L−1 in any order. The notation g ∼ h will mean g is weakly
connected to h in 2S(G; L , R), or equivalently h = WL,m,agWR,a,m , where the
capital W indicates that the corresponding factors on either side of g have opposite
signs; i.e., one factor is from L−1 and one is from R, or alternatively, one is from
L and one is from R−1. If computations lead to factorizations that may not involve
opposite signs on corresponding factors then W is changed to w.

We begin with two key results which will allow us to define minimum weak
connection length in Definition 3.4 and which will also be used in the proof of
Theorem 3.13.

Lemma 3.2. In 2S(G; L , R) if g =wL,m,awR,n,b, then g ∼ ld and g ∼ rd, where l
is any element of L , r is any element of R, and d = m+ n− (a+ b).

Proof. Let g = wL,m,awR,n,b for a, b,m, n ∈ N. Then we have for any r ∈ R and
l ∈ L ,

g = wL,m,awR,n,b = wL,m,awR,n,brm−ar−m+a

=WL,m,awR,m+n,a+bWR,a,m

=WL,m,ala+b−(m+n)lm+n−(a+b)wR,m+n,a+bWR,a,m

=WL,m,aWL,a+b,m+nlm+n−(a+b)WR,m+n,a+bWR,a,m .

Corresponding factors can be adjusted to have opposite signs because the repeated
r and r−1 and l and l−1 can be rearranged as needed. A similar construction yields
g ∼ rd. �

The following corollary is stated in terms of L , but an analogous statement in
terms of R also holds.

Corollary 3.3. Let L and R be nonempty subsets of a group G:

(1) In 2S(G; L , R) there exist two words in L of different lengths that are weakly
connected if and only if there is a word in L that is weakly connected to e.

(2) In 2S(G; L , R) there exists a word wL ,n weakly connected to e if and only if
there exists a word wL−1, n weakly connected to e.

Proof. For (1), if wL ,m ∼ wL ,n , assume without loss of generality that m < n, left
multiply by w−1

L ,m , and apply Lemma 3.2 to obtain e ∼ ln−m for l ∈ L . Conversely
if e ∼ wL ,m , left multiply by some l ∈ L and apply Lemma 3.2.

For (2), if e = WL,m,awL ,nWR,a,m then e = w−1
L ,nwL,a,mwR,m,a . Now apply

Lemma 3.2 to obtain e∼ (l−1)n for l ∈ L . The converse is achieved analogously. �
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These results yield that the following notion is well-defined.

Definition 3.4. The minimum weak connection length in G relative to (L , R) is
the minimum length k of a word purely in L , L−1, R, or R−1 that is weakly
connected to e, and is infinite if there is no such minimum. Algebraically this is
equivalent to the minimum length of a word w purely in L , L−1, R, or R−1 such
that e =WL,m,awWR,a,m for some a,m ∈ N.

Here and in the next section we impose the additional assumption that the set of
words in L and the set of words in R are subgroups of G in order to adapt weak
connectedness results to the case of strong connectedness using Proposition 3.7 and
Corollary 3.8. The following proposition provides two further means of verifying
that sets of words are subgroups.

Proposition 3.5. Given any nonempty subset S of a group G, the following are
equivalent:

(1) W(S) is a subgroup of G.

(2) W(S)=W(S−1).

(3) W(S)= 〈S〉.

Proof. Clearly (2) implies (3) and (3) implies (1) so it remains to show that (1)
implies (2). Assume W(S) is a subgroup of G and letw∈W(S). Thenw−1

∈W(S)
by assumption and w−1

= s1s2 · · · sk , where k > 0. Hence w = (s1s2 · · · sk)
−1
=

s−1
k s−1

k−1 · · · s
−1
1 ∈W(S−1).

Now suppose that w ∈W(S−1). Then w = s−1
1 s−1

2 · · · s
−1
k = (sksk−1 · · · s1)

−1
∈

W(S) because W(S) is a subgroup of G. Hence W(S) =W(S−1) and the result
follows. �

Remark 3.6. Notice that if G is a finite group, any subset S of G will satisfy the
statements in Proposition 3.5. The statements will also hold in any group if the
subset S is inverse-closed, as is assumed in places in [Iradmusa and Praeger 2016],
or if all elements of S have finite order.

Proposition 3.7. In the two-sided group digraph 2S(G; L , R), if W(L) and W(R)
are subgroups of G, there is a directed path from g to h if and only if there is a
directed path from h to g.

Proof. Suppose that there is a directed path from g to h in 2S(G; L , R). Then we
have h = wL−1, ngwR,n for some n ∈ N which implies g = w−1

L−1, nhw−1
R,n .

Since W(L−1) and W(R) are both subgroups of G, we know w−1
L−1, n ∈W(L−1)

and w−1
R,n ∈W(R); i.e., inverses can be expressed as words in the original set. It

will be sufficient to show that both of the inverses can be expressed as words in
their respective sets with the same length.
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First suppose that w−1
L−1, n = wL−1, a and w−1

R,n = wR,b for some a, b ∈ N. Then
we have e = wL−1, nwL−1, a and similarly e = wR,nwR,b of total lengths at least 1.
Using that e is the identity, we have

e = wL−1, nwL−1, a(wL−1, nwL−1, a)
n+b−1

= wL−1, nwL−1, awL−1, (n+a)(n+b−1)

= wL−1, nwL−1, a+(n+a)(n+b−1).

This shows thatw−1
L−1, n can be expressed as a word in L−1 of length (n+a)(n+b)−n.

Similarly, we can express w−1
R,n as a word in R of the same length. Therefore there

is a directed path from h to g in 2S(G; L , R). �

Corollary 3.8. In the two-sided group digraph 2S(G; L , R), if W(L) and W(R)
are subgroups of G, then g ∈ G is weakly connected to h ∈ G if and only if g is
strongly connected to h, and hence weakly connected components are identical to
strongly connected components.

Proof. Assume that g is weakly connected to h in 2S(G; L , R). Then there exists a
path g0, g1, . . . , gn with g = g0 and h = gn such that either (gi−1, gi ) or (gi , gi−1)

is an arc for 1≤ i ≤ n. For every arc of the form (gi , gi−1), apply Proposition 3.7.
This generates a new directed path g′0, g′1, . . . , g′m with g = g′0 and h = g′m such
that (g′i−1, g′i ) is an arc for 1≤ i ≤m. Applying Proposition 3.7 again yields that g
is strongly connected to h. �

Under the hypothesis that W(L) and W(R) are subgroups of G, Proposition 3.7
and Corollary 3.8 allow us to convert any statement about weak connectedness into
a corresponding statement about strong connectedness. This leads to the following
results analogous to Lemma 3.2 and Corollary 3.3 and consequently a well-defined
notion of minimum strong connection length.

Lemma 3.9. In 2S(G; L , R) if W(L) and W(R) are subgroups of G and g =
wL−1, awR,n , then g is strongly connected to ld and to rd, where l is any element
of L , r is any element of R, and d = n− a.

Corollary 3.10. Let W(L) and W(R) be subgroups of G:

(1) In 2S(G; L , R) there exist two words in L of different lengths that are strongly
connected if and only if there is a word in L that is strongly connected to e.

(2) In 2S(G; L , R) there exists a word wL ,n strongly connected to e if and only if
there exists a word wL−1, n strongly connected to e.

Definition 3.11. Assuming that W(L) and W(R) are subgroups of G, the minimum
strong connection length in G relative to (L , R) is the minimum length k of a word
purely in L , L−1, R, or R−1 that is strongly connected to e, and is infinite if there
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is no such minimum. Algebraically this is equivalent to the minimum length of a
word v purely in L , L−1, R, or R−1 such that e = wL−1, nvwR,n for some n ∈ N.

Lemma 3.9 and Corollary 4.10 also lead to the following version of Theorem 2.4.

Corollary 3.12. Let W(L) and W(R) be subgroups of G. The two-sided group
digraph 2S(G; L , R) is strongly connected if and only if G = 〈L〉〈R〉 and e =
wL−1, iwR, j , where |i − j | = 1.

3B. Connected components. In this section we count numbers of connected com-
ponents and characterize their vertices, assuming that elements of G factor as a
word in L = L ∪ L−1 times a word in R = R ∪ R−1.

Theorem 3.13. Let L and R be nonempty subsets of a group G. If G=W(L)W(R)
and k is the minimum weak connection length for G relative to (L , R), then the
two-sided group digraph 2S(G; L , R) has exactly k weakly connected components
all of the same size. Moreover, if L ∩ NG(L) 6= ∅ or R ∩ NG(R) 6= ∅, then all
components are isomorphic.

Proof. Assume G =W(L)W(R) and let k be the minimum weak connection length
for G relative to (L , R). If k is infinite, then by Corollary 3.3, any two words in
L of different lengths are not weakly connected to each other and it follows that
2S(G; L , R) will have infinitely many connected components. Otherwise k ∈ N

and by Corollary 3.3, we may assume e =WL,m,alk WR,a,m . For 0≤ i < j < k we
claim that l i

6= l j and there is no path between l i and l j.
If l i
= l j for some 0 ≤ i < j < k, then e = l j−i, contradicting the minimality

of k as the weak connection length for G relative to (L , R). Similarly, if l i
=

WL,m,al j WR,a,m then e= l−i WL,m,al j WR,a,m and Lemma 3.2 yields e∼ l j−i, which
again contradicts the minimality of k. This shows that 2S(G; L , R) has at least
k weakly connected components.

To show that 2S(G; L , R) has exactly k weakly connected components, we first
notice that since G =W(L)W(R), Lemma 3.2 means that for every g ∈ G, we
have g∼ ld for some integer d . Hence it suffices to show that for all d ∈Z, we have
ld
∼ l i for some 0≤ i < k. This statement is true since by Lemma 3.2, e∼ l−k and

e ∼ lk, which allow d to be reduced modulo k.
Fix l ∈ L and let 0i for 0 ≤ i < k be the weakly connected component of

2S(G; L , R) containing l i. Then the 0i are distinct and the union of 00, . . . , 0k−1

is 2S(G; L , R). To see that all of the connected components have the same size,
consider the injective maps φi : 00→ 0i for 1≤ i < k defined by φi (h)= l i h. The
map sending h to l−i h is also injective and is an inverse to φi , showing that φi is
bijective and all connected components have the same size.

Now assume l ∈ L ∩ NG(L) and let 0i and φi be defined as above. The maps φi

will preserve arcs because if (x, y) is an arc in 00 then y = l−1
1 xr1 for some l1 ∈ L
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σ 4

σ 5 σ 2

σ

eσ 3

τσ τσ 5 τσ 3

τ τσ 2 τσ 4

Figure 3. 2S(D6; {τ, τσ
5
}, {τσ, τσ 2

}).

and r1 ∈ R, and, since l ∈ NG(L), for some l2 ∈ L

φi (y)= l i y = l i l−1
1 xr1 = l−1

2 l i xr1 = l−1
2 φi (x)r1.

Similarly, if (φi (x), φi (y)) is an arc in 0i , then (x, y) is an arc in 00. Thus the
disjoint connected components are isomorphic to each other.

For the case when R ∩ NG(R) 6=∅, note that the above proof can be modified
using the set {r i

}
k−1
i=0 to describe the 0i and defining φi (h)= hr i instead. �

Remark 3.14. In Theorem 3.13 if in fact L∩NG(L)= L and R∩NG(R)= R, then
2S(G; L , R) is also vertex-transitive by [Iradmusa and Praeger 2016, Theorem 1.13].

Corollary 3.15. The two-sided group digraph 2S(G; L , R) is weakly connected
if and only if G = W(L)W(R) and there exists some element of L or R that is
weakly connected to e.

Using Proposition 3.7 and Corollary 3.8 as described before Lemma 3.9 yields
the following.

Theorem 3.16. Let W(L) and W(R) be subgroups of G. If G = W(L)W(R)
and k is the minimum strong connection length for G relative to (L , R), then the
two-sided group digraph 2S(G; L , R) has exactly k strongly connected components
all of the same size. Moreover, if L ∩ NG(L) 6= ∅ or R ∩ NG(R) 6= ∅, then all
components are isomorphic.

Corollary 3.17. Let W(L) and W(R) be subgroups of G. Then the two-sided
group digraph 2S(G; L , R) is strongly connected if and only if G =W(L)W(R)
and there exists some element of L or R that is strongly connected to e.

Example 3.18. Consider 2S(D6; {τ, τσ
5
}, {τσ, τσ 2

}) as in Example 2.7. Since
τ ∈ L and σ =(τσ 5)τ ∈W(L), we know D6=W(L)=W(L)W(R). Since e 6∼τ but
e∼ τ 2

= e, the graph, as seen in Figure 3, has two strongly connected components of
the same size, as shown in Theorem 3.16. Notice that ND6(L)= ND6(R)= {e, σ

3
}

does not intersect L or R so the fact that the components are not isomorphic does
not violate Theorem 3.16.

Example 3.19. Consider 2S(D10; {σ }, {τ, σ
3
}). It is clear that D10 = W(R) =

W(L)W(R). Since e 6∼ τ but e ∼ τ 2
= e, the graph, as seen in Figure 4, has two
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σ 2

e
τσ

τσ 3

τσ 5

τσ 7 τσ 9

Figure 4. 2S(D10; {σ }, {τ, σ
3
}).

strongly connected components of the same size as shown in Theorem 3.16. Notice
that ND10(L) = 〈σ 〉 so σ ∈ L ∩ ND10(L) and the components are isomorphic by
Theorem 3.16.

4. Double cosets

Recall that for a Cayley digraph Cay(G, S) the coset 〈S〉g is the weakly connected
component of the digraph containing g ∈ G and that if H and K are subgroups
of a group G then the double cosets HgK for g ∈ G partition G into (possibly
different sized) subsets. In the two-sided group digraph 2S(G; L , R) the component
containing g ∈ G need only be contained in the double coset 〈L〉g〈R〉.

Proposition 4.1. The weakly or strongly connected component of 2S(G; L , R)
containing g is a subset of the double coset 〈L〉g〈R〉.

Proof. Let h be weakly connected to g; that is, h is of the form WL,m,agWR,a,m for
some WL,m,a ∈W(L) = 〈L〉 and WR,a,m ∈W(R) = 〈R〉. Then h ∈ 〈L〉g〈R〉 and
the weakly or strongly connected component containing g lies in 〈L〉g〈R〉. �

In Theorem 4.5, without the assumption that G =W(L)W(R), we count con-
nected components within double cosets analogously to Theorem 3.13. Connected
components in a given double coset have the same size, but between different
double cosets the sizes of components can differ. This is illustrated in Figure 5 for
Example 4.8, Figure 7 for Example 4.14, and Figure 8 for Example 4.15.

Let L and R be nonempty subsets of G and fix a set S of double coset represen-
tatives for 〈L〉 and 〈R〉. Each g in G lies in a double coset 〈L〉s〈R〉 for some s ∈ S,
and s will play the role in 〈L〉s〈R〉 that the identity element played in Sections 3A
and 3B.

Lemma 4.2. In 2S(G; L , R) if g = wL,m,aswR,n,b for s ∈ G, then g ∼ lds and
g∼ srd, where l is any element of L , r is any element of R, and d =m+n−(a+b).

Proof. This proof is identical to the proof of Lemma 3.2 with s inserted between
the words from L and words from R. �
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Corollary 4.3. In 2S(G; L , R) the following hold with s ∈ G:

(1) There exist words wL ,m and wL ,n with m 6= n such that wL ,ms ∼ wL ,ns if and
only if there exists wL ,k such that wL ,ks ∼ s. One can take k = |m− n|.

(2) There exists a word wL ,n such that wL ,ns ∼ s if and only if there exists a word
wL−1, n such that wL−1, ns ∼ s.

(3) If g is in 〈L〉s〈R〉 then wL ,k g ∼ g for some wL ,k in W(L) if and only if
w′L ,ks ∼ s for some w′L ,k in W(L).

Proof. The first two parts follow similarly to their analogues in Corollary 3.3.
For (3), by symmetry it is enough to prove one direction. Let g =wL,m,aswR,n,b

and wL ,k g ∼ g. Rewriting wL ,k g ∼ g in terms of s yields wL ,kwL,m,aswR,n,b ∼

wL,m,aswR,n,b. Applying Lemma 4.2 to both sides yields lk+ds ∼ lds. Hence
lks ∼ s by (1). �

By the first two parts of Corollary 4.3, if there exists a minimum length ks of a
word w in L such that ws ∼ s, then it is also the minimum length of such a word
in L−1, and by Corollary 4.3(3) the minimum such length is independent of the
representative of a double coset. Inserting r ks r−ks to the right of s shows that ks

is also the minimum length of a word w in R such that sw ∼ s, and hence, by an
R version of Corollary 4.3, ks is also the minimum such length of a word in R−1.
Thus the following definition for the minimum weak connection length in 〈L〉s〈R〉
is well-defined.

Definition 4.4. The minimum weak connection length in 〈L〉s〈R〉 is the minimum
length ks of a word w purely in L or L−1 such that ws ∼ s in 2S(G; L , R), or the
minimum length ks of a wordw purely in R or R−1 such that sw∼ s in 2S(G; L , R).
Take ks to be infinite if there is no such minimum. Algebraically this is equivalent to
the minimum length of a word w purely in L or L−1 such that s=WL,m,awsWR,a,m
for some a,m ∈ N, or the minimum length of a word w purely in R or R−1 such
that s =WL,m,aswWR,a,m for some a,m ∈ N.

Theorem 4.5. Let L and R be nonempty subsets of a group G. If ks is the mini-
mum weak connection length for 〈L〉s〈R〉, then the double coset 〈L〉s〈R〉 within
2S(G; L , R) consists of exactly ks weakly connected components all of the same
size. Moreover, if L ∩ NG(L) 6=∅ or R ∩ NG(R) 6=∅, then all components within
the same double coset are isomorphic.

Proof. This follows from Lemma 4.2 and Corollary 4.3 exactly as in the proof of
Theorem 3.13. �

Corollary 4.6. In the two-sided group digraph 2S(G; L , R) there are
∑

s∈S ks

weakly connected components, where S is a set of double coset representatives for
G modulo 〈L〉 and 〈R〉 and ks is the minimum weak connection length for 〈L〉s〈R〉.
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σ−2

σ−1

e

σ

σ 2

τσ−2 τσ−1 τ τσ τσ 2

Figure 5. 2S(D∞; {σ a
}, {σ b

}), where a =−1, b = 1.

Remark 4.7. Note that in Theorem 4.5 if in fact L∩NG(L)= L and R∩NG(R)= R,
then by an argument similar to that in [Iradmusa and Praeger 2016, Theorem 1.13]
the subgraph 〈L〉s〈R〉 is vertex-transitive.

Example 4.8. Consider 2S(D∞; {σ a
}, {σ b

}) with gcd(a, b)= 1 and where D∞ is
the group of isometries of Z with the presentation

D∞ = 〈σ, τ | τ 2
= e, σ τ = τσ−1

〉.

We think of σ as right translation and τ as negation. Since 〈L〉 = {σ an
} and 〈R〉 =

{σ bn
} with a, b relatively prime, D∞ has two double cosets, namely 〈L〉〈R〉 = 〈σ 〉

and 〈L〉τ 〈R〉 = τ 〈σ 〉.
It is easy to see that each g ∈ D∞ has exactly one out-neighbor and one

in-neighbor (possibly the same). If g = σ n
∈ 〈L〉〈R〉, then g lies on the arcs

(σ n, σ n+(b−a)) and (σ n−(b−a), σ n). If instead g= τσ n
∈ 〈L〉τ 〈R〉, then g lies on the

arcs (τσ n, τσ n+a+b) and (τσ n−(a+b), τσ n). Therefore, the structure of the graph
depends on b− a and a+ b.

If b− a 6= 0, then the double coset 〈L〉〈R〉 consists of |b− a| weakly connected
components each consisting of σ n with n fixed modulo |b− a|. If b− a = 0, then
the arcs are of the form (σ n, σ n), and the double coset consists of isolated points
linked only to themselves, and so has infinitely many connected components. Both
of these cases illustrate the results of Theorem 4.5.

The value of a + b plays the same role for the structure of the double coset
〈L〉τ 〈R〉. Two example graphs are provided, Figure 5 for a = −1, b = 1 and
Figure 6 for a = 1, b = 2.

Proposition 3.7 and Corollary 3.8 again yield corresponding strongly connected
results.

Lemma 4.9. In 2S(G; L , R) if W(L) and W(R) are subgroups of G and g =
wL−1, aswR,n for s ∈ G, then g is strongly connected to lds and to srd, where l is
any element of L , r is any element of R, and d = n− a.

Corollary 4.10. In 2S(G; L , R) if W(L) and W(R) are subgroups of G, then the
following three properties hold for any s ∈ G:
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σ−2 σ−1 e σ σ 2 σ 3

τσ−2 τσ−1 τ τσ τσ 2 τσ 3

Figure 6. 2S(D∞; {σ a
}, {σ b

}), where a = 1, b = 2.

(1) There exist words wL−1,m and wL−1, n with m 6= n such that wL−1,ms is strongly
connected to wL−1, ns if and only if there exists wL−1, k such that wL−1, ks is
strongly connected to s. In practice, k = |m− n|.

(2) There exists a word wL ,n such that wL ,ns is strongly connected to s if and only
if there exists a word wL−1, n such that wL−1, ns is strongly connected to s.

(3) If g is in 〈L〉s〈R〉 then wL ,k g is strongly connected to g for some wL ,k in
W(L) if and only if w′L ,ks is strongly connected to s for some w′L ,k in W(L).

Definition 4.11. Assuming that W(L) and W(R) are subgroups of G, the minimum
strong connection length in 〈L〉s〈R〉 is the minimum length ks of a word w purely in
L or L−1 such that ws is strongly connected to s in 2S(G; L , R), or the minimum
length ks of a word w purely in R or R−1 such that sw is strongly connected to s
in the two-sided group digraph 2S(G; L , R). Take ks to be infinite if there is no
such minimum. Algebraically this is equivalent to the minimum length of a word v
purely in L or L−1 such that s = wL−1, nvswR,n for some n ∈ N, or the minimum
length of a word v purely in R or R−1 such that s =wL−1, nsvwR,n for some n ∈N.

Theorem 4.12. Let W(L) and W(R) be subgroups of G. If ks is the minimum
strong connection length for 〈L〉s〈R〉 in 2S(G; L , R), then the double coset 〈L〉s〈R〉
consists of exactly ks strongly connected components all of the same size. Moreover,
if L ∩ NG(L) 6=∅ or R∩ NG(R) 6=∅, then all components within the same double
coset are isomorphic.

Problem 2. Theorems 3.13, 3.16, 4.5, and 4.12 provide sufficient conditions for
connected components to be isomorphic. Find necessary and sufficient conditions
for this to occur.

Corollary 4.13. Let W(L) and W(R) be subgroups of G. The two-sided group
digraph 2S(G; L , R) consists of

∑
s∈S ks strongly connected components, where

S is a set of double coset representatives for G modulo 〈L〉 and 〈R〉 and ks is the
minimum strong connection length for 〈L〉s〈R〉.

Example 4.14. The digraph 2S(D3×C3; {(τσ
2, g2)}, {(e, g2), (τ, g2)}) shown in

Figure 7 is an example of Theorem 4.12. The two double cosets in G = D3×C3 are
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(σ, g2)

(e, g2)

(τ, g2)

(τσ 2, g2)

(σ, g) (τ, g)

(e, g) (τσ 2, g)

(σ, e)

(e, e)

(τ, e)

(τσ 2, e)

(τσ, g2) (σ 2, g2) (τσ, g) (σ 2, g) (τσ, e) (σ 2, e)

Figure 7. 2S(D3×C3; {(τσ
2, g2)}, {(e, g2), (τ, g2)}).

〈L〉〈R〉 and 〈L〉(σ 2, e)〈R〉, both of which have minimum strong connection length
of 3. Since L consists of a single element, L ∩ NG(L) 6= ∅ and all components
within each double coset are isomorphic.

Example 4.15. Another example is provided by 2S(A5; {(235)}, {(243), (254)}),
shown in Figure 8. There are three double cosets in A5 modulo 〈L〉 and 〈R〉,
whose representatives are the identity, (123), and (145). The minimum strong
connection length is 3 in the first two double cosets and 1 in the third. The connected
components of 〈L〉〈R〉 have four vertices. All the connected components in the other
two double cosets contain 12 vertices and are isomorphic. That the components
within 〈L〉(123)〈R〉 are isomorphic follows from the fact that L consists of a single
element, so L ∩ NG(L) 6=∅.

Figure 8. 2S(A5; {(235)}, {(243), (254)}).
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5. Orbit counting

Another way to count strongly connected components is to use group actions. We
briefly review necessary background material.

A group G acts (on the right) on a set X if there exists a function α : X×G→ X ,
where (x, g) 7→ x .g such that x .e = x and for all g1, g2 ∈ G and all x ∈ X , we
have x · (g1g2) = (x · g1).g2. If G acts on a set X , then for any x ∈ X , the set
x .G = {x .g | g ∈ G} is the orbit of x under G. It can be shown that X is the
disjoint union of its orbits. If G acts on X , the stabilizer of x ∈ X is the subgroup
Gx = {g | x .g = x} of G and the set fixed by g ∈ G is X g

= {x | x .g = x}. The
following well known results are used to prove Theorem 5.3.

Lemma 5.1. Suppose that a group G acts on a set X. If x ∈ X , then the mapping
φ : Gx\G → x .G defined by φ(Gx g) = x .g is well-defined and bijective. Thus,
|G| = |x .G||Gx |.

Lemma 5.2. Suppose that a group G acts on a set X :

(1) If x ∈ X and g ∈ G, the stabilizer of x .g is Gx .g = g−1Gx g.

(2) If x and y are in the same orbit under G, then |Gx | = |G y|.

Theorem 5.3. Suppose that a group G acts on a set X. The number N of distinct
orbits of G on X satisfies

N · |G| =
∑
g∈G

|X g
|.

Proof. The case where X or G is infinite is trivial so let X and G be finite. Consider
the set Y = {(x, g) | g ∈ G, x ∈ X, x .g = x} ⊂ X ×G. We may count elements
of Y as |Y | =

∑
g∈G |X

g
| =

∑
x∈X |Gx |. Alternatively, consider representatives

x1, x2, x3, . . . , xN from each orbit of X . If x is in the same orbit as xi , then
x .G = xi .G and hence, by Lemma 5.2, |Gx | = |Gxi |. We therefore have, by
Lemma 5.1,∑

g∈G

|X g
| =

N∑
i=1

∑
x∈xi .G

|Gx | =

N∑
i=1

|xi .G||Gxi | =

N∑
i=1

|G| = N · |G|. �

We apply this result to 2S(G; L , R). Define

U = {(wL ,n, wR,n) | wL ,n ∈W(L), wR,n ∈W(R)} ⊆ G×G.

We show that if W(L) and W(R) are subgroups of G then U is a subgroup of
G×G. The set U is clearly closed under multiplication. The fact that U is closed
under inverses follows from the proof of Proposition 3.7. Since U is not empty it
contains an identity and U is a group under composition.
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The action of U on G is induced by the standard action of G × G on G by
g · (g1, g2) = g−1

1 gg2; that is, g · (wL ,n, wR,n) = w
−1
L ,ngwR,n . One can check that

this is in fact a right action. For each element g in G, the orbit g ·U is the strongly
connected component of 2S(G; L , R) containing g.

Corollary 5.4. Let 2S(G; L , R) be a two-sided group digraph where W(L) and
W(R) are subgroups of G and with the group U acting on G as defined above. The
number N of strongly connected components in 2S(G; L , R) satisfies N · |U | =∑

u∈U |G
u
|.

Example 5.5. Let 2S(G; L , R) be a connected digraph and let HN be any group of
order N. Then 2S(G× HN ; L ×{e}, R×{e}) has N connected components. This
shows that the number N of connected components may be arbitrarily large.

Problem 3. For a given group G, how many connected components can 2S(G; L ,R)
have?

Note that if G = 〈L〉〈R〉 then by Theorem 3.13 or Theorem 3.16 the number of
connected components will divide |G|, but Example 4.15 shows this need not hold
in general.

Based on the group action perspective and our observation about the connection
between two-sided group digraphs and biquotients, we pose a question motivated
by a common construction in the biquotient setting. We first define a generalization
of 2S(G; L , R).

Definition 5.6. Let G be a group and U be a nonempty subset of G×G. Define
the digraph 2S(G;U ) to have vertex set G and a directed arc (g, h) from g to h if
and only if h = u−1

l gur for some (ul, ur ) ∈U.

Remark 5.7. Observe that if U = L × R, then 2S(G;U )= 2S(G; L , R).

Motivated by the biquotient literature, we note a correspondence between the
digraphs 2S(G;U ) and 2S(G ×G;1G,U ), where 1G = {(g, g) | g ∈ G} is the
diagonal of G × G. This correspondence is given by the map φ : G × G → G,
φ(g1, g2) = g−1

1 g2. Direct computation shows that the map φ takes arcs of
2S(G × G;1G,U ) to arcs of 2S(G;U ). Additionally, it produces a bijection
between the connected components of 2S(G × G;1G,U ) and the connected
components of 2S(G;U ). This allows the number of connected components of
2S(G;U ) to be counted using our preceding results, especially when one notes that
by Theorems 4.5 and 4.12 the connected components of 2S(G ×G;1G,U ) are
precisely the double cosets.

Problem 4. Under what conditions on U do the connected components of 2S(G;U )
have the same size? Under what conditions are they isomorphic?
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6. Reduction results

In this section we prove Proposition 6.2, which relates connectedness of a two-
sided digraph for a semidirect product group to connectedness properties for the
factors, and pose a final general problem. Remark 6.1 will be useful in the proof of
Proposition 6.2.

Remark 6.1. A group G is said to be a semidirect product of its subgroups H and K,
written G = H o K, if H is a normal subgroup of G, G = H K, and H ∩ K = {e}.
A subgroup K of a group G is a retract of G if there exists a homomorphism
φ : G→ G such that φ(g) ∈ K for all g ∈ G and φ(k)= k for all k ∈ K.

If K is a retract of a group G with retraction map φ, then it is easy to verify that
G = H o K for H = kerφ. Conversely, if G = H o K then the map φ defined by
φ(hk) = k is well-defined because H ∩ K = {e} and is a group homomorphism
because H E G. Hence G = H o K if and only if K is a retract of G with
retraction φ and H = kerφ. Denote φ(L) by Lφ.

Proposition 6.2. Let K be a retract of a group G under the retraction φ. Then
2S(G; L , R) is weakly connected if and only if 2S(K ; Lφ, Rφ) is weakly connected
and kerφ is weakly connected within 2S(G; L , R).

Proof. Assume that 2S(G; L , R) is weakly connected. Then certainly H = kerφ is
weakly connected within 2S(G; L , R). Observe that 2S(K ; Lφ, Rφ) is also weakly
connected because the retraction φ :G→ K sends the arc (g, l−1gr) in 2S(G; L , R)
to the arc

(φ(g), φ(l−1gr))= (φ(g), φ(l)−1φ(g)φ(r))

in 2S(K ; Lφ, Rφ); i.e., φ induces a retraction from 2S(G, L , R) to 2S(K ; Lφ, Rφ).
Conversely, assume that 2S(K ; Lφ, Rφ) is weakly connected and H = kerφ is

weakly connected within 2S(G; L , R). We show that for every g ∈ G there is a
path in 2S(G; L , R) from the identity to g. Write g = hk for h ∈ H and k ∈ K.
Using that there is a path from e to k in 2S(K , Lφ, Rφ), write k =WLφ ,m,aWRφ ,a,m
and then

g = hwLφ ,m,awRφ ,a,m .

For each factor ki ∈ Rφ in wRφ ,a,m , find hi ∈ H so that hi ki ∈ R and insert h−1
i hi

before ki in wRφ ,a,m . Insert similarly appropriate expressions for the identity before
each factor from Lφ in wLφ ,m,a . Then use H E G to rewrite g as

g =WL,m,ah′WR,a,m,

where h′ ∈ H , exhibiting a path from h′ to g. Since there is a path from e to
h′ in 2S(G; L , R), there is also a path from e to g in 2S(G; L , R). This proves
2S(G; L , R) is weakly connected. �
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Problem 5. Develop analogues of earlier results about numbers of connected
components and isomorphisms between them in the setting of semidirect products.

Example 6.3. Consider the digraph 2S(D6; {σ }, {σ
2, τ }), where D6 = 〈σ 〉o 〈τ 〉.

Given σ n
∈ D6, the arc (σ n, σ−1σ nσ 2)= (σ n, σ n+1) shows that 〈σ 〉 is weakly con-

nected in 2S(D6; {σ }, {σ
2, τ }). Furthermore, 2S(〈τ 〉; Lφ, Rφ)=2S(〈τ 〉; {e}, {e, τ })

is connected since the graph consists of two vertices e and τ with arcs between
e and τ and loops at each. Therefore by Proposition 6.2, 2S(D6; {σ }, {σ

2, τ }) is
weakly connected.

Example 6.4. The two-sided group digraph 2S(D6; {τ, τσ
5
}, {τσ, τσ 2

}) from
Example 3.19 is disconnected. Here 2S(K; Lφ, Rφ) consists of isolated vertices e and
τ with a loop at each and H is weakly connected within 2S(D6; {τ, τσ

5
}, {τσ, τσ 2

}).

Using an argument similar to the one in the proof of Proposition 6.2, one can
prove the following.

Corollary 6.5. Given a group G and a normal subgroup N let φ : G→ G/N be
the canonical projection. Then 2S(G; L , R) is weakly connected if and only
if 2S(G/N ; Lφ, Rφ) is weakly connected and N is weakly connected within
2S(G; L , R).

In both Proposition 6.2 and Corollary 6.5 under the further assumption that W(L)
and W(R) are subgroups of G similar conclusions hold for strong connectedness.
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