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We study factorizations of elements in quotients of commutative principal ideal
domains that are endowed with an alternative multiplication. This study general-
izes the study of factorizations both in quotients of PIDs and in rings of single-
valued matrices. We are able to completely describe the sets of factorization
lengths of elements in these rings, as well as compute other finer arithmetical
invariants. In addition, we provide the first example of a finite bifurcus ring.

1. Introduction

Of course every commutative principal ideal domain (PID) is a unique factorization
domain and every nonzero nonunit factors uniquely as a product of irreducible
(prime) elements. It is not surprising that this property of unique factorization
passes, in some sense, to any quotient ring of a PID. However, if D is a PID and n is
the product of two or more primes in D, then D/(n) contains nonzero zerodivisors
that make factorization more interesting. For example, in Z/(900), 30 factors only
as 30= 2·3·5, while 100 factors as 22 ·52 ·46a ·55b for any a, b∈N0. In fact, if D is
a PID and n is the product of at least two primes of D, there are elements in D/(n)
that have unique factorization and others that have infinitely many factorizations —
and of arbitrarily long lengths. A complete characterization of how elements factor
over quotients of PIDs is given in [Baeth et al. 2017] and is summarized here in
Proposition 3.1. The goal of this note is to study factorizations in quotients of PIDs
endowed with an alternative multiplicative structure. The purpose is threefold: First,
by introducing a more general multiplication in a principal ideal ring, we generalize
both the results of [Baeth et al. 2017] (factorization in quotients of PIDs) and of
[Baeth et al. 2011; Jacobson 1965] (factorization in rings of single-valued matrices).
Secondly, we give examples of finite bifurcus rings, thus giving an affirmative
answer to Open Problem 2.1.3 of [Adams et al. 2009]. Finally, we provide an even
larger class of examples of commutative rings R such that every element of R is

MSC2010: 13A05, 13F15.
Keywords: factorizations, zerodivisors, bifurcus.

701

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2018.11-4
http://dx.doi.org/10.2140/involve.2018.11.701


702 N. R. BAETH, B. J. BURNS, J. M. COVEY AND J. R. MIXCO

a zerodivisor and such that the set of factorization lengths of each element is a
discrete interval, with many of these intervals being infinite.

We begin by defining, for any commutative ring R, an alternate multiplicative
structure. Let R be a commutative ring and fix an element k ∈ R. We now define
multiplication in Sk(R) which, as an additive abelian group, is equal to R. For
each pair of elements r, s ∈ R, we define the product of the corresponding elements
[r ], [s] ∈ Sk(R) to be [r ][s]= [krs]. The notation is convenient when distinguishing
multiplication in R and in Sk(R) and is motivated by the following (though less
general) formulation of Sk(R). With k a positive integer, we denote by [r ] the
k× k single-valued matrix whose k2 entries all equal r . With Sk(R) the set of all
such matrices over R and viewing R as a Z-algebra so that

k · r = r + · · ·+ r︸ ︷︷ ︸
k

= kr,

we see that if [r ], [s] ∈ Sk(R), then [r ][s] = [krs] as in the original definition. With
R = Z, the ring of integers, and k = 2, this structure was introduced in [Jacobson
1965] to give examples of nonunique factorization of integers. This study was
generalized in [Baeth et al. 2011] to k ≥ 2 where more precise information about
factorizations was gathered. Over the past several decades, factorization theory,
and in particular the study of lengths of factorizations of elements in rings and
semigroups, has become a major area of algebraic and combinatorial research. See,
for example, the recent expository article [Geroldinger 2016] or the comprehensive
text [Geroldinger and Halter-Koch 2006]. We will illustrate, using the structure of
Sk(R) where R is either a PID or the quotient of a PID, the existence of rings for
which the factorization length set of every element is a discrete interval.

If R is a commutative ring, R× denotes the set of units — elements with mul-
tiplicative inverses. Of course if R does not have a multiplicative identity, then
R×=∅. We say that an element [r ] ∈ Sk(R) is irreducible if it is impossible to write
[r ] = [x][y] for any [x], [y] ∈ Sk(R). In the cases of interest (see Setup 3.2) Sk(R)
has no units and this definition coincides with the usual definition of irreducibility
in integral domains and cancellative semigroups and to the definition of very strong
irreducibles as in [Aḡargün et al. 2001; Anderson and Valdes-Leon 1996; 1997] in
rings with zerodivisors. In this note we will first determine the set of irreducible
elements of Sk(R). Then, for each nonirreducible element [r ] ∈ Sk(R), we will
compute its length set

L([r ])= {t : [r ] = [x1] · · · [xt ] with each [xi ] irreducible}.

This invariant is well-studied in the realm of cancellative commutative semigroups,
see [Geroldinger and Halter-Koch 2006; Geroldinger 2016], and was computed for
Sk(Z) in [Baeth et al. 2011]. When R is either a principal ideal domain or a quotient



NONUNIQUE FACTORIZATION OVER QUOTIENTS OF PIDS 703

of a principal ideal domain, we will show that L([r ]) is always either a singleton
set or an interval of integers. When a, b ∈ Z with a < b, we denote by [a, b] the
discrete interval {a, a+ 1, . . . , b}. Similarly, [a,∞)= {a, a+ 1, . . .}. Throughout,
if D is PID, then for elements x, y ∈ D, we denote by (x, y)= {r x + sy : r, s ∈ R}
the ideal generated by x and y. A greatest common divisor d of x and y is an
element r such that (x, y)= (r). Note that with D× denoting the set of units of D,
(x, y)= (r)= (s) if and only if s = ru for some u ∈ D×.

In the remainder of this section, before turning our attention to proper quotients
of PIDs, we generalize the results of [Baeth et al. 2011]. In Section 2 we give some
preliminary results about the structure of Sk(R) where R is the quotient of a PID.
Our main results are contained in Section 3, where we describe factorizations of
elements in Sk(R) where R is a quotient of a PID.

The following lemma and theorem describe factorization in Sk(D) where D is a
PID. It should not be surprising that the results obtained here are essentially the
same as those obtained in [Baeth et al. 2011], where R = Z (and k is a positive
integer). In fact, the proofs of these results are only slightly modified from those in
that paper and thus we do not include them here.

Lemma 1.1. Let D be a PID, let k ∈ D\(D× ∪ {0}), and let [a] ∈ Sk(D). Then [a]
is irreducible in Sk(D) if and only if k -a.

For a, b ∈ D, we define νb(a) to be the largest integer m such that a is divisible
by bm. Then we have the following classification of length sets in Sk(D) when D
is a PID.

Theorem 1.2. Let D be a PID, let k ∈ D\(D× ∪ {0}), and let [a] ∈ Sk(D).

(1) If k is prime, then |L([a])| = 1.

(2) If k = pm for some prime p, then

L([a])=
[⌈
νp(a)+m

2m− 1

⌉
, νm(a)+ 1

]
.

(3) If k is not the power of a prime, then L([a])= [2, νm(a)+ 1].

We note that if k is prime, then Sk(D) is half-factorial; that is, the length set of
any factorization is a singleton set. When k is not prime, each element has either
a singleton length set or its length set is a discrete interval. When k is not the
power of a prime, Sk(D) is bifurcus; that is, every nonirreducible element can be
represented as the product of two irreducible elements.

2. The structure of Sk(D/(n))

Throughout the next two sections, R = D/(n), where D is a commutative principal
ideal domain and n is a nonzero nonunit nonprime of D. For convenience we use the
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notation x̄ to denote the coset x + (n) in D/(n). Before investigating factorization
in Sk(R) in Section 3, we give some preliminary results and make a few basic
observations about Sk(R). We begin by showing that Sk(R) has no multiplicative
identity except for in the trivial case, where Sk(R)∼= R.

Proposition 2.1. Let R = D/(n), where D is a PID and n ∈ D \ (D× ∪ {0}). The
following statements are equivalent:

(1) 1 is a greatest common divisor of k and n.

(2) Sk(R) has a multiplicative identity.

(3) Sk(R)∼= R.

Proof. If 1 is a greatest common divisor of k and n, there exist x, y ∈ D with
kx + ny = 1. Then, in R, k̄ x̄ = 1̄. For any [ā] ∈ Sk(R), [ā][x̄] = [axk] = [ā]
and [x̄] is the multiplicative identity of Sk(R). Conversely, suppose Sk(n) has a
multiplicative identity [ū]. Then [1̄][ū] = [1̄] and so ūk̄ = 1̄ in D/(n). But then
ku + nv = 1 for some v ∈ D, and so 1 is a greatest common divisor of k and n.
Therefore (1) and (2) are equivalent. The fact that (3) implies (2) is trivial since
R = D/(n) has a multiplicative identity. We now show that (1) implies (3). Since 1
is a greatest common divisor of k and n, we have k−1k̄ = 1̄ for some k−1

∈ D. It is
then trivial to check that the map ϕ : D/(n)→ Sk(R) defined by ϕ(ā)= [k−1a] is
a ring isomorphism. �

Before investigating the multiplicative structure of Sk(R), we note that k need
only be considered modulo n. If k ≡ k ′ mod n with k, k ′ ∈ D, then k̄ = k ′ in R and
the following result is immediate.

Proposition 2.2. Let k ≡ k ′ mod n.

(1) If k ′ = 0, then all nonzero elements of Sk(R) are irreducible.

(2) If k ′ 6= 0, then Sk(R)∼= Sk′(R).

Suppose that Sk(R) 6∼= R. Clearly [0̄] is a zerodivisor of Sk(R). If d 6= 1 is a
greatest common divisor of k and n, then k = dy and n = dz for some y, z ∈ D.
Consider [az] ∈ Sk(R) with a ∈ D. Then

[az][x̄] = [kazx] = [(dy)azx] = [(dz)ayx] = [(n)ayx] = [(0)ayx] = [0̄]

for every [x̄] ∈ Sk(R). Thus we have the following result.

Proposition 2.3. Let D be a PID and let R = D/(n) for some nonzero nonunit n
of D. If 1 is not a greatest common divisor of k and n, then all elements of Sk(R)
are zerodivisors.

Note that what the argument preceding Proposition 2.3 really shows is that for
each a ∈ D, with z = n/d for some greatest common divisor d of k and n, the
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element [az] ∈ Sk(R) annihilates all elements of Sk(R). Moreover, if d 6= 1 is a
greatest common divisor of k and n, then [az] 6= [0̄] for some a ∈ D. That is, an
element of the form [az] is a sort of psuedozero as it annihilates all other elements
of Sk(R). This element z ∈ D has an additional interesting property in terms of
factorizations. Suppose x̄ = az+ c and ȳ = bz+ c for some a, b, c ∈ D. Then for
all [w̄] ∈ Sk(R), we have [x̄][w̄] = [c̄][w̄] = [ȳ][w̄].

3. Length sets in Sk(R)

The goal of this section is to compute the length set L([x̄]) for each [x̄] ∈ Sk(D/(n)).
We will obtain results similar to those in Theorem 1.2 but find that for some [x̄],
L([x̄]) is unbounded, much as is the case for some elements in D/(n). We begin by
recalling the following proposition, [Baeth et al. 2017, Theorem 3.4], that describes
factorization in D/(n) with the usual multiplication.

Proposition 3.1. Let n be a nonzero nonprime element of a PID D and let x̄ ∈D/(n)
with gcd(x, n) = d. If p | (n/d) for every prime divisor p of n, then x̄ factors
uniquely in D/(n) and LD/(n)(x̄)= {t} = LD(d). Otherwise, x̄ has infinitely many
distinct factorizations in D/(n) and LD/(n)(x̄)= [t,∞), where LD(d)= {t}.

Since factorization in D/(n) is already understood, we focus on the case when
Sk(R) 6∼= R. Based on Propositions 2.1 and 2.2 we set some blanket hypotheses for
the remainder of this manuscript.

Setup 3.2. Let D be a PID, let n be a nonzero nonunit of D and let R = D/(n).
Also let k ∈ D be a nonzero nonunit in D with n -k and (n, k)= (d) 6= D.

First we classify the irreducible elements — elements that cannot be represented
as a product of two nonzero elements of Sk(R).

Proposition 3.3. Let the notation be as in Setup 3.2. Then [ā]∈ Sk(R) is irreducible
if and only if d -a in D.

Proof. Suppose that d | a. Then a ∈ (d)= (k, n) in D and so a = kx+ny for some
x, y ∈ D. But then [ā] = [kx + ny] = [kx] = [1̄][x̄] is not irreducible in Sk(R).
Conversely, suppose that [ā] is not irreducible in Sk(R). Then [ā] = [x̄][ȳ] = [kxy]
for some x, y ∈ D. Then ā = kxy in D/(n) and so a = kxy+ nz for some z ∈ D.
Then, since d | k and d | n, we know d | a. �

Now that we have classified the irreducible elements of Sk(R), we work to
compute the length sets of nonzero elements in Sk(R). Throughout we will need the
following definition. For a ∈ D, define ν(n,k)(a), if it exists, to be the smallest posi-
tive integer m such that gcd(km, n) -a. This gives an analog to the valuation νb(a)
which was used in the description of lower bounds of length sets in Theorem 1.2.
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Remark 3.4. Note that if R = D/(n) is the quotient of a PID D and n = pt1
1 · · · p

ts
s

with p1, . . . , ps distinct primes in D and t1, . . . , ts positive integers, then the decom-
position of R by the Chinese remainder theorem immediately gives a decomposition
on Sk(R) as Sk(R) ∼= Sk(D/(p

t1
1 )) × · · · × Sk(D/(p

ts
s )). One could then study

factorization in Sk(R) by piecing together information about factorization in each
Sk(D/(p

ti
i )). Though this simplifies some calculations, it obfuscates exactly how

elements factor in Sk(R). However, this decomposition does clarify the definition
of ν(n,k)(a) since

ν(pt ,k)(a)=min
m≥1

{
m :min{mνp(k), t}> νp(a)

}
=

⌊
νp(a)
νp(k)

+ 1
⌋

if p is a prime in D and k is a positive integer.

In the next proposition we investigate upper bounds on L([ā]).

Proposition 3.5. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(n):

(1) If ν(n,k)(a) exists, then max L([ā])≤ ν(n,k)(a).

(2) If ν(n,k)(a) does not exist, then L([ā]) is unbounded.

Proof. Let [ā]∈ Sk(n) and assume that ν(n,k)(a) exists. Suppose that [ā]=
∏l

j=1[b̄ j ],
where each [b̄ j ] is irreducible. Then a≡ kl−1b1 · · · bl mod n and so gcd(kl−1, n) | a.
Thus l−1<ν(n,k)(a) and so l ≤ ν(n,k)(a). Now assume that ν(n,k)(a) does not exist.
That is, gcd(km, n) | a for all m ≥ 1. For m ≥ 1, set dm to be a greatest common
divisor of km and n. Then dm = km x + ny for some x, y ∈ D. Since dm | a, we
know a = dmb = km xb+ nyb for some b ∈ D. Then [ā] = [1̄]m[xb]. Since [1̄] is
irreducible and since [xb] is either irreducible or can be factored as the product of
irreducibles, [ā] has a factorization of length at least m+1. Since m was arbitrarily
chosen, L([ā]) is unbounded. �

We now show that if ν(n,k)(a) exists, then [ā] has a factorization of length
ν(n,k)(a). First we observe the following fact, which is immediate using the ideal
inclusion (a, b)(am−1, b)⊆ (am, b).

Lemma 3.6. Let D be a PID and let a, b ∈ D. If m is a positive integer, then
gcd(am, b) | gcd(a, b) gcd(am−1, b).

Proposition 3.7. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(R) and assume
that v(n,k)(a) exists. Then v(n,k)(a) ∈ L([ā]).

Proof. Clearly [1̄] is irreducible. We will show that there is [b̄] ∈ Sk(n) such
that [ā] = [b̄][1̄]v(n,k)(a)−1 with [b̄] irreducible. Let d ′ = gcd(kv(n,k)(a)−1, n), k ′ =
kv(n,k)(a)−1/d ′, a′ = a/d ′, and n′ = n/d ′. Then gcd(k ′, n′) = 1 and so there exist
x, y ∈ D such that n′x + k ′y = 1. Let b = a′y. Then

kv(n,k)(a)−1b = d ′k ′a′y = ak ′y = a− xan′ = a− a′xn,
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whence kv(n,k)(a)−1b ≡ a mod n. We now show that [b̄] is irreducible. If d | b, then
since d ′ | kv(n,k)(a)−1, we have dd ′ = gcd(k, n) gcd(kv(n,k)(a)−1, n) | bkv(n,k)(a)−1. Then,
by Lemma 3.6, gcd(kv(n,k)(a), n) | gcd(k, n) gcd(kv(n,k)(a)−1, n). This would imply
gcd(kv(n,k)(a), n) | bkv(n,k)(a)−1 and gcd(kv(n,k)(a), n) | n. But gcd(kv(n,k)(a), n)-a, con-
tradicting a ≡ kv(n,k)(a)−1b mod n. Thus [b̄] is irreducible and v(n,k)(a) ∈ L([ā]). �

Now (1) of Proposition 3.5 becomes: if ν(n,k)(a) exists, then max L([ā]) =
ν(n,k)(a).

For the remainder of this section we consider two cases. Let d be a greatest
common divisor of k and n. First we suppose that d is not the power of a prime. In
this case we show that Sk(R) is bifurcus and hence L([ā])= [2, sup L([ā])] for all
nonirreducibles [ā] ∈ Sk(R). We then consider when d is the power of some prime
in D. In this case we compute the minimum value in L([ā]) and again show that
L([ā])⊆ [min L([ā]), sup L([ā])] with equality if k is also a prime power. In each
case we explicitly give factorizations of [ā] of each possible length. We begin with
the simpler case when d is not a prime power.

Proposition 3.8. Let the notation be as in Setup 3.2. Suppose that d = st for some
relatively prime s, t ∈ D. Then 2∈ L([ā]) for all nonzero nonirreducible [ā] ∈ Sk(R).

Proof. If [ā] is not irreducible, then d | a. Then a ∈ (d)= (n, k) and so a = kx+ny
for some x, y ∈ D. Write x = dr z with r ≥ 0 and d -z. Then, without loss of
generality, s -z. Now

[ā] = [kx] = [kdr z] = [ksr tr z] = [sr ][tr z].

Since d -sr and d -tr z, we have [sr ] and [tr z] are irreducible. �

Since 2 ∈ L([ā]) for all nonzero nonirreducible [ā] ∈ Sk(R), we know Sk(R) is a
finite bifurcus ring. This provides an affirmative answer to Open Problem 2.1.3 of
[Adams et al. 2009].

Note that if l ∈L([ā]) with l> 2, then [ā]= [b̄1] · · · [b̄l] with each [b̄i ] irreducible.
Since Sk(R) is bifurcus, [b̄1][b̄2][b̄3]= [c̄1][c̄2] for some [c̄1], [c̄2] irreducible. Then
[ā] = [c̄1][c̄2][b̄4] · · · [b̄l] is a factorization of [ā] of length l−1. Therefore we have
the following corollary.

Corollary 3.9. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(n). Let d be a
greatest common divisor of k and n and suppose that d is not a prime power in D:

(1) If ν(n,k)(a) exists, then L([ā])= [2, ν(n,k)(a)].

(2) If ν(n,k)(a) does not exist, then L([ā])= [2,∞).

In addition to a complete description of the length sets of elements in Sk(D/(n)),
if gcd(k, n) is not a prime power, then the ring is bifurcus and [Adams et al. 2009,
Theorem 1.1] tells us also the catenary degree is c(Sk(D/(n)))= 3 and the tame
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degree is t(Sk(D/(n)))=∞; see [Geroldinger and Halter-Koch 2006, Chapter 1.6]
for definitions.

We now consider when a greatest common divisor of k and n is a prime power
and set some notation for the remainder of this section. Let n = xpr, k = yps, and
d = pt, where p is a prime in D, p -x, y, and r, s ≥ 1. Then t = min{r, s} ≥ 1.
Moreover, since ȳ ∈ D/(n)×, there is w ∈ D with yw≡ 1 mod n. We will consider
factorizations of [ā] ∈ Sk(n) where a = zpu with p -z. Note that in this setting,
similar to Remark 3.4,

ν(n,k)(a)=min
m≥1

{
m :min{ms, r}> u

}
.

Therefore ν(n,k)(a) exists if and only if r > u. When it does exist, ν(n,k)(a) =
bu/s + 1c. Thus we consider two cases: r > u and r ≤ u. In each case we
suppose that l ∈ L([ā]); i.e., [ā] = [ā1] · · · [āl] with each [āi ] irreducible so that
a ≡ kl−1a1 · · · al mod n and hence ps(l−1)

| a.
First, suppose that u < r . We then consider two subcases determined by the

relation of (l − 1)s to u and r . If u < (l − 1)s, then ps(l−1) -a and so [ā] has no
factorization of length l. Alternatively, (l − 1)s ≤ u < r . Since ps(l−1)

| a and
a = zpu , we know pu−(l−1)s

| a1 · · · al . As each [āi ] is irreducible, pt -ai for each i .
By the pigeonhole principle, d(u − (l − 1)s)/(t − 1)e ≤ l. Conversely, suppose
j = d(u− (l − 1)s)/(t − 1)e ≤ l. Then

[ā] = [pu−(l−1)s−(t−1)( j−1)wl−1z][pt−1] j−1
[1̄]l− j

is a factorization of [ā] of length l. Thus, when u < r , we know [ā] has a fac-
torization of length l if and only if d(u − (l − 1)s)/(t − 1)e ≤ l, equivalently
d(u+ s)/(t + s− 1)e ≤ l ≤ bu/s+ 1c.

Now suppose that r ≤u and consider three subcases. First, suppose that (l−1)s≤
r ≤ u. Then pr−(l−1)s

| a1 · · · al and as in the case above, d(r−(l−1)s)/(t−1)e≤ l.
Conversely, if j = d(r − (l − 1)s)/(t − 1)e ≤ l, then

[ā][pr−(l−1)s−(t−1)( j−1)wl−1 z(pu−r + x)][pt−1] j−1
[1̄]l− j

is a factorization of [ā] of length l. Now suppose that r ≤ (l−1)s < u. Note that if
p | (pu−(l−1)s

+ x+mxpr ) for some m, then p | x . Thus p -(pu−(l−1)s
+ x+mxpr )

for all m ∈ D and so [pu−(l−1)s + x] is irreducible and

[ā] = [pu−(l−1)s + x][wl−1][1̄]l−2

is a factorization of [ā] of length l. Finally, suppose that r ≤ u ≤ (l − 1)s. Since
(p, x)= 1, there is v ∈ D with vp≡ 1 mod x . That is, vp= 1+ xb for some b ∈ D
and so vp · pr

= (1+ xb)pr
= pr

+ nb ≡ pr mod n. In fact, v j p j+r
≡ pr mod n
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for all j ≥ 0. Now, choosing j > (l − 1)s+ r − u,

[v j pr+ j+(u−r)−(l−1)s + x][wl−1z][1̄]l−2

is a factorization of [ā] of length l. Thus, when r≤u, we know [ā] has a factorization
of length l if and only if l≥d(r+s)/(t+s−1)e. In summary, we have the following
proposition.

Proposition 3.10. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(n). Let n = xpr,
k = yps, d = pt, and a = zpu, where p is a prime in D, p -x, y, z, and r, s ≥ 1:

(1) If ν(n,k)(a) exists, then L([ā])= [d(u+ s)/(t + s− 1)e, ν(n,k)(a)].

(2) If ν(n,k)(a) does not exist, then L([ā])= [d(r + s)/(t + s− 1)e,∞).

Even though Sk(D/(n)) is not bifurcus if gcd(k, n) is a prime power, we can
still bound the catenary degree and compute the tame degree. Since for any
[ā] ∈ Sk(D/(n)), we have min L([ā]) ≤ d(r + s)/(t + s − 1)e, an argument anal-
ogous to that of [Adams et al. 2009, Theorem 1.1] gives that c(Sk(D/(n))) ≤
d(r + s)/(t + s − 1)e. Since there exist elements with arbitrarily long factor-
ization lengths, [Geroldinger and Halter-Koch 2006, Theorem 1.6.6] gives that
t(Sk(D/(n)))≥ ρ(Sk(D/(n))=∞.

In conclusion, whenever [ā] ∈ Sk(R) with (k, n) 6= D, we have L([ā]) =
[min L([ā]), sup L([ā])], with sup L([ā]) = ∞, if and only if ν(n,k)(a) does not
exist. Together, Corollary 3.9 and Proposition 3.10 completely describe the length
sets of elements in the ring Sk(R) subject to the conditions laid out in Setup 3.2.
The remaining cases are either trivial or are dealt with in Theorems 1.2 and 3.1.
Moreover, the catenary degree is always bounded and the tame degree is always
infinite.
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