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(Communicated by Michael Dorff)

We derive formulas for the number of interior roots (i.e., zeros with modulus less
than 1) and exterior roots (i.e., zeros with modulus greater than 1) for trinomials
of the form zn

+ zk
− 1, where 1 ≤ k ≤ n− 1. Combined with earlier work by

Brilleslyper and Schaubroeck, who focus on unimodular roots (i.e., zeros that
lie on the unit circle), we give a complete count of the location of zeros of these
trinomials.

1. Introduction

The investigation of zeros of analytic functions has a long and rich history, with
many important results focusing on specialized cases. Indeed, the study of zeros of
trinomials dates to the 19th century, and a recent paper by Melman [2012] gives
historical references in addition to providing information on the location of zeros.
Even more recently, [Brilleslyper and Schaubroeck 2014], which won a Pólya
award, investigated trinomials of the form

p(z)= zn
+ zk
− 1 (n ≥ 2, 1≤ k ≤ n− 1). (1)

Their main result characterizes the unimodular roots (i.e., zeros that lie on the unit
circle) of p(z):

Theorem 1. Let p(z)= zn
+ zk
− 1 and let g = gcd(n, k). If 6 divides n/g+ k/g,

then p has exactly 2g unimodular roots, occurring in conjugate pairs zm and z̄m ,
determined by zm = exp[i(π/(3g)+ 2πm/g)], where 0≤ m ≤ g− 1.

In that paper, they called for the discovery of a formula (involving n and k) that
would calculate the number of interior roots (i.e., zeros with modulus less than 1)
of these trinomials. In [Brilleslyper and Schaubroeck ≥ 2018] they developed a
conjecture,

number of interior roots= 2g
⌊n+k−g

6g

⌋
+ g,

and proved it for the special case when k = 1.
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Here we show that their conjecture is correct in general. Specifically we prove,
for 1≤ k ≤ n− 1, the equivalent formula

number of interior roots= 2g
⌈n+k

6g

⌉
− g. (2)

Our proof proceeds in three steps.
First, we show that any interior root must lie in what we call an interior region,

that any such region contains at most one root, and that the maximum number of
these regions matches (2). Next, we show that a similar situation holds for exterior
roots (i.e., zeros with modulus greater than 1) with respect to exterior regions,
where the maximum number of these regions matches (3), given by

number of exterior roots= n− 2g
⌊n+k

6g

⌋
− g. (3)

Finally, we show that adding together the number of unimodular roots (if any), the
maximum number of interior regions, and the maximum number of exterior regions
results in n, the degree of the trinomial, so that these regions contain exactly one root.

We begin by analyzing where interior roots must be located. To do so, we
generally follow the approach in [Brilleslyper and Schaubroeck ≥ 2018], but with
some modifications. Throughout, the term trinomial and the notation p(z) designate
a function as defined in (1).

2. The location of interior roots

In what follows we suppose p(z0)= 0 for some z0 with |z0|< 1.

2.1. Native zones for interior roots. The assumption that p(z0) = 0 leads to the
equation zk

0(z
n−k
0 +1)= 1. Using the additional assumption that |z0|< 1 and taking

the modulus of both sides reveal that |zk
0|< 1 and |zn−k

0 +1|> 1. Thus, zn−k
0 must lie

outside the circle |z+1| = 1, and zk
0 must lie inside the circle |z| = 1. But if |zk

0|< 1,
then |zn−k

0 | < 1 as well, so zn−k
0 must also lie inside the circle |z| = 1. The two

circles intersect at points whose arguments are±2
3π , so Arg(zn−k

0 )∈
(
−

2
3π,

2
3π
)
. It

follows that the point z0 itself must lie inside one of n− k possible disjoint regions,
which we dub native zones:

Nm =

{
reiθ
: θ ∈

(
−

2π
3(n−k)

+m 2π
(n−k)

,
2π

3(n−k)
+m 2π

(n−k)

)}
, (4)

where 0< r < 1 and m ∈ Z.
Although there are only n− k distinct native zones Nm , we allow the index m

to range over the integers. Doing so will assist us later in counting the number of
these zones satisfying certain restrictions.
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Figure 1. The unit disk with native zones (hatched), echo zones
(shaded), and roots (large dots) for the trinomials z5

+zk
−1, where

1≤ k ≤ 4.

2.2. Echo zones for interior roots. We can get further information on the location
of z0 by considering a related polynomial q(z) defined by

q(z)=−zn p(1/z)= zn
− zn−k

− 1.

A straightforward calculation reveals that p(z)= 0 if and only if q(1/z̄)= 0.
Let w0 = 1/z̄0, and note that Arg(z0)= Arg(w0). Thus, z0 and w0 are echos of

each other across the unit circle, and are zeros, respectively, of p(z) and q(z).
Write q(w0)=w0

n
−w0

n−k
−1= 0 as wn−k

0 (w0
k
−1)= 1. Taking the modulus

of both sides reveals that |wn−k
0 |> 1 (because |z0|< 1) and |w0

k
− 1|< 1. Using

an analysis similar to that which led to the definition of native zones enables us to
conclude that Arg(wk

0)= Arg(zk
0) ∈

(
−

1
3π,

1
3π
)
. It follows that the point z0 itself

must lie inside one of k possible disjoint regions E j , which we call echo zones:

E j =

{
reiθ
: θ ∈

(
−
π

3k
+ j 2π

k
,
π

3k
+ j 2π

k

)}
, (5)

where 0< r < 1 and j ∈ Z.
As with the native zones, we allow the index j for the echo zones E j to range

over the integers.
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2.3. Interior regions for interior roots. The preceding analysis shows that any inte-
rior root must lie in a nonempty intersection of a native zone and an echo zone, which
we call an interior region. Figure 1 depicts this result for the trinomials zn

+ zk
−1,

where n= 5 and 1≤ k ≤ 4. Note that every interior root is in an interior region, and,
in the case of Figure 1 (upper-left), there are 2g= 2 unimodular roots as guaranteed
by Theorem 1. Further, extending the radii of native and echo zones indicates that
every exterior root is in neither a native nor an echo zone. The next section shows
more precisely that these roots must be located in what we call exterior regions.

3. The location of exterior roots

Under the hypothesis that p(z0)= 0, where |z0|> 1, the same process for analyzing
interior roots can be used to show that all exterior roots belong to an intersection of
an exterior native zone and an exterior echo zone, defined respectively as

ENm =

{
reiθ
: θ ∈

( 2π
3(n−k)

+m 2π
(n−k)

,
4π

3(n−k)
+m 2π

(n−k)

)}
, (6)

where 1< r <∞, m ∈ Z; and

EE j =

{
reiθ
: θ ∈

(
π

3k
+ j 2π

k
,

5π
3k
+ j 2π

k

)}
, (7)

where 1 < r <∞, j ∈ Z. As with the corresponding native and echo zones, we
allow m and j to range over the integers.

We call any nonempty intersection of (6) and (7) an exterior region.

4. Upper bounds for roots

The last two sections collectively show that every interior root must belong to an
interior region, and every exterior root must belong to an exterior region. In this
section we establish that each such region contains at most one root.

In proving (2) for the case when k = 1, Brilleslyper and Schaubroeck demon-
strated that exactly one root of p(z) resides in each of the disjoint angular regions

Ra =

{
reiθ
: θ ∈

(2aπ
n
−
π

2n
,

2aπ
n
+
π

2n

)}
, (8)

where 0< r < 2 and 0≤ a ≤ n− 1.
They called these regions Rouché sectors [Brilleslyper and Schaubroeck ≥ 2018],

an appropriate choice because their demonstration makes creative use of Rouché’s
theorem, which can be found in almost any standard text for a first course in complex
analysis [Mathews and Howell 2012, pp. 340–341]. For completeness we state the
theorem here.
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Figure 2. Native zones (hatched), echo zones (shaded), Rouché
sectors (dotted), and roots (large dots) for z5

+ z − 1 (left) and
z5
+ z4
− 1 (right). The dashed lines are midway between the

Rouché sectors.

Theorem 2 (Rouché’s theorem). Let 0 be a simple closed positively oriented
contour in C, and let f and g be analytic functions in a simply connected domain
that contains 0. If | f (z)− g(z)|< |g(z)| for all z ∈ 0, then f and g have the same
number of zeros inside 0.

The demonstration that p(z) has a zero (henceforth root) in any sector Ra comes
from applying Rouché’s theorem to the functions f (z)= p(z) and g(z)= zn

− 1
evaluated on the boundary of the sector defined in (8). Each sector is centered
around only one n-th root of unity, so g(z) has exactly one root in each. Therefore,
p(z) has exactly one root in each Rouché sector.

Figure 2 illustrates this situation for the trinomials z5
+ z− 1 and z5

+ z4
− 1,

where all interior roots lie in the intersection of an interior region and a Rouché
sector, and all exterior roots lie in the intersection of an exterior region and a Rouché
sector. In each case the number of interior and exterior regions match, respectively,
(2) and (3).

Now, if an interior region contained more than one root, then that region would
have to intersect at least two Rouché sectors, and for some integer a contain one
of the rays {z = reiθa : 0 < r < 1}, where θa = π/n + 2πa/n, which is midway
between the respective Rouché sectors (see Figure 2).

Suppose that some ray z = reiθa were in an interior region. Then, for some
integers m and j , we have reiθa ∈ Nm and reiθa ∈ E j for 0< r < 1. According to
the definitions of Nm and E j , see (4) and (5), we thus get the inequalities

−
2π

3(n−k)
+m 2π

(n−k)
<
π

n
+ a 2π

n
<

2π
3(n−k)

+m 2π
(n−k)

,
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that is,

−
5
3
<−

k
n
+ 2a− a 2k

n
− 2m <−

1
3
, (9)

if θa were in a native zone, and

−
π

3k
+ j 2π

k
<
π

n
+ a 2π

n
<
π

3k
+ j 2π

k
,

that is,

−
1
3
<

k
n
+ a 2k

n
− 2 j < 1

3
, (10)

if θa were in an echo zone. Combining (9) and (10) gives

−2< 2a− 2n− 2 j < 0 or − 1< a− n− j < 0,

which is impossible because j , m, and a are integers.
By the same process we can determine that no ray z = reiθa is in an exterior

region, so that each exterior region has at most one root.
Thus, an upper bound for the number of interior and exterior roots is, respectively,

the number of interior and exterior regions. The next few sections establish that the
maximum number of these regions matches (2) and (3).

5. Counting interior regions

Each native and echo zone has the general form {reiθ
: α < θ < β, 0< r < 1}. To

simplify language we will call the ray z= reiβ , where 0< r < 1, the right border of
the given zone. (For exterior zones, of course, 1< r <∞.) With this understanding,
we proceed to count how many interior regions there are for a given trinomial p(z),
where a working assumption will be gcd(n, k) = 1. In a subsequent section we
show how to extend this assumption to the case when gcd(n, k)= g > 1.

Recall that an interior region consists of a nonempty intersection Nm ∩ E j of
a native and echo zone. Figure 3 illustrates that there are three cases to consider
for such an intersection: the right border of an echo zone belongs to a native zone
(Figure 3, left), the right border of a native zone belongs to an echo zone (Figure 3,
center) or their right borders coalign (Figure 3, right). Our task is to count the
interior regions in each case.

Case 1: The right border of an echo zone belongs to a native zone (Figure 3, left).
Then, by (4) and (5), for some j, m ∈ Z,

−
2π

3(n−k)
+m 2π

(n−k)
<
π

3k
+ j 2π

k
<

2π
3(n−k)

+m 2π
(n−k)

or

−
n+k

6
< j (n− k)−mk < 3k−n

6
.

(11)
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Figure 3. Trinomials illustrating that either the right border of an
echo zone belongs to a native zone (left), the right border of a
native zone belongs to an echo zone (center), or their right borders
coalign (right).

To count the interior regions in this category, we first determine all values of
m and j satisfying (11). By a standard result in number theory (see, for example,
[Uspensky and Heaslet 1939, pp. 54–57]) we know that, because gcd(n− k, k)= 1,
the Diophantine equation j (n− k)−mk = c has a solution jc,mc for any integer
c ∈

(
−

1
6(n+ k), 1

6(3k− n)
)
. Furthermore, the set of all solutions is given by

j = jc+ kt and m = mc+ (n− k)t for t ∈ Z. (12)

According to (4) and (5), E jc = E jc+kt and Nmc = Nmc+(n−k)t for all t ∈Z. Hence,
from solution set (12), we see that to every integer c∈

(
−

1
6(n+ k), 1

6(n− 3k)
)

there
corresponds exactly one interior region Nmc ∩ E jc . In other words, the maximum
number of interior regions in this category — and thus the maximum number of
interior roots — is the number of integers between −1

6(n+ k) and 1
6(3k− n). The

number of integers in an open interval (a, b) for a, b ∈ R is the difference between
the last integer and first integer plus 1, that is, (dbe−1)−(bac+1)+1. Combining
that fact with the result that, for x ∈ R, b−xc = −dxe, yields a formula for the
number of integers in the interval

(
−

1
6(n+ k), 1

6(3k− n)
)
, and thus the maximum

number of interior regions for Case 1:(⌈3k−n
6

⌉
− 1

)
−

(⌊
−

n+k
6

⌋
+ 1

)
+ 1=

⌈3k−n
6

⌉
+

⌈n+k
6

⌉
− 1. (13)

Cases 2 and 3: The right border of a native zone belongs to an echo zone, or their
right borders coalign (Figure 3, center and right, respectively).

Then, for some j,m ∈ Z,

−
π

3k
+ j 2π

k
<

2π
3(n−k)

+m 2π
(n−k)

≤
π

3k
+ j 2π

k
or

−
n+k

6
< mk− j (n− k)≤ n−3k

6
.

(14)
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By using (14) and the same analysis as in Case 1, we find that there is exactly
one interior region for each integer in the interval

(
−

1
6(n + k), 1

6(n − 3k)
]
. The

last integer in this interval is
⌊ 1

6(n− 3k)
⌋

and the first integer is
⌊
−

1
6(n+ k)

⌋
+ 1.

Therefore, the number of integers in the interval
(
−

1
6(n+ k), 1

6(n− 3k)
]
, and thus

the maximum number of interior regions in this category, is⌊n−3k
6

⌋
−

(⌊
−

n+k
6

⌋
+ 1

)
+ 1=−

⌈3k−n
6

⌉
+

⌈n+k
6

⌉
. (15)

Combining the cases: Adding together (13) and (15) gives the desired formula for
the maximum number of interior regions, and therefore the maximum number of
interior roots when gcd(n, k)= 1:

2
⌈n+k

6

⌉
− 1. (16)

6. Counting exterior regions

Again using the assumption that gcd(n, k)= 1, we now obtain counts for exterior
regions. As with interior regions, we have three cases to consider: the right border of
an exterior echo zone (7) belongs to an exterior native zone (6), the right border of an
exterior native zone belongs to an exterior echo zone, or their right borders coalign.

With the same techniques used in the previous section, we find that, in the first
case, we must count the integers in the interval(n+k

6
− n+ k, n+3k

6
− n+ k

)
.

The identities bx+nc = bxc+n and dx+ne = dxe+n (valid for n ∈ Z and x ∈R)

assist in obtaining the following count:(⌈n+3k
6
− n+ k

⌉
− 1

)
−

(⌊n+k
6
− n+ k

⌋
+ 1

)
+ 1

=

⌈n+3k
6

⌉
−

⌊n+k
6

⌋
− 1. (17)

For the last two cases combined we must count the integers in the interval(n+k
6
− k,−n+3k

6
+ n− k

]
.

Floor and ceiling function identities then assist in yielding the following amount:⌊
−

n+3k
6
+ n− k

⌋
−

(⌊n+k
6
− k

⌋
+ 1

)
+ 1=−

⌈n+3k
6

⌉
+ n−

⌊n+k
6

⌋
. (18)

Adding together the counts described in (17) and (18) reveals that the maximum
number of exterior regions is

n− 2
⌊n+k

6

⌋
− 1, (19)
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which is thus an upper bound for the maximum number of exterior roots when
gcd(n, k)= 1.

7. Verifying the general formulas

For the interior roots of p(z)= zn
+ zk
− 1, where gcd(n, k)= g > 1, we appeal to

the related polynomial p̃(z)= zn/g
+ zk/g

−1. From [Brilleslyper and Schaubroeck
2014, Lemma 2], we know that the roots of p(z) are in g-to-one correspondence
with the roots of p̃(z), and this correspondence does not disrupt the classification of
roots into interior, unimodular, or exterior categories. Since gcd(n/g, k/g)= 1, we
can use n/g and n/k, respectively, in place of n and k in (16) to get the maximum
number of interior roots for p̃(z):

2
⌈n/g+k/g

6

⌉
− 1= 2

⌈n+k
6g

⌉
− 1.

The maximum number of interior roots for p(z), then, is 2gd(n+ k)/(6g)e− g,
which is exactly (2).

Using the same procedure, it can be shown that, when gcd(n, k)= g > 1, (19)
morphs to give n−2gb(n+k)/(6g)c−g as the maximum number of exterior roots
for p(z), which is exactly (3).

To complete our analysis we note that, when there are no unimodular roots, (2)
and (3), when added together, give the maximum number of roots for p(z):(

2g
⌈n+k

6g

⌉
− g

)
+

(
n− 2g

⌊n+k
6g

⌋
− g

)
. (20)

When p(z) has unimodular roots, Theorem 1 guarantees that the maximum
number of roots it has is

2g+
(

2g
⌈n+k

6g

⌉
− g

)
+

(
n− 2g

⌊n+k
6g

⌋
− g

)
. (21)

But according to Theorem 1, unimodular roots occur precisely when 6g divides
n+ k. Thus, d(n+ k)/(6g)e = b(n+ k)/(6g)c+ 1 in (20), and d(n+ k)/(6g)e =
b(n+ k)/(6g)c in (21). In both cases, then, the expressions sum to n, which equals
the total number of roots for p(z). Because interior and exterior regions are the
only possible locations for interior and exterior roots, the maximum numbers of
interior and exterior roots as expressed in (2) and (3) must be attained.

The enumeration of interior, exterior, and unimodular roots of trinomials p(z) is
now complete. For convenience, we summarize the results.

Theorem 3. For n ≥ 2, 1 ≤ k ≤ n− 1, and g = gcd(n, k), the trinomial p(z) =
zn
+ zk
− 1 has 2gd(n + k)/(6g)e − g interior roots, n − 2gb(n + k)/(6g)c − g

exterior roots, and, when 6g divides n+ k, it has 2g unimodular roots.
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