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Modeling of breast cancer
through evolutionary game theory

Ke’Yona Barton, Corbin Smith, Jan Rychtář and Tsvetanka Sendova
(Communicated by Kenneth S. Berenhaut)

We present a simple mathematical model of the development and progression
of breast cancer based on evolutionary game theory. Four types of cellular
populations are considered: stromal (native) cells, macrophages, benign tumor
cells, and motile (malignant) tumor cells. Despite the relative simplicity of the
model, it provides a way to explore the interactions between the various cell types
and suggests potential approaches to managing and treating cancer.

1. Introduction

The third most common cancer in the world is breast cancer, succeeding lung and
stomach cancer [Ford et al. 1998]. In women worldwide it is the leading cancer
and there are more than 106 new cases each year. There are many genes associated
with an increased probability of a person developing breast cancer, more commonly
known amongst which are the BRCA1 and BRCA2 genes [Ford et al. 1998; Slamon
et al. 1987].

There has been a substantial amount of research which makes use of mathematical
models based on evolutionary game theory (EGT) and attempts to gain insight
into the principal mechanisms that govern the development of cancer; see for
example [Basanta et al. 2012; Orlando et al. 2012; Bach et al. 2001; Tomlinson
and Bodmer 1997]. EGT, introduced in the 1970s by John Maynard Smith, was
first used to analyze contests between rival species, competing for an important
resource (e.g., food, territory, etc.). If one takes the view of tumor and stromal
(native) cells as species, the same type of mathematical techniques, previously
used in an ecological context, can be applied to study the progression of cancer.
In recent years this approach has been applied to study various aspects of cancer.
For example, [Basanta et al. 2012] uses a three cell species model to investigate
prostate cancer tumor-stroma interaction; [Bach et al. 2001] and [Liu and Liu 2012]
develop respectively two and three species models to study the synergistic effects of

MSC2010: primary 91A22; secondary 91A40.
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interactions between stromal cells and tumor cells, which often result in malignancy.
Gatenby and Vincent [2003] conducted a study on tumor cells and used game theory
to improve an existing linear model. In other studies, Mansury et al. [2006] and
Basanta et al. [2008] employed game theory to model tumor growth in the brain.

Our proposed game-theoretical model of breast cancer builds on the model of
[Liu and Liu 2012]. As in that paper, our model incorporates the growth-factor
secreting stromal cells (native cells), motile tumor cells and proliferative cells
(benign tumor cells). However, our model also incorporates macrophages, which
play an important role in the development of breast cancer [Qian and Pollard 2012;
Lamagna et al. 2006; Qian et al. 2009; Chen et al. 2011]. Macrophages have been
shown to have a complex interaction with tumor cells and act in a dual role — in
the beginning stages of cancer, they act as a defense mechanism against cancer
by attacking tumor cells; however, they also produce growth factor, which in later
stages can actually promote tumor growth [Lamagna et al. 2006; Chen et al. 2011].

Macrophages are large blood cells, produced as a result of the differentiation
of monocytes. Monocytes travel through the blood stream and are produced in
bone marrow. Once monocytes leave the blood stream, they turn into macrophages.
These cells travel the body ingesting and destroying bacteria, cleaning up cellular
debris, other harmful particles, dead cells and microbes [Børresen-Dale 2003].
Macrophages play an important role in the development of tumor cells. They
ingest and destroy the cells. After they ingest the tumor cells, they use some of the
materials in the cell for survival. They produce a growth factor that the macrophages
and the tumor cells both benefit from [Mansury et al. 2006].

2. Model

We will assume there are four different types of cells in the body:

(a) the native cells (NC), which are the healthy stromal cells;

(b) the macrophages (M8), which are part of the immune system;

(c) the benign tumor cells (BTC), lump-forming cancer cells that lack the ability
to metastasize;

(d) the motile tumor cells (MTC), metastatic cancer cells that can invade neigh-
boring tissues.

The concentrations of the various types of cells are denoted by %NC, %M8, %BTC

and %MTC respectively. The concentrations are between 0 and 1 and satisfy %NC+

%M8+ %BTC+ %MTC = 1.
We will now set up costs and benefits for each type of cell. Both the native cells

and macrophages produce growth factor, which benefits all types of cells. As in
[Archetti 2013], the cost of producing the growth factor, cG, and the benefits of the
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symbol meaning

%NC concentration of native cells
%M8 concentration of macrophages
%BTC concentration of benign tumor cells
%MTC concentration of motile tumor cells
cG cost of producing the growth factor
bG benefits of receiving the growth factor
cS cost of sharing the spaces
cM,M8 cost of the ability to move for M8

cM,MTC cost of the ability to move for MTC
bR benefits of reproducing quickly
cD cost of being destroyed by macrophages
WX net benefit for a given type of cells X ∈ {NC, M8, BTC, MTC}

Table 1. Model parameters and notation.

growth factor, bG, will be assumed to be the same for all types of the cells. The
macrophages and motile tumor cells can move and we will assume that the ability
comes at the costs cM,M8, and cM,MTC respectively. The native cells and benign
tumor cells stay in place and thus have to share the resources with other native and
benign tumor cells, which comes at the cost cS. The cancer cells can reproduce
faster than native cells or macrophages, which we model by additional benefit bR to
the cancer cells, but the cancer cells can be destroyed by macrophages, which we
model by additional cost cD to the cancer cells. Overall, when the concentrations of
the cells are %NC, %M8, %BTC and %MTC, the net benefits (benefits minus the costs)
to each type of the cells are

WNC = bG(%NC+ %M8)− cG− cS(%NC+ %BTC), (1)

WM8 = bG(%NC+ %M8)− cG− cM,M8, (2)

WBTC = bR+ bG(%NC+ %M8)− cS(%NC+ %BTC)− cD%M8, (3)

WMTC = bR+ bG(%NC+ %M8)− cM,MTC− cD%M8. (4)

For example, (1) reads that a native cell (a) benefits from the growth factor produced
by (other) native cells and the macrophages, shown by the term bG(%NC+ %M8),
(b) pays the cost of producing the growth factor itself, shown by the term cG, and
(c) pays the cost of sharing the space with other native cells and benign tumor cells,
shown by the term cS(%NC+ %BTC).

The notation and model parameters are summarized in Table 1.
Similarly to the models presented in [Basanta et al. 2008; Liu and Liu 2012;

Bach et al. 2001], the situation described by (1)–(4) could be modeled as a matrix
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game when the interactions between individual cells are assumed to be pairwise
and the payoff matrix is given by

encounter with→payoff to↓ MTC M8 NC BTC
MTC bR−cM,MTC bR−cM,MTC−cD+bG bR−cM,MTC+bG bR−cM,MTC

M8 −cG−cM,M8 bG−cG−cM,M8 bG−cG−cM,M8 −cG−cM,M8

NC −cG bG−cG bG−cG−cS bG−cG−cS

BTC bR bR+bG−cD bR+bG−cS bR−cS

(5)

To make sure that the entries of matrix (5) are nonnegative, it is customary to
add a fixed number (for example 1) to all of them.

3. Results

We are interested in deriving conditions which ensure that the cancer cells (or at
least the metastatic tumor cells) eventually die out.

3.1. Coexistence of native cells and macrophages. We first derive conditions on
the parameters which ensure a healthy organism; i.e., the coexistence of native cells
and macrophages (with no tumor cells) is an evolutionarily stable state (ESS). The
assumption that there are only native cells and macrophages requires that %BTC = 0
and %MTC = 0 and consequently %NC+ %M8 = 1. Subtracting (2) from (1) yields

WNC−WM8 = cM,M8− cS%NC. (6)

Recall that the net benefit from interaction (fitness) for the native cells is denoted
by WNC and for the macrophages, by WM8. It follows from (6) that

WNC T WM8 if and only if %NC S
cM,M8

cS

(in other words, native cells do better than macrophages if there are too many
macrophages, and vice versa). Consequently, the only candidates for the stable
healthy proportion of the cells are %NC = cM,M8/cS and %M8 = (cS− cM,M8)/cS.

Since, in this scenario, we would like for the ESS to include no tumor cells, we
need to derive the conditions which ensure that tumor cells (in tiny amounts) still
do worse than the native cells. Subtracting (1) from (3) yields

WBTC−WNC = bR+ cG− cD%M8, (7)

while subtracting (2) from (4) yields

WMTC−WM8 = bR+ cG+ (cM,M8− cM,MTC)− cD%M8. (8)
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Figure 1. If (9) is satisfied, then the tumor cells eventually extinct.
In this figure the values of the parameters are as follows: bR = 1,
cG = 2, bG = 4, cD = 7, cM,MTC = cM,M8 = 1, cS = 2.

It follows that, in a healthy body where %M8 = (cS− cM,M8)/cS, both the benign
tumor cells and the motile tumor cells do worse than healthy cells if and only if

bR+ cG+max{0, cM,M8− cM,MTC}< cD
cS− cM,M8

cS
. (9)

In particular, increasing the value of cD (or the ability of macrophages to destroy
tumor cells) or decreasing the value of bR (the reproductive advantage of the tumor
cells) ensures that the fitness of both types of tumor cells is smaller than the fitness
of the native cells and the macrophages and that the body will stay healthy.

Moreover, when condition (9) is satisfied, and the initial state of the system
involves relatively small amounts of tumor cells, the tumor cells eventually go
extinct; see for example Figure 1, which shows the evolution of the four cell types
under the replicator dynamics [Hofbauer and Sigmund 1998]

d
dt

%cell type = %cell type(Wcell type−W ), (10)

where W is the average fitness, given by

W =
∑

i

%i Wi .

The summation index i varies over all four cell types.

3.2. Coexistence of native cells, macrophages, and benign tumor cells. We note
that if cM,M8 ≤ cM,MTC, then by (7) and (8), motile tumor cells do worse than
benign tumor cells in a healthy body. It is thus possible that the body will be able to
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Figure 2. If (13) holds, then the motile tumor cells eventually
extinct even when the benign tumor cells can stay in the body.
The parameters are as follows: bR = 1, cG = 2, bG = 4, cD = 7,
cM,MTC = 1, cM,M8 = 0.8, cS = 1.2

get rid of the dangerous motile tumor cells even if it is not able to get rid of the less
dangerous benign tumor cells. This is the situation that we will investigate now.

More precisely, we will want to see under what conditions it is possible to have
%MTC = 0 as a stable condition. As in Section 3.1, subtracting (2) from (1) yields

WNC−WM8 = cM,M8− cS(%NC+ %BTC). (11)

An ESS requires that the fitnesses of each of the coexisting types of cells be
equal to each other. In particular, WNC = WM8 and since %MTC = 0, we also get
%NC+ %BTC = 1− %M8. Thus, it follows from (11) that, as in Section 3.1,

%M8 =
cS− cM,M8

cS
. (12)

Since subtracting (2) from (4) still yields (8), we get that no motile tumor cells
are possible only if

bR+ cG+ cM,M8− cM,MTC < cD
cS− cM,M8

cS
. (13)

Thus, if it is difficult to ensure that condition (9) is satisfied for a patient, one can
still attempt to satisfy (13), for example by increasing the value of cM,MTC (the cost
of movement for the tumor cells) or decreasing the value of cM,M8 (the cost of move-
ment for the macrophages), and thus prevent the development of metastatic cancer.

Figure 2 shows the evolution of the concentrations of the four cell types as a
function of time under the replicator dynamics (10) when (9) is not satisfied but
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(13) still holds. We can see that the benign tumor cells stay in the body but the
motile tumor cells die out.

Note that in the case when cM,MTC < cM,M8, the motile tumor cells can thrive in
the body whenever benign tumor cells can.

4. Conclusions and discussion

In this paper we presented and analyzed a game-theoretical model of breast cancer.
We have extended the model of [Liu and Liu 2012] by explicitly incorporating
the macrophages. As observed in [Qian and Pollard 2012; Lamagna et al. 2006;
Qian et al. 2009; Chen et al. 2011] and confirmed by the analysis of our model, the
macrophages indeed play a crucial role in the development and prevention of cancer.

Our model suggests at least three possible ways of cancer treatment. One is
to increase the damage to the tumor cells caused by macrophages (or in a similar
fashion, increase the ability of macrophages to destroy tumor cells). Another way
is to decrease the reproductive advantage of the tumor cells, i.e., their ability to
reproduce much more quickly than healthy cells. And a third way is to increase the
cost of mobility for the tumor cells. The last scenario may not completely prevent
the cancer from developing in the body, but it may prevent dangerous metastatic
tumors.
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The isoperimetric problem in the plane
with the sum of two Gaussian densities

John Berry, Matthew Dannenberg, Jason Liang and Yingyi Zeng

(Communicated by Gaven Martin)

We consider the isoperimetric problem for the sum of two Gaussian densities in
the line and the plane. We prove that the double Gaussian isoperimetric regions
in the line are rays and that if the double Gaussian isoperimetric regions in the
plane are half-spaces, then they must be bounded by vertical lines.

1. Introduction

Sudakov and Tsirelson, and independently Borell, see [Morgan 2009, 18.2], proved
that for Rn endowed with a Gaussian measure, half-spaces bounded by hyperplanes
are isoperimetric, i.e., minimize weighted perimeter for given weighted volume.
Cañete et al. [2010, Question 6], in response to a question of Brancolini, conjectured
that for Rn endowed with a finite sum of Gaussian measures centered on the x-axis,
half-spaces bounded by vertical hyperplanes are isoperimetric. We consider the
case of two such Gaussians in R1 and R2. Our Theorem 3.16 proves that on the
double Gaussian line, rays are isoperimetric. Section 4 provides evidence that on
the double Gaussian plane, half-spaces are isoperimetric.

1.1. The double Gaussian line. Theorem 3.16 states that the isoperimetric regions
in the double Gaussian line are rays. We may assume that the two Gaussians have
centers at 1 and −1. For small variances, the theorem follows by comparison
with the single Gaussian. For larger variances, additional quantitative and stability
arguments are needed to rule out certain nonray cases.

1.2. The double Gaussian plane. A conjecture of Cañete et al. [2010, Question 6],
appearing in this paper as Conjecture 4.1, states that isoperimetric regions in the
double Gaussian plane are half-planes bounded by vertical lines. We use variational
arguments to show that horizontal and vertical lines are the only lines that are
candidates, and that vertical lines always beat horizontal lines.
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2. First and second variations

Formulas 2.3 and 2.6 state standard first and second variation formulas, analogous
to the first and second derivative conditions for local minima of twice-differentiable
real functions.

Definition 2.1. A density eψ on Rn is a positive, continuous function used to weight
volume and hypersurface area. Given a density eψ, the (weighted) volume of a
region R is given by ∫

R
eψ dV0.

The (weighted) hypersurface area of its boundary ∂R is given by∫
∂R

eψ d A0.

R is called isoperimetric if no other region of the same weighted volume has a
boundary with smaller hypersurface area.

We now assume that the density eψ is smooth. The existence and regularity of
isoperimetric regions for densities of finite total volume is standard.

Existence and Regularity 2.2 [Morgan 2009, 5.5, 9.1, 8.5]. Suppose that eψ is a
density in the line or plane such that the line or plane has finite measure A0. Then
for any 0 < A < A0, an isoperimetric region R of weighted volume A exists and
is a finite union of intervals bounded by finitely many points in the line or a finite
union of regions with smooth boundaries in the plane.

Let eψ be a smooth density on Rn+1. Let R be a smooth region in Rn+1. Let ϕt

be a smooth, one-parameter family of deformations on Rn+1 such that ϕ0 is the
identity. For a given x ∈ ∂R, the deformation ϕt(x) traces out a small path in Rn+1

beginning at x and ϕt(∂R) is a curve for each t . Therefore {ϕt }, where |t | < ε,
describes a perturbation of ∂R. Define

V (t)=
∫
ϕt (R)

eψ dV0 and P(t)=
∫
ϕt (∂R)

eψ d A0.

First Variation Formulas 2.3 [Rosales et al. 2008, Lemma 3.1]. Suppose that n
and H are the inward unit normal and mean curvature of ∂R. Let X be the vector
field dϕt/dt and u = 〈X, n〉. Then we have that

V ′(0)=−
∫
∂R

eψu d A0 and P ′(0)=−
∫
∂R
(nH −〈∇ψ, n〉)eψu d A0.

Since any isoperimetric curve is a local minimum among all curves enclosing a
certain volume A, it satisfies P ′(0)= 0 for any ϕt such that V (t)= A for small t .
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Corollary 2.4. If a curve ∂R is isoperimetric, then (nH − 〈∇ψ, n〉) is constant
on ∂R.

Proof. If a curve ∂R is isoperimetric, then it satisfies P ′(0)= 0. By Formula 2.3,
this occurs if and only if (nH −〈∇ψ, n〉) is constant on ∂R. �

Definition 2.5. Let C be a boundary in the line or plane with unit inward normal n
and let κ denote the standard curvature. For a density eψ, we call κψ = κ − dψ/dn
the generalized curvature of C .

By Corollary 2.4, all isoperimetric curves have constant generalized curvature.
In the real line, n = 0, so isoperimetric curves have 〈∇ψ, n〉 constant. For the
interval [a, b], the generalized curvature evaluated at b is equal to ψ ′(b), while the
generalized curvature evaluated at a is equal to −ψ ′(a).

Second Variation Formula 2.6 [Rosales et al. 2008, Proposition 3.6]. Let the real
line be with smooth density eψ. If a one-dimensional boundary l = ∂R satisfies
P ′(0)= 0 for any volume-preserving {ϕt }, then

(P − κψV )′′(0)=
∫

l
f u2

(
d2ψ

dx2

)
da.

Proof. This formula comes from Proposition 3.6 in [Rosales et al. 2008], where the
second variation is stated for arbitrary dimensions. Some terms from the general
formula cancel in the one-dimensional case. �

Corollary 2.7. Let S be a subset of the real line such that ψ ′′(x)≤ 0 for all x ∈ S
with equality holding at no more than one point. If B is an isoperimetric boundary
contained in S, then B is connected and thus a single point.

Proof. If B has at least two connected components, then since by Existence and
Regularity 2.2 B consists of a finite union of points, there is a nontrivial volume-
preserving flow on B given by moving one component so as to increase the volume
and the other so as to decrease it. By Formula 2.6, the second variation satisfies

(P − κψV )′′(0)=
∫

B
f u2(ψ ′′(x)) da < 0.

This contradicts that B is isoperimetric. �

3. Isoperimetric regions on the double Gaussian line

Theorem 3.16 states that for the real line with density given by the sum of two
Gaussians with the same variance a2, isoperimetric regions are rays bounded by
single points. This theorem is a necessary condition for Conjecture 4.1, which states
that isoperimetric regions in the double Gaussian plane are half-planes bounded by
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vertical lines. Propositions 3.4, 3.14, and 3.15 treat the cases a2
≥ 1, 1> a2 > 1

2 ,
and 1

2 ≥ a2 > 0.
Lemma 3.5 shows that if the Gaussians have the same variance, we can reduce

the problem to ruling out a few noninterval, but still symmetrical, cases. When the
Gaussians have different variances, the problem is harder and not treated by our
results.

Let gc,a denote the Gaussian density with mean c and variance a2, and let

fc,a(x)=
1
2

(
e−(x−c)2/(2a2)

+ e−(x+c)2/(2a2)

a
√

2π

)
=

1
2(gc,a(x)+ g−c,a(x)).

Let
f (x)= 1

2( f1(x)+ f2(x))= 1
2(g1,a(x)+ g−1,a(x)).

In one dimension, the regions are unions of intervals and their boundaries are
points. Since the total measure is finite, isoperimetric regions exist by Existence and
Regularity 2.2. For a given weighted length A, we seek to find the set of points
with the smallest total density which bounds a region of weighted length A. Since
the complement of a region of weighted length A has weighted length 1− A, we
can assume that our regions have weighted length 0≤ A ≤ 1

2 .
The following proposition shows that it suffices to consider the density f .

Proposition 3.1. Suppose B is an isoperimetric boundary enclosing a region L
of weighted length A for the density f1,a(x). Then for any b > 0, we have bB
is an isoperimetric boundary enclosing region bL of weighted length A for the
density fb,ab(x).

Proof. Let g denote the standard Gaussian density.
First, we show that for any boundary P enclosing a region Q, the weighted

length of bQ for the density fb,ab(x) is the same as the weighted length of Q for
the density f1,a(x). We have that

|Q| =
∫

Q
f1,a(x) dx = 1

2

∫
Q

g1,a(x) dx + 1
2

∫
Q

g−1,a(x) dx

=
1
2

∫
(Q−1)/a

g(x) dx + 1
2

∫
(Q+1)/a

g(x) dx

=
1
2

∫
(bQ−b)/(ab)

g(x) dx + 1
2

∫
(bQ+b)/(ab)

g(x) dx

=
1
2

∫
Q

gb,ab(x) dx + 1
2

∫
Q

g−b,ab(x) dx = |bQ|,

where | · | denotes the weighted length in the appropriate densities.
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Figure 1. Plots of f (left) and ψ (right). The purple curves are
for a2

= 0.16, the blue curves for a2
=

1
2 , and the green curves for

a2
= 1.

Second, for any two boundaries P1 and P2, we have fb,ab(bx)= (1/b) f1,a(x)
for x ∈ Pi . Thus, |P1| ≥ |P2| in the density f1,a(x) exactly when |bP1| ≥ |bP2| in
the density fb,ab(x).

Therefore |bL|= A in the density fb,ab(x), and if any other boundary P enclosing
region Q satisfies |Q| = A in the density fb,ab(x), then since B is isoperimetric,
we have |B| ≤ |P/b| in the density f1,a(x). Therefore |bB| ≤ |P| in the density
fb,ab(x), so bP is isoperimetric. �

As a result of Proposition 3.1, it suffices to consider the density

f = 1
2( f1+ f2)=

1
2(g1,a + g−1,a).

Proposition 3.2. Let X be the disjoint union of two real-lines X1 and X2, each with
a standard Gaussian density scaled so that it has weighted length 1

2 . For any given
length 0 < A < 1

2 , the isoperimetric region in X of length A is a ray contained
entirely in X1 or X2.

Proof. Let B be an isoperimetric boundary and Bi its intersection with X i . If B1

and B2 are nonempty, then they each must be a single point since the isoperimetric
boundaries for the single Gaussian are always single points. Assume, in contra-
diction to the proposition, that Bi = {bi } for i = 1, 2 is the i-th component on the
i-th Gaussian bounding a ray L i of weighted length Ai . Since A1 + A2 <

1
2 , it

is possible to put a point b′1 on the first Gaussian at the same height as that of b2

bounding a ray L ′1 disjoint from L1 and with weighted length A2. Consider the
boundary B ′ = {b1, b′1}, which has the same weighted perimeter as that of B. There
exists a single point on B1 bounding a ray of area A and with weighted density
smaller than |B ′| = |B|. This contradicts the fact that B is isoperimetric. �

Proposition 3.3. For the double Gaussian density f , the log derivative ψ ′ is given
by

ψ ′(x)= a−2
(
−x + tanh x

a2

)
.
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Proof. We have

ψ ′(x)=

−e−(−1+x)2/(2a2)(−1+ x)
a2 +

−e−(1+x)2/(2a2)(1+ x)
a2

e−(−1+x)2/(2a2)+ e−(1+x)2/(2a2)
.

By using the substitution

tanh
( x

a2

)
=

ex/a2
− e−x/a2

ex/a2
+ e−x/a2 ,

we get

ψ ′(x)= a−2
(
−x + tanh x

a2

)
. �

Proposition 3.4. For the double Gaussian density f , if a ≥ 1, isoperimetric bound-
aries are single points.

Proof. For any given a, we have

ψ ′(x)= a−2
(
−x + tanh x

a2

)
,

ψ ′′(x)= a−4
(
−a2
+ sech2 x

a2

)
,

ψ ′′′(x)=−2a−6 sech2 x
a2 tanh x

a2 .

As shown in Figure 2, ψ ′′′(x) is positive for any x < 0 and negative for x > 0,
so ψ ′′(x) achieves its unique maximum at x = 0 for any given a. We have ψ ′′(0)=
(1− a2)/a4, so ψ ′′(0) is greater than 0 for a < 1, and less than or equal to 0 for
a ≥ 1. If a ≥ 1, by Corollary 2.7, isoperimetric boundaries are always connected.
Since isoperimetric boundaries consist of finite unions of points, they must be single
points. �

Lemma 3.5. Let p and q be two real functions with p(0)= q(0). Suppose p and q
satisfy

(1) p′(0)= q ′(0)≥ 0,

(2) q ′′(0)≥ p′′(0),

(3) q ′′(0)≥ 0, and

(4) p′′′ < 0 and q ′′′ > 0 on (0,∞).

For any a, b > 0, if p(a)= q(b), then q ′(b) > p′(a).

Proof. As in Figure 3, for all x > 0, by (2) and (4) we have q ′′(x) > p′′(x) and
by (3) and (4) we have q ′′(x) > 0. If we choose a′ so that q ′(a′)= p′(a), we will
have a′ < a.
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Figure 2. Plots of ψ ′ (top), ψ ′′ (bottom left), and ψ ′′′ (bottom
right). The purple curves are for a2

= 0.16, the blue curves for
a2
=

1
2 , and the green curves for a2

= 1.

b a
Figure 3. The purple curve is q ′, and the blue curve p′. When the
areas are equal, as in the picture, q ′ is higher.

Since by (4) p′ is concave and q ′ is convex,

q(a′)=
∫ a′

0
q ′(t) dt ≤ 1

2(a
′
∗q ′(a′)) < 1

2(a ∗ p′(a))≤
∫ a′

0
q ′(t) dt = p(a)= q(b).

Therefore b > a′, so q ′(b) > p′(a), as asserted. �

Proposition 3.6. Suppose [a, b] is an interval of f -weighted length 0 < A < 1
2

with −1< a < b < 1. Then there exists a union of rays B = (−∞, c] ∪ [d,∞] of
f1-weighted length A such that f1(c) < f1(b) < f (b) and f1(d) < f2(a) < f (a).
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a b c d

Figure 4. Left: an interval in the double Gaussian. Right: two
rays in the single Gaussian. The total areas are the same, but the
heights in the right graph are slightly lower.

s t

Figure 5. Left: ray in the single Gaussian. Right: ray in the double
Gaussian. The total areas are the same, but the height in the right
graph is slightly lower.

Proof. Since 2+a = 1+ (a− (−1)), we have f1(2+a)= f2(a). The union of rays
(−∞, b] ∪ [2+ a,∞) has greater f1-weighted length than the f -weighted length
of [a, b]. Therefore there exists c < t and d > 2+ a such that (−∞, c] ∪ [d,∞)
has f1-weighted length A, and

f1(c)+ f1(d) < f1(b)+ f2(a) < f (b)+ f (a).
See Figure 4. �

Proposition 3.7. If [s,∞) has
( 1

2

)
f1-weighted length 0< A ≤ 1

4 , then there exists
t > s such that [t,∞) has f -weighted length A.

Proof. If [s,∞) has
( 1

2

)
f1-weighted length 0 < A ≤ 1

4 , then s ≥ 1. The interval
[s,∞) has f -weighted length greater than A. Therefore there exists t > s such that
[t,∞) has f -weighted length A. See Figure 5. �

Now we begin analyzing the case where the variance satisfies 0< a2 < 1.

Proposition 3.8. If a2 satisfies 0 < a2
≤ 1, then ψ ′′(x) = 0 exactly when x =

±a2 arccosh(1/a).

Proof. This follows from the formula for ψ ′′(x) given in Proposition 3.4. �
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- 4 - 2 2 4

Figure 6. On the graph of ψ = log f , there are at most three points
with x > 0 with the same value for |ψ ′(x)|.

Suppose that a2 is a variance. In the proof of the following proposition, we will
use the quantity

ca = a2 arccosh(1/a).

Proposition 3.9. Suppose 0 < a2
≤ 1 and B is an isoperimetric boundary with

at least one point s in [0, c], where c = ca , enclosing a region of weighted-length
0< A < 1

2 . Then the boundary B is one of the following:

(1) a single point s enclosing the ray [s,∞),

(2) {s, t}, where t > s, enclosing the interval [s, t],

(3) {s, t}, where s > 0> t , enclosing the interval [t, s],

(4) {s,−s, t} enclosing [−s, s] ∪ (−∞, t], [−s, s] ∪ [t,∞) or [s, t] ∪ (−∞,−s].

The analogous claims apply if s ∈ [−c, 0].

Proof. Since B is isoperimetric, it can contain at most one point x at which
ψ ′′(x) < 0. If it contained two such points, then by slightly shifting the two points
we could create a new region with the same weighted length. By Formula 2.6, the
boundary of this region would have a smaller total density. Therefore B can contain
at most one point outside of [−c, c].

In addition, B has constant curvature, so |ψ ′| is constant on B (see Figure 6).
Since ψ ′′(s) is positive on [0, c) and negative on (c,∞], there exists one point
t > s > 0 such that ψ ′(t)=ψ ′(s) and one point u > t > s > 0 such that −ψ ′(u)=
ψ ′(s). Therefore B is a subset of {s, t, u,−s,−t,−u}. Suppose B is not (1). If B
contains no points outside of [−c, c], then B is (3). Suppose B contains one point
y outside of [−c, c]. If t > 0, then the only possibilities are (2) or (4). If t < 0,
then the only possibilities are (3) or (4). The regions enclosed follow from the fact
that we assume 0< A < 1

2 . �

Proposition 3.10. Suppose B is an isoperimetric boundary with at least one point
s ∈ [−c, c]. If B is of type (3) in Proposition 3.9 and 0< a2

≤
1
2 , then the region R

enclosed by B has f -weighted length no more than 1
4 .



558 JOHN BERRY, MATTHEW DANNENBERG, JASON LIANG AND YINGYI ZENG

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Figure 7. ψ ′(s)−ψ ′(1− s).

Proof. We have

d
dx
(x − arccosh(x))= 1−

1
√

x − 1
√

1+ x
> 0

for x>
√

2, so x−arccosh(x) is increasing on (
√

2,∞). If y=1/x , then the function
y− arccosh(y)− 1

2 decreases on (0, 1/
√

2). Since
√

2− arccosh(
√

2)− 1
2 > 0, we

have arccosh(y) < y− 1
2 on (0, 1/

√
2). Therefore

c < a− a2

2
≤

1
√

2
−

1
4
<

1
2
.

Consider the function

I (x)=
∫ x

x−1
f1(x) dx +

∫ x

x−1
f2(x) dx

which sends x to the weighted length of [x − 1, x]. Then

I ′(x)= f1(x)− f1(x − 1)+ f2(x)− f2(x − 1)

= [ f2(x)− f1(x − 1)] + [ f1(x)− f2(x − 1)].

For |x |< 1
2 , both the bracketed quantities are negative, so I is decreasing on [0, c].

We have

I (0)=
∫ 0

−1
f2(x) dx +

∫ x

−1
f1(x) dx =

∫ 1

−1
f2(x) dx <

∫
∞

−1
f2(x) dx = 1

4 .

Therefore if we can show that s− t ≤ 1, we will have that the f -weighted length
of [s, t] is less than I (s)≤ 1

4 and be done. This follows immediately when t =−s,
since s ≤ c < 1

2 . When t 6= −s, we observe that s − 1 is to the left of −c, so it
suffices to show that ψ ′(s− 1)≥ ψ ′(t)=−ψ ′(s). Thus we want to show that

ψ ′(s− 1)+ψ ′(s)= ψ ′(s)−ψ ′(1− s)

= ([(1− s)− s] + [tanh(s/a2)− tanh((1− s)/a2)])/(a2)≥ 0

on
[
0, 1

2

]
; see Figure 7.
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This is equivalent to showing that

γ (s) :=
(
[(1− s)− s] +

[
tanh

( s
a2

)
− tanh

(1−s
a2

)])
≥ 0

on [0, c]. Since | tanh |< 1, we have γ (0) > 0. In addition, γ
( 1

2

)
= 0. Therefore

it suffices to show that γ achieves its minimum value on
[
0, 1

2

]
at s = 1

2 . We will
do this by using the first derivative test to show that there is only one other local
extremum in the interval and further demonstrating that this local extremum is not
the minimum point.

We have

γ ′(s)=
sech2(s/a2)

a2 +
sech2((1− s)/a2)

a2 − 2.

Since 1/a2
≥ 2, we have γ ′(0) > 0. In addition,

γ ′
( 1

2

)
=

2 sech2(1/(2a2))

a2 − 2.

By using the substitution

sech2(x)=
4

e2x + e−2x + 2
,

we get

sech2
( x

2

)
=

4
e1/x + e−1/x + 2

≤
4

e1/x + 2
.

Therefore

sech2
( x

2

)(1
x

)
≤

4
xe1/x + 2x

.

We have
α(x) := (xe1/x

+ 2x)′ = (2+ e1/x
− e1/x/x).

When 0< x ≤ 1
2 , we have

α(x)≤ 2+ e1/x
− 2e1/x

= 2− e1/x
≤ 2− e2 < 0.

Therefore α(x) attains a minimum value of 1
2 e2
+ 1> 4 on

(
0, 1

2

]
. This shows that

sech2
( x

2

)(1
x

)
≤

4
xe1/x + 2x

< 1

on
(
0, 1

2

]
, so γ ′

( 1
2

)
< 0.

By the intermediate value theorem, there exists z1 ∈
(
0, 1

2

)
such that γ ′(z1)= 0.

It follows that z2 = 1− z1 >
1
2 is also a zero of γ ′. Now sech2(x) = sech2(−x)

tends to 0 as x tends to∞, so γ ′ < 0 for some s� 0. Therefore there exists z3 in
(−∞, 0) such that γ ′(z3)= 0, and z4 = 1− z3 > 1 is also a zero of γ ′.
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a b c d
(A) an interval in the double Gaussian (B) two rays in the single Gaussian

s t
(C) a ray in the single Gaussian (D) a ray in the double Gaussian

Figure 8. When all the areas are the same, we have (A)>(B)>(C)
and (D) > (C).

Again using the substitution

sech2(x)=
4

e2x + e−2x + 2
,

we see that γ ′(s) is a rational function of e2s/a2
whose numerator is quartic. There-

fore γ ′ has at most four zeros, so z1 is the only zero of γ ′ in
(
0, 1

2

)
. Since γ ′(0) > 0,

γ (z1) > γ (0) > γ
( 1

2

)
,

so γ (s)≥ γ
( 1

2

)
= 0 for s ∈

[
0, 1

2

]
. �

Proposition 3.11. If the variance satisfies 0 < a2
≤

1
2 , then the isoperimetric

boundaries B with one point b in [0, c] cannot be of type (3) in Proposition 3.9.

Proof. Let A be the weighted length of B. If, in contradiction to the proposition,
B is of type (3) in Proposition 3.9, then B is of the form [a, b], where −1< a <
b < 1, as shown in Figure 8(A). By Proposition 3.6, there exists a union of rays
(−∞, c]∪[d,∞)with f1-weighted length A such that f1(c)+ f1(d)< f (a)+ f (b).
This is shown in Figure 8(B). By the solution to the single Gaussian isoperimetric
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a b c d

Figure 9. Left: original ray. Right: reflected ray.

problem, there exists a ray [s,∞), as shown in Figure 8(C), with f1-weighted
length A such that f1(t) < f1(c)+ f1(d). By Proposition 3.10, A≤ 1

4 , so s ≥ 1. By
Proposition 3.7, there exists a ray [t,∞), as shown in Figure 8(D), with f -weighted
length A such that t > s.

To get a contradiction to the fact that B is isoperimetric, we show ( f (a)+ f (b))−
f (t) > 0. Write

( f (a)+ f (b))− f (t)= [( f (a)+ f (b))− ( f1(c)+ f1(d))]

+ [( f1(c)+ f1(d))− f1(s)] + [ f1(s)− f (t)].

Since [( f1(c) + f1(d)) − f1(s)] > 0, it suffices to show that [( f (a) + f (b)) −
( f1(c)+ f1(d))]> [ f (t)− f1(s)]. Since f (a) > f1(d), we have

[( f (a)+ f (b))− ( f1(c)+ f1(d))]> f (b)− f1(c) > f (b)− f1(b)= f2(b).

Since f (t) < f (s), we have

[ f (t)− f1(s)]< f (s)− f1(s)= f2(s).

Since −1< b < 1< s, we have f2(s) < f2(b), and this proves the claim. �

Proposition 3.12. If the variance satisfies a2
≤

1
2 , then the isoperimetric boundaries

B with one point b > 0 in [−c, c] cannot be of type (2) in Proposition 3.9.

Proof. We know f (a) < f (b) (recall the concavity/convexity argument), and since
f2(b) < f2(a), we must have f1(a) < f1(b).

Pick d > c such that f1(c)= f1(b) and f1(d)= f1(a). In other words, we get
[c, d] by reflecting [a, b] over the line x = 1. See Figure 9. Since a < 1, we either
have c < 1< d or 1< d < c.

In the first case, we have that [c, d] has the same f1-length as [a, b], and since
c>a and d>b, we have f2(c)< f2(a) and f2(d)< f2(b). Therefore f (c)+ f (d)<
f (a)+ f (b). At the same time, the f2-length of [c, d] is less than that of [a, b].
This difference is at most the f2-length of [a,∞). Since f1(d) = f1(a) > f2(a),
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we can find e > d such that [c, e] has f -length A. In addition, f (c)+ f (e) <
f (c)+ f (d) < f (a)+ f (b), so [a, b] is not isoperimetric.

In the second case, we have that [d, c] has the same f1-length as [a, b], and since
d, c > a, b, we have f2(d) < f2(a) and f2(c) < f2(b). Therefore f (c)+ f (d) <
f (a)+ f (b). At the same time, the f2-length of [d, c] is less than that of [a, b].
This difference is at most the f2-length of [a,∞). Since f1(c) = f1(a) > f2(a),
we can find e > c such that [d, e] has the f -length A. In addition, f (c)+ f (e) <
f (c)+ f (d) < f (a)+ f (b), so [a, b] is not isoperimetric. �

Proposition 3.13. If the variance satisfies a2
≤

1
2 , then the isoperimetric boundaries

B with one point b in [−c, c] cannot be of type (4) in Proposition 3.9.

Proof. We may assume without loss of generality that b ≥ 0. Suppose B is of
type (4) in Proposition 3.9. Then the region L enclosed by B consists of the union
of an interval of type (2) or (3) in Proposition 3.9 and a ray. Apply Propositions 3.11
and 3.12 to get a new region L ′ that beats the interval. Since A < 1

2 , L ′ may be
chosen to not intersect the ray. Then the union of L ′ and the ray beats L . �

Proposition 3.14. If B is an isoperimetric boundary and the variance satisfies
a2
≤

1
2 , then B is a single point.

Proof. If B does not contain a point s ∈ [−c, c], then by Corollary 2.7, then B is a
single point. Otherwise, apply Propositions 3.11–3.13 to complete the proof. �

Proposition 3.15. For the line endowed with density f (x), if the variance a2 is
such that 1

2 ≤ a2 < 1, then isoperimetric regions R are always rays with boundary
B consisting of a single point.

Proof. By Proposition 3.8, we have that ψ ′′(x) = 0 exactly when x is c =
±a2 arccosh(1/a). Since ψ ′′′(x) > 0 for x < 0 and ψ ′′′(x) < 0 for x > 0, we
have that ψ ′′ is negative outside of [−c, c] and is positive in (−c, c).

Suppose that B is an isoperimetric boundary containing more than two points. By
Corollary 2.7, B does not lie entirely outside [−c, c]. Since ψ ′′(x) > 0 on (−c, c)
and ψ ′′(±c)= 0, the maximum and minimum of ψ ′(x) on [−c, c] are achieved at
c and −c with ψ ′(−c) negative and ψ ′(c) positive. Since ψ ′(x) tends to −∞ as x
approaches∞, there exists a unique point b > c such that f (±b)= f (±c). Since
b > c, we have ψ ′′(x) < 0 outside of [−b, b].

We claim that B must lie in [−b, b]. Since |ψ ′(x)| is constant on B, to show
that B ⊂ [−b, b] it suffices to show that the maximum and minimum of ψ ′(x) on
[−b, b] are achieved at −b and b. Since 0 is a local minimum for f (x), it suffices
to show that |ψ ′(b)| > |ψ ′(c)|. Since ψ ′(c) is postive and ψ ′′(x) < 0 for x > c,
there exists a unique point d > c where ψ ′(d)= 0 and ψ ′ changes from positive
to negative at d. To apply Lemma 3.5, consider functions p and q denoting the
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Figure 10. 2 f (0, a) for various values of a.

increase in ψ moving left of d and the decrease in ψ moving right of d:

p(x)= ψ(d)−ψ(d − x),

q(x)= g(x)= ψ(d)−ψ(d + x),

which satisfy the hypotheses of Lemma 3.5. Since ψ(c)= ψ(b), we have

|ψ ′(c)| = ψ ′(c)= p′(d − c) < g′(b− d)−ψ ′(b)= |ψ ′(b)|.

There are five candidates for the minimum points of f (x) on [−b, b]: ±b, 0,
and ±d. Since d > c, we have ψ ′′(d) < 0, so ±d is not a candidate. Since,
also by the preceding paragraph, ψ ′(x) is positive between 0 and c, we have
f (b)= f (c) > f (0). Therefore the minimum on this interval is f (0). We have

d
da
( f (0, a))=−

√
1/a2(−1+ a2)e−1/(2a2)

a3
√

2π
> 0

for all a ∈ [−1/
√

2, 1). Therefore we have

2 f (0, a)≥ 2 f (0, 1/
√

2)≈ 0.415107 . . . .

See Figure 10.
To finish the proof, we must show that f (x, a) < 0.415107 . . . for all x and all

a ∈ [1/
√

2, 1). Consider the numerator n of f given by

n(x)= e−(x−1)2/(2a2)
+ e−(x+1)2/(2a2).

For a given x , we have n increases when a increases, so

n(x)≤ m(x)= e−(x−1)2/2
+ e−(x+1)2/2.

Since
d

dx
(log m(x))= tanh(x)− x,
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which has the same sign as −x , we see that m(x) is maximized at 0. Therefore
n(x)≤ m(0) < 1.22, so

f (x) <
m(0)

2
√

2πa
≤

1.22
2
√
π
≈ 0.345.

This means that there is a ray which beats B, contradicting the fact that B is
isoperimetric. �

Theorem 3.16. The isoperimetric boundaries for the double Gaussian density f
are always single points enclosing rays.

Proof. To cover the three cases, apply Propositions 3.4, 3.14, and 3.15. �

4. Isoperimetric regions on the double Gaussian plane

This section describes evidence for the conjecture of Cañete et al., given here as
Conjecture 4.1, which states that double Gaussian isoperimetric boundaries in the
plane are vertical lines. Proposition 4.4 proves that horizontal and vertical lines are
the only stationary lines. Proposition 4.5 proves that vertical lines are better than
horizontal lines. First we prove some incidental symmetry results (Propositions 4.2
and 4.3).

Conjecture 4.1 [Cañete et al. 2010, Question 6]. Let f (x, y) = eψ(x,y) be the
normalized sum of two Gaussian densities with the same variance and different
centers. Isoperimetric regions are half-planes enclosed by lines perpendicular to
the line connecting the two centers.

By the planar analogue of Proposition 3.1, it suffices to prove this conjecture in
the case where the centers are c1 = (1, 0) and c2 = (−1, 0).

Then we have

f (x, y)= eψ(x,y) =
1

4πa2 e−y2/(2a2)(e−(x−1)2/(2a2)
+ e−(x+1)2/(2a2)).

The next two propositions describe some symmetry properties of isoperimetric
curves. For a curve C, let AC denote the weighted area enclosed by C.

Proposition 4.2. Consider a density g symmetric about the x-axis. If a closed,
embedded curve C encloses the same weighted area above and below the x-axis,
then there is a curve C ′ which is symmetric about the x-axis, encloses the same
weighted area, and has weighted perimeter no greater than that of C.

Proof. Let C1 and C2 be the parts of C in the open upper and lower half-planes
chosen so that the weighted perimeter of C1 is no bigger than that of C2. Consider
the curve C ′ formed by joining C1 with its reflection over the x-axis and taking the
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closure. Let w denote the part of C on the x-axis and w1 denote the part of C ′ on
the x-axis. Since g is symmetric about the x-axis, AC = AC ′ . In addition,

|C ′| − |C | = (2|C1| + |w1|)− (|C1| + |C2| + |w|)= (|C1| − |C2|)+ (|w1| − |w|).

We have |C1| − |C2| ≤ 0 by assumption, and since the part of C which intersects
the x-axis must include w1, we know |w1| − |w|< 0. Therefore |C ′| − |C | ≤ 0. �

Proposition 4.3. Consider a density symmetric about the x-axis. If C is a closed
embedded planar curve symmetric about the x-axis, then the part C ′ of C in the
open upper half-plane encloses half as much weighted area with half the weighted
length.

Proof. Suppose that C is a curve that is symmetric about the x-axis and encloses
area A. Since C is symmetric about the x-axis, C cannot have nonzero perimeter
on the x-axis. Then C ′ encloses area 1

2 AC in the upper half-plane and has weighted
perimeter 1

2 |C |. �

Proposition 4.4. If the plane is endowed with density f , then horizontal and vertical
lines have generalized curvature 0 and are the only lines which have constant
generalized curvature.

Proof. Let ψ = ln f . Then

∇ψ(x, y)=
(
−x + tanh(x/a2)

a2 ,
−y
a2

)
.

In addition, the normal to the line y = cx + b is (−c, 1)/
√

c2+ 1 at all points of
the line. Therefore the generalized curvature of such a line evaluated at (0, b) is

0−∇ψ(0, b) ·
(−c, 1)
√

c2+ 1
=

b

a2
√

1+ c2
,

and by an analogous computation the generalized curvature evaluated at (1, c+ b)
is

c+ b

a2
√

1+ c2
+

c(−1+ tanh(1/a2))

a2
√

1+ c2
.

Thus the generalized curvatures at (0, b) and (1, c + b) are equal exactly when
c = 0. This shows that only nonvertical lines that could possibly have constant
curvature are the horizontal lines y = b. Such lines have normal (0, 1), and this,
combined with our formula with the gradient, shows that horizontal lines have
constant curvature b/a2.

An explicit computation of the same variety shows that the vertical line x = b
has constant curvature

b− tanh(b/a2)

a2 . �
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Figure 11. Left: symmetric rays. Right: nonsymmetric rays. When
the purple areas are equal, the two nonsymmetric rays are more
efficient than the two symmetric rays. The efficiency increases as
the disparity between the rays increases, and the limiting case is a
single ray, which is the isoperimetric region.

Proposition 4.5. In the plane with double Gaussian density f , vertical lines enclose
a given area with less perimeter than horizontal lines.

Proof. We now compare the perimeters of and areas enclosed by the horizontal line
x = b and the vertical line y = c. By symmetry and the fact that we may assume
the areas are less than 1

2 , we can assume that b and c are positive and consider the
areas of the regions x > b and y > c.

The area enclosed by the vertical line is∫
∞

b

∫
∞

−∞

f (x, y) dy dx =
∫
∞

b

e−(x−1)2/(2a2)
+ e−(x+1)2/(2a2)

2a
√

2π
,

which is the same as the weighted length of the ray Rb = [b,∞) on the double
Gaussian line. The perimeter of the vertical line is∫

∞

−∞

f (b, y) dy =
e−(b−1)2/(2a2)

+ e−(b+1)2/(2a2)

2a
√

2π
,

which is exactly the cost of Rb on the double Gaussian line.
The area enclosed by the horizontal line is∫

∞

c

∫
∞

−∞

f (x, y) dx dy =
∫
∞

c

e−y2/(2a2)

2a
√

2π
dy,

which is the same as the weighted length of the ray Rc = [c,∞) on the single
Gaussian (of total weighted-length 1) line. The perimeter of the horizontal line is∫

∞

−∞

f (x, c) dx =
e−c2/(2a2)

2a
√

2π
,

which is exactly the cost of Rc on the single Gaussian line.
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Therefore it suffices to show that a ray on the double Gaussian line of length A
costs less than a ray on the single Gaussian line of the same weighted length.
Consider the line with density g given by a single Gaussian of total length 1

2 . The
ray on the single Gaussian is equivalent to the union of two disjoint, symmetric
rays on the g-line. The ray on the double Gaussian is equivalent to the union of
two disjoint, nonsymmetric rays on the g-line. By applying the first and second
variation arguments to a single Gaussian density, we see that two nonsymmetric
rays are always better than two symmetric rays of the same total weighted-length.
See Figure 11. �

Therefore if the isoperimetric curve corresponding to area A is a line, then it is a
vertical line.
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Finiteness of homological filling functions
Joshua W. Fleming and Eduardo Martínez-Pedroza

(Communicated by Kenneth S. Berenhaut)

Let G be a group. For any ZG-module M and any integer d > 0, we define a
function FVd+1

M : N→ N∪ {∞} generalizing the notion of (d+1)-dimensional
filling function of a group. We prove that this function takes only finite values if
M is of type FPd+1 and d > 0, and remark that the asymptotic growth class of
this function is an invariant of M. In the particular case that G is a group of type
FPd+1, our main result implies that its (d+1)-dimensional homological filling
function takes only finite values.

1. Introduction

For a contractible cellular complex X and an integer d > 0, the homological
filling function FVd+1

X : N→ N measures the difficulty of filling cellular d-cycles
with (d+1)-chains; a precise definition is below. They are higher-dimensional
homological generalizations of isoperimetric functions. For a group G admitting a
compact classifying space K (G, 1) with universal cover X, the equivalence growth
rate of the function FVd+1

X provides an invariant of the group. The initial motivation
of this work was to provide a direct argument that FVd+1

X takes only finite values
for such complex X, addressing what the authors perceived as a gap in the literature.
In this article we provide a self-contained proof based on the algebraic approach to
define the homological filling functions from [Hanlon and Martínez-Pedroza 2016],
and on our way, we prove a more general result that defines a new collection of
invariants for ZG-modules.

The topological perspective. We assume all spaces are combinatorial complexes
and all maps are combinatorial; see for example [Bridson and Haefliger 1999, Part I,
Chapter 8, Appendix]. A G-action on a complex X is proper if for all compact
subcomplexes K of X the collection {g ∈G | K ∩g(K ) 6=∅} is finite. The G-action
is cocompact if there is a compact subcomplex K of X such that the collection
{gK | g ∈ G} covers X. For a complex X, the cellular d-dimensional chain group
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Keywords: Dehn functions, homological filling function, isoperimetric inequalities, finiteness
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Cd(X,Z) is a free Z-module with a natural `1-norm induced by a basis formed by
the collection of all d-dimensional cells of X, each cell with a chosen orientation
from each pair of opposite orientations. This norm, denoted by ‖ · ‖1, is the sum of
the absolute value of the coefficients in the unique representation of the chain as a
linear combination of elements of the basis. Let Zd(X,Z) denote the Z-module of
integral d-cycles, and ∂d+1 : Cd+1(X,Z)→ Zd(X,Z) be the boundary map. The
(d+1)-dimensional filling function of X is the function FVd+1

X : N→ N ∪ {∞}

defined as
FVd+1

X (k)= sup{‖γ ‖∂ | γ ∈ Zd(X,Z), ‖γ ‖1 ≤ k},
where

‖γ ‖∂ = inf{‖µ‖1 | µ ∈ Cd+1(X,Z), ∂(µ)= γ },

where the supremum and infimum of the empty set are defined as zero and ∞
respectively. In words, FVd+1

X (k) is the most efficient upper bound on the size of
fillings by (d+1)-chains of d-cycles of norm at most k. A complex X is d-acyclic
if the reduced homology groups Hi (X,Z) are trivial for 0≤ i ≤ d. As mentioned
above, the initial motivation of this work was to provide a proof of Theorem 1.1,
which the authors perceived as a gap in the literature. The main contribution of this
note is a generalization to an algebraic framework of the following statement; see
Theorem 1.3.

Theorem 1.1. Let d be a positive integer and let G be a group acting properly
and cocompactly by cellular automorphisms on a d-acyclic complex X. Then
FV d+1

X (m) is finite for all m ∈ N.

Theorem 1.1 was known to hold in the following cases:

• For d = 1, it is a result of [Gersten 1999, Proposition 2.4].

• For d ≥ 1 and under the extra assumption that G admits a combing, it follows
from [Epstein et al. 1992, Theorem 10.3.6]; see also [Behrstock and Druţu 2015,
Lemma 3.7].

• For d ≥ 3, Hanlon and the second author observed in [Hanlon and Martínez-
Pedroza 2016, Section 3.3] that Theorem 1.1 holds using results of Alonso, Pride
and Wang [Alonso et al. 1999] in conjunction with an argument from Abrams,
Brady, Dani and Young [Abrams et al. 2013]. The results in [Alonso et al. 1999]
rely on nontrivial machinery from homotopy theory. The failure of the argument
for d = 2 relies on an application of the Hurewicz theorem; for details see [Hanlon
and Martínez-Pedroza 2016, Section 3.3].

Current results in the literature leave open the statement of Theorem 1.1 for
the case d = 2. Our argument in this note proving Theorem 1.1 does not rely on
previous results, it is valid for all d > 0, and it is elementary. The argument might
be known to the experts, but to our knowledge does not appear in the literature, and
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this note fills this gap. Let us sketch the argument from a topological perspective;
for an algebraic proof see Section 2.

Sketch of the proof of Theorem 1.1, from a topological perspective. Consider the
combinatorial path metric on the 1-skeleton of X, and for any d-cycle σ (which is a
formal finite sum of d-cells) define its diameter diam(σ ) as the diameter of the set
consisting of vertices (0-cells) which are in the closure of at least one d-cell defining
σ. A d-cycle σ is called connected if the subcomplex of X formed by taking the
closure of the union of d-cells defining σ is connected (and has no cut-points).

Let m > 0. Since G acts properly and cocompactly on X, there is an integer
C ≥ 0 that bounds the diameter of any d-cell of X, and hence for any connected
d-cycle σ,

diam(σ )≤ C‖σ‖1.

From here, it follows that the induced G-action on the set of connected d-cycles
with `1-norm ≤ m has finitely many G-orbits. Since X is d-acyclic, ‖σ‖∂ <∞ for
each d-cycle σ. Therefore, there is an integer M = M(m) such that

σ is connected and ‖σ‖1 ≤ m =⇒ ‖σ‖∂ ≤ M.

Let σ be an arbitrary d-cycle with `1-norm ≤ m. Then one shows that σ can be
decomposed as a sum of connected d-cycles

∑k
i=1 σi , where k≤‖σ‖1=

∑k
i=1 ‖σi‖1.

Hence

‖σ‖∂ ≤

k∑
i=1

‖σi‖∂ ≤ k ·M ≤ m ·M.

Therefore FVd+1
X (m)≤ m ·M <∞. �

Remark 1.2. Under the assumptions of Theorem 1.1, it is known that the growth
rate of the function FVd+1

X is a quasi-isometry invariant of the group G. This was
first addressed by Fletcher [1998, Theorem 2.1] under the assumption that X is
the universal cover of K (G, 1). Young [2011, Lemma 1] provided a proof of the
quasi-isometry invariance in the general context of Theorem 1.1. Notably, these
works do not address that these functions are finite.

The algebraic perspective, and our main result. Our main result is an algebraic
analog of Theorem 1.1. Recall that for a group G, a ZG-module M is of type FPn

if there exists a partial resolution of ZG-modules

Pn
ϕn
−→ Pn−1

ϕn−1
−−→· · ·

ϕ2
−→ P1

ϕ1
−→ P0→ M→ 0

such that each Pi is a finitely generated projective ZG-module. For a ZG-module M
of type FPd+1 we define the (d+1)-filling function FVd+1

M of M , see Definition 2.5,
and prove the following result.



572 JOSHUA W. FLEMING AND EDUARDO MARTÍNEZ-PEDROZA

Recall that the growth rate class of a function N→ N is defined as follows.
Given two functions f, g : N→ N, define the relation f � g if there is C > 0 such
that f (n) ≤ Cg(Cn + C)+ Cn + C for all n ∈ N, and let f ∼ g if both f � g
and g � f . This yields an equivalence relation where the equivalence class of a
function f is called the growth rate class of f .

Theorem 1.3. Let M be a ZG-module of type FPd+1:

(1) For all positive integers d and k, we have FVd+1
M (k) <∞.

(2) The growth rate of the function FVd+1
M : N→ N only depends on M.

This result provides a new collection of invariants for ZG-modules that remains to
be studied. The invariant is interesting even in the case that M =Z and G is suitable.
In this case, the filling functions FVd+1

Z correspond to the filling invariants of the
group G, usually denoted by FVd+1

G , in the context of Theorem 1.1 and Remark 1.2.
There are computations by Young [2016] in the case that G corresponds to a discrete
Heisenberg group answering a conjecture of Gromov [1993, Chapter 5], estimations
in the case that G is the special linear group SL(n,Z) by Epstein and Thurston
[1992, Chapter 10], and general results in the case that G is a hyperbolic group
by Gersten [1996] and Mineyev [2000], among others. In [Hanlon and Martínez-
Pedroza 2016, Remark 3.4], it was observed that there was no proof in the literature
that if G is of type FP3 (i.e., Z is of type FP3 as a module over ZG) then FV3

G is
finite-valued; observe that this is a consequence of Theorem 1.3.

This note contains a proof of the first statement of Theorem 1.3. The proof of
the second statement appears in [Hanlon and Martínez-Pedroza 2016, Theorem 3.5]
for the case that M = Z, but the argument works verbatim for the general case.

Organization. The rest of the paper is organized as follows: Section 2 contains
some preliminary definitions including the definition of FVd+1

M , the statement of
the main technical result of the article, Proposition 2.4, and arguments implying
Theorems 1.1 and 1.3. Section 3 is devoted to the proof of Proposition 2.4. Section 4
discusses some geometric examples illustrating some matters about Theorem 1.1.

2. Main technical result and proofs of the main theorems

Let G be a group and let S be a G-set. The set of all orbits of S under the G-action
is denoted by S/G. The free abelian group Z[S] with S as a free generating
set can be made into a ZG-module that we shall call the permutation module
on S. The Z-basis S induces a G-equivariant norm, called the `1-norm, given by∥∥∑

s∈S nss
∥∥

S =
∑

s∈S |ns |, where ns ∈ Z.
If the G-action on S is free, then Z[S] is a free module over ZS. Conversely, if

F is a free ZG-module with a chosen ZG-basis {αi | i ∈ I }, then F is isomorphic
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to the permutation module Z[S], where S = {gαi | g ∈ G, i ∈ I } with the natural
G-action. In this case the ZG-basis {αi | i ∈ I } of F induces an `1-norm as before.

Definition 2.1 (Gersten’s filling norms). Let η : F→ M be a surjective morphism
of ZG-modules where F is finitely generated and free with a chosen finite ZG-basis,
and the induced filling norm on M is defined by

‖m‖η =min{‖x‖F | x ∈ F, η(x)= m},

where ‖ · ‖F denotes the induced `1-norm on F.

Remark 2.2 (induced `1-norms are filling norms). Let Z[S] be a permutation
ZG-module such that G acts freely on S and the quotient S/G is finite. Then Z[S]
is a finitely generated free ZG-module and the `1-norm ‖ ·‖S is a filling norm. This
statement holds without the assumption that G acts freely on S. Since we do not
use this fact, we leave its verification to the reader.

Definition 2.3. Let ρ : Z[S] → Z[T ] be a morphism of permutation ZG-modules
such that the kernel K = ker ρ is finitely generated. Let ‖ · ‖K denote a filling norm
on K and let ‖ · ‖S denote the `1-norm on Z[S] induced by S. Define the function
FVρ : N→ N∪ {∞} as

FVρ(n)= sup{‖x‖K | x ∈ K , ‖x‖S ≤ n}.

Proposition 2.4. Let ρ :Z[S]→Z[T ] be a morphism. Suppose that S/G and T/G
are finite, T has finite G-stabilizers for all t ∈ T, and ker ρ is finitely generated.
Then FVρ(n) <∞ for all n ∈ N.

In the rest of this section, we deduce Theorems 1.1 and 1.3 from Proposition 2.4.

Proof of Theorem 1.1. Let G be a group acting properly and compactly by
cellular automorphisms on a d-connected complex X. The free abelian groups
Cd(X) and Cd+1(X) are permutation ZG-modules over the G-sets of d-cells and
(d + 1)-cells of X, respectively. Observe that the definition of FV d+1

X coincides
with Definition 2.3 of FV∂d for the boundary map Cd(X)

∂d
−→Cd−1(X). The proof

concludes by verifying the hypothesis of Proposition 2.4 for this morphism.
Since the G-action on X is cocompact, there are finitely many G-orbits of d-cells

and (d+1)-cells; in particular Cd+1(X) is a finitely generated ZG-module. Since
X is d-acyclic, the sequence

Cd+1(X)
∂d+1
−−→Cd(X)

∂d+1
−−→Cd−1(X)

is exact and hence ker(∂d) is a finitely generated ZG-module. Since the G-action
is proper, the stabilizer of each d-cell of X is finite. �
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Definition 2.5. Let M be a ZG-module of type FPd+1. The (d+1)-filling function
of M is the function

FVd+1
M : N→ N∪ {∞}

defined as follows. Let

Pd+1
ϕd+1
−−→ Pd

ϕd
−→· · ·

ϕ2
−→ P1

ϕ1
−→ P0→ M→ 0

be a FPd+1-resolution for M. Chose filling norms on Pd+1 and Pd denoted by
‖ · ‖Pd+1 and ‖ · ‖Pd respectively. Then

FVd+1
M (k)= sup{‖x‖ϕd+1 | x ∈ kerϕd , ‖x‖Pd ≤ k},

where

‖x‖ϕd+1 =min{‖y‖Pd+1 | y ∈ Pd+1, ϕd+1(y)= x}.

The proof of Theorem 1.3 uses the following lemma.

Lemma 2.6 [Brown 1982, Chapter VIII, Proposition 4.3]. A ZG-module M is of
type FPd if and only if M admits a partial resolution of free finitely generated
ZG-modules of the form

Fd+1→ Fd → · · · → F1→ F0→ M→ 0.

Proof of Theorem 1.3. Since M is of type FPd+1, by Lemma 2.6, there exists a
partial resolution of free and finitely generated ZG-modules

Fd+1
ϕd+1
−−→ Fd

ϕd
−→· · ·

ϕ2
−→ F1

ϕ1
−→ F0→ M→ 0

such that kerϕn is finitely generated for n such that d ≥ n ≥ 0. Consider the
finitely generated free modules Fd and Fd−1 as permutation modules Z[S] and
Z[T ] respectively. Finite generation and freeness implies that we can assume that
G acts freely and with finitely many orbits on both S and T. Since the induced
`1-norms on Z[S] and Z[T ] are in particular filling norms, the definition of FVd+1

M
coincides with Definition 2.3 of FVϕd+1 . Then the first statement of the theorem on
the finiteness of FVd+1

M follows by applying Proposition 2.4 to FVϕd+1 .
The proof of the second statement that the growth rate of FVd+1

M is independent of
the choice of partial resolution and filling norms appears in [Hanlon and Martínez-
Pedroza 2016, Theorem 3.5] for the case that M=Z and G is a group of type FPd+1.
The argument for arbitrary M follows verbatim by replacing each occurrence of
Z by M. Let us remark that the heart of the argument is the fact that any two
projective resolutions of M are chain homotopy equivalent [Brown 1982, p. 24,
Theorem 7]. �
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3. Finiteness

This section contains the proof Proposition 2.4. Let S and T be G-sets. For x ∈Z[S]
with x =

∑
s∈S nss, we denote by 〈x, s〉 the integer ns . For x ∈ Z[T ] and t ∈ T we

define analogously 〈x, t〉.

Definition 3.1 (x is a part of y). Let x, y ∈ Z[S]. We say x is a part of y, denoted
by x �S y, to mean that for each s ∈ S if 〈x, s〉 > 0 then 〈x, s〉 ≤ 〈y, s〉, and if
〈x, s〉< 0 then 〈y, s〉 ≤ 〈x, s〉. Note that this is equivalent to 〈x, s〉〈y, s〉 ≥ 〈x, s〉2

for all s ∈ S.

Definition 3.2 (S-intersect). For x, y∈Z[S], the S-intersection of x and y is defined
as x ∩S y = {s ∈ S | 〈x, s〉〈y, s〉< 0}.

Remark 3.3. Let x, y ∈ Z[S]. Then ‖x + y‖S = ‖x‖S + ‖y‖S if and only if
x ∩s y =∅. Indeed,

‖x + y‖S =
∑
s∈S

|〈x, s〉+ 〈y, s〉| ≤
∑
s∈S

|〈x, s〉| +
∑
s∈S

|〈y, s〉| = ‖x‖S +‖y‖S

with equality if and only if 〈x, s〉 and 〈y, s〉 have the same sign for all s ∈ S.

Throughout the rest of this section, let

D1 = S ∪ {−s | s ∈ S}.

Furthermore, let ρ : Z[S] → Z[T ] denote a morphism of ZG-modules.

Definition 3.4 (ρ-intersect). A pair of elements x, y ∈ Z[S] have nontrivial ρ-
intersection, denoted by x ∩ρ y 6=∅, if there exists x1, y1 ∈ D1 such that ρ(x1)∩T

ρ(y1) 6=∅ where x1 �S x and y1 �S y.

Definition 3.5 (ρ-connected). For each integer n ≥ 1, let Dn be the collection of
elements of Z[S] of the form x =

∑n
i=1 xi , where each xi ∈ D1 and for every

k < n the elements
∑k

i=1 xi and xk+1 have trivial S-intersection and nontrivial
ρ-intersection. An element x ∈ Z[S] is ρ-connected if x ∈ Dn for some n ≥ 1.

Remark 3.6. For x ∈ Z[S], we have x ∈ Dn if and only if x is ρ-connected and
‖x‖ = n.

Lemma 3.7. If 0 6= z ∈ ker ρ, then there exists x such that

(1) x �S z, in particular, ‖z− x‖S < ‖z‖S ,

(2) x ∈ ker ρ, and

(3) x is ρ-connected.

Proof. Let 0 6= z ∈ ker ρ be an arbitrary element. Consider the set

�= {x �S z | x 6= 0, x is ρ-connected};
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this is a nonempty finite set partially ordered by �S . Let x ∈ � be a maximal
element. We claim that x ∈ ker ρ. Suppose that x /∈ ker ρ. We have ρ(x) and
ρ(z− x) are nonzero and satisfy

ρ(x)+ ρ(z− x)= 0.

Since ρ(x) 6= 0 there exists t ∈ T such that 〈ρ(x), t〉 6= 0. Therefore

〈ρ(z− x), t〉 = −〈ρ(x), t〉.

Since ρ(z− x) 6= 0, there exists s ∈ S for which

〈z− x, s〉〈ρ(s), t〉〈ρ(z− x), t〉> 0.

This implies
〈z− x, s〉〈ρ(s), t〉〈ρ(x), t〉< 0.

Now define λ=〈z−x, s〉/|〈z− x, s〉|. We show x+λs is ρ-connected. First observe
that x ∩S λs =∅ since x �S z and λs �S z. Moreover, note that x ∩ρ λs 6=∅ since

〈ρ(x), t〉〈ρ(λs), t〉 = 〈ρ(x), t〉〈ρ(s), t〉λ < 0.

Therefore x + λs is ρ-connected and x �S x + λs �S z. This contradicts the
maximality of x and therefore x ∈ ker ρ. �

Proposition 3.8. For all nonzero z ∈ ker ρ, there exist ρ-connected elements
x1. . . . , xn ∈ ker ρ such that

(1) z = x1+ · · ·+ xn ,

(2) xi �S z for each i .

Proof. Applying Lemma 3.7 to z ∈ ker ρ, there exists a ρ-connected element
x1 ∈ ker ρ such that x1 �S z. If z− x1 6= 0 then there exists a ρ-connected element
x2 ∈ ker ρ such that x2 �S z − x1 ≺S z. If z − x1 − x2 6= 0 then there exists a
ρ-connected element x3 ∈ ker ρ such that x3 �S z − x1 − x2 ≺ z − x1 ≺ z. This
process must terminate for some positive integer n since

‖z− x1− · · ·− xk‖> ‖z− x1− · · ·− xk − xk+1‖ ≥ 0

if z− x1−· · ·− xk 6= 0. Hence we obtain ρ-connected elements x1, . . . , xn ∈ ker ρ
such that xi �S z for each i , and z = x1+ · · ·+ xn . �

Remark 3.9. For x, y ∈ Z[S], the relations x �S y, x ∩S y 6=∅, and x ∩ρ y 6=∅
are preserved by the G-action on Z[S]. Thus, if x ∈Dn and g ∈ G then gx ∈Dn . It
follows that Dn is a G-set.

Proposition 3.10. Suppose that S and T have finitely many G-orbits and each
element of T has finite G-stabilizer. Then for every n ≥ 1, the set Dn has finitely
many G-orbits.
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Before the proof of the Proposition 3.10, we introduce the following lemmas.

Lemma 3.11. Suppose S has finitely many G-orbits, and each element of T has
finite G-stabilizer. Then for every t ∈ T, the set S(t) = {s ∈ S | 〈ρ(s), t〉 6= 0} is
finite.

Proof. For any t ∈ T, s ∈ S, and g ∈ G, we have 〈ρ(gs), gt〉 = 〈ρ(s), t〉. For each
s ∈ S, let T (s) = {t ∈ T | 〈ρ(s), t〉 6= 0}. As ρ is a morphism, T (s) is a finite set
for all s ∈ S. Now, fix t ∈ T and let s1, . . . , sm be representatives of G-orbits of S.
Then

S(t)=
m⋃

i=1

{
gsi

∣∣ g ∈ G, 〈ρ(si ), g−1t〉 6=0
}
=

m⋃
i=1

⋃
r∈T (si )

{gsi | g ∈ G, g−1t=r}.

Observe that the set {g ∈ G | g−1t = r} is in one-to-one correspondence with
G t = {g ∈ G | gt = t}. By assumption, G t is finite and thus for each i ∈ {1, . . . ,m}
and r ∈ T (si ) the set {gsi | g ∈ G, g−1t = r} is finite. Therefore, the set S(t) is
finite. �

Lemma 3.12. Suppose S has finitely many G-orbits and that T has finite G-
stabilizers for each t ∈ T. Then for all n ∈ Z+ and for all y ∈ Dn the set
{x ∈ D1 | x ∩ρ y 6=∅} is finite.

Proof. For y ∈ Z[S] denote by D1(y) the set {x ∈ D1 | x ∩ρ y 6= ∅}. Let y ∈ Dn .
By definition, y =

∑n
i=1 xi , where each xi ∈ D1 and for each k < n, the elements∑k

i=1 xi and xk+1 have trivial S-intersection and nontrivial ρ-intersection. It follows
from the definition of ρ-intersect that

D1(y)= {x ∈ D1 | x ∩ρ y 6=∅} =
n⋃

i=1

{x ∈ D1 | x ∩ρ xi 6=∅} =
n⋃

i=1

D1(xi ).

Therefore, to conclude it is enough to show that D1(s) is finite for every s ∈ D1.
Let s ∈ D1. Observe that

D1(s)=
⋃
t∈T

{
x ∈D1

∣∣ 〈ρ(x), t〉〈ρ(s), t〉<0
}
⊂

⋃
t∈T

{
x ∈D1

∣∣ 〈ρ(x), t〉〈ρ(s), t〉 6=0
}
.

It is immediate that {t ∈ T | 〈ρ(s), t〉 6= 0} is finite. Hence the union on the right is
over a collection with finitely many nonempty sets. By Lemma 3.11, for any t ∈ T
the set {x ∈D1 | 〈ρ(x), t〉 6= 0} is finite, and hence {x ∈D1 | 〈ρ(x), t〉〈ρ(s), t〉 6= 0}
is finite. Therefore the expression on the right is the union of a finite collection of
finite sets, and we conclude that D1(s) is finite. �

Proof of Proposition 3.10. We prove by induction on n. For n = 1 the result follows
from the assumption that S has finitely many G-orbits and the definition of D1.
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Suppose Dn has finitely many G-orbits with representatives y1, . . . , y`. For each
1≤ k ≤ `, let Ak be the collection of elements Ak of D1 such that

yk ∩S z =∅ and yk ∩ρ z 6=∅.

By Lemma 3.12, the collection Ak is finite. The proof concludes with the verification
of the following claim.

Claim. The set
{yk + z | 1≤ k ≤ ` and z ∈ Ak}

is a collection of representatives of G-orbits of Dn+1.

Let x ∈ Dn+1. Then x =
∑n+1

i=1 xi , where each xi ∈ D1 and for every k < n the
elements

∑k
i=1 xi and xk+1 have trivial S-intersection and nontrivial ρ-intersection.

By definition,
∑n

i=1 xi is in Dn . Hence
∑n

i=1 xi = gyj for some g ∈ G and some
1 ≤ j ≤ `. It follows that x = gyj + xn+1 and therefore g−1x = yj + g−1xn+1.
By Remark 3.9, we have that z = g−1xn+1 is an element of Aj . Therefore x =
gyi + gz = g(yi + z). This proves the claim. �

Proof of Proposition 2.4. Let K denote ker ρ, and let ‖ · ‖K denote a chosen filling
norm on K. By Proposition 3.10, for each positive integer n, the G-set

⋃n
i=1 Di

has finitely many G-orbits. Therefore, for each n ∈ Z+ there is an integer Bn such
that for every x ∈

⋃n
i=1 Di , we have ‖x‖K ≤ Bn .

Let 0 6= z ∈ K such that ‖z‖S ≤ n. By Proposition 3.8, there exist ρ-connected
elements x1, . . . , xm ∈K such that m≤n, z= x1+· · ·+xm , and xi ≺ z, i=1, . . . ,m.
By Remark 3.6, each xi ∈ Dn . Therefore, by the triangle inequality,

‖z‖K ≤

m∑
i=1

‖xi‖K ≤ m · Bn ≤ n · Bn.

This shows that FVρ(n)≤ n · Bn <∞. �

Remark 3.13. Observe that Proposition 2.4 can be generalized as follows. Consider
the sequence of modules ker ρ→ Z[S] ρ

−→Z[T ], where |S/G|, |T/G|<∞ and
T has finite G-stabilizers for all t ∈ T. Let ‖ · ‖K be a G-invariant norm on K ; then
for all n ∈ N,

sup{‖x‖K | x ∈ K , ‖x‖S ≤ n}<∞.

In particular, K being finitely generated induces a filling norm which is G-invariant.

4. Examples

A graph 0 is called fine if for every edge e and each integer n > 0, the number
of circuits of length at most n which contain e is finite. By a circuit we mean a
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closed edge path that does not pass through a vertex more than once. The length of
a circuit is defined as the number of edges.

Theorem 4.1 [Martínez-Pedroza 2016, Theorem 1.3]. Let X be a cocompact G-cell
complex with finite stabilizers of 1-cells. The following two statements are equiva-
lent:

(1) X has fine 1-skeleton and the homology group H1(X, Z) is trivial.

(2) FVX (k) <∞ for any integer k.

This result allows us to exhibit examples that contrast with Theorem 1.1 as
follows:

• There is a group G acting cocompactly, not properly, and by cellular automor-
phisms on a simply connected complex X for which FV2

X (m) is finite for all
m ∈ N.

In particular, the converse of Theorem 1.1 does not hold.

• There is a group G acting cocompactly by cellular automorphisms on a simply
connected complex X for which FV 2

X (m) is infinite for some m ∈ N. In
particular, the properness assumption in Theorem 1.1 cannot be removed.

The two examples are based on the notion of coned-off Cayley complex. We use
the version from [Groves and Manning 2008], which we briefly recall below; for
another version see [Martínez-Pedroza 2017, Section 3].

Let G be a group and let P be a subgroup. The group G is finitely generated
relative to P if there is a finite subset S⊂G such that the natural map F(S)∗P→G
is surjective, where F(S) denotes the free group on S, and F(S) ∗ P denotes the
free product of F(S) and P. In this case S is called a finite relative generating set
of G with respect to P.

Suppose that S is a finite relative generating set of G with respect to P. Without
loss of generality assume that S is closed under inverses. The coned-off Cayley
graph 0̂ = 0̂(G, P, S) is the graph with vertex set consisting of all elements of
G and all left cosets of P; the edge set is the collection of pairs (g, gs) ∈ G×G
for g ∈ G and s ∈ S, and pairs (g, g P) for g ∈ G. Observe that the left action
of G on itself extends to a left action on 0̂. Vertices of 0̂ of the form g P are
called cone-vertices. Observe that the G-stabilizers of cone-vertices correspond to
conjugates of P; in particular, if P is infinite, the action is not proper. Moreover,
the G-stabilizers of 1-cells of 0̂ are trivial. It is well known that the assumption that
S is a relative generating set implies that 0̂ is path-connected as a combinatorial
complex; in fact, this is an equivalence, as remarked in [Hruska 2010].

Under the assumptions, the group G is finitely presented relative to P if there is
a finite subset R ⊂ F(S) ∗ P such that the kernel of the map F(S) ∗ P→ G is the
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Figure 1. The coned-off Cayley graph 0̂(G, P, S), where G is the
free group in two letters S={a, b} and P is the cyclic subgroup 〈b〉.

smallest normal subgroup containing R. In this case, we say that

〈S, P|R〉 (1)

is a finite relative presentation of G with respect to P. It is an exercise to show that
if G is finitely presented and P is finitely generated, then G is finitely presented
relative to P. We refer the reader to [Osin 2006] for an exposition on finite relative
presentations.

Assume that P is finitely generated, that (1) is a finite relative presentation of G
with respect to P, and that S ∩ P is a generating set of P. The coned-off Cayley
complex Ĉ = Ĉ(G, P, S, R) is the 2-dimensional complex with 1-skeleton the
coned-off Cayley graph 0̂(G, P, S) obtained by equivariantly attaching 2-cells as
follows. For each word r ∈ R correspond a loop in 0̂. Attach a 2-cell with trivial
stabilizer to each such loop, and extend in a manner equivariant under the G-action
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w1 w2 w3 w4 w5 w6

Figure 2. The coned-off Cayley graph 0̂(G, P, S), where G is the
free abelian group in two letters S = {a, b} and P is the cyclic
subgroup 〈b〉.

on 0̂. Similarly, for each P ∈P, for each generator in s ∈ S∩ P and each g ∈G, we
have a corresponding loop in 0̂ of length 3 passing through the vertices g, gs, g P.
Attach a 2-cell with trivial stabilizer to each such loop, equivariantly under the
G-action. The resulting G-complex Ĉ is simply connected [Groves and Manning
2008, Lemma 2.48], the G-action is cocompact by construction, and if P is infinite,
the G-action is not proper. Now we consider the 2-dimensional filling function
FV 2

Ĉ
of Ĉ .

Example 4.2. Let G be the free group of rank 2, let S = {a, b} be a free generating
set, and let P be the cyclic subgroup generated by b. It is an observation that
the coned-off Cayley graph 0̂(G, P, S), see Figure 1, is a fine graph and hence
Theorem 4.1 implies that FV2

Ĉ(m) <∞ for every m ∈ N. Similar examples can be
constructed by considering relatively hyperbolic groups.

Example 4.3. Let G be the free abelian group of rank 2, let S = {a, b} be a
generating set, and let P be the cyclic subgroup generated by b. The coned-off
Cayley graph 0̂(G, P, S), see Figure 2, is not fine since there are infinitely many
circuits of length 6 passing through the edge from b to P. By Theorem 4.1, we
have that FV2

Ĉ(m)=∞ for some m ∈ N. In fact, one can verify that FV2
Ĉ(6)=∞.

Remark 4.4. Theorem 1.1 does not hold for d = 0 in the natural setting of defining
FV1

X by taking Z0(X,Z) to be the kernel of the augmentation map. Consider a
finitely generated infinite group G acting properly and cocompactly on a connected
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graph X ; for example, take X to be the Cayley graph of G with respect to a finite
generating set. Then X is infinite, and the formal difference γ = b−a between two
distinct vertices a and b of X is a 0-cycle for which |γ |∂ can be made arbitrarily
large by taking a and b sufficiently far apart; roughly speaking, a 1-chain µ such
that ∂µ= b− a contains a combinatorial edge path from a to b and hence ‖µ‖1 is
at least the length of the shortest edge path from a to b. Hence FV1

X (2) =∞ in
this case.
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Explicit representations of
3-dimensional Sklyanin algebras
associated to a point of order 2

Daniel J. Reich and Chelsea Walton

(Communicated by Michael E. Zieve)

The representation theory of a 3-dimensional Sklyanin algebra S depends on its
(noncommutative projective algebro-) geometric data: an elliptic curve E in P2,
and an automorphism σ of E given by translation by a point. Indeed, by a result
of Artin, Tate, and van den Bergh, we have that S is module-finite over its center
if and only if σ has finite order. In this case, all irreducible representations of S
are finite-dimensional and of at most dimension |σ |.

In this work, we provide an algorithm in Maple to directly compute all irre-
ducible representations of S associated to σ of order 2, up to equivalence. Using
this algorithm, we compute and list these representations. To illustrate how
the algorithm developed in this paper can be applied to other algebras, we use
it to recover well-known results about irreducible representations of the skew
polynomial ring C−1[x, y].

1. Introduction

We work over the ground field C. The motivation of this work is to study, up
to equivalence, irreducible finite-dimensional representations (irreps) of Sklyanin
algebras S of global dimension 3 (Definition 1.2). Past work on this problem
includes results on bounds on the dimension of irreps of S [Walton 2012], and on a
geometric parametrization of (trace-preserving) irreps of S [De Laet and Le Bruyn
2015]. The focus of this paper is to determine, for a class of Sklyanin algebras, all
explicit irreps up to equivalence. Namely, we compute irreducible matrix solutions
to the defining equations of S, up to an action of a general linear group. A geometric
parametrization of the set of irreps of S is also presented, as this is the typical
approach to understanding aspects of Sklyanin algebras.
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Remark 1.1. We directly compute the irreps via a Maple algorithm. A more
conceptual technique, using noncommutative projective algebraic geometry (and
Clifford theory for these particular Sklyanin algebras), can be used to solve this
problem. We nevertheless hold to the computational approach because it can be
adapted (much more easily in some cases) to other algebras; for further discussion
of the complexity of this approach, see Remarks 1.10 and 1.11.

To begin, let us define the algebra under investigation.

Definition 1.2 [Artin et al. 1990]. The 3-dimensional Sklyanin algebra S :=
S(a, b, c) over C is generated by three noncommuting variables x , y, z subject to
the relations

ayz+ bzy+ cx2
= azx + bxz+ cy2

= axy+ byx + cz2
= 0. (1.3)

Here, [a : b : c] ∈ P2
C

, with abc 6= 0 and (3abc)3 6= (a3
+ b3
+ c3)3.

This algebra is rather resistant to noncommutative Gröbner basis methods; that
is, it is difficult to write down a C-vector space basis of S (consisting of monomials
in x, y, z). See, for instance, [Bellamy et al. 2016, Exercise 1.7]. (The reader may
also be interested in [Iyudu and Shkarin 2017].) In fact, it is common practice
to consider the geometric data of S in the context of noncommutative projective
algebraic geometry [Artin et al. 1990; Bellamy et al. 2016; Stafford and Van
den Bergh 2001] to analyze its ring-theoretic behavior. By [Artin et al. 1990,
Equations 1.6 and 1.7], the geometric data of S(a, b, c) consists of an elliptic curve
E := Ea,b,c ⊂ P2

C
defined the equation

Ea,b,c : (a3
+ b3
+ c3)(uvw)− (abc)(u3

+ v3
+w3)= 0, (1.4)

and an automorphism of this elliptic curve σ := σa,b,c given by

σa,b,c([u : v : w])= [acv2
− b2uw : bcu2

− a2vw : abw2
− c2uv]. (1.5)

Here, the automorphism is given by translation of the point [a : b : c] ∈ Ea,b,c,
where [1 : −1 : 0] is the origin of Ea,b,c. The order of σ , denoted by |σ |, is the
smallest n ∈N such that σ n

= idE . If no such n exists, then |σ | =∞. Consider the
following terminology.

Definition 1.6. We say that a Sklyanin algebra S(a, b, c) is associated to a point
([a : b : c] ∈ Ea,b,c) of order n if the automorphism σa,b,c has order n.

The role of this geometric data for our work will be explained towards the end
of this section.

Now let us recall some basic representation theory terminology. Take n to be a
positive integer. An n-dimensional representation of S := S(a, b, c) is an algebra
homomorphismψ : S→End(V ), where V is a C-vector space of dimension n. Since
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End(V ) is isomorphic to Matn(C), there is a one-to-one correspondence between the
n-dimensional representations of S(a, b, c) and the n×n matrix solutions (X, Y, Z)
to the system of equations (1.3). Here, X = ψ(x), Y = ψ(y), and Z = ψ(z).

Next, we discuss irreducibility. Given a representation ψ : S → End(V ), a
subspace W of V is called S-stable if ψ(s)(w) ∈W for all s ∈ S, w ∈W. Such a
subspace W yields a subrepresentation of S, given as ψ ′ : S→ End(W ). We say
that ψ is irreducible if the only S-stable subspaces of V are {0} and itself, that is,
if there are no proper subrepresentations ψ ′ of ψ . Similarly, there is a notion of
irreducibility for a matrix solution (X, Y, Z) to (1.3); see Lemma 2.1.

Now we recall when two representations/matrix solutions of S are equivalent. We
say that n-dimensional representations ψ, φ : S→ End(V ) are equivalent if there
exists a matrix Q ∈ GLn(C) such that ψ(s)= Qφ(s)Q−1 for all s ∈ S. Likewise,
two matrix solutions (X0, Y0, Z0) and (X1, Y1, Z1) to (1.3) are equivalent if there
exists Q ∈ GLn(C) such that Q−1 X0 Q = X1, Q−1Y0 Q = Y1, and Q−1 Z0 Q = Z1.
Note that two equivalent representations/matrix solutions are either both irreducible
or both reducible.

As the reader can imagine, studying explicit finite-dimensional representations
of the algebras S(a, b, c) is difficult computationally. Now by [Walton 2012,
Theorem 1.3], we only have nontrivial finite-dimensional representations of S when
the automorphism σ of (1.5) has finite order. So, we refine our goal: we study the
irreps of S(a, b, c) associated to a point [a : b : c] ∈ Ea,b,c of order 2. Note that the
order-1 case is precisely the case when S is commutative (Lemma 2.4).

Lemma 1.7 (Lemma 2.5). A Sklyanin algebra S(a, b, c) is associated to a point
[a : b : c] ∈ Ea,b,c of order 2 if and only if a = b.

In this case, we assume that a = b = 1 by rescaling. Therefore, our goal is to
study the representation theory of the 3-dimensional Sklyanin algebra S(1, 1, c),
where by Definition 1.2, c 6= 0, c3

6= 1,−8. By Lemma 2.6, all 1-dimensional
irreps of S(1, 1, c) are trivial, and all irreps of S(1, 1, c) are finite-dimensional, of
at most dimension 2. Thus, we only need to compute the irreps of dimension 2; we
achieve this as follows.

Theorem 1.8. The nontrivial explicit irreps (or matrix solutions) of the 3-dimen-
sional Sklyanin algebra S(1, 1, c) are of dimension 2. They are classified up to
equivalence; the representatives of equivalence classes of irreps of S(1, 1, c) are
provided in (5.1)–(5.2) and (6.1)–(6.5) in Sections 5 and 6, respectively.

In Section 2, we provide background material and some preliminary results.
In Section 3, we give an outline (Steps 0–2, 3a, 3b) of our algorithm to prove
Theorem 1.8. The algorithm then begins in Section 4, where we determine all of
the 2-dimensional representations of S(1, 1, c), and exclude “families” of reducible
representations; this is Steps 0–2 of the algorithm. In Sections 5 and 6, we determine
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representatives of equivalence classes of 2-dimensional irreps of S(1, 1, c); this is
Steps 3a and 3b of the algorithm.

The study of the irreps of S(1, 1, c) ends in Section 7, where for completion, we
discuss a geometric parametrization of equivalence classes of irreps of S(1, 1, c);
e.g., we illustrate the Azumaya locus of S(1, 1, c) over the center of S(1, 1, c).
Namely we have the result below.

Theorem 1.9 (Theorem 7.1). The set of equivalence classes of irreps of S(1, 1, c)
is in bijective correspondence with the points of the 3-dimensional affine variety:

Xc := V
(
g2
− c2(u3

1+ u3
2+ u3

3)− (c
3
− 4)u1u2u3

)
⊆ C4

{u1,u2,u3,g}.

In particular, Xc \ {0} is the Azumaya locus of S over its center (i.e., points of
Xc\{0} correspond to 2-dimensional irreps of S ), and the origin of Xc corresponds
to the trivial representation of S.

Remark 1.10. We would like to point out that one can adjust our algorithm to
prove Theorem 1.8 to examine equivalence classes of irreps of other algebras with
generators and relations, especially those that are module-finite over their center.
Although, the run-time and complexity of the output of the algorithm is in direct
correlation with the number of generators and relations of the algebra, along with
the algebra’s polynomial identity degree (PI degree), if applicable.

We illustrate the remark above in Section 8, where we tailor our algorithm to
examine irreps of the skew polynomial ring

C−1[x, y] := C〈x, y〉/(xy+ yx).

Like S(1, 1, c), it is well known that all irreps of C−1[x, y] are finite-dimensional,
of dimension at most 2 (Lemma 8.1(c)). See Proposition 8.3 and Corollary 8.5 for
the results on the representation theory of C−1[x, y].

Remark 1.11. Part of the novelty of this work is that we obtain noncommutative
algebraic/representation-theoretic results with Maple, which is a computer algebra
system that is used typically for commutative computations. We hope that in the
future the task of determining equivalence classes of irreps of noncommutative
algebras (presented by generators and relations) can be achieved easily using a
computer algebra system that handles noncommutative Gröbner bases, such as GAP
[Cohen and Knopper 2016].

Remark 1.12. Unless stated otherwise, computational results in this work are
performed with the computer algebra system Maple (version 16). All code (including
comments) is available on the authors’ professional websites, and in the preprint
version of this work available on the ArXiv: http://arxiv.org/abs/1512.09167.

http://arxiv.org/abs/1512.09167
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2. Preliminaries

We begin with a result on the irreducibility of a representation/matrix solution of a
Sklyanin algebra S = S(a, b, c). This result is well known, and we will use it often
without mention.

Lemma 2.1. Let ψ : S→ End(V ) be an n-dimensional representation of S, with
corresponding matrix solution (X, Y, Z) to the system of equations (1.3). Then, the
following are equivalent:

(a) ψ is irreducible.

(b) The corresponding S-module V (where S acts on V via ψ) is simple.

(c) ψ is surjective.

(d) ψ(S) generates End(V )∼=Matn(C) as a C-algebra.

(e) Every matrix in Matn(C) can be expressed as a noncommutative polynomial in
(X, Y, Z) over C. �

If any of the above conditions hold, we say that the matrix solution (X, Y, Z) is
irreducible.

On the other hand, we can determine when a matrix solution of S is reducible
by using Lemma 2.1.

Corollary 2.2. An n × n matrix solution (X, Y, Z) to (1.3) (corresponding to a
representation ψ of S ) is reducible if and only if there exists a subspace W of V
of dimension m < n with X ·w, Y ·w, Z ·w ∈W for all w ∈W. Here, we embed W
into V so that · is given by matrix multiplication. �

If S is a Sklyanin algebra associated to a point of infinite order, then by [Walton
2012, Theorem 1.3(i)], we have that all finite-dimensional irreps of S are trivial.
On the other hand, Sklyanin algebras associated to points of finite order have an
interesting representation theory, due to the following result.

Proposition 2.3. Let S(a, b, c) be a Sklyanin algebra associated to a point of finite
order. Then, all irreducible representations of S(a, b, c) are finite-dimensional, of
at most dimension |σa,b,c|.

Proof. In this case, we have that the Sklyanin algebra S(a, b, c) is module-finite
over its center by [Artin et al. 1991, Theorem 7.1]. Further, S(a, b, c) has PI
degree |σa,b,c| by [Walton 2012, Proposition 1.6]. Hence, the irreducible represen-
tations of S(a, b, c) are all finite-dimensional by [McConnell and Robson 2001,
Theorem 13.10.3(a)], of dimension at most |σa,b,c| by [Brown and Goodearl 1997,
Proposition 3.1]. �

Now we analyze parameters (a, b, c) ∈ C3 so that the automorphism σa,b,c from
(1.5) has finite order. Recall that two projective points [m1 :m2 :m3], [n1 :n2 :n3]∈P2

C
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are equal if and only if m1n2−m2n1 = m1n3−m3n1 = m2n3−m3n2 = 0 if and
only if ni = λmi for all i = 1, 2, 3, for some nonzero λ∈C. Omitting the conditions
on parameters a, b, c for now, it is worth noting the following the result.

Lemma 2.4. The automorphism σa,b,c from (1.5) has order 1 if and only if a = 1,
b = −1, c = 0. In this case, S(1,−1, 0) is the commutative polynomial ring
C[x, y, z].

Proof. If σ has order 1, then we obtain [acv2
−b2uw :bcu2

−a2vw :abw2
−c2uv]=

[u : v : w]. Therefore, bcu2w − (a2
+ ab)vw2

+ c2uv2
= 0, which (by taking

the coefficient of uv2) implies c = 0. Without loss of generality, take a = 1.
Now, [−b2uw : −vw : bw2

] = [u : v : w], and we must have that b = −1 since
−vw2

= bvw2. Therefore, the forward direction holds. For the converse, note that
σ1,−1,0([u : v :w])= [−uw : −vw : −w2

] = [u : v :w], so σ1,−1,0 has order 1. The
last statement is clear. �

Consider the following preliminary results about Sklyanin algebras associated to
a point of order 2.

Lemma 2.5. Take S= S(a, b, c) to be a 3-dimensional Sklyanin algebra associated
to the automorphism σa,b,c of (1.5). Then, |σa,b,c| = 2 if and only if a = b.

Proof. Without loss of generality, take a = 1. The code for this result (see
Remark 1.12) implies that b = 1 and there are no conditions on c (other than
those in Definition 1.2).

The converse is clear by the computation above, but we can verify this directly.
If a = b = 1, then σ1,1,c([u : v : w])= [cv2

− uw : cu2
− vw : w2

− c2uv]. So,

σ 2
1,1,c([u : v : w])=

[
u(c3u3

+c3v3
+w3
−3c2uvw) : v(c3u3

+c3v3
+w3
−3c2uvw)

: w(c3u3
+c3v3

+w3
−3c2uvw)

]
= [u : v : w],

as desired. �

Hence, to work with Sklyanin algebras S(a, b, c) associated to a point of order 2,
we take a = b = 1.

Lemma 2.6. We have the following statements for the Sklyanin algebra S(1, 1, c).

(a) The only 1-dimensional representation of S(1, 1, c) is the trivial representation.

(b) All irreducible representations of S(1, 1, c) are finite-dimensional, of at most
dimension equal to 2.

Proof. (a) One can compute this directly, or by using a short routine; see Remark 1.12.

(b) This follows from Proposition 2.3 and Lemma 2.5. �
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3. Methodology and terminology

In this section, we provide an outline of the algorithm used to prove Theorem 1.8;
see Sections 4–6 for the full details. The goal is to obtain irreducible representative
families of S(1, 1, c) as defined below.

Definition 3.1. We say that a set of matrix solutions of the defining equations of
S(1, 1, c) (or of equations (1.3) with a = b= 1) is a representative family of matrix
solutions, if no two members within the set are equivalent. Further, we call this set
an irreducible representative family if all of its members are irreducible matrix
solutions of S(1, 1, c).

Note that we aim to have the parameter c of S(1, 1, c) free. So due to Maple’s
default alpha ordering, we refer to c as zc in the code below.

First, we make the following simplification.

Step 0: assume the matrix X is in Jordan form. Due to Lemma 2.6 we know that all
nontrivial irreps of S(1, 1, c) are of dimension 2. Hence, we only study 2×2 matrix
solutions (X, Y, Z) of (1.3) with (a, b, c)= (1, 1, c). Initially, the entries of X, Y, Z
are x`, y`, z` for `= 1, 2, 3, 4. We further simplify the problem by assuming that X
is in Jordan form. This simplification is made because we wish to classify the irreps
up to equivalence, and equivalence is determined by simultaneous conjugation by an
invertible matrix. So, we take X to be either a single 2×2 Jordan block or diagonal so
that we have 3 or 2 less unknowns, respectively. We consider these cases separately.

Step 1: find all families of matrix solutions. Now, we solve (1.3) with (a, b, c)=
(1, 1, c) for 2×2 matrices (X, Y, Z). The output consists of 2-dimensional (matrix
solution) families of S(1, 1, c). The solutions are grouped according to the default
behavior of Maple. We refer to these groups as Families.

Step 2: eliminate reducible matrix solutions. We run this step now to cut down on
the run-time of the algorithm and the complexity of its output. Given a family of
matrix solutions, we use Corollary 2.2 to determine if all members of this family
are reducible. Namely, we let w =«p,q» be a basis of a 1-dimensional subspace W
of C2. Note that if p= p1+ p2i and q=q1+q2i for i :=

√
−1 and p1, p2, q1, q2∈R,

then (p, q) 6= (0, 0) precisely when p p̄+ qq̄ 6= 0. We examine when W is stable
under the action of S(1, 1, c); namely, we need each of Xw, Yw, Zw to be a scalar
multiple of w. So, we solve for p, q subject to the conditions

• W is not the zero subspace . . . . . . p*conjugate(p)+q*conjugate(q)<>0,
• X W ⊂W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p*Xw[2][1]-q*Xw[1][1]=0,
• Y W ⊂W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p*Yw[2][1]-q*Yw[1][1]=0,
• Z W ⊂W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p*Zw[2][1]-q*Zw[1][1]=0,
• conditions on c.
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If there is a solution, then this implies that all members of the specified family
are reducible. We remove such families from further computations by forming a
list NonRedFams consisting of families for which there is no p, q satisfying the
conditions above.

Steps 3a and 3b are independent of each other, and either can be run after Step 2.

Step 3a: account for equivalence between families. For the remaining fami-
lies of matrix solutions, we determine conditions when members of one family
NonRedFams[i] is equivalent to members of another family NonRedFams[j].
These conditions are collected in the list BetweenFams.

We do so as follows. First, we force variables of NonRedFams[i] to be in terms
of u`, v`, w` instead of x`, y`, z` for `= 1, 2, 3, 4; this is executed with

eval(NonRedFams[...],ChangeVars).

Next, we conjugate the relabeled matrices simultaneously by a 2× 2 matrix Q
to form Xconj, Yconj, Zconj. Then, we solve for variables u`, v`, w`, x`, y`, z`
subject to the conditions

• Xconj is equal to the X -matrix Xj of NonRedFams[j] . . . . . . . . . Equiv1=0,

• Yconj is equal to the Y -matrix Yj of NonRedFams[j] . . . . . . . . . . Equiv2=0,

• Zconj is equal to the Z -matrix Zj of NonRedFams[j] . . . . . . . . . . Equiv3=0,

• conditions on c and invertibility of Q.

The output is [i,j,{conditions on u`, v`, w`, x`, y`, z`}], which we interpret as
follows.

Interpretation: We can eliminate NonRedFams[i] from our consideration if all
of its members are equivalent to members of NonRedFams[j] for some j 6= i . This
occurs if we get an output

[i, j, ...{each of u`, v`, w` is free }...] for i < j, or

[j, i, ...{each of x`, y`, z` is free }...] for j < i.

We obtain that NonRedFams[i] forms a representative family if we get output

[i,i,...{restrictions on u`, v`, w`, x`, y`, z` }...]

under one of the following conditions:

• (i) each of x`, y`, z` is free and (ii) each of u`, v`, w` is free, or depends only
on x`, y`, z`; or

• (i) each of u`, v`, w` is free and (ii) each of x`, y`, z` is free, or depends only
on u`, v`, w`.
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In either case above, we set the free variables in (ii) equal to 1 to obtain repre-
sentative families. Otherwise, a careful examination is needed.

Conditions u`, v`, w`, x`, y`, z` may depend on entries of the matrix Q. In this
case, we can conclude that such variables are free as long as this does not violate
invertibility of Q.

Step 3b: check for full irreducibility conditions. Here, we run the same code as in
Step 2 except that we solve for p, q along with all variables x`, y`, z`. The conditions
are collected in a list called IrConditions. If the output for NonRedFams[i] is
[i] (or empty), then all members of NonRedFams[i] are irreducible.

4. Families of nonreducible representations of S(1, 1, c)

Here, we execute Steps 0–2 of the algorithm discussed in the previous section.
Namely, we find all 2-dimensional representations of S(1, 1, c) by determining
2×2 matrix solutions (X, Y, Z) to (1.3) with a = b= 1. Here, X is in Jordan form,
either one Jordan block or two Jordan blocks (diagonal). Moreover, we eliminate the
families of solutions for which all of its members are reducible. See Remark 1.12
and we obtain the results below.

We start with the output of Steps 0–2 for NonRedFams when X is one Jordan
block. For all matrix solutions, we have

X =
(

0 1
0 0

)
. (4.1)

The rows below show the matrices Y , Z for the five matrix solutions:(
−y4

(
y2

4+(y
4
4−8y4z3

4)
1/2
)
/(2cz2

4)

−cz2
4 y4

)
,

(
−z4 0

1
2 c
(
y2

4+(y
4
4−8y4z3

4)
1/2
)
−cy2

4 z4

)
;

(
−y4 −

(
−y2

4+(y
4
4−8y4z3

4)
1/2
)
/(2cz2

4)

−cz2
4 y4

)
,

(
−z4 0

−
1
2 c
(
−y2

4+(y
4
4−8y4z3

4)
1/2
)
−cy2

4 z4

)
;

(
α/(cz3) −

(
−cz2

2z3−cz2z2
4+2αz4/(cz3)

)
/z3

−cz2z3−cz2
4 −α/(cz3)

)
,

(
−z4 z2

z3 z4

)
;

(
−β/(cz3) −

(
−cz2

2z3−cz2z2
4+2βz4/(cz3)

)
/z3

−cz2z3−cz2
4 β/(cz3)

)
,

(
−z4 z2

z3 z4

)
;

(
−y4 y2

4/(cz2
4)

−cz2
4 y4

)
,

(
−z4 2y4/(cz4)

0 z4

)
;

(4.2)

where,

α = c2z2z3z4+ c2z3
4+

(
3c4z2

2z2
3z2

4+ 3c4z2z3z4
4+ c4z6

4− cz3
3+ c4z3

3z3
2

)1/2
,

β =−c2z2z3z4− c2z3
4+

(
3c4z2

2z2
3z2

4+ 3c4z2z3z4
4+ c4z6

4− cz3
3+ c4z3

3z3
2

)1/2
.

(4.3)
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When X is two Jordan blocks, NonRedFams gives six matrix solutions:

X =
(

cz2
4/(2y4) 0

0 −cz2
4/(2y4)

)
, Y =

(
−y4 −(y3

4 − z3
4)/(y4 y3)

y3 y4

)
,

Z =
(
−z4 −z4(8y3

4 + c3z3
4)/(4y2

4 y3)

0 z4

)
;

X =
(
−x4 0

0 x4

)
, Y =

(
0 0
y3 0

)
, Z =

(
0 −cx2

4/y3

0 0

)
;

X =
(

cy2
4/(2z4) 0

0 −cy2
4/(2z4)

)
, Y =

(
−y4 −y4(8z3

4+ c3 y3
4)/(4z3z2

4)

0 y4

)
,

Z =
(
−z4 (y3

4 − z3
4)/(z4z3)

z3 z4

)
;

X =
(
−x4 0

0 x4

)
, Y =

(
0 −cx2

4/z3

0 0

)
, Z =

(
0 0
z3 0

)
;

X =
(
γ /(c2 y3z3) 0

0 −γ /(c2 y3z3)

)
, Y =

(
−y4 −

(
2z4γ /(c2 y3z3)+ cy2

4

)
/(cy3)

y3 y4

)
,

Z =
(
−z4 −

(
−2γ y4/(c2 y3z3)+ cz2

4

)
/(cz3)

z3 z4

)
;

X =
(
−δ/(c2 y3z3) 0

0 δ/(c2 y3z3)

)
, Y =

(
−y4 −

(
2z4δ/(c2 y3z3)+ cy2

4

)
/(cy3)

y3 y4

)
,

Z =
(
−z4 −

(
2δy4/(c2 y3z3)+ cz2

4

)
/(cz3)

z3 z4

)
;

(4.4)

where

γ =−z2
3z4−y2

3 y4+
(
z4

3z2
4+2z2

3z4 y2
3 y4+y4

3 y2
4+c3 y3z3

3 y2
4+c3 y3

3 z3z2
4−2c3 y2

3 z2
3 y4z4

)1/2
,

δ= z2
3z4+y2

3 y4+
(
z4

3z2
4+2z2

3z4 y2
3 y4+y4

3 y2
4+c3 y3z3

3 y2
4+c3 y3

3 z3z2
4−2c3 y2

3 z2
3 y4z4

)1/2
.

(4.5)

5. Equivalence and irreducibility: one-Jordan-block case

We wish to classify the matrix solutions from Steps 0–2 (in the previous section) up
to equivalence and extract the irreducible equivalence classes. So, we would like
to know under what conditions is a matrix solution equivalent to a member of the
same/different solution family. We then specify conditions for which the represen-
tative of an equivalence class of matrix solutions is irreducible. This achieved with
Steps 3a and 3b, respectively, as described in Section 3. In this section, we continue
the algorithm of Section 4 in the case when X is one Jordan block; see Remark 1.12.
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The output of Steps 0–3a can be viewed by entering the following:

for i from 1 to nops(BetweenFams) do print(BetweenFams[i]): end do:

For interpretation, consider the snippets of output

[1, 2, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = v4, w4 = w4,

3 3 1/2
-4 w4 + v4 - v4 %1 4 q1 w4

y4 = -----------------------, z4 = -w4, zc = - ----------------}],
2 1/2 2 1/2

v4 - %1 q2 (v4 - %1 )

4 3
%1 := v4 - 8 w4 v4

2
zc q2 w4

[1, 5, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = 0, w4 = w4, y4 = ---------,
q1

z4 = w4, zc = zc}]

In the first snippet, one sees that with a choice of q1 and q2, the parameter c can
be considered free without violating the invertibility of Q. We can also conclude
that any member of NonRedFams[1] is equivalent to a member of NonRedFams[2],
except when v2

4−(v
4
4−8w3

4v4)
1/2
= 0, or equivalently when v4 or w4= 0. From the

second snippet of output, we see that any member of NonRedFams[1] is equivalent
to a member of NonRedFams[5] when v4 = 0. Moreover by (4.1)–(4.3), we
have that in NonRedFams[1] w4 (identified with z4) cannot be 0. So, we exclude
NonRedFams[1] from further computation.

Now consider another two snippets of output:

[2, 4, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = v4, w4 = w4, z2 = z2,

2
(2 RootOf(_Z + 1 + _Z) w4 q2 - q1 z2) q1

z3 = -----------------------------------------,
2

q2

2
RootOf(_Z + 1 + _Z) w4 q2 - q1 z2

z4 = - ----------------------------------,
q2

2
2 (2 RootOf(_Z + 1 + _Z) w4 q2 - q1 z2) q1

zc = - -------------------------------------------}]
2 4 3 1/2 2

(v4 + (v4 - 8 w4 v4) ) q2

2
zc q2 w4

[2, 5, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, v4 = 0, w4 = w4, y4 = ---------,
q1

z4 = w4, zc = zc}]

Through a choice of q1 and q2, we consider c to be free in [2,4,...]. We
conclude that any member of NonRedFams[2] is equivalent to a member of
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NonRedFams[4] for all values of v4 and w4 except when v2
4+(v

4
4−8w3

4v4)
1/2
= 0,

or equivalently when v4 or w4 = 0. From the second snippet of output, we
see that if v4 = 0, any member of NonRedFams[2] is equivalent to a member
of NonRedFams[5]. From (4.1)–(4.3), we see that w4 (identified with z4) in
NonRedFams[2] cannot be 0. So, we exclude NonRedFams[2] from further com-
putation.

Now take into account the following snippets of output:

[3, 4, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, w2 = w2, w3 = w3, w4 = w4,

2 2
2 q1 w4 q2 + w2 q1 - w3 q2 -w3 q2 + q1 w4

z2 = ----------------------------, z3 = w3, z4 = --------------, zc = zc}]
2 q1

q1

[4, 5]

This implies NonRedFams[3] is equivalent to NonRedFams[4]. So, we exclude
NonRedFams[3] from further computation. Further, no member of NonRedFams[4]
is equivalent to a member of NonRedFams[5].

Finally, we determine when the remaining families are representative families.
Consider

[4, 4, {q1 = q1, q2 = q2, q3 = 0, q4 = q1, w2 = w2, w3 = w3, w4 = w4,

2 2
2 q1 w4 q2 + w2 q1 - w3 q2 -w3 q2 + q1 w4

z2 = ----------------------------, z3 = w3, z4 = --------------, zc = zc}]
2 q1

q1

q1 (-y4 + v4)
[5, 5, {q1 = q1, q2 = - -------------, q3 = 0, q4 = q1, v4 = v4, w4 = w4,

2
zc w4

y4 = y4, z4 = w4, zc = zc}]

We get that a member of NonRedFams[5] is equivalent to another member
of this family for any value of y4. Without loss of generality, set y4 = 1. So,
NonRedFams[5] is a representative family with y4 = 1.

In NonRedFams[4], we obtain any value for z4, say a, by setting

q2 = (w4− a)q1/w3.

(Note that by (4.1)–(4.3), z3, identified by w3, is not equal to 0.) This choice of
q2 does not violate the invertibility of Q. Further, it is easy to check that in this
case, z2 = w2. Thus, without loss of generality, set z4 = 1. So, NonRedFams[4] is
a representative family with z4 = 1.
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Given the results above, we only need to execute Step 3b for NonRedFams[4] and
NonRedFams[5], but we complete this for the whole list NonRedFams as follows:

IrConditions:=[]:
for i from 1 to nops(NonRedFams) do
Xw:=Multiply(NonRedFams[i][1][1],w): Yw:=Multiply(NonRedFams[i][1][2],w):
Zw:=Multiply(NonRedFams[i][1][3],w):
Ir:=solve([p*conjugate(p)+q*conjugate(q)<>0,

p*Xw[2][1]-q*Xw[1][1],p*Yw[2][1]-q*Yw[1][1],p*Zw[2][1]-q*Zw[1][1],
zc<>0,zc^3<>1,zc^3<>-8]):

IrConditions:=[op(IrConditions),[i,Ir]]:
end do:

To see the output, enter

for i from 1 to nops(IrConditions) do print(IrConditions[i]): end do:

One gets that, for each i , all members of NonRedFams[i] are irreducible matrix
solutions of S(1, 1, c).

Now by entering
eval(NonRedFams[4],[z4=1]); eval(NonRedFams[5],[y4=1]);

one obtains the representatives of equivalence classes of irreducible matrix solutions
(X, Y, Z) of equations (1.3), where X is assumed to be one Jordan block. The
output is as follows:

X=
(

0 1
0 0

)
, Y=

(
−β/(cz3) −

(
−cz2

2z3−cz2+2β/(cz3)
)
/z3

−cz2z3−c β/(cz3)

)
, Z=

(
−1 z2

z3 1

)
;

X =
(

0 1
0 0

)
, Y =

(
−1 1/(cz2

4)

−cz2
4 1

)
, Z =

(
−z4 2/(cz4)

0 z4

)
;

(5.1)

where
β =−c2z2z3− c2

+
(
3c4z2

2z2
3+ 3c4z2z3+ c4

− cz3
3+ c4z3

3z3
2

)1/2
. (5.2)

6. Equivalence and irreducibility: two-Jordan-block case

As in the one-Jordan-block case, we wish to classify the matrix solutions from
Steps 0–2 (in Section 4) up to equivalence and extract the irreducible equivalence
classes. So, we would like to know under what conditions a matrix solution is
equivalent to a member of the same/different solution family. We then specify
conditions for which the representative of an equivalence class of matrix solutions
is irreducible. This achieved with Steps 3a and 3b, respectively, as described in
Section 3. In this section, we continue the algorithm of Section 4 in the case when
X is two Jordan blocks.

To execute Step 3a, as described in Section 3, enter the code for Step 3a used
in Section 5 (see Remark 1.12). (The memory and time for this operation was
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27068.0 MB and 523.78 seconds, respectively.) The output of Steps 0–3a can be
viewed by entering the following:

for i from 1 to nops(BetweenFams) do print(BetweenFams[i]): end do:

Consider the following snippet of output:
v3 q4

[1, 1, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v3 = v3, v4 = y4, w4 = z4,
y3

y3 = y3, y4 = y4, z4 = z4, zc = zc}]

Note that y3 6= 0 in NonRedFams[1] by (4.4)–(4.5). So, NonRedFams[1] is
a representative family with y3 (identified with v3) equal to 1 without loss of
generality.

Now take
v3 q4

[2, 2, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, u4 = x4, v3 = v3, x4 = x4,
y3

y3 = y3, zc = zc}]

Note that y3 6= 0 in NonRedFams[2] by (4.4)–(4.5). So, NonRedFams[2] is
a representative family with y3 (identified with v3) equal to 1 without loss of
generality.

Consider the output
w3 q4

[3, 3, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v4 = y4, w3 = w3, w4 = z4,
z3

y4 = y4, z3 = z3, z4 = z4, zc = zc}]

Note that z3 6= 0 in NonRedFams[3] by (4.4)–(4.5). So, NonRedFams[3] is
a representative family with z3 (identified with w3) equal to 1 without loss of
generality.

Next, consider the snippet of output below:
2

zc x4 q3
[2, 4, {q1 = 0, q2 = - ---------, q3 = q3, q4 = 0, u4 = -x4, v3 = v3,

z3 v3

x4 = x4, z3 = z3, zc = zc}]

By (4.4)–(4.5), we have that z3 6= 0 for NonRedFams[4]. So by the output
above, we get that any member of NonRedFams[4] is equivalent to a member
NonRedFams[2]. We exclude NonRedFams[4] from further computation.

Consider the output:
v3 q4 z3 v3

[5, 5, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v3 = v3, v4 = y4, w3 = -----,
y3 y3

w4 = z4, y3 = y3, y4 = y4, z3 = z3, z4 = z4, zc = zc}]
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We have that y3 6= 0 in NonRedFams[5] by (4.4)–(4.5). Without loss of gen-
erality, we can take y3 (identified with v3) to be 1. In this case, w3 = z3. So,
NonRedFams[5] is a representative family with y3 = 1.

Now let us take
v3 q4 z3 v3

[5, 6, {q1 = -----, q2 = 0, q3 = 0, q4 = q4, v3 = v3, v4 = y4, w3 = -----,
y3 y3

w4 = z4, y3 = y3, y4 = y4, z3 = z3, z4 = z4, zc = zc}]

Note that by (4.4)–(4.5), we have y3 6= 0 for NonRedFams[6]. So by the output
above, we get that any member of NonRedFams[6] is equivalent to a member
NonRedFams[5]. We exclude NonRedFams[6] from further computation.

We still need to analyze the equivalence between members of NonRedFams[1],
NonRedFams[2], NonRedFams[3], and NonRedFams[5]. In this case, the output
is easier to interpret if we run Step 3b before Step 3a again.

Given the results above, we only need to execute Step 3b for NonRedFams[1],
NonRedFams[2], NonRedFams[3], and NonRedFams[5], but we complete this
for the whole list NonRedFams by entering the code for Step 3b (see Remark 1.12).
Consider the snippets

y4 q
[1, {p = - ----, q = q, y3 = y3, y4 = y4, z4 = 0, zc = zc}]

y3

[2, {p = 0, q = q, x4 = 0, y3 = y3, zc = zc}]

z4 q
[3, {p = - ----, q = q, y4 = 0, z3 = z3, z4 = z4, zc = zc}]

z3

2
[5, {p = 0, q = q, y3 = 0, y4 = RootOf(_Z + 1 + _Z) z4, z3 = z3, z4 =

z4, zc = zc},

z4 q z4 y3
{p = - ----, q = q, y3 = y3, y4 = -----, z3 = z3, z4 = z4, zc = zc}]

z3 z3

We obtain that

• members of NonRedFams[1], NonRedFams[2], and NonRedFams[3] are ir-
reducible precisely when z4 6= 0, x4 6= 0, and y4 6= 0, respectively, and

• members of NonRedFams[5] are irreducible precisely when {y3 6= 0, y4 6=

e±2π i/3z4} or {y3z4 6= y4z3}.

We execute Step 3a again for the families highlighted above; we refer to the code
in Remark 1.12. From the output, we obtain that z4 = 0 in NewNonRedFams[1]
precisely when any member of NewNonRedFams[1] is equivalent to a member of
NewNonRedFams[2]. On the other hand, we have that x4=0 in NewNonRedFams[2]
precisely when any member of NewNonRedFams[2] is equivalent to a member of
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NewNonRedFams[1]. However, we know members of NewNonRedFams[1] and
NewNonRedFams[2] are reducible when z4 = 0 and x4 = 0, respectively.

Now by a choice of q2, q3, we can consider c to be free in [1,3,...]. So, we
get that z4 = ζ y4 for ζ 3

= 1 in NewNonRedFams[3] precisely when any member
of NewNonRedFams[3] is equivalent to a member of NewNonRedFams[1].

Putting this together we conclude that:

• NewNonRedFams[1]=eval(NonRedFams[1],[y3=1]) is an irreducible repre-
sentative family when z4 6= 0;

• NewNonRedFams[2]=eval(NonRedFams[2],[y3=1]) is an irreducible repre-
sentative family when x4 6= 0;

• NewNonRedFams[3]=eval(NonRedFams[3],[z3=1]) is an irreducible repre-
sentative family when y4 6= 0, and there is no overlap with NewNonRedFams[1]
when z4 6= ζ y4 for ζ 3

= 1;

• NewNonRedFams[4]=eval(NonRedFams[5],[y3=1]) is an irreducible repre-
sentative family when y4 6= e±2π i/3z4 and z4 6= y4z3.

We obtain the following representatives of equivalence classes of irreducible
matrix solutions (X, Y, Z) of equations (1.3), where X is assumed to be two Jordan
blocks:

X =
(

cz2
4/(2y4) 0

0 −cz2
4/(2y4)

)
, Y =

(
−y4 −(y3

4 − z3
4)/y4

1 y4

)
,

Z =
(
−z4 −z4(8y3

4 + c3z3
4)/(4y2

4)

0 z4

) (6.1)

for z4 6= 0,

X =
(
−x4 0

0 x4

)
, Y =

(
0 0
1 0

)
, Z =

(
0 −c2x2

4
0 0

)
(6.2)

for x4 6= 0,

X =
(

cy2
4/(2z4) 0

0 −cy2
4/(2z4)

)
, Y =

(
−y4 −y4(8z3

4+ c3 y3
4)/(4z2

4)

0 y4

)
,

Z =
(
−z4 (y3

4 − z3
4)/z4

1 z4

) (6.3)

for y4 6= 0, z4 6= ζ y4, ζ 3
= 1, and

X =
(
γ /(c2z3) 0

0 −γ /(c2z3)

)
, Y =

(
−y4 −

(
2z4γ /(c2z3)+ cy2

4

)
/c

1 y4

)
,

Z =
(
−z4 −

(
−2γ y4/(c2z3)+ cz2

4

)
/cz3

z3 z4

) (6.4)
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for y4 6= e±2π i/3z4, z4 6= y4z3, where

γ =−z2
3z4− y4+

(
z4

3z2
4+2z2

3z4 y4+ y2
4 + c3z3

3 y2
4 + c3z3z2

4−2c3z2
3 y4z4

)1/2
. (6.5)

7. Geometric parametrization of irreducible representations of S(1, 1, c)

Since the Sklyanin algebra S = S(1, 1, c) is module finite over its center, we
can use the center Z of S to provide a geometric parametrization of the set of
equivalence classes of irreducible representations of S. (Recall by Definition 1.2,
c 6= 0, c3

6= 1,−8.) Namely, we depict the Azumaya locus of S(1, 1, c) over its
center [Brown and Goodearl 2002, III.1.7]. We refer the reader to [Smith et al.
2000] for an introduction to affine varieties.

Theorem 7.1. Let Z be the center of the Sklyanin algebra S = S(1, 1, c).

(a) We have that Z is generated by u1 = x2, u2 = y2, u3 = z2,

g = cy3
+ yxz− xyz− cx3,

subject to the degree-6 relation

F := g2
− c2(u3

1+ u3
2+ u3

3)− (c
3
− 4)u1u2u3 = 0.

(b) The set of equivalence classes of irreducible representations of S is in bijective
correspondence with the set of maximal ideals of the center Z of S. Here, a
representative ψ of an equivalence class of an irrep of S corresponds to (kerψ)∩Z ,
a maximal ideal of Z.

(b) The geometric parametrization of the set of equivalence classes of irreducible
representations of S is the 3-dimensional affine variety (3-fold)

Xc := V(F) ∈ C4
{u1,u2,u3,g}.

In particular, Xc\ {0} is the Azumaya locus of S over Z. Indeed, points of Xc\ {0}
(the smooth locus of Xc) correspond to irreducible 2-dimensional representations
of S, and the origin of Xc corresponds to the trivial representation of S.

Taking a value of c, say 5, we can visualize the 3-fold Xc by taking 2-dimensional
slices at various values of u1. See Figure 1 below.

Proof of Theorem 7.1. (a) We have that Z is generated by three algebraically
independent elements u1, u2, u3 of degree 2 and one element g of degree 3, subject
to one relation F of degree 6, by [Smith and Tate 1994, Theorems 3.7, 4.6, and 4.7].
Now part (a) follows by direct computation in the algebra S(1, 1, c). One can do
this by hand, but we execute this with the computer algebra software GAP using
the GBNP package for noncommutative Gröbner bases [Cohen and Knopper 2016].
We check that u1, u2, u3, g commute with each of x1 := x , y1 := y, z1 := z; the
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u2

u3

u2

u3

u2

u3

u2

u3

Figure 1. Real part of
√

25(u3
1+ u3

2+ u3
3)+ 21u1u2u3 at u1 =

0, 0.3, 1, 3 (clockwise from the top left).

code for this is publicly available, see Remark 1.12. To view g, for instance, enter
PrintNP(g);. The output of the last twelve lines are all 0. Thus, u1, u2, u3, g are
all central elements of S(1, 1, 5). One can replace c = 5 with various values of
c 6= 0, 1,−8, and this yields the same output.

Now to see that F is the relation of Z , more care is needed. Enter

PrintNP(MulQA(g,g,GB));
PrintNP(MulQA(u1,MulQA(u1,u1,GB),GB));
PrintNP(MulQA(u2,MulQA(u2,u2,GB),GB));
PrintNP(MulQA(u3,MulQA(u3,u3,GB),GB));
PrintNP(MulQA(u1,MulQA(u2,u3,GB),GB));

and compare terms to derive the coefficients of F as claimed.

(b) The arguments below are standard in ring theory and in representation theory,
but we provide details for the reader’s convenience. Recall from Lemma 2.6 that
all nontrivial irreducible representations of S are of dimension 2. Let maxSpec(A)
denote the set of maximal ideals of an algebra A. Moreover, a primitive ideal of A
is an ideal that arises as the kernel of an irreducible representation of A; denote the
set of such ideals by prim(A). Take [Irrep(A)] to be the set of equivalence classes
of irreducible representations of A.

Since S is PI, we see that there is a bijective correspondence between [Irrep(S)]
and prim(S) as follows. Equivalent representations of S have the same kernel, so
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we get a surjective map φ: [Irrep(S)]→ prim(S), given by ψ 7→ kerψ . On the other
hand, take P ∈ prim(S), that is, the kernel of an irreducible representation ψ of S.
Then, ψ is also an irreducible representation of S/P. Now S/P ∼= Matt(C) for
t = 1 or 2 by [Brown and Goodearl 2002, Theorem I.13.5(1)], and all irreducible
representations of matrix algebras are equivalent to the identity representation by
the Skolem–Noether theorem. So, P ∈ prim(S) has a unique preimage φ−1(P) in
[Irrep(S)].

Moreover, we see that there is a bijective correspondence between [Irrep(S)]
and maxSpec(S) as follows. Maximal ideals are primitive. On the other hand, take
P to be a nonzero primitive ideal of S. Again, by [Brown and Goodearl 2002,
Theorem I.13.5(1)], S/P is isomorphic to a matrix ring, which is simple. Thus, P
is a maximal ideal of S. So it suffices to show that the ideals of maxSpec(S) and of
maxSpec(Z ) are in bijective correspondence.

Consider the map

η :maxSpec(S)→maxSpec(Z ), M 7→ M ∩ Z .

The map η is well-defined and surjective by [Brown and Goodearl 2002, Proposi-
tion III.1.1(5)]. Now by Lemma 2.6, the trivial representation of S corresponds to
the augmentation (maximal) ideal S+ := (x, y, z) of S, and the set of equivalence
classes of nontrivial irreducible representations of S corresponds to the maximal
ideals M of S not equal to S+. Thus, η(S+)= Z+, and it suffices to show that the
ideals of maxSpec(S)\S+ and of maxSpec(Z )\Z+ are in bijective correspondence.

Take Az(S) to be the set of maximal ideals m of Z so that (i) m=M∩ Z for M ∈
maxSpec(S), and (ii) M is the kernel of a 2-dimensional irreducible representation
of S. Namely, Az(S) is the Azumaya locus of S over Z . Consider the map

ρ : Az(S)→maxSpec(S), m 7→mS.

We get that ηρ(m) = η(mS) = (mS)∩ Z = m; the last equality holds by [Brown
and Goodearl 2002, Theorem III.1.6(3)]. So, η is bijective on ρ(Az(S)). Since
Az(S) = maxSpec(Z )\Z+ by Lemma 2.6, and since ρ is injective, we conclude that
η is bijective on maxSpec(S)\S+, as desired.

(c) To see that the claim follows from parts (a) and (b), we have to show that the
smooth locus of Xc consists of all nonzero points. This is achieved by using [Smith
et al. 2000, Theorem 6.2]; namely, we verify that the common zero set of the
vanishing of all partial derivatives of F is the origin of Xc:

F:=g^2-c^2*(u1^3+u2^3+u3^3) - (c^3-4)*u1*u2*u3;
solve([diff(F,g),diff(F,u1),diff(F,u2),diff(F,u3)],[g,u1,u2,u3]);
> [[g = 0, u1 = 0, u2 = 0, u3 = 0]]

This completes the proof. �
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Remark 7.2. One may push the result above further and study the moduli space
(or GIT quotient) that parametrizes the set of equivalence classes of irreducible
representations of S. But this is not the focus of this work here. On the other hand,
if one wants to understand irreducible representations of S topologically, then one
could consider the Jacobson topology (or hull-kernel topology) on the set prim(S).

Remark 7.3. The code available via Remark 1.12 verifies that the irreps produced
in (5.1)–(5.2) and (6.1)–(6.5) indeed correspond to points on Xc. One must first run
the algorithm in the previous sections: Sections 4 and 5 for the one-Jordan-block
case, and Sections 4 and 6 for the two-Jordan-block case.

By evaluating simplify(U1);, simplify(U2);, simplify(U3);, and
simplify(G); for each of the six irreducible representative families above,
we obtain the corresponding points on the 3-fold Xc = V(F)⊂ C4

{u1,u2,u3,g}.

8. Irreducible representations of C−1[x, y] := C〈x, y〉/(x y+ yx)

The purpose of this section is to illustrate our algorithm of Sections 3-6 (Steps 0–2,
3a, 3b) by replacing the Sklyanin algebra S(1, 1, c) with a class of algebras that
are much better understood. Here, we study irreducible representations of the skew
polynomial ring

C−1[x, y] := C〈x, y〉/(xy+ yx),

up to equivalence; these results are well known. At the end of the section, we provide
a geometric parametrization of these irreps, akin to Theorem 7.1 for S(1, 1, c). Now
we remind the reader of a few preliminary results.

Lemma 8.1. (a) The 1-dimensional irreps of C−1[x, y] are, up to equivalence, of
the form

ρα : C−1[x, y] → C, x 7→ α, y 7→ 0 for α ∈ C,

ρβ : C−1[x, y] → C, x 7→ 0, y 7→ β for β ∈ C.
(8.2)

(b) All irreducible representations of C−1[x, y] are finite-dimensional, of at most
dimension 2.

Proof. (a) This follows by an easy computation.

(b) By [Brown and Goodearl 1997, Proposition 3.1; 2002, Example I.14.3(1)], an
irrep of C−1[x, y] is of at most dimension 2. �

With the lemma above, we see that to classify irreps of C−1[x, y], we just need
to compute the 2-dimensional irreps

ψ : C−1[x, y] →Mat2(C), x 7→ X, y 7→ Y,

up to equivalence.
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Without loss of generality, we can assume that X is in Jordan form; that is, either
one Jordan block or diagonal. Now the code for this part (available publicly, see
Remark 1.12) was adapted from Sections 3–6 by removing all lines and conditions
involving the generator z, and by changing the defining relations of the algebra.

We obtain the result below.

Proposition 8.3. All irreducible representations φ of C−1[x, y] are of dimensions 1
or 2. In dimension 1, irreps are of the form (8.2). In dimension 2, all irreps, up to
equivalence, take the form

ψα,β : C−1[x, y] −→Mat2(C), x 7→
(
−α 0

0 α

)
, y 7→

(
0 1
β 0

)
(8.4)

for α, β ∈ C with αβ 6= 0.

Proof. The first two statements follow from Lemma 8.1. To get the last statement,
we run the adapted algorithm above. We only obtain reducible representations in
the one-Jordan-block case; just enter NonRedFams; and IrConditions; to see
this.

On the other hand, in the two-Jordan-block case, we first print off NonRedFams
(we’ve converted the output to standard format for readability):[

0 0
0 0

]
,

[
y1 y2

y3 y4

]
;

[
x1 0
0 0

]
,

[
0 0
0 y4

]
;[

0 0
0 x4

]
,

[
y1 0
0 0

]
;

[
x1 0
0 x4

]
,

[
0 0
0 0

]
;[

−x4 0
0 x4

]
,

[
0 y2

y3 0

]
.

Consider the following snippets of output from BetweenFams:

[2, 3, {q1 = 0, q2 = q2, q3 = q3, q4 = 0, u1 = x4, v4 = y1, x4 = x4,
y1 = y1}]

y3 q2 y2 q3
[5, 5, {q1 = 0, q2 = q2, q3 = q3, q4 = 0, u4 = -x4, v2 = -----, v3 = -----,

q3 q2
x4 = x4, y2 = y2, y3 = y3}]

So, any member of NonRedFams[3] is equivalent to a member of NonRedFams[2],
and therefore NonRedFams[3] is removed from our consideration.

Moreover, NonRedFams[5] forms an equivalence family as x4, y2, y3 are free.
Take into consideration the output from IrConditions:
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u2

u1

z

Figure 2. Affine 2-space parametrizing irreps of C−1[x, y]; axes
parametrize 1-dimensional irreps.

2 2
y3 p + p y4 q - y2 q

[1, {p = p, q = q, y1 = ----------------------, y2 = y2, y3 = y3, y4 = y4}]
p q

[2, {p = p, q = 0, x1 = x1, y4 = y4}]

[4, {p = p, q = 0, x1 = x1, x4 = x4}]

[5, {p = p, q = 0, x4 = x4, y2 = y2, y3 = 0},

{p = 0, q = q, x4 = x4, y2 = 0, y3 = y3},

2
y3 p

{p = p, q = q, x4 = 0, y2 = -----, y3 = y3}]
2

q

Now, we can conclude that NonRedFams[1], NonRedFams[2], NonRedFams[4]
consist of reducible representations, so these families are eliminated from our
consideration. Further, NonRedFams[5] forms an irreducible representative family
with y2 = 1; we can see this by adapting and running the algorithm for Step 3b in
Section 6 in this case. �

The geometric parametrization of the equivalence classes of irreducible repre-
sentations of C−1[x, y] is given as follows; see also Figure 2.

Corollary 8.5. We have the following statements.

(a) We have that the center Z of C−1[x, y] is the commutative polynomial ring
generated by u1 := x2 and u2 := y2.

(b) The set of equivalence classes of irreducible representations of S are in bijective
correspondence with the set of maximal ideals of C[x2, y2

].
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(c) The geometric parametrization of the set of equivalence classes of irreducible
representations of C−1[x, y] is the 2-dimensional affine space C2

{u1,u2}
. In particular

• points of C2
\V(u1u2) correspond to irreducible 2-dimensional representations

of C−1[x, y],

• points on the axes V(u1u2) not equal to the origin correspond to nontrivial
1-dimensional representations of C−1[x, y], and

• the origin corresponds to the trivial representation of C−1[x, y].

Proof. (a) The algebra C−1[x, y] has a C-vector space basis given by {x i y j
| i, j ∈N}.

Since (x i y j )x = (−1) j x i+1 y j
= x i+1 y j and y(x i y j ) = (−1)i x i y j+1

= x i y j+1

implies that i, j are even, the result is clear.

(b) This follows by the proof of Theorem 7.1(b).

(c) The first statement follows, as Spec(Z ) = C2
{u1,u2}

. Now the remaining statements
hold by (8.4) and (8.2), where u1 = α

2 and u2 = β. �
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We classify Klein links. In particular, we calculate the number and types of
components in a K p,q Klein link. We completely determine which Klein links
are equivalent to a torus link, and which are not.

1. Introduction

When we began thinking about Klein knots, we were told that they were uninteresting
since all Klein knots are torus knots. We decided to see if we could prove that
statement using elementary methods, and to consider whether it was also true
about Klein links. In our first paper [Alvarado et al. 2016], we presented our
constructions and results leading up to our discovery of a class of Klein links that
are not equivalent to any torus links.

In this paper, we show exactly which Klein links are torus links, and which are
not. We begin in Section 2 with defining our notation for Klein links, which is based
on the standard notation for torus links. In Section 3 we define two functions, the
wrapping function and the hitting function, which help us to describe components of
our links as they traverse a standard link diagram. We introduce several preliminary
results in Section 4. We compute the number of components in a link K p,q . Each
of these components is itself a Klein knot, and we also describe the knot type of
these components. Section 5 includes our main result, Theorem 12, which gives a
complete classification of which Klein links are equivalent to torus links and which
are knot.

Some of our results are identical or similar to results proved by another group
using braids. However, our methods are different. Explicitly, our Lemma 2 is [Bush
et al. 2014, Proposition 6.1], our Theorem 3 is [Bush et al. 2014, Proposition 6.2],
and our Lemma 7 is [Catalano et al. 2010, Theorem 2].
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Figure 1. Planar diagram for the torus knot T2,3.

2. Constructions

We begin with a brief description of the standard construction of torus links [Adams
1994; Murasugi 1996] and our analogous construction of Klein links. For nonnega-
tive integers p and q , the torus link Tp,q is the link on the torus which crosses the
longitude p times and crosses the meridian q times, with no crossing on the torus
itself. We illustrate the construction of T2,3 on a planar diagram in Figure 1. The
rectangle in the figure is a planar diagram for the torus, with the gluings (left side
to right side, and top to bottom) understood.

We will construct Klein links in a similar way, being careful of certain issues.
Klein bottles do not exist in three-dimensional space, and knots are trivial in four-
dimensional space. To avoid this, we will work with punctured Klein bottles in
three-dimensional space. The puncture occurs where the Klein bottle appears to
(but does not) intersect itself. Warning: the notation of the knots and links we work
with will be dependent on the relative position of the puncture. Mimicking the
construction of Tp,q , the Klein knot K2,3 is illustrated in Figure 2.

The corresponding planar diagram representation of K2,3 is modeled after the
torus version, except that we need to account for the Möbius-band twist and be
mindful of the puncture. We deform the Klein bottle so that the twist produces a
pattern of additional crossings as in Figure 2, with the puncture occurring in the
lower left corner.

K2,3 on a Klein bottle planar diagram for K2,3

Figure 2. Klein link K2,3.



A CLASSIFICATION OF KLEIN LINKS AS TORUS LINKS 611

Note that K p,0 is the p-component unlink.
We emphasize that the class of links that we are denoting by K p,q and the results

in this paper are dependent on placing the puncture in the lower left corner. We do
not consider Klein links with the puncture placed in different positions in this paper.
Furthermore, deformations of our links are as links in space, not on the Klein bottle,
and so the puncture does not affect deformations. For this reason, and since our
puncture is always in the lower left corner, we do not include it in our illustrations.

It is worth noting that, while the diagrams are configured a bit differently, our
K p,q Klein links are the same as the K (p, q) Klein links found in [Bush et al. 2014;
Freund and Smith-Polderman 2013; Shepherd et al. 2012]. Additionally, some of
the same authors of the previously cited papers have done preliminary work in
which they found explicit relationships between Klein links with different choices
of puncture. There are certainly more questions to be answered in this regard.

3. The wrapping and hitting functions

We start with some definitions.

Definition 1. A component is a maximal connected subset of the link. A horizontal
node is a position on the top of the planar diagram that a component passes through.
A vertical node is a position on the left of the planar diagram that a component
passes through. A strand is a subset of a component that passes exactly once
horizontally through the planar diagram. Typically we denote the strand by the
vertical node the strand passes through on the left side of the planar diagram.

The underlying keys to many of our results are our “wrapping” and “hitting”
functions. Given a component entering the left side of the rectangle in the planar
diagram construction of K p,q (see Figure 3), the wrapping function describes where
that particular component reenters the left side of the rectangle. For 1≤ x ≤ q , let
x be the node in K p,q as in Figure 3. Then the wrapping function is given by

Wp,q(x)= 1− x + p (mod q).

W (2)= 1

2

Figure 3. For K2,3, W (2)= 1.
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1

Figure 4. The hitting function H5,3(1)= 2.

For an in-depth exploration of the wrapping function, as well as a proof of the next
lemma, see [Alvarado et al. 2016].

Lemma 2. For any p, q ≥ 0, we have W 2
p,q(x)= x. Therefore, every component of

K p,q wraps at most twice.

While the wrapping function describes the horizontal movement of a strand, the
hitting function addresses the vertical travel. Given a particular strand x starting
at node x in a planar diagram of a K p,q , we can determine how many times x hits
the top of the planar diagram before reaching the right edge of the planar diagram.
This is denoted by Hp,q(x). Given p, q and x , where 1 ≤ x ≤ q, we can use the
following formula to find Hp,q(x):

Hp,q(x)=
⌊ p−x

q

⌋
+ 1, (1)

where btc is the greatest integer function.
Note that the hitting function depends on the strand. To see how many vertical

nodes a component passes through, we apply the hitting function to each strand in
the component and add.

Applying the hitting function to the first strand of K5,3 gives H5,3(1)= 2, which
is illustrated in Figure 4.

To see that the hitting function is defined correctly, notice that by construction a
strand passes through the (k+ 1) horizontal nodes x, x + q, x + 2q, . . . , x + kq,
where x + kq ≤ p < x + (k+ 1)q. So we have

x + kq ≤ p < x + (k+ 1)q,

kq ≤ p− x < (k+ 1)q,

k ≤ p−x
q

< k+ 1.

It follows that k+1=b(p−x)/qc+1. Thus the hitting function is correctly defined
in (1).
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4. Preliminary results

Our primary goal in this paper is to describe which Klein links are equivalent to
torus links. In the interest of doing so, we will build up several results that break
down the link K p,q into components and describe those components. Our first
result gives the number of components in the link K p,q .

Theorem 3 (number of components). For a Klein link Ktq+n,q with q > 0, t ≥ 0
and 0≤ n < q:

• For q odd there are 1
2(q + 1) components.

• For q even, n even there are 1
2q components.

• For q even, n odd there are 1
2q + 1 components.

Moreover, in the case that 1
2(n + 1) or 1

2(q + n + 1) are integers, the strands at
these nodes wrap only once. All other strands wrap twice.

Proof. It is enough the count the number of strands that wrap once. Then we divide
the number of remaining vertical nodes by 2 to find how many components wrap
twice, then add these two values.

To find the single-wrapping components, consider the equation Wtq+n,q(x)= x
(that is, the strand x wraps to itself). Then,

x =Wtq+n,q(x)≡ 1− x + tq + n (mod q),

x ≡ 1− x + n (mod q),

2x ≡ n+ 1 (mod q).

We will make use of this last modular equation in the following cases.

Case 1 (q odd): Since q is odd, 2 has a multiplicative inverse modulo q , which is
1
2(q + 1). Solving the modular equation above, we have

2x ≡ n+ 1 (mod q),

x ≡ 1
2(q + 1)(n+ 1) (mod q).

Thus x = 1
2(q + 1)(n + 1)+ kq for some integer k. Since 1 ≤ x ≤ q, we have

1≤ 1
2(q+1)(n+1)+kq ≤ q . The length of this interval is q−1; thus there can be

at most one k-value solution. Since q is odd, there is at least one strand that wraps
only once, which means there is at least one k-value solution. It follows that there is
exactly one k-value solution, and thus exactly one component that wraps once and
1
2(q−1) components that wrap twice. Therefore, we have 1

2(q−1)+1= 1
2(q+1)

components.

Case 2 (q even, n even): In this case, rewriting the modular equation we get that
2x = n+ 1+ kq for some integer k. We have that 2x and kq are even integers, and
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n+ 1 is an odd integer. Then the equation 2x = n+ 1+ kq has no solutions, and
thus every component wraps twice. Therefore, there are 1

2q components.

Case 3 (q even, n odd): In this case, we again have 2x = n+ 1+ kq. Solving the
equation for x gives x = 1

2(n + 1)+ 1
2 kq. Recall that 1 ≤ x ≤ q and 0 ≤ n < q.

Thus, we have two solutions: one when k = 0 and the other when k = 1. Thus
there are two components that wrap once and 1

2(q − 2) components that wrap twice.
Therefore, there are 1

2(q − 2)+ 2= 1
2q + 1 components. �

Now that we have determined the number of components in a Ktq+n,q , we would
like to know how many times each of these components wraps around the meridian
and longitude of the Klein bottle, as well as their knot type. We will denote by
L = a · P ∪ b · Q a link which is composed of a copies of a knot (or link) P, and b
copies of knot (or link) Q. The copies of P and Q may be linked.

Theorem 4 (types of components). Consider Ktq+n,q with q > 0, t ≥ 0 and
0≤ n < q. Then:

(1) If q even and n odd, then

Ktq+n,q ≡
1
2(n− 1) · K2t+2,2 ∪

1
2(q − n− 1) · K2t,2 ∪ Kt+1,1 ∪ Kt,1.

(2) If q, n odd, then

Ktq+n,q ≡
1
2(n− 1) · K2t+2,2 ∪

1
2(q − n) · K2t,2 ∪ Kt+1,1.

(3) If q odd and n even, then

Ktq+n,q ≡
1
2 n · K2t+2,2 ∪

1
2(q − n− 1) · K2t,2 ∪ Kt,1.

(4) If q, n even, then

Ktq+n,q ≡
1
2 n · K2t+2,2 ∪

1
2(q − n) · K2t,2.

Proof. According to Theorem 3, the only components that wrap once are the
components through x∗1 =

1
2(n+ 1) and x∗2 =

1
2(q + n+ 1) when these values are

integers (one or both), and all other components wrap twice.
It is advantageous to inspect the wrapping function W (x) for a number of specific

values:
W (1)= n, W (n+ 1)= q,

W (2)= n− 1, W (n+ 2)= q − 1,

W (3)= n− 2, W (n+ 3)= q − 2.

In general, we have

W (x)= n+ 1− x for x < x∗1 ,

W (x)= q + n+ 1− x for n < x < x∗2 .
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1
2
3
...
x∗1...
n− 2
n− 1
n
n+ 1
n+ 2
n+ 3...
x∗2...
q − 2
q − 1
q

1
2
3
...
x∗2...
q − 2
q − 1
q

Figure 5. The wrapping of Ktq+n,q (on the left), and the wrapping
of Ktq,q (on the right).

We see that there are now two symmetry points, x∗1 =
1
2(n+1) and x∗2 =

1
2(q+n+1),

regardless of whether these are integers or not, and the wrapping of Ktq+n,q can be
pictured as in the left side of Figure 5.

If n = 0, however, we see that x∗1 =
1
2 and there are no nodes x < x∗1 . In that

case, we have only one symmetry point as in the right side of Figure 5.
Next, recalling that 0≤ n < q and 1≤ x ≤ q , we simplify the hitting function as

follows:

H(x)=
⌊ tq+n−x

q

⌋
+ 1=

⌊n−x
q

⌋
+ t + 1=

{
t + 1 if x ≤ n,

t if x > n.

Notice that the components symmetric about (but not on) x∗1 wrap twice and hit
t+1 times on each wrap, so they are all of the form K2(t+1),2= K2t+2,2. When n is
odd, there is a component passing through x∗1 and it wraps once and hits t+1 times,
making it a Kt+1,1. Components symmetric about (but not on) x∗2 wrap twice and hit
t times on each wrap, so they are all of the form K2t,2. When q+n is odd, there is a
component passing through x∗2 and it wraps once and hits t times, making it a Kt,1.

All that is left is to count the number of components of each type, depending
on the parity of q and n, using Theorem 3. For example, if q is even and
n > 0 is even, then there are a total of 1

2q components, with 1
2 n of them sym-

metric about x∗1 and 1
2q − 1

2 n = 1
2(q − n) of them about x∗2 . Thus, in this case,

Ktq+n,q ≡
1
2 n ·K2t+2,2∪

1
2(q−n) ·K2t,2. We leave it to the reader to finish counting

for the remaining three cases. �
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We now have a complete characterization of the types of components for any Klein
link. To establish an equivalence to a torus link, we need to establish an equivalence
of the components. We present a collection of lemmas about the components of
torus and Klein links that we will use to prove the classification theorem.

In the next lemma, and many of the subsequent results, we make use of the
linking number of a pair of components in a link.

Definition 5. To define the linking number of two components C1 and C2 of a
link, we first orient the link (choose a direction of travel for each component).
Next, assign +1 to a crossing between if the undergoing strand goes from the
right side to the left side of the overgoing strand (right-handed crossing). If the
undergoing strand moves from left to right (left-handed crossing) it is assigned
a −1. Considering all crossings involving a strand from C1 and a strand from C2,
add all of the signed crossing numbers (the +1s and −1s), take the absolute value
of this sum, and divide by two. The resulting value is called the linking number of
the two components, and is denoted by lk(C1, C2).

Lemma 6. All components of a torus link have the same knot type. Additionally,
every pair of components in a torus link have the same linking number.

Proof. As discussed in Section 2, the torus link Tp,q is given by identifying the top
and bottom, and left and right sides of the square together with the knot that hits the
top p times and the side q times, that is, the line with slope p/q, and appropriate
translation; see [Flapan 2016]. We can identify components by examining each
strand along the left-hand side, just as we have for Klein links. In contrast to
the picture with Klein links, we can make the observation here that a vertical
translation by 1/q produces the same link, but with the ordering of strands (and
hence components) shifted by 1. Since each component is a translation of the others,
all components must have the same knot type.

Next we consider the linking of pairs of components. As we saw above, each
component is a translation of the others. Furthermore, considering the strands along
the left-hand side, if we have n components they must be represented by the first
n strands from the top. If we translate a strand vertically by a/q and find that we have
reached another strand of the same component, then every translation by (c ∗ a)/q
will also return the same component. Hence, to have n components, we must find
our first repeated component in the translation by n/q (so the first strand shifts to the
(n+1)-st strand), and so the first n strands each represent different components. Now,
we see that if we consider components xi , x j , and xk , we know that xk is a translation
of x j , and in particular it is a translation by less than n/q , and hence does not cross
any strand of xi in the process of translating. This is enough to guarantee that the
linking number of xi with x j is equal to the linking number of xi with xk . Finally, we
see that any pair of components in the torus link have the same linking number. �
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. . .

Figure 6. K p,1 is an unknot.

The proof of Lemma 7 follows directly from the construction; see Figure 6.

Lemma 7. For all p, K p,1 is an unknot.

The next two lemmas address the linking numbers of certain components of
K p,q in special cases.

Lemma 8. If q ≥ 3 is odd, then K0,q contains a pair of components with linking
number 1. If q ≥ 4 (even or odd), then K0,q contains a pair of components with
linking number 2.

Proof. First note that K0,q has crossings only outside of the rectangle, and all
crossings are of the same type (with all strands oriented to point into the right-hand
side of the rectangle, and all crossings are right-hand crossings).

For q ≥ 3 and odd, let C1, C2 be the components passing through nodes 1 and
1
2(q + 1), respectively. Using the wrapping function, we have that W (1)=1−1+0≡
q (mod q) and W

( 1
2(q+1)

)
= 1− 1

2(q+1)+0≡ q+ 1
2(1−q)≡ 1

2(q+1) (mod q).
Thus, component C1 passes through nodes 1 and q , wrapping twice, and C2 passes
through node 1

2(q+1) and wraps only once. See Figure 7(a). Since C1 wraps twice,
while C2 wraps only once, they cross each other exactly twice. Hence C1 and C2

have exactly two crossings, both outside of the rectangle, and the linking number is
lk(C1, C2)=

2
2 = 1.

1

...

1
2 (q + 1)

...

q

C1

C2

1
2

...

q − 1
q

C1

C2

(a) K0,q with q odd (b) K0,q with q even

Figure 7. K0,q .
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Figure 8. Two components of Kn,n on a single wrap.

For q ≥ 4, let C1 again be the component passing through nodes 1 and q . Using
the wrapping function, we denote by C2 the component that passes through 2 and
q−1. See Figure 7(b). In particular, they both wrap twice. It follows that they cross
each other exactly four times, and the linking number is lk(C1, C2)=

4
2 = 2. �

Lemma 9. For n ≥ 3, Kn,n has a pair of components with nonzero linking number.

Proof. Considering the planar diagram, all crossings inside of the rectangle are
left-hand crossings, with our choice of orientation, and every crossing outside of
the rectangle is right-handed. Let C1, C2 be the components passing through nodes
1 and 2, respectively. We will calculate the linking number for the pair C1, C2

by counting the number of crossings inside of the rectangle and the number of
crossings outside.

First, we have that W (1)= 1− 1+ n = n 6= 1 (mod n) and so C1 wraps twice
for n ≥ 3. If n = 3, then W (2)= 1− 2+ 3= 2 (mod 3), and thus C2 wraps once.
If n ≥ 4, then W (2)= n−1 6= 2 (mod n) and so C2 wraps twice. For all 1≤ x ≤ n,
H(x)= b(n− x)/nc+ 1= 1. Thus each component hits the top of the rectangle
exactly once each time it wraps. It follows that, on each wrap, the two components
cross twice in the rectangle and once outside of the rectangle, as shown in Figure 8.

For n = 3, C1 wraps twice and C2 wraps once, so they cross a total of 2(2)= 4
times inside the rectangle and 2(1) = 2 times outside the rectangle. The linking
number is |(2− 4)/2| = 1. For n ≥ 3, both C1 and C2 wrap twice, so they cross a
total of 4(2)= 8 times inside the rectangle and 2(2)= 4 times outside the rectangle,
giving a linking number of

∣∣ 1
2(4− 8)

∣∣ = 2. In both cases, the pair has nonzero
linking number. �

The next lemma is a generalization of [Alvarado et al. 2016, Theorem 6] and
was proved by one of the authors of that paper, Enrique Alvarado.

Lemma 10. For all m and n, we have K2mn,2n ≡ T2mn−n,2n .

Proof. A K2mn,2n has 2n strands entering or leaving each side of the rectangle in the
planar diagram. We collect together the first n strands (strands 1 through n) to form
a single ribbon. Notice that since W (1)≡ 2n (mod 2n) and W (n)≡n+1 (mod 2n),
the ribbon exits the right side and wraps around to reenter the left side through
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1
n

n+1
2n

· · ·

A

B

1
n

n+1
2n

· · ·

A

B

C

(a) Klein link K2mn,2n as a ribbon (b) unfolding the ribbon from A to B

1
n

n+1
2n

· · ·

A

B

C

D

1
n

n+1
2n

· · ·

D E

(c) moving the twist from A to C (d) moving the twist through the
rectangle from C to D

1
n

n+1
2n

· · ·

(e) canceling the twists at D and E

Figure 9. Manipulating the ribbon form of K2mn,2n into T2mn−n,2n .

strands n+ 1 through 2n. Thus the entire link K2mn,2n consists of just one ribbon
that wraps twice from left to right, as in Figure 9(a).

The transformation to T2mn−n,2n is illustrated in Figure 9. First, unfold the ribbon
between the points labeled A and B, as in Figure 9(b), then move the remaining twist
at A through B to C , as in Figure 9(c). We also slide the ribbon at point A down from
the top of the rectangle to the right side, leaving 2mn−n strands through the top and
2n strands through the right side of the rectangle. Next, move the twist through the
rectangle to point D. To do this, we are doing a series of moves as shown in Figure 10.

Figure 10. Moving the twist through the rectangle.
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We end up with a twist at D, as in Figure 9(d). The twist at D cancels the twist
at E , resulting in the ribbon form of the torus link T2mn−n,2n , as in Figure 9(e). �

Lemma 11. For t ≥ 2, we have K2t+2,2 6≡ K2t,2, and neither are unknots.

Proof. By Lemma 10, K2t+2,2 ≡ T2t+1,2 and K2t,2 ≡ T2t−1,2. The torus links are
nontrivial and not equivalent since they have different determinants [Livingston
1993]. Hence, K2t+2,2 ≡ T2t+1,2 6≡ T2t−1,2 ≡ K2t,2. �

5. The classification theorem

Having built our preliminary results, we are now ready to state and prove our main
result, which describes exactly which Klein links are equivalent to torus links, and
which are not. Without further ado. . .

Theorem 12 (the classification theorem). Let p = tq+n with t ≥ 0 and 0≤ n < q.
All Klein links K p,q which are equivalent to torus links are listed in the following
table:

q 0, 1, 2 3 4 even odd

p 0≤ p 0≤ p ≤ 4 2 p = tq p = q + 1

All other Klein links have no torus equivalent.

We present an immediate (but important) corollary before the proof of Theorem 12.

Corollary 13. Every Klein knot is equivalent to some torus knot.

Proof. A Klein knot is a Klein link with one component. By Theorem 3, the only
possible q values for a Klein knot are 1 and 2. Thus, the only Klein knots are of the
forms K p,1 and K p,2. By Theorem 12, all such knots have a torus equivalent. �

We emphasize that the corollary is a result about knots, not links. It is well-
known and can be found in [Alvarado et al. 2016; Catalano et al. 2010; Freund and
Smith-Polderman 2013].

Proof of Theorem 12. We first show that the Klein links listed in the table are,
indeed, equivalent to some torus link.

Case 1 (q = 0): For each p ≥ 0, by the way we construct Klein links, K p,0 is a
p-component unlink, hence equivalent to a torus link.

Case 2 (q = 1): For each p ≥ 0, K p,1 is an unknot by Lemma 7, hence equivalent
to a torus link.

Case 3 (q = 2): One can see that K0,2 is an unknot, and by [Alvarado et al. 2016,
Theorem 5], for each p ≥ 1, we know K p,2 ≡ Tp−1,2.



A CLASSIFICATION OF KLEIN LINKS AS TORUS LINKS 621

untwist the bold strand in K3,3 pull the bold strand behind
and to the right

T2,2

Figure 11. K3,3 ≡ T2,2.

Case 4 (q = 3): Both K1,3 and K2,3 are 2-component unlinks, and thus are torus
links. For p = 3, we can see in Figure 11 that K3,3 is equivalent to T2,2, which is a
Hopf link.

With a little untwisting as shown in Figure 12 we see that K0,3 is also equivalent
to a Hopf link, and hence T2,2.

Case 5 (q = 4, p = 2): By inspection, K2,4 is a 2-component unlink.

Case 6 (q even, p = tq, t 6= 0): By Lemma 10, Ktq,q ≡ Ttq−q/2,q .

Case 7 (t = n = 0, q ≥ 4 and even): Similar to the proof of Lemma 10, we collect
together the strands through the first 1

2q nodes to form a ribbon. Using the wrapping

untwist the bold strand in K0,3 Hopf link

Figure 12. K0,3 is equivalent to a Hopf link.
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(a) K0,q as a ribbon (b) pull the inner loop in and up

(c) turn the loop into a fold and twist (d) turn the twist into a fold

(e) reposition the right fold

Figure 13. K0,q with q ≥ 4 even is a torus link.

function, these 1
2q strands wrap to the strands through nodes 1

2q+1 through q so that
we have a single ribbon that wraps twice. See Figure 13(a). Manipulate the ribbon
as in Figure 13(b)–(e). Notice that the resulting ribbon in Figure 13(e) represents a
torus link, though with the vertical wrapping opposite to the way we usually wrap.

Case 8 (q odd, p= q+1): Using [Alvarado et al. 2016, Theorem 4] and Lemma 10,
we have Kq+1,q ≡ Kq+1,q+1 ≡ Tq+1,(q+1)/2.

Our next step is to show that all other Klein links, those not listed in the table
in Theorem 12, have no torus equivalence.

Case 9 (t = n = 0, q ≥ 5 and odd): By Lemma 8, K0,q with q ≥ 5 odd has pairs
of components with different linking numbers, one pair with linking number 1 and
another pair with linking number 2. Thus it cannot be equivalent to a torus link by
Lemma 6.
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1     2     3     4    5     6     7    8     9    10  11  12
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11

12

10

q

p

Figure 14. Graph showing which K p,q are torus links.

Case 10 (t = 0 and either n = 1, q ≥ 4; or n = 2, q ≥ 5; or n ≥ 3): Since t = 0
and n < q, we can use [Alvarado et al. 2016, Theorem 3] to write K p,q = Kn,q ≡

Kn,n ∪K0,q−n , where Kn,n and K0,q−n are unlinked. It follows that Kn,q must have
two components, one from Kn,n and one from K0,q−n , whose linking number is
zero. Now, if n = 1, q ≥ 4 or n = 2, q ≥ 5, then K0,q−n has components with
nonzero linking number by Lemma 8. On the other hand, if n ≥ 3, then Kn,n has
components with nonzero linking number by Lemma 9. In both cases, Kn,q must
have components with nonzero linking number. Since it also has components with
linking number zero, Kn,q cannot be equivalent to a torus link by Lemma 6.

Case 11 (t = 1 and either n= 0, q ≥ 5 and odd; or n= 1, q ≥ 4 and even): We are
looking at either Kq,q with q ≥ 5 and odd, or Kq+1,q ≡ Kq+1,q+1 with q + 1≥ 5
and odd by [Alvarado et al. 2016, Theorem 4]. Thus, by [Alvarado et al. 2016,
Theorem 7], neither can be equivalent to a torus link.

Case 12 (either t = 1, n ≥ 2; or t ≥ 2, n = 0, q ≥ 3 and odd; or t ≥ 2, n = 1,
q ≥ 3; or t ≥ 2, n ≥ 2, n and q not both even; or t ≥ 2, n ≥ 2, n and q both even):
In each of these cases, by Theorem 4, K p,q contains either:

(1) K2t+2,2 and at least one of Kt+1,1 or Kt,1 (with t ≥ 1), or

(2) K2t,2 and at least one of Kt+1,1 or Kt,1 (with t ≥ 2), or

(3) K2t+2,2 and K2t,2 (with t ≥ 2).

For each situation, K p,q contains components that are nonequivalent knots by
Lemmas 7 and 11. Thus, K p,q has no torus equivalence by Lemma 6.

We leave it to the reader to check that all possible cases have been addressed.
Figure 14, showing which Klein links have a torus equivalence, might help. �

Recall that every Klein knot is equivalent to a torus knot. From the sparseness
of the graph in Figure 14, it is interesting to note that relatively few Klein links are
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equivalent to torus links. Thus, they warrant further study. For example, we plan to
finish calculating the linking numbers for all Klein links (some further work has
been done in [Bush et al. 2014]). Other link invariants could also be calculated. As
noted in our construction, our Klein links are dependent on the relative position of
the puncture on the Klein bottle. We need to investigate the effects on our results
if we choose a different position for the puncture. On a more ambitious scale, we
would like to determine a complete classification of Klein links, not just in terms
of their relation to torus links.
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Interpolation on Gauss hypergeometric functions
with an application

Hina Manoj Arora and Swadesh Kumar Sahoo

(Communicated by Kenneth S. Berenhaut)

We use some standard numerical techniques to approximate the hypergeometric
function

2 F1[a, b; c; x] = 1+
ab
c

x +
a(a+ 1)b(b+ 1)

c(c+ 1)
x2

2!
+ · · ·

for a range of parameter triples (a, b, c) on the interval 0 < x < 1. Some of
the familiar hypergeometric functional identities and asymptotic behavior of
the hypergeometric function at x = 1 play crucial roles in deriving the formula
for such approximations. We also focus on error analysis of the numerical
approximations leading to monotone properties of quotients of gamma functions
in parameter triples (a, b, c). Finally, an application to continued fractions of
Gauss is discussed followed by concluding remarks consisting of recent works
on related problems.

1. Introduction and preliminaries

For a complex number z and c 6= 0,−1,−2,−3, . . . , the hypergeometric series is
defined by

1+
∞∑

n=1

(a)n(b)n
(c)n(1)n

zn.

Here (a)n denotes the shifted factorial notation defined, in terms of the gamma
function, by

(a)n =
0(a+ n)
0(a)

=

{
a(a+ 1) · · · (a+ n− 1) if n ≥ 1,
1 if n = 0, a 6= 0.

Note that the hypergeometric series defines an analytic function, denoted by the
symbol 2 F1[a, b; c; z], in |z|< 1. As quoted in the historical remarks in [Anderson
et al. 1997, 1.55, p. 24], the concept of hypergeometric series was first introduced
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Keywords: interpolation, hypergeometric function, gamma function, error estimate.

625

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2018.11-4
http://dx.doi.org/10.2140/involve.2018.11.625


626 HINA MANOJ ARORA AND SWADESH KUMAR SAHOO

by J. Wallis in 1656 to refer to a generalization of the geometric series. Less than a
century later, Euler extensively studied the analytic properties of the hypergeometric
function and found, for instance, its integral representation; see [Anderson et al.
1997, Theorem 1.19(2)]. Gauss made his first contribution to the subject in 1812.
Due to the outstanding contribution made by Gauss to the field, the hypergeometric
function is also sometimes known as the Gauss hypergeometric function. Most
elementary functions which are solutions to certain differential equations can be
written in terms of the Gauss hypergeometric functions. One can easily verify by
using the Frobenius technique that the function 2 F1[a, b; c; z] is one of the solutions
of the hypergeometric differential equation [Andrews et al. 1999; Beals and Wong
2010; Rainville 1960]

z(1− z)w′′+ (c− (a+ b+ 1)z)w′− abw = 0.

We refer to [Rainville 1943; 1960] for Kummer’s 24 solutions to the hypergeometric
differential equation, and to [Beals and Wong 2010] for related applications. The
asymptotic behavior of 2 F1[a, b; c; z] near z = 1 reveals that

2 F1[a, b; c; 1] =
0(c− a− b)0(c)
0(c− a)0(c− b)

<∞, valid for Re (c− a− b) > 0. (1-1)

Interpolating polynomials for elementary real functions such as trigonometric
functions, logarithmic functions, exponential functions, etc. have already been
derived in undergraduate texts in numerical analysis; see for instance [Atkinson
1978]. These elementary functions are in fact hypergeometric functions with
specific parameters a, b, c; see for instance [Andrews et al. 1999; Rainville 1960].
Most of such polynomial approximations are computed when the functional values
at the given boundary points are possible. Hence the asymptotic behavior (1-1)
of the hypergeometric function near z = 1 motivates us to construct interpolat-
ing polynomials for real hypergeometric functions 2 F1[a, b; c; x], a, b, c ∈ R,
c 6∈ {0,−1,−2,−3, . . .}, of a real variable x using several numerical techniques
in the interval [0, 1]; however, the interval may be extended to [−1, 1] as the
hypergeometric series in x is convergent for |x |< 1 and it has a certain asymptotic
behavior near −1 as well, with suitable choices of the parameters a, b, c; see
for instance [Rainville 1960, Theorem 26]. More precisely, when we compute
an interpolating polynomial pn(x) of a hypergeometric function 2 F1[a, b; c; x]
on [0, 1] we take the value 2 F1[a, b; c; 1] in the sense that the hypergeometric
function defined at x = 1 by means of its asymptotic behavior at x = 1; see (1-1).
Several hypergeometric functional identities also play a crucial role in determining
functional values at the interpolating points.

The following lemmas are useful in describing the error analysis for the interpo-
lating polynomials that we obtained in this paper. Our subsequent paper(s) in this
series will cover the study of interpolating polynomials using other techniques.
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Lemma 1.1 [Anderson et al. 1997, Lemma 1.33(1), p. 13; see also Lemma 1.35(2)].
If a, b, c ∈ (0,∞), then 2 F1[a, b; c; x] is strictly increasing on [0, 1). In particular,
if c > a+ b then for x ∈ [0, 1] we have

2 F1[a, b; c; x] ≤
0(c)0(c− a− b)
0(c− a)0(c− b)

.

Lemma 1.2 [Anderson et al. 1997, Lemma 2.16(2), p. 36]. The gamma function
0(x) is a log-convex function on (0,∞). In other words, the logarithmic derivative,
0′(x)/0(x), of the gamma function is increasing on (0,∞).

Note that in all the plots in this paper, graphs drawn in blue represent the original
functions and graphs drawn in red represent interpolating polynomials.

2. Linear interpolation on 2 F1[a, b; c; x]

For performing linear interpolation of the function 2 F1[a, b; c; x] = f (x), we
consider the end points x0 = 0 and x1 = 1 of the interval [0, 1]. The functional
values at these points are respectively f (0)= 1 and f (1), described in (1-1). Hence,
the equation of the segment of the straight line joining 0 and 1 is

Pl(x)= f (x0)+
x−x0

x1−x0
( f (x1)− f (x0))=

0(c)0(c−a−b)−0(c−a)0(c−b)
0(c−a)0(c−b)

x+1,

when c− a− b > 0 and c 6= 0,−1,−2,−3, . . . . The polynomial Pl(x) represents
the linear interpolation of 2 F1[a, b; c; x] interpolating at 0 and 1.

Using Lemma 1.1, we obtain the following error estimate:

Lemma 2.1. Let a, b, c ∈ (−2,∞) with c− a− b > 2. The deviation of the given
function f (x)= 2 F1[a, b; c; x] from the approximating function Pl(x) for all values
of x ∈ [0, 1] is estimated by

|El( f, x)| = | f (x)− Pl(x)| ≤
|a(a+ 1)b(b+ 1)|

8
0(c)0(c− a− b− 2)
0(c− a)0(c− b)

.

Proof. Maximizing
|El( f, x)| = 1

2 x(1− x)| f ′′(x)|
in [0, 1] yields

1
8(1− 0)2 max

0≤x≤1
| f ′′(x)|,

where f (x) = 2 F1[a, b; c; x]. The following well-known derivative formula is
useful:

d
dx 2 F1[a, b; c; x] = ab

c 2 F1[a+ 1, b+ 1; c+ 1; x]. (2-1)

The proof follows from (1-1), Lemma 1.1, (2-1), and the fact that

0(x + 1)= x0(x). �
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0.2 0.4 0.6 0.8 1.0

1.1

1.2

1.3

1.4

1.5

1.6

Figure 1. Linear interpolation of 2 F1[1, 2; 6; x] at 0 and 1.

nodes xi 0 0.25 0.5 0.75 1

actual values 1 1.0936 1.2149 1.3843 1.6667
2 F1[1,2;6; xi ]

polynomial approx. 1 1.1667 1.3333 1.5000 1.6667by Pl(xi )

validity of error bounds 0 0.0731< 1.25 0.1184< 1.25 0.1157< 1.25 0by El( f, xi )

Table 1. Comparison of the functional and linear polynomial values.

Remark 2.2. It follows from Lemma 2.1 that there is no error for the choices a= 0,
a =−1, b = 0, b =−1. In other words, for these choices El( f, x) vanishes.

Figure 1 shows linear interpolation of the hypergeometric function at 0 and 1,
whereas Table 1 compares the values of the hypergeometric function up to four
decimal places with its interpolating polynomial values in the interval [0, 1] for the
choice of parameters a = 1, b = 2 and c = 6. Figure 1 and Table 1 also indicate
errors at various points within the unit interval except at the end points.

3. Quadratic interpolation on 2 F1[a, b; c; x]

Let the three points in consideration for quadratic interpolation be x0 = 0, x1 = 0.5
and x2=1. The functional values at x0=0 and x2=1 can be found easily in terms of
the parameters but the functional value at x1= 0.5 can be obtained through different
identities involving hypergeometric functions 2 F1[a, b; c; x] dealing with various
constraints on the parameters a, b, c. This section consists of two subsections and in
each subsection the method to obtain the functional value of 2 F1[a, b; c; x] at x=0.5
uses three different identities. Finally, we compare the resultant interpolations. In
fact we observe that the interpolating polynomial remains unchanged in two cases, al-
though the approaches are different (see the subsection on page 630 for more details).

Quadratic interpolation on 2 F1[a, 1− a; c; x]. This section deals with the value
2 F1

[
a, b; c; 1

2

]
, where a + b = 1 due to the following identity of Bailey [1935,
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p. 11] (see also [Rainville 1960, p. 69]):

2 F1
[
a, 1−a; c; 1

2

]
=

21−c 0(c) 0
( 1

2

)
0
( 1

2(c+a)
)
0
( 1

2(1+c−a)
) = 0

( 1
2 c
)
, 0
( 1

2(1+c)
)

0
( 1

2(c+a)
)
0
( 1

2(1+c−a)
) , (3-1)

where c is a positive integer. It follows from (3-1) that

0
( 1

2 c
)
0
( 1

2(1+ c)
)
= 21−c√π0(c), (3-2)

since 0
( 1

2

)
=
√
π . In this case, we obtain

f (x0)= f (0)= 2 F1[a, 1− a; c; 0] = 1,

f (x1)= f (0.5)= 2 F1
[
a, 1− a; c; 1

2

]
=

0
(1

2 c
)
0
( 1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
) ,

f (x2)= f (1)= 2 F1[a, 1− a; c; 1] =
0(c)0(c− 1)

0(c− a)0(c+ a− 1)
(c > 1).

Consider the well-known Lagrange fundamental polynomials

L0(x)=
(x−x1)(x−x2)

(x0−x1)(x0−x2)
,

L1(x)=
(x−x0)(x−x2)

(x1−x0)(x1−x2)
,

L2(x)=
(x−x0)(x−x1)

(x2−x0)(x2−x1)
.

Then the quadratic interpolation of f (x)= 2 F1[a, 1− a; c; x] becomes

Pq3(x)= f (x0)L0(x)+ f (x1)L1(x)+ f (x2)L2(x)

= (2x2
− 3x + 1)+ (−4x2

+ 4x)
0
(1

2 c
)
0
( 1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
)

+ (2x2
− x)

0(c)0(c− 1)
0(c− a)0(c+ a− 1)

.

This leads to the following result.

Theorem 3.1. Let a, b, c ∈ R be such that c > 1. Then

Pq1(x)=
(

2−
40
( 1

2 c
)
0
( 1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
) + 20(c)0(c− 1)

0(c− a)0(c+ a− 1)

)
x2

+

(
40
( 1

2 c
)
0
(1

2(1+ c)
)

0
( 1

2(c+ a)
)
0
( 1

2(1+ c− a)
) − 0(c)0(c− 1)

0(c− a)0(c+ a− 1)
− 3
)

x + 1.

is a quadratic interpolation of 2 F1[a, 1− a; c; x] in [0, 1].
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0.0 0.2 0.4 0.6 0.8 1.0
0.95

1.00

1.05

1.10

1.15

1.20

Figure 2. The quadratic interpolation of 2 F1[0.9, 0.1; 1.5; x] at
0, 0.5, and 1.

Remark 3.2. It is evident that when a = 0, 1, then Pq1(x)= 2 F1[a, 1−a; c; x] = 1
for all x ∈ [0, 1] and for all c > 1. Moreover, for all c > 1, we have the following
three natural observations:

(i) If −1< a < 0, then Pq1(x) and 2 F1[a, 1− a; c; x] decrease together in [0, 1].

(ii) If 0< a < 1, then Pq1(x) and 2 F1[a, 1− a; c; x] increase together in [0, 1].

(iii) If 1< a < 2, then Pq1(x) and 2 F1[a, 1− a; c; x] decrease together in [0, 1].

Indeed, these follow from derivative test. More observations are stated later while
estimating the error (see Remark 3.10).

An interpolating polynomial Pq1(x) of 2 F1[a, 1− a; c; x] for certain choices of
parameters a and c is as shown in Figure 2.

Remark 3.3. Note that in Theorem 3.1, the parameter c cannot be chosen such that
c≤ 1

2(a+b+1) since the choice b= 1−a results in c≤ 1, which is a contradiction
to the assumption that c> 1. In particular, c 6= 1

2(a+b+1) in Theorem 3.1, which
is the negation of a constraint that will be considered in the next subsection.

Quadratic interpolation on 2 F1
[
a, b; 1

2(a + b+ 1); x
]
. In this section, f (x) =

2 F1[a, b; c; x], c= 1
2(a+ b+ 1), is first interpolated using the following quadratic

transformation obtained from [Andrews et al. 1999, (3.1.3)]; see also [Rainville
1960, Theorem 2.5].

Lemma 3.4. If 1
2(a+b+1) is a positive integer, and if |x |< 1 and |4x(1−x)|< 1,

then

2 F1
[
a, b; 1

2(a+ b+ 1); x
]
= 2 F1

[ 1
2a, 1

2 b; 1
2(a+ b+ 1); 4x(1− x)

]
. (3-3)

If we choose x = 0.5 then the right-hand side of (3-3) computes the asymptotic
behavior of the hypergeometric function at 1. Hence the functional value at x = 0.5
of the function f (x)= 2 F1

[
a, b; 1

2(a+ b+ 1); x
]

can be obtained with the help of
(1-1). Due to Lemma 3.4 and (1-1), in this case, the constraints on the parameters
are computed as
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• a+ b < 1;

• a+ b 6= −(2n+ 1) for n ∈ N∪ {0}.

One can easily obtain that

f (x0)= 2 F1
[
a,b; 1

2(a+b+1);0
]
=1;

f (x1)= 2 F1
[
a,b; 1

2(a+b+1); 1
2

]
=

√
π 0

(1
2(a+b+1)

)
0
( 1

2(a+1)
)
0
( 1

2(b+1)
) ,

f (x2)= 2 F1
[
a,b; 1

2(a+b+1);1
]
=
0
( 1

2(1−a−b)
)
0
( 1

2(a+b+1)
)

0
( 1

2(a+1−b)
)
0
( 1

2(b+1−a)
)= cos

(
π
2 (b−a)

)
cos
(
π
2 (b+a)

) ,
where f (x2) is obtained by the well-known Euler’s reflection formula (in nonintegral
variable x)

0(x)0(1− x)=
π

sin(πx)
.

This leads to the additional constraints on the parameters

a+ b 6= 1± 2n and a− b 6= −1± 2n, n ∈ Z or

a+ b 6= −1± 2n and a− b 6= 1± 2n, n ∈ Z.
(3-4)

(These constraints may be relaxed when one does not use Euler’s reflection formula!)
Thus, the first quadratic interpolation of f (x) = 2 F1

[
a, b; 1

2(a + b + 1); x
]

becomes

Pq2(x)= f (x0)L0(x)+ f (x1)L1(x)+ f (x2)L2(x)

= (2x2
− 3x + 1)+ (−4x2

+ 4x)
√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
( 1

2(b+ 1)
)

+ (2x2
− x)

cos
(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) .
This leads to the following result.

Theorem 3.5. Let a, b ∈ R and n ∈ N∪ {0} be such that a+ b 6= −(2n+ 1) and
a+ b < 1. If either a+ b 6= 1± 2n and a− b 6= −1± 2n, or a+ b 6= −1± 2n and
a− b 6= 1± 2n hold, then

Pq2(x)=

(
2−

4
√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
(1

2(b+ 1)
) + 2 cos

(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) )x2

+

(
4
√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
( 1

2(b+ 1)
) − cos

(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) − 3

)
x + 1

is a quadratic interpolation of 2 F1
[
a, b; 1

2(a+ b+ 1); x
]

in [0, 1].
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Secondly, we discuss quadratic interpolation of the same function 2 F1[a, b; c; x],
c = 1

2(a+ b+ 1), in [0, 1], but using a different hypergeometric identity. Finally,
we observe that both the interpolations are same except at a minor difference in
one of the constraints.

Recall the transformation formula [Rainville 1960, Theorem 20, p. 60]:

Lemma 3.6. If |x |< 1 and |x/(1− x)|< 1, then we have

2 F1[a, b; c; x] = (1− x)−a
2 F1

[
a, c− b; c;

−x
1− x

]
.

Note that −x/(1− x) = −1 for x = 0.5. This suggests that to find the value
f (0.5)= 2a

2 F1[a, c− b; c;−1] we can use the following identity [Rainville 1960,
Theorem 26, p. 68]; see also [Beals and Wong 2010].

Lemma 3.7. Let a′, b′ ∈ R. If 1+ a′− b′ 6= {0,−1,−2,−3, . . .} and b′ < 1, then
we have

2 F1[a′, b′; a′− b′+ 1;−1] =
0(a′− b′+ 1)0

( 1
2a′+ 1

)
0(a′+ 1)0

( 1
2a′− b′+ 1

) .
Comparison of the parameters a′ = a, b′ = c− b and a′− b′+ 1= c leads to

2 F1[a, c− b; c;−1] =
0(a− c+ b+ 1)0

( 1
2a+ 1

)
0(a+ 1)0

(1
2a− c+ b+ 1

) (3-5)

with the constraints

• 2c = a+ b+ 1;

• c 6= {0,−1,−2,−3, . . .} ⇐⇒ a+ b 6= −(2n+ 1), n ∈ N∪ {0};

• c− b < 1⇐⇒ a− b < 1.

Under these conditions, (3-5) leads to

f (x1)= f (0.5)= 2 F1
[
a, b; 1

2(a+ b+ 1); 1
2

]
= 2a0

( 1
2(a+ b+ 1)

)
0
(1

2a+ 1
)

0(a+ 1)0
( 1

2(b+ 1)
)

=
2a−1 0

( 1
2(a+ b+ 1)

)
0
(1

2a
)

0(a) 0
( 1

2(b+ 1)
) =

√
π 0

( 1
2(a+ b+ 1)

)
0
( 1

2(a+ 1)
)
0
(1

2(b+ 1)
) ,

where the last equality holds by (3-2). Also as discussed at the beginning of this
subsection, we have

f (x0)= f (0)= 2 F1
[
a, b; 1

2(a+ b+ 1); 0
]
= 1,

f (x2)= f (1)= 2 F1
[
a, b; 1

2(a+ b+ 1); 1
]
=

cos
(
π
2 (b− a)

)
cos
(
π
2 (b+ a)

) , a+ b < 1,

with additional constraints obtained in (3-4) (here also (3-4) may be relaxed!).
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Figure 3. The quadratic interpolation of 2 F1[0.1, 0.3; 0.7; x] at 0,
0.5, and 1.

Thus, the second quadratic interpolation of f (x) = 2 F1
[
a, b; 1

2(a+ b+ 1); x
]

remains same as the first quadratic interpolation obtained in Theorem 3.5 but with an
additional constraint a−b< 1. This shows that the quadratic interpolation obtained
by Theorem 3.5 is stronger than what was discussed so far using Lemmas 3.6 and 3.7.
A quadratic interpolation of 2 F1

[
a, b; 1

2(a+ b+ 1); x
]

is shown in Figure 3.

Error estimates. The error estimate in quadratic interpolation of 2 F1[a, b; c; x]
interpolating at 0, 0.5, 1 in [0, 1] is formulated as below:

Lemma 3.8. Let Pq(x) be a quadratic interpolation of f (x) = 2 F1[a, b; c; x]
interpolating at 0, 0.5, 1 in [0, 1]. If a, b, c ∈ (−3,∞) with c− a− b > 3, then the
deviation of f (x) from Pq(x) is estimated by

|Eq( f, x)| = | f (x)− Pq(x)|

≤
1
6 M

∣∣a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)
∣∣ 0(c)0(c− a− b− 3)
0(c− a)0(c− b)

for all values of x ∈ [0, 1], where M is defined by

M :=

{
1

12(3−
√

3)
(
−1+ 1

6(3−
√

3)
)(
−1+ 1

3(3−
√

3)
)
, x < 1

2 ,

−
1

12(3+
√

3)
(
−1+ 1

6(3+
√

3)
)(
−1+ 1

3(3+
√

3)
)
, x > 1

2 .
(3-6)

Proof. We need to estimate

max
0≤x≤1

1
6

∣∣x(x − 0.5)(x − 1)
∣∣ max

0≤x≤1
| f ′′′(x)|,

where f (x)= 2 F1[a, b; c; x]. Note that

max
0≤x≤1

|x(x − 0.5)(x − 1)| = M (≈ 0.0481125 . . . )

by (3-6). We apply the well known derivative formula (2-1) to maximize | f ′′′(x)|,
0≤ x ≤ 1. The proof follows from (1-1), Lemma 1.1, (2-1), and the fact that

0(x + 1)= x0(x). �
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The following result is an immediate consequence of Lemma 3.8 which estimates
the difference Eq1( f, x)= 2 F1[a, 1− a; c; x] − Pq1(x) in [0, 1].

Corollary 3.9. Let a, c ∈R be such that −3< a < 4 and c> 4. Then the deviation
of 2 F1[a, 1− a; c; x] from Pq1(x) is estimated by

|Eq1( f, x)| = | f (x)− Pq1(x)|

≤
1
6 M

∣∣a(a+ 1)(a+ 2)(1− a)(2− a)(3− a)
∣∣ 0(c)0(c− 4)
0(c− a)0(c+ a− 1)

for all values of x ∈ [0, 1], where M is obtained by (3-6).

Remark 3.10. It follows from Corollary 3.9 that there is no error for any of the
choices a =−2,−1, 0, 1, 2, 3. In other words, for any of these choices, Eq1( f, x)
vanishes.

Similarly, as a consequence of Lemma 3.8, we obtain:

Corollary 3.11. Let a, b ∈ R be such that −7< a+ b <−5. Then the deviation of
2 F1

[
a, b; 1

2(a+ b+ 1); x
]

from Pq2(x) is estimated by

|Eq2( f, x)| = | f (x)−Pq2(x)|

≤
1
6 M

∣∣a(a+1)(a+2)b(b+1)(b+2)
∣∣ 0(1

2(a+b+1)
)
0
( 1

2(−a−b−5)
)

0
( 1

2(b−a+1)
)
0
( 1

2(a−b+1)
)

for all values of x ∈ [0, 1], where M is obtained by (3-6).

Remark 3.12. It follows from Corollary 3.11 that since Eq2( f, x) vanishes for the
choices a =−2,−1, 0 and b=−2,−1, 0, there is no error for these choices of the
parameters a and b.

Now we describe a slightly deeper analysis on the error obtained in Corollary 3.9
through the following lemma, which is a consequence of Lemma 1.2. A similar
analysis can be described for Corollary 3.11.

Lemma 3.13. Let a, c ∈ R be such that c > 4. If either 1< a < 4 or −3< a < 0
holds, then the quotient

0(c)0(c− 4)
0(c− a)0(c+ a− 1)

decreases when c increases.

Proof. We use Lemma 1.2. Since c− a > c− 4> 0, on one hand we have

0′(c− 4)
0(c− 4)

−
0′(c− a)
0(c− a)

< 0.

On the other hand, since c < c+ a− 1, we have

0′(c)
0(c)

−
0′(c+ a− 1)
0(c+ a− 1)

< 0.
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Thus, if

g(c)=
0(c)0(c− 4)

0(c− a)0(c+ a− 1)
,

it follows that

g′(c)
g(c)

=
0′(c)
0(c)

+
0′(c− 4)
0(c− 4)

−
0′(c− a)
0(c− a)

−
0′(c+ a− 1)
0(c+ a− 1)

=

(
0′(c− 4)
0(c− 4)

−
0′(c− a)
0(c− a)

)
+

(
0′(c)
0(c)

−
0′(c+ a− 1)
0(c+ a− 1)

)
< 0.

By the definition of the gamma function, obviously, one can see that 0(x) > 0 for
x > 0. This shows that g(c) > 0 and hence g′(c) < 0. Thus, g(c) decreases for
1< a < 4< c.

For c > 4, if −3< a < 0 holds then we consider the rearrangement

g′(c)
g(c)

=

(
0′(c)
0(c)

−
0′(c− a)
0(c− a)

)
+

(
0′(c− 4)
0(c− 4)

−
0′(c+ a− 1)
0(c+ a− 1)

)
and show that g′(c)/g(c) < 0. �

Using Mathematica or other similar tools, one can see that Lemma 3.13 even
holds true for the remaining range 0≤ a≤ 1. This suggests the following conjecture.

Conjecture 3.14. Let a, c ∈ R be such that 0≤ a ≤ 1 and c > 4. Then the quotient

0(c)0(c− 4)
0(c− a)0(c+ a− 1)

decreases when c increases.

Thus, we observe that when c > 4 increases then the error Eq1( f, x) estimated
in Corollary 3.9 decreases (see also Figures 4 and 5).

Figures 4 and 5 describe the quadratic interpolation of the hypergeometric
functions 2 F1[a, 1− a, c, x] at 0, 0.5 and 1, whereas Tables 2 and 3 compare the
values of the hypergeometric function up to four decimal places with its interpolating

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The error estimate Eq1( f, x) when a = 3.9 and c
increases from 4.5 to 6.5.
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0.2 0.4 0.6 0.8 1.0

1.005

1.010

1.015

1.020

1.025

1.030

0.2 0.4 0.6 0.8 1.0

1.005

1.010

1.015

Figure 5. The error estimate Eq1( f, x) when a = 0.9 and c
increases from 4.1 to 6.1.

nodes xi 0 0.25 0.5 0.75 1

actual values 1 0.5372 0.2516 0.0998 0.0367
2 F1[3.9,−2.9;5; xi ]

polynomial approx. 1 0.5591 0.2516 0.0775 0.0367by Pq1(xi )

validity of error bounds 0 0.0219< 0.0274 0 0.0223< 0.0274 0by Eq1( f, xi )

actual values 1 0.6027 0.3358 0.1724 0.0845
2 F1[3.9,−2.9;6; xi ]

polynomial approx. 1 0.6163 0.3358 0.1585 0.0845by Pq1(xi )

validity of error bounds 0 0.0136< 0.0158 0 0.0139< 0.0158 0by Eq1( f, xi )

Table 2. Comparison of the functional and quadratic polynomial values.

nodes xi 0 0.25 0.5 0.75 1

actual values 1 1.0047 1.0099 1.0158 1.0227
2 F1[0.9,0.1;5; xi ]

polynomial approx. 1 1.0046 1.0099 1.0160 1.0227
by Pq1(xi )

validity of error bounds 0 0.0001< 0.0016 0 0.0002< 0.0016 0by Eq1( f, xi )

actual values 1 1.0039 1.0082 1.0128 1.0182
2 F1[0.9,0.1;6; xi ]

polynomial approx. 1 1.0038 1.0082 1.0129 1.0182by Pq1(xi )

validity of error bounds 0 0.0001< 0.0004 0 0.0001< 0.0004 0by Eq1( f, xi )

Table 3. Comparison of the functional and quadratic polynomial values.
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polynomial values in the interval [0, 1] for the choice of parameters a = 3.9, c = 5
and a = 0.9, c = 6 respectively. Figures 4 and 5 and Tables 2 and 3 also indicate
errors at various points within the unit interval except at the interpolating points at
x = 0, 0.5, 1.

The error estimate |Eq2( f, x)| for the function 2 F1
[
a, b; 1

2(a+b+1); x
]

can be
analyzed in a similar way, and hence we omit the proof.

4. An application

In this section, we briefly consider interpolation of a continued fraction that con-
verges to a quotient of two hypergeometric functions. Gauss used the contiguous
relations to give several ways to write a quotient of two hypergeometric functions
as a continued fraction. For instance, it is well known that

2 F1[a+ 1, b; c+ 1; x]

2 F1[a, b; c; x]
=

1

1+

(a−c)b
c(c+1)

x

1+

(b−c−1)(a+1)
(c+1)(c+2)

x

1+

(a−c−1)(b+1)
(c+2)(c+3)

x

1+

(b−c−2)(a+2)
(c+3)(c+4)

x

1+
. . .

, |x |< 1. (4-1)

On one hand, if we adopt the basic linear interpolation method that we discussed
in Section 2 (that is, linear interpolation directly) to the function

g(x)= 2 F1[a+ 1, b; c+ 1; x]

2 F1[a, b; c; x]

at x0 = 0 and x1 = 1, we obtain the linear interpolation of the above continued
fraction in the form

Rl(x)= g(x0)+
x − x0

x1− x0
(g(x)− g(x0))= 1+

(
b

c− b

)
x, c− b > a,

since g(x0) = 1 and g(x1) = c/(c− b). For the choice a = 1, b = 2, c = 6, this
approximation is also shown in Figure 6.

On the other hand, an application of linear interpolation of 2 F1[a, b; c; x] ob-
tained in Section 2 leads to the following approximation of the above continued
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Figure 6. Approximation of 2 F1[a+1,b;c+1; x]/2 F1[a,b;c; x]
through Rl(x).
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Figure 7. Approximation of 2 F1[a+1,b;c+1; x]/2 F1[a,b;c; x]
through Rr (x).

fraction in terms of ratio of polynomial approximation (we call this rational inter-
polation):

Rr (x)=
1

Pl(x)

(
0(c+1)0(c−a−b)−0(c−a)0(c−b+1)

0(c−a)0(c−b+1)
x+1

)

=

[
c0(c)0(c−a−b)/(c−b)−0(c−a)0(c−b)

]
x+0(c−a)0(c−b)[

0(c)0(c−a−b)−0(c−a)0(c−b)
]
x+0(c−a)0(c−b)

= 1+
b

c−b

[
0(c−a−b)0(c) x[

0(c)0(c−a−b)−0(c−a)0(c−b)
]
x+0(c−a)0(c−b)

]
,

where c−a−b> 0. For the choice a = 1, b= 2, c= 6, this approximation is also
shown in Figure 7.

Observe that

Rr (x0)= 1= Rl(x0) and Rr (x1)=
c

c− b
= Rl(x1)

and hence Rr also interpolates the continued fraction under consideration at 0 and 1.
Further we observe that both the approximations Rl(x) and Rr (x) of the continued
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fraction are easy to obtain and the first approximation, i.e., Rl(x), is in a simpler
form than Rr (x), as expected. Now, it would be interesting to know which one would
give the best approximation to the continued fraction under consideration. With the
special choice a= 1, b= 2, c= 6, we see from Figures 6 and 7 that Rl(x) is a better
approximation than Rr (x). One may ask: does it happen for arbitrary parameters
a, b, c? Since Rl(x)= Rr (x) if and only if 0(c)0(c− a− b)= 0(c− a)0(c− b),
the answer to this question is yes except when 0(c)0(c−a−b)=0(c−a)0(c−b).

This leads to the following result:

Theorem 4.1. Let Rl(x) and Rr (x) be respectively the linear interpolation and the
rational interpolation of the quotient 2 F1[a+ 1, b; c+ 1; x]/2 F1[a, b; c; x] (equiv-
alently, of the continued fraction (4-1)). Then Rl(x) and Rr (x) coincide with each
other if and only if 0(c)0(c− a− b)= 0(c− a)0(c− b) holds for c− a− b > 0.

5. Concluding remarks and future scope

Recall that, in this paper, we use some standard interpolation techniques to approxi-
mate the hypergeometric function

2 F1[a, b; c; x] = 1+
ab
c

x +
a(a+ 1)b(b+ 1)

c(c+ 1)
x2

2!
+ · · ·

for a range of parameter triples (a, b, c) on the interval 0 < x < 1. Some of
the familiar hypergeometric functional identities and asymptotic behavior of the
hypergeometric function at x = 1 played crucial roles in deriving the formula for
such approximations. One can expect similar formulae using other well-known
interpolations and obtain better approximations for the hypergeometric function;
however, we discuss such results in an upcoming manuscript(s). Different numerical
methods for the computation of the confluent and Gauss hypergeometric functions
were studied recently in [Pearson et al. 2017]. Such investigation may be extended to
the q-analog of the hypergeometric functions, namely, Heine’s basic hypergeometric
functions; for instance refer to [Chen and Fu 2011] for similar discussions.

We also focus on error analysis of the numerical approximations leading to
monotone properties of quotients of gamma functions in parameter triples (a, b, c).
Monotone properties of the gamma function and its quotients in different forms are
of recent interest to many researchers; see for instance [Alzer 1993; Anderson and
Qiu 1997; Bustoz and Ismail 1986; Chen and Zhou 2014; Giordano and Laforgia
2001; Gautschi 1959; Luo et al. 2017; Mortici and Dumitrescu 2017]. In this paper,
we also studied and stated a conjecture (see Conjecture 3.14) related to monotone
properties of quotients of gamma functions to analyze the error estimate of the
numerical approximations under consideration.
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Finally, an application to continued fractions of Gauss is also discussed. Ap-
proximations of continued fractions in different forms are also attractive to many
researchers; see [Lu et al. 2017; 2016].
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Properties of sets of nontransitive dice
with few sides

Levi Angel and Matt Davis

(Communicated by Kenneth S. Berenhaut)

We define and investigate several properties that sets of nontransitive dice might
have. We prove several implications between these properties, which hold in
general or for dice with few sides. We also investigate some algorithms for
creating sets of 3-sided dice that realize certain tournaments.

1. Nontransitive dice

Consider a set of three 3-sided dice, A, B, and C , numbered in the following way:

A 9 5 1
B 8 4 3
C 7 6 2

(1)

In this example, if we rolled each die one time, die A would beat die B 5
9 of

the time, die B would beat die C 5
9 of the time, and die C would beat die A 5

9 of the
time. We say that die A “beats” or “wins against” die B if the probability that A
rolls higher than B is greater than 1

2 . (Of course, in this case we could also say that
B loses against A.) We use the notation � for the relation “beats”, so that in this
example A � B, B � C , and C � A. This is an example of nontransitivity, since
the relation � on {A, B,C} is nontransitive. The study of such sets of dice dates
back to [Steinhaus and Trybuła 1959; Trybuła 1961], although [Gardner 1970] was
highly influential in raising interest in them. Numerous examples of nontransitive
dice have since been constructed. This paper will examine a number of questions
related to the construction of such sets of dice, particularly focusing on those with
a small number of sides.

In what follows, we will always have a set of n k-sided dice, with the faces of
each die labeled with a number from {1, 2, . . . , kn}. We will assume each number
from this set is used exactly once.
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Figure 1. A nontransitive tournament on three vertices.

The relation� on a set of dice can be visualized as a directed graph. A tournament
on n vertices is a directed realization of the complete graph Kn . In other words,
it is a directed graph on the vertices {1, 2, . . . , n} where for any pair of vertices
i and j , either there is an edge from i to j or from j to i , but not both. We can
interpret this as a definition of a relation on a set of dice — we say that a set of dice
{X1, X2, . . . , Xn} realizes a tournament T if X i � X j if and only if there is an edge
from i to j in T. So the set of dice given in (1) realizes the tournament in Figure 1.

Previous work has shown that for any tournament T, it is possible to construct
a set of dice that realizes this tournament. See [Angel and Davis 2017; Schaefer
2017; Bednay and Bozóki 2013] for some examples of such algorithms.

2. Properties of sets of dice

There are a number of properties that a set of dice might have that we will work with.
By abuse of notation, for a given die X , we will use the same letter to represent the
random variable giving the value when the die is rolled.

Uniform. We say a set of dice is uniform if there is a constant p so that, whenever
X �Y, we have P(X>Y )= p. Note that this is similar to the notion of balanced dice
in [Schaefer and Schweig 2017], but uniformity is slightly stronger for nontransitive
dice. The set of dice in (1) is uniform since P(A>B)= P(B>C)= P(C>A)= 5

9 .

Columned. We say a set of n dice with k sides is columned if the j -th smallest side
on each die is chosen from the numbers ( j − 1)n+ 1, . . . , jn. That is, the smallest
side from every die contains a number 1 through n, the second-smallest side of every
die contains a number from n+1 through 2n and so on until the largest side of every
die contains a number from (k− 1)n+ 1 through kn. Put another way, the sides of
each die are a transversal of the collection {{1, 2, . . . , n}, {n+1, n+2, . . . , 2n}, . . . ,
{(k− 1)n+ 1, . . . , kn}}. The set of dice in (1) is columned since each die contains
one number from {1, 2, 3}, one from {4, 5, 6}, and one from {7, 8, 9}.

Regular. If we have an odd number n of dice, we say the set of dice is regular if
each die wins against 1

2(n− 1) of the dice and loses against 1
2(n− 1) dice. A set of

dice is regular exactly if the tournament it realizes is a regular graph. The set of
dice in (1) is regular since each die beats exactly one other die.
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For our final property, we need one other notion. Given a die X in a set of
dice, the total number of face wins for X is the number of ordered pairs (a, b)
where a is a number on die X , b is a number on a different die in the set, and
a > b. We similarly define the number of face wins for a die X over a die Y
to be the number of ordered pairs (a, b) where a is on X , b is on Y, and a > b.
In the example in (1), A has five face wins over B, corresponding to the pairs
(9, 8), (9, 4), (9, 3), (5, 4), (5, 3). Also, A has four face wins over C for a total of
nine face wins.

This notion counts the total number of ways for die X to beat another die when
X is rolled against another die. In other words, if we have a set S of k-sided dice
containing X , and we sum P(X>Y ) for all Y 6= X in S, the (unreduced) result
will be a fraction with k2 in the denominator. The total number of face wins is the
numerator of that fraction. (Notice that in (1), P(A>B) = 5

9 and P(A>C) = 4
9 ,

corresponding to its face wins.)

Equitable. We say a set of dice is equitable if each die has the same total number
of face wins. The set of dice in (1) is equitable since each die has exactly nine total
face wins.

We observe that, for a die X in a set of n k-sided dice,∑
j is a face of X

j = total number of face wins for X +
(k+1

2

)
. (2)

To see this, note that since our dice are numbered from 1 to nk, a face labeled j will
be at least as large as the j faces labeled 1, 2, . . . , j . However, when counting total
face wins, we do not count the wins a die’s face would earn over faces on the same
die (including the tie against itself). There are always exactly 1+2+· · ·+k=

(k+1
2

)
of these, accounting for the extra term in (2). Thus, for a set of n k-sided dice that
use the numbers 1, 2, . . . , kn once each, equitability is equivalent to the condition
that the total of the faces of each die is the same. This means that equitability is
not always possible for a given number of sides and number of dice — specifically,
an even number of dice each with an odd number of sides cannot be equitable.

We also explain here one way of thinking about sets of dice that is sometimes
useful, which we call the face rankings of a die. For an ordered list of k-sided dice
X1, X2, . . . , Xn , we can associate to each die a list of numbers that encodes the
number of face wins for each die over the next die in the list (or for Xn over X1),
one face at a time. Specifically, for each die, we give a list of k numbers. The first
number corresponds to the highest face on the die and tells us how many faces of
the next die it is higher than, i.e., how many face wins the given die has as a result
of that face. The second number similarly corresponds to the second-highest face
of the die in the same way, etc. So in the example in (1), the corresponding list
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would be
A 320
B 311
C 221

since, for example, die A’s highest face beats all of B’s faces, its middle face beats
two of B’s faces, and its lowest face beats none of B’s faces. Notice that these
lists give a number of relations between the faces, which in this case (but not in
all cases) are enough to reconstruct the entire set of dice. We can see A’s highest
face is larger than B’s highest, which is larger than C’s highest two faces, which
are larger than A’s second-highest face, etc.

For example, the set of face rankings

A 320
B 221
C 221
D 311

would describe the set of dice

A 11 8 1
B 9 7 4/5

C 10 6 3
D 12 4/5 2

(3)

where the two spaces marked 4/5 contain the faces 4 and 5 in some order. These
faces are not uniquely determined by the face rankings.

With the notion of face wins and (2), we can establish some general implications
between the properties described above.

Theorem 1. Given a regular tournament on an odd number n of dice, any uniform
set of dice that realize that tournament is equitable.

Proof. Assume the dice have k sides, and that if X � Y, then P(X>Y ) = j/k2.
Then a die X wins against 1

2(n− 1) dice with j face wins each and loses against
1
2(n− 1) dice with k2

− j face wins each. Thus the total number of face wins for
X must be 1

2 k2(n− 1), and so the set is equitable. �

Theorem 2. A uniform equitable set of an odd number n of k-sided dice must be
regular.

Proof. Note that a uniform equitable set of dice cannot be transitive, since the
die that beats all others would have a greater total number of face wins than the
other dice. Assume that if X � Y, then P(X>Y )= j/k2. Given a die X , there are
k2(n− 1) pairs consisting of a face of X and a face of another die. By equitability,
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the face from X is the higher value in exactly half of those pairs. So X has a total
number of face wins equal to 1

2 k2(n− 1). However, adding up the total number of
face wins by comparing X to each other die means we must write 1

2 k2(n− 1) as a
sum of n− 1 numbers, each of which is either j or k2

− j . This is only possible
with exactly 1

2(n− 1) of each. �

3. Implications between properties for 3-sided dice

For sets of small dice, there are some additional implications between these prop-
erties. In what follows, we will use the following theorem; see [Savage 1994] or
[Trybuła 1961].

Theorem 3. Suppose the numbers 1, 2, . . . , kn are arranged on a set of three
k-sided dice, labeled A1, A2, A3. Then at least one of the probabilities P(A1>A2),
P(A2>A3) is less than 1

2(
√

5− 1).

For a set of three dice, at least one of the given probabilities must be less than or
equal to 5

9 , since 6
9 >

1
2(
√

5− 1). However, for a set of four dice, it is possible to
arrange the dice in a cycle so each one beats the next with probability 2

3 . The dice
described by Gardner [1970], now known as Efron dice for their discoverer, are an
example of such dice.

This theorem also inspires the following theorem, which is particular to sets of
3-sided dice of any size.

Theorem 4. Suppose the numbers 1, 2, . . . , kn are arranged on a set of k 3-sided
dice, labeled A1, A2, A3, . . . , Ak . Then at least one of the probabilities P(A1>A2),
P(A2>A3), . . . , P(Ak>A1) is less than 2

3 .

Proof. Assume that the dice are numbered so that A1 � A2, . . . , Ak−1 � Ak ,
Ak � A1. If no such k-cycle can be formed, then one of the given probabilities is
in fact less than 1

2 . Also, assume each winning probability is at least 2
3 . This means

each die has at least six face wins over the next die in the cycle. For 3-sided dice,
this implies the middle face of a die is larger than at least two faces on the next die.
(The only possible lists of face rankings with six face wins are 330 or 222.) Thus
each middle face of a die is greater than the middle face of the next die in the cycle.
But, this implies (by going all the way around the cycle) that each middle face is
larger than itself, a contradiction. �

Theorem 5. A nontransitive uniform set of 3-sided dice is columned.

Proof. In the case that any die X has two numbers from 1, . . . , n or 2n+1, . . . , 3n,
there would be another die Y that had no numbers from that set. This would lead to
one of X or Y beating the other with probability at least 2

3 . Unless the set of dice is
transitive, this would force a cycle of at least three dice, each of which beats the
next with probability at least 2

3 (by uniformity), contradicting Theorem 4. �
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Of course, one can easily make a transitive uniform set of 3-sided dice that is
not columned merely by making each die in the list strictly better than the next.

Theorem 6. A set of an odd number of equitable columned 3-sided dice must be
uniform.

Proof. Recall that an odd number of dice are necessary in this case for equitability
to be possible. By the columned property, every die must have at least three face
wins against any other die, since the largest number on each die is guaranteed to be
higher than the smaller two numbers on the other dice, etc. Thus for any dice X
and Y (assuming without loss of generality that X � Y ), we have P(X>Y ) ≤ 2

3 .
However, if P(X>Y ) = 2

3 , this would imply that X ’s largest face is greater than
Y ’s largest face, X ’s second-largest face is greater than Y ’s, etc. This contradicts
equitability. Thus if X � Y, then P(X>Y )= 5

9 . �

Theorem 7. A set of an odd number of regular, columned 3-sided dice has to be
uniform.

Proof. Since the set of dice is columned, the only way for a die X to have six
face wins over a die Y is if X ’s largest face is greater than Y ’s largest face, X ’s
second-largest face is greater than Y ’s, etc. This, however, implies that X beats
every die that Y beats, as well as Y, so the set could not be regular. So the only
possible numbers of face wins for one die over another are 5 and 4. Thus if X � Y,
P(X>Y )= 5

9 , the definition of uniformity. �

Theorem 8. A regular equitable set of an odd number n of 3-sided dice must be
uniform.

Proof. By regularity, each die wins against exactly 1
2(n−1) other dice. By equitabil-

ity, the total number of face wins for any die is 9
2(n− 1). So the average number of

face wins for any die against another is 9
2 . Thus if a die X has six face wins against

a die Y, then X must have three face wins or fewer against some other die Z , or
else its average number of face wins would be greater than 9

2 . Similarly, Z would
have only three face wins against some die, and this will eventually create a cycle
of 3-sided dice where each die beats the next with probability 2

3 . This contradicts
Theorem 4. Thus, if X � Y, then P(X>Y ) 6= 2

3 , and so P(X>Y )= 5
9 . �

The previous few theorems, along with Theorems 1 and 2, imply the following
corollary.

Corollary 9. If a set of an odd number of 3-sided dice has any three of the proper-
ties equitable, columned, uniform, and regular, then it must have the fourth property.
If the set of dice has two of these properties, at least one of which is regular or
equitable, then it has all four properties.

Note that it is possible for a set of dice to be only uniform and columned.
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Example 10. A 9 6 1

B 8 5 2

C 7 4 3

In this case A beats both B and C 5
9 of the time and B beats C 5

9 of the time, making
this set of dice uniform. While this set of dice is columned, C doesn’t win against
any die, and A’s face sum is 16 whereas C’s is 14, so the example is not equitable
or regular.

The theorems at the end of Section 2 suggest that generally, uniformity is the
strongest condition, but the others become slightly more powerful with small dice.
Generally, any one of the properties can exist alone, although a set of 3-sided dice
which is uniform but not columned must be transitive.

Example 11. A 15 5 4

B 12 11 1

C 14 7 3

D 13 9 2

E 10 8 6

This set of dice is equitable (since each die has 18 face wins) but has none of the
other properties.

Example 12. A 15 7 2

B 14 5 4

C 13 11 1

D 12 9 3

E 10 8 6

This set of dice is regular (since each die beats 2 other dice) but has none of the
other properties.

Example 13. A 14 7 1

B 11 8 2

C 15 9 3

D 12 10 4

E 13 6 5

This set of dice is columned (since each die contains one face each from the sets
{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, and {11, 12, 13, 14, 15}) but has none of the other
properties.

Note that for an even number of 3-sided dice, regularity and equitability are
impossible. However, we can replace these notions with weak versions. For a set of
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an even number n of k-sided dice (where k is odd), we say the set is weakly regular
if every die beats either n

2 or n
2 − 1 other dice. We say the set is weakly equitable

if the number of face wins for each die is within 1
2 of the average number of face

wins. For our dice, this is equivalent to the sum of the labels on each die being
either

⌈ 1
2 k(kn+ 1)

⌉
or
⌊ 1

2 k(kn+ 1)
⌋

.
Some of the theorems above generalize to the weaker versions, with the same

proof. Theorems 1, 2, and 6 directly generalize to the weaker notions of regularity
and equitability. However, Theorems 7 and 8 do not generalize.

First, a weakly regular columned set of dice need not be uniform.

Example 14. A 10 8 3

B 9 7 2

C 12 6 1

D 11 5 4

Here, A and D beat two dice each, while B and C each beat one die, so these dice
are weakly regular. However, P(A>B)= 2

3 , while the other winning probabilities
are 5

9 , so the dice are not uniform.

Also, a weakly regular and weakly equitable set of dice need not be uniform.

Example 15. A 8 7 5

B 12 4 3

C 11 6 2

D 10 9 1

The face sums of these dice are all 19 or 20, so they are weakly equitable, and each
die beats 1 or 2 other dice, so they are weakly regular. However, P(A>B)= 2

3 and
P(D>A) = 2

3 , while the other winning probabilities are 5
9 , so these dice are not

uniform.

Returning to our strong versions of the properties, we note that the statement that
any three of these properties implies the fourth is specific to 3-sided dice. For sets
of dice with more sides, it is possible to create sets of dice which have three of these
properties, but not the fourth, if the missing property is either columned or uniform.

Example 16. A 15 13 7 3 2

B 14 12 9 4 1

C 11 10 8 6 5

This is an example of three 5-sided dice which are equitable, regular, and uniform,
but not columned. Note also that Algorithm 4.2 in [Schaefer and Schweig 2017]
gives a way of constructing more examples which are equitable, regular, and uniform,
but not columned.
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The following theorem gives a large class of counterexamples.

Theorem 17. For an odd number n > 3, there exists a set of n n-sided dice which
is regular, equitable and columned but not uniform. In fact, each die beats the dice
that it wins against with a different probability. The set of winning probabilities for
a given die are the 1

2(n− 1) possible winning probabilities closest to 1
2 .

Proof. We begin by constructing the dice so that each die beats the next one in
the list (cyclically) with 1

2 n(n + 1)− 1 face wins. To do so, take the numbers
1, n + 1, 2n + 1, . . . , n2

− n + 1 (all congruent to 1 mod n) and place them on
different dice. This can be done arbitrarily, but we assume without loss of generality
that they are placed as shown here:

A 1
B n+1

C 2n+1

D 3n+1

E 4n+1
...

. . .

Then, place the number that is congruent to 2 mod n in each column above the
number congruent to 1 mod n, cycling around to the bottom row when necessary.

A 1 n+2

B n+1 2n+2

C 2n+1 3n+2

D 3n+1 4n+2

E 4n+1 . . .

...
. . .

Then we repeat the process, placing the number congruent to 3 mod n in each
column above the number congruent to 2 mod n, etc. This process creates a
columned set of dice, shown here for n = 5.

A 1 7 13 19 25
B 5 6 12 18 24
C 4 10 11 17 23
D 3 9 15 16 22
E 2 8 14 20 21

Now, each die will contain exactly one number from each congruence class
mod n, so the total on the die will be 1

2 n(n2
+ 1). By construction, a die X earns

1
2 n(n+ 1)− 1 face wins over the die Y after it, since each face of X is larger than
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the corresponding face of Y except the face of X congruent to 1 mod n. But X earns
1
2 n(n+ 1)− 2 face wins over the die Z after Y, since each face of X is greater than
the corresponding face of Z except the faces of X congruent to 1 or 2 mod n. This
pattern repeats, and X earns one fewer face win against every successive die after
it in the list. Thus X wins against exactly 1

2(n− 1) other dice, but with different
winning probabilities. �

Note that using face rankings, it possible to show that the construction above
is the only way to create a columned n-cycle of n-sided dice where each die has
1
2 n(n+ 1)− 1 face wins against the next one in the cycle. For a columned set of
dice, there are exactly n ways for one die to have 1

2 n(n + 1)− 1 face wins over
another. If die X beats die Y with exactly 1

2 n(n + 1) face wins, each face of X
would be greater than the face of Y in the same column, so for X to get one fewer
face win, exactly one of its faces must be smaller than the corresponding face of Y.
But, no such list of face rankings can repeat in a set of n n-sided dice, or else we
would be missing one such pattern, which would create a cycle within a single
column, which is impossible.

This section gives a relatively complete picture of the possibilities for 3-sided
dice. We attempt to generalize to sets of 4-sided dice with some success.

4. Implications between properties for 4-sided dice

Note that for 4-sided dice, it is no longer necessarily the case that a uniform set of
nontransitive dice must be columned.

Example 18. A 16 8 6 3

B 15 13 5 2

C 14 11 9 1

D 12 10 7 4

This set of dice is not columned since D has no face from the set {13, 14, 15, 16}.
However, every winning probability is 9

16 , and the set contains the cycle A � B,
B � C , C � A.

In fact, we have the following:

Theorem 19. A uniform columned set of three 4-sided dice is transitive.

Proof. Assume that A� B, B �C , and C � A. Then by uniformity and Theorem 3,
P(A>B) = P(B>C) = P(C>A) = 9

16 . Thus, since the dice are columned, the
only face rankings that are possible are 4320, 4311, 4221, or 3321. But, choosing
any three of those will give us one column where each face ranking has the same
number, implying that each face in that column would have to be larger than the
corresponding face on the next die, even cyclically, which is impossible. �
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Corollary 20. A uniform columned set of 4-sided dice is transitive.

Proof. Given a uniform columned set of 4-sided dice, if it is not transitive, then it
contains some 3-cycle. Call the dice in that cycle A, B, and C . Then we can convert
A, B, and C into a set of columned dice labeled by 1, . . . , 12 by “compressing” the
numbers in each column. So the smallest number on each die is changed to 1, 2,
or 3, but keeping the numbers in the same relative order as in the original set of
dice. Repeating this process for each column gives us a uniform columned set of
three 4-sided dice, which must be transitive, a contradiction. �

This theorem gives us two more corollaries.

Corollary 21. A set of columned equitable 4-sided dice must contain some evenly
matched dice — dice with equal probability of beating each other.

Proof. By the columned property, every die must have at least six face wins against
any other die, since the largest number on each die is guaranteed to be higher than the
smaller three numbers on the other dice, etc. Thus for any dice X and Y (assuming
X � Y without loss of generality), P(X>Y )≤ 10

16 . However, if P(X>Y )= 10
16 , this

would imply that X ’s largest face is greater than Y ’s largest face, X ’s second-largest
face is greater than Y ’s, etc. This contradicts equitability. Thus for every pair of
dice X and Y where X � Y, we have P(X>Y )= 9

16 . Thus, if there were no evenly
matched dice, the set of dice would be uniform, a contradiction. �

Corollary 22. There are no sets of regular columned 4-sided dice.

Proof. For a set of an odd number of 4-sided dice that is regular and columned,
if P(X>Y )= 10

16 , then each face of X is higher than the corresponding face of Y.
Thus X beats any die that Y beats, contradicting the regularity assumption. So if
X > Y, then P(X>Y )= 9

16 . Then, since regularity implies that there are no evenly
matched dice, the set of dice must be uniform, a contradiction. �

Note that Theorem 19 and Corollary 20 can in some sense theoretically be
generalized to larger sizes of dice. However, the theorem is not as powerful,
since it applies only to uniform sets of dice where the winning probability is( 1

2 n(n+ 1)− 1
)
/n2. So, for example, a columned set of 5-sided dice with uniform

winning probability 14
25 is impossible (see the note after Theorem 17), but if we

want probability 13
25 , such a set of dice is possible:

A 21 20 12 7 5
B 22 19 11 9 4
C 23 18 15 6 3
D 24 17 14 8 2
E 25 16 13 10 1
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But, if we ignore the columned property for the moment, we could ask whether any
two of the other properties will imply the last remaining one for a set of 4-sided dice.
Two of these implications are special cases of the theorems of Section 2. However,
the question of whether a regular and equitable set of 4-sided dice must be uniform
is unclear. To this point, we have yet to even find an example of a regular and
equitable set of 4-sided dice to test the implication. We suspect that an equitable
set of 4-sided dice must include at least two evenly matched dice somewhere, but
have not been able to prove this conjecture. (This would be a strengthening of
Corollary 21.)

We note here for completeness that our theorems on 4-sided dice are based
on the fact that relatively few winning probabilities are possible. For larger sizes
of dice, there are multiple possible winning probabilities, and generalizations of
Theorem 19 (and its implications) tend not to hold.

The following example gives a set of three 6-sided dice which are columned,
uniform, equitable and regular, showing that for sets of dice with a larger even
number of sides, the columned property can coexist with the others.

Example 23. A 18 14 12 7 4 2
B 17 13 11 9 6 1
C 16 15 10 8 5 3

Here, each die beats one other, with probability 19
36 , so the dice are regular and

uniform. Moreover, the face sums all equal 57, so the dice are equitable.

However, uniformity does not imply columned for larger sets of dice. The
following set of dice is adapted from [Savage 1994]. It is regular, uniform, and
equitable, but not columned.

Example 24. A 18 10 9 8 7 5
B 17 16 15 4 3 2
C 14 13 12 11 6 1

Note that each die still beats one other, and all winning probabilities are still 19
36 , so

regularity and uniformity still hold. Also, each die has face sum 57, so the dice are
still equitable.

So generally, for larger dice, the columned property is independent of the others.

5. Some tournaments achievable on 3-sided dice

One area of interest in the study of nontransitive dice is finding sets of dice with
relatively few sides that realize a given tournament; see [Bozóki 2014] for one
example. Given our focus on properties of sets of 3-sided dice, it is interesting to
investigate which tournaments are actually realizable on 3-sided dice.
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Figure 2. The 2-almost transitive tournament on five vertices.

First, for 1< j < n we define the j-almost transitive tournament on n dice to
be the tournament on n dice X1, . . . , Xn , where X i � Xk if i < k, or if k = 1 and
i ∈ {n− j + 1, n− j + 2, . . . , n}. Intuitively, this tournament is almost transitive
since each die except X1 beats the dice after it in the list. However, the last j dice
beat X1. Figure 2 shows the 2-almost transitive tournament on five vertices.

Theorem 25. Given integers j < n, there exists a columned set of n 3-sided non-
transitive dice which realize the j-almost transitive tournament.

Proof. We construct a table as follows. The third column contains 3n through
2n + 1, in order, from top to bottom. In the second column, die Xn− j+1, which
is the lowest-numbered die which beats X1, has face 2n. The remaining numbers
are added downward from it in order, wrapping around to the top after placing
2n− j + 1 on die Xn . In the first column, X1 receives the face 1, then dice Xn− j+1

through Xn contain the numbers 2 through j + 1, in order, and dice X2 through
Xn− j receive the numbers j + 2 through n, in order.

For example, the 2-almost transitive tournament on seven dice is realized by

X1 1 12 21
X2 4 11 20
X3 5 10 19
X4 6 9 18
X5 7 8 17
X6 2 14 16
X7 3 13 15

Then one can check easily that the dice from X2 through Xn− j defeat each other
transitively since the last two columns are in descending order. However, X1 loses
to Xn− j+1 through Xn since its smallest two faces are smaller. But dice X2 through
Xn− j all beat Xn− j+1 through Xn because of the first and third columns. Lastly,
the dice Xn− j+1 through Xn beat each other transitively because of the second and
third columns. �

For a tournament T, let T ′ denote the opposite tournament, the tournament on the
same set of dice with all edges reversed. Note that if we have a set of n k-sided dice
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labeled with the numbers 1 through nk that realizes a tournament T, we can replace
each face label j with the label nk+ 1− j to get a set of dice that realize T ′. In the
case of the j-almost transitive tournament T, we can see that T ′ is the tournament
where X i � Xk if i > k, or if i = 1 and k ∈ {n− j+1, n− j+2, . . . , n}. We call this
the j-upsetter tournament on n vertices, since it can be obtained from a transitive
tournament by making the “last-place” die beat the j dice that won against the most
dice in the transitive tournament. Thus as a corollary of this theorem, it is always
possible to construct a set of 3-sided dice that realize the j-upsetter tournament on
n vertices.

We also define the cyclic tournament on 2n+ 1 vertices to be the regular tour-
nament on the dice X1, . . . , X2n+1 where each die beats the next n dice in the list,
wrapping around to the beginning as necessary. (This name is given to it because it
can be constructed from the data of a cyclic group.)

Theorem 26. The cyclic tournament on 2n+ 1 vertices is realizable with 3-sided
dice.

Proof. We construct a table as follows. In the first column, we add the numbers in
the order 2, 4, 6, . . . , 2n, 1, 3, . . . , 2n+1, i.e., counting by twos mod 2n+1. In the
second column, place 4n+ 2 on the same die as the entry 1 and add the remaining
numbers in the second column in order downward from that die. Then in the third
column we add the numbers 6n+ 3 through 4n+ 3 starting with 6n+ 3 on the first
die and moving downward in order.

For example, the cyclic tournament on seven dice is realized by

X1 2 10 21
X2 4 9 20
X3 6 8 19
X4 1 14 18
X5 3 13 17
X6 5 12 16
X7 7 11 15

To see that this realizes the cyclic tournament, notice that Xn+1 has the entries
1, 4n+ 2, 5n+ 3. So it loses to the n dice above it because of the first and third
columns, but it beats the n dice below it because of the last two columns. Then for
any die Xk where k < n+1, we can see that Xk will beat Xk+1 through Xn because
of the last two columns. It will beat Xn+1 through Xn+k because of the first and
last columns. However, Xn+k+1’s first column contains the entry that is one more
than Xk’s first column, so Xk loses to Xn+k+1 through X2n+1. The dice after Xn+1

can be examined similarly. �
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Another construction that is very helpful is the “blow-up” of a tournament. (The
terminology is borrowed from a vaguely similar concept in algebraic geometry.)
Say we have a tournament S on the vertices Y1, . . . , Ym , and a tournament T
on the vertices X1, . . . , Xn . We can form a new tournament U on the vertices
Y1, . . . , Ym, X2, Xn , where in U, the relation � between X i and X j or Yi and Yj is
the same as in T or S respectively, and Yi � X j exactly if X1 � X j in T. Intuitively,
the vertex X1 in T has been “blown up” into an entire copy of S, which has the
same relationship to the other X j as X1 did. We call U the blow-up of T at X1 with
by S.

Theorem 27. If there is a columned set of k-sided dice that realize S and a set of
k-sided dice that realize T, then there is a set of k-sided dice that realize the blowup
of T at any vertex X by S.

Proof. Let X be the die representing the vertex at which we blow up T, and assume
it has faces a1, a2, . . . , ak , where a1<a2< · · ·<ak . We choose a small ε > 0. Then
for each die Yi in our realization of S, we replace its smallest label yi1 by a1+ yi1ε,
its second-lowest face yi2 by a2+ yi2ε, etc. (This will of course create a set of dice
labeled with numbers other than the usual integers, but we will adjust accordingly at
the end of the algorithm.) We claim that the new dice Yi that we have just constructed
will have the same relationships to each other as the original dice realizing S. To
see this, note that for faces in the same “column”, we have yi j < yk j if and only
if aj + yi jε < aj + yk jε. For numbers in different columns, yi j < ykm whenever
j < m. But since aj < am in this case, we will also have aj + yi jε < am + ykmε.
Moreover, we can choose ε small enough that aj + yi jε < aj + 1 always holds,
so that every entry aj + yi jε is in the same position as aj relative to the faces of
the other dice that realized T. That is, the new die Yi will beat (or lose to) those
other dice in the same way that X did. So, if we remove X from the set of dice and
include the altered Yi ’s, the resulting set will realize the blowup of T at X by S.
And finally, we can alter the actual numbers on the resulting dice set by replacing
the lowest number on all the faces by a 1, the second-lowest number by 2, etc.,
without changing the structure of �. �

Example 28. As an example of this theorem, we can take both S and T to be the
dice set of (1), and let X be die C . For clarity, we will call the dice in S lowercase
a, b, and c. The algorithm (using ε = .1) originally gives

A 1 5 9
B 3 4 8
a 2.1 6.5 7.9
b 2.3 6.4 7.8
c 2.2 6.6 7.7
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Converting these to the numbers 1 through 15, we obtain

A 1 7 15
B 5 6 14
a 2 9 13
b 4 8 12
c 3 10 11

As another example, the algorithm above for constructing a set of 3-sided dice
realizing the 1-almost transitive tournament implicitly makes use of the blow-up
algorithm. If we start with the dice set of (1) as T, and S as the dice set

X1 1 2n 3n

X2 2 2n−1 3n−1

X3 3 2n−2 3n−2
...

...
...

...

realizing the transitive tournament, then performing the algorithm to blow up T at B
by S will give the same construction of a dice set realizing the 1-almost transitive
tournament as Theorem 25.

Notice that these theorems allow us to construct a wide range of 3-sided realiza-
tions of tournaments. But in general, not all tournaments are realizable with 3-sided
dice. An exhaustive computer search found that all tournaments with up to seven
vertices could be realized on 3-sided dice, but that approximately 95 tournaments on
eight vertices (out of 6880) could not be realized on 3-sided dice. On nine vertices,
there are even some regular tournaments that cannot be realized with 3-sided dice.
The question of exactly which tournaments can be realized on 3-sided dice seems
difficult but interesting.
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Numerical studies of serendipity and
tensor product elements for eigenvalue problems

Andrew Gillette, Craig Gross and Ken Plackowski

(Communicated by Antonia Vecchio)

While the use of finite element methods for the numerical approximation of eigen-
values is a well-studied problem, the use of serendipity elements for this purpose
has received little attention in the literature. We show by numerical experiments
that serendipity elements, which are defined on a square reference geometry, can
attain the same order of accuracy as their tensor product counterparts while using
dramatically fewer degrees of freedom. In some cases, the serendipity method
uses only 50% as many basis functions as the tensor product method while still
producing the same numerical approximation of an eigenvalue. To encourage the
further use and study of serendipity elements, we provide a table of serendipity
basis functions for low-order cases and a Mathematica file that can be used to
generate the basis functions for higher-order cases.

1. Introduction

Computational approximation of eigenvalues is a topic of ongoing interest across
a broad spectrum of the applied mathematics community, due in part to the wide
variety of application areas where it is required. In this work, we compare two
finite element methods for the computation of eigenvalues of the Laplacian: tensor
product and serendipity. While tensor product finite element methods have been
used for decades to compute eigenvalues, the lesser known serendipity elements
have been employed rarely, if ever, in this context, despite the fact that they are
expected to require fewer computations to achieve the same order of accuracy.

The potential benefits of a serendipity element eigenvalue solver are obvious
from a rough estimate of the degrees of freedom required for a method with O(h p)

error decay. Here, h indicates the maximum diameter of an affinely mapped square
mesh element and p≥ 1 indicates the maximum exponent of any variable appearing
in a basis for the element. The tensor-product finite element method for H 1-
conforming problems in Rn uses (p+ 1)n basis functions per element, while the
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serendipity method uses roughly pn/n! for large p. Thus, for domains in R2, an
O(h p) serendipity method has about 50% of the number of basis functions as its
tensor product counterpart, while for domains in R3, an O(h p) serendipity method
has only 17% of the number of basis functions as a tensor product method. As we
show by numerical evidence, these computational savings are not restricted to an
asymptotic regime but can be realized even in domains in R2 and for values p ≤ 6.

The body of prior work studying finite element methods for eigenvalue approx-
imation dates back to the 1970s [Hackbusch 1979] and is quite large due to the
many options available when designing finite element schemes and the many kinds
of inquiries that could be made. An excellent survey of the research in this area was
given by Boffi [2010]. While many works are concerned with approximation of
the spectrum of the Laplacian (e.g., concerns about pollution and completeness of
the computed spectrum), here we focus on the accurate computation of individual
eigenvalues to a high order of accuracy with the goal of minimizing the number
of global degrees of freedom. A similar kind of study by Wang, Monk, and
Szabó [Wang et al. 1996] compared h- and p-refinement schemes on tetrahedra
for computing resonant modes in a cavity using tetrahedral elements. This work
focuses on square elements, which offer greater ability to reduce the number of
global degrees of freedom than simplicial elements.

In this paper, we carry out a series of numerical experiments to compare the
accuracy of serendipity and tensor product finite element methods in the context of
eigenvalue computation. We compare square and L-shaped domains, Dirichlet and
Neumann boundary conditions, and h- and p-refinement strategies. To ensure a fair
comparison, we implement basis functions for both tensor product and serendipity
elements using the construction process described in the work of Floater and Gillette
[2017], which uses interpolation conditions based on partial derivative data at edge
and cell midpoints. To the best of our knowledge, this is the first time such functions
have been tested numerically.

Our results show that a p-refinement strategy with serendipity elements is prefer-
able to the same strategy with tensor product elements in a variety of domain and
boundary condition scenarios. In particular, we find many specific instances where
the serendipity elements achieve the same order of accuracy as the corresponding
tensor product element with only 50% the number of degrees of freedom. The
results also show that an h-refinement strategy does not always favor serendipity
elements, meaning application context is essential when deciding between the use
of tensor product and serendipity elements.

The remainder of the paper is organized as follows. In Section 2, we review the
eigenvalue problem for the Laplace equation with Neumann and Dirichlet boundary
conditions, as well as the derivation of a Galerkin finite element method. Following
this is a discussion of the two families of finite elements studied in this paper:
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tensor product and serendipity. In Section 3, we state interpolation conditions that
involve both values and derivative values and compute the basis functions for both
the tensor product and the serendipity finite elements. We also discuss the relevant
components for implementation via Mathematica and MATLAB. In Section 4, we
provide a description of our results and a discussion of the comparison between
the tensor product and serendipity elements. This includes comparisons of the
aforementioned scenarios. In Section 5, we summarize our conclusions and give
some directions for future research. Finally, in the Appendix, we give tables of the
serendipity basis functions that we use and provide a link to a Mathematica code
that can be used for further studies.

2. Finite element methods for eigenvalue problems

Our focus in this work is the scalar-valued Laplace eigenvalue problem. With
Dirichlet boundary conditions, the problem is to find λ∈R and u ∈ H 2(�) such that{

−1u = λu in �,
u = 0 on ∂�.

(1)

With Neumann boundary conditions, the problem is to find λ ∈ R and u ∈ H 2(�)

such that {
−1u = λu in �,
du/dn= 0 on ∂�,

(2)

where n is the unit vector normal to the boundary of �.
We consider two subsets of R2 for the domain �: the unit square [0, 1]2 and

the L-shaped domain, [0, 2]2− (1, 2]2. On [0, 1]2, the eigenvalues for the Dirichlet
problem (1) are

(m2
+ n2)π2 for m, n ∈ {1, 2, . . .} and �= [0, 1]2.

For the Neumann problem (2) on [0, 1]2, the eigenvalues are

(m2
+ n2)π2 for m, n ∈ {0, 1, 2, . . .} and �= [0, 1]2;

the only difference being that m and n are allowed to have value 0. For (m, n) pairs
with m 6= n, the corresponding eigenvalue has multiplicity at least 2, while those
with m = n have multiplicity 1 and are called “simple”.

On the L-shaped domain, Dauge [2003] has given benchmark computations with
at least eight digits of accuracy for the lowest nonzero eigenvalues for the Neumann
problem. The first four of these are

λ(1) = 1.4756218450, λ(2) = 3.5340313683,

λ(3) = 9.8696044011, λ(4) = 11.389479398.
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Note that λ(3) = 2π2, which is also an eigenvalue for the Dirchlet problem. In our
experiments, we look at approximating 2π2 for each kind of boundary condition,
as well as the approximation of λ(1) for the Neumann case.

Discretization of (1) for numerical approximation begins with the weak form
of (1). Set V := H 1

0 (�) and find λ ∈ R and u ∈ V , u 6= 0, such that∫
�

∇u · ∇v = λ
∫
�

uv for all v ∈ V. (3)

A Galerkin finite element method seeks a solution to (3) that holds over a finite-
dimensional subspace Vh,p ⊂ V : find λh,p ∈R and uh,p ∈ Vh,p, uh,p 6= 0, such that∫

�

∇uh,p · ∇vh,p = λh,p

∫
�

uh,p vh,p for all vh,p ∈ Vh,p. (4)

The dimension of Vh,p is determined by the type of element used (tensor product
or serendipity, in our case) in addition to the parameters h and p. Here, h indicates
the maximum diameter of an element in the mesh and p indicates the maximum
exponent of any variable appearing in the monomial basis for the element. Hence,
as h→ 0 or p→∞, we have dim Vh,p→∞.

We consider two possible choices for Vh,p that are subsets of H 1(�) and are
associated to a partition of � into a mesh of squares. We will follow notational
conventions from the periodic table of the finite elements [Arnold and Logg 2014a;
2014b] to describe the two choices in terms of the local spaces on each square
element. The first choice for a local space is Q−p30(�2), more commonly known as
the tensor product element of order p on a square [Arnold et al. 2015]. This element
has 1 degree of freedom per vertex, (p − 1) degrees of freedom per edge, and
(p−1)2 degrees of freedom associated to the interior, for a total of (p+1)2 degrees
of freedom per square element. The second choice for a local space is Sp3

0(�2),
known as the serendipity element of order p on a square [Arnold and Awanou 2011].
The serendipity element has the same degrees of freedom associated to vertices and
edges of the square, but only 1

2(p− 3)(p− 2) degrees of freedom1 associated to
the interior of the square. It has a total of 1

2(p
2
+ 3p+ 6) degrees of freedom per

element.
In addition to the type of domain � (square or L-shaped), the family of element

(Q− or S), and the order of p selected, the dimension of Vh,p depends on the
maximum diameter of a mesh element. We only consider meshes where all elements
are squares of the same side length h, so that the maximum diameter of a mesh
element is

√
2h. By this convention, if h = 1/N for an integer N ≥ 1, the square

domain will have N 2 elements and the L-shaped domain will have 3N 2 elements.

1For p = 1, there are no interior degrees of freedom; the formula applies for any p ≥ 2.
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By counting the total number of vertices, edges, and elements in the mesh, we have
the formula

dim Vh,p = (# vertices)+ (p− 1) · (# edges)+
( # DoF

interior

)
· (# elements),

where the number of degrees of freedom (DoF) per interior depends on the choice
of Q− or S, as described above. Note that when Dirichlet boundary conditions are
used, the values of degrees of freedom associated to the boundary of the domain
are set to zero, which decreases the dimension of Vh,p.

The goal of the numerical experiments in this paper is to study the following
question: given a domain, a set of boundary conditions, a rough guess for an
eigenvalue λ, an h-refinement or p-refinement strategy, and a desire to attain a
precise estimate of λ while avoiding fruitless growth in dim Vh,p, is it better to use
Q− or S elements? Since the Sp3

0 and Q−p30 elements each contain polynomials
of total degree at most p and dimSp3

0 < dimQ−p30 for p ≥ 2, we might expect
that the serendipity elements would be preferable in every case. On the other hand,
perhaps the “extra” approximation power afforded by the larger basis in the tensor
product element provides better eigenvalue estimation overall. To make a fair
comparison, we implement serendipity and tensor product elements by the same
methodology, and then report their results when used in a series of computational
experiments.

3. Implementation of serendipity elements

Here, for the first time, we compute and employ the basis functions for Sp3
0(�2)

with Hermite-like interpolation conditions at edge midpoints, as described in [Floater
and Gillette 2017]. We review the degrees of freedom for these elements here and
explain how the process outlined in that paper was used to derive the basis functions
employed in our numerical experiments.

Serendipity degrees of freedom. The term “serendipity element” has appeared in
various mathematical and engineering texts since the 1970s [Brenner and Scott 1994;
Ciarlet 1978; Hughes 1987; Mandel 1990; Szabó and Babuška 1991; Strang and Fix
1973], referring to the fact that these elements seemed to achieve O(h p) accuracy
with fewer degrees of freedom than their tensor product counterparts. Arnold and
Awanou [2011] provided degrees of freedom in the classical finite element sense
for the H 1-conforming version of these spaces: for a d-dimensional face �d of an
n-cube �n , the order-p serendipity degrees of freedom for a scalar function u are

u 7→
∫
�d

uq for all q ∈ Pp−2d(�d), (5)
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where Pp−2d(�d) denotes the space of polynomials in n variables of degree≤ p−2d
on face �d . For n= 2 and p≥ 2, the space of polynomials associated to the degrees
of freedom (5) is denoted by Sp3

0(�2) and given by

Sp3
0(�2)= Pp(�2)⊕ span{x p y, xy p

}. (6)

It is shown in [Arnold and Awanou 2011] that the degrees of freedom (5) are
unisolvent for (6), but a consideration of how to construct suitable basis functions
for the implementation of these elements in applications was not provided.

Basis functions for serendipity elements. We use a procedure outlined by Floater
and Gillette [2017] to construct basis functions for the Sp3

0(�2) element. To the
best of our knowledge, these functions have not been constructed explicitly or used
in numerical experiments previously. The procedure is also used to construct bases
for the Q−p30(�2) element.

Given p ≥ 1, we first we define a set of p+1 functions over [−1, 1], denoted by

8p[x] := {φ1(x), . . . , φp+1(x)}.

Let D denote the endpoints and midpoint of [−1, 1], i.e., D = {−1, 0, 1}, and
denote the Kronecker delta function by

δi ( j)=
{

0 if i 6= j,
1 if i = j.

Define 81[x] := {(1− x)/2, (1+ x)/2}. For p ≥ 2, fix the interpolation properties2

φ1(x0)= δ−1(x0) ∀x0 ∈ D, (7)

φ2(x0)= δ0(x0) ∀x0 ∈ D, (8)

φp+1(x0)= δ1(x0) ∀x0 ∈ D, (9)

φ
(k)
i (0)= 0 ∀i ∈ {1, 2, p+ 1}, ∀k ∈ {1, . . . , p− 2}, (10)

φi (x0)= 0 ∀x0 ∈ D, ∀i ∈ {3, . . . , p}, (11)

φ
(i−2)
i (0)= 1 ∀i ∈ {3, . . . , p}, (12)

φ
(k)
i (0)= 0 ∀i ∈ {3, . . . , p}, ∀k ∈ {1, . . . , i − 3}. (13)

For i = 1 to p + 1, we find the lowest-degree polynomial φi that satisfies the
above constraints. Since there are at most p+ 1 constraints for each i , this process
uniquely defines a set of p+ 1 polynomials, each of degree at most p. Moreover,
φ1, φ2, and φp+1 are the only functions in the set that have nonzero values at −1,
0, and 1, respectively, while the functions φ3 through φp have linearly independent

2If a set of indices on the right is empty, the property should be treated as vacuous.
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p φ1(x) φ2(x) φ3(x) φ4(x) φ5(x), φ6(x)

1 −
1
2 (x−1) 1

2 (x+1)
2 1

2 (x−1)x 1−x2 1
2 x(x+1)

3 −
1
2 (x−1)x2 1−x2 x−x3 1

2 x2(x+1)
4 1

2 (x−1)x3 1−x4 x−x3
−

1
2 (x−1)x2(x+1) 1

2 x3(x+1)
5 −

1
2 (x−1)x4 1−x4 x−x5

−
1
2 (x−1)x2(x+1) − 1

6 (x−1)x3(x+1), 1
2 x4(x+1)

Table 1. Basis functions for 8p[x] with 1≤ p≤ 5.

constraints on their derivatives at 0. Thus, for each p ≥ 1, 8p[x] is a basis for
Pp([−1, 1]). The sets 81[x], . . . , 85[x] are listed explicitly in Table 1.

By taking tensor products of the 8p[x] sets, we can build out bases for tensor
product and serendipity spaces over [−1, 1]n for any n ≥ 1, although we consider
only n = 2 here. We fix the notation

8pq := {φi (x)φj (y) : φi (x) ∈8p[x], φj (y) ∈8q [y]},

where p and q need not be distinct. A basis for the tensor product space Q−p30(�2)

can be computed immediately as

basis for Q−p3
0(�2)=8pp.

A basis for the serendipity space Sp3
0(�2) is more involved to describe but only

slightly more difficult to compute. First, an addition operation on sets of the
type 8pq is defined as follows. To build the set 8pq+8rs , let M =max{p, q, r, s}
and build a square array of indices {1, . . . ,M+1}×{1, . . . ,M+1}. Associate the
function φi (x)φj (y) ∈8pq to index {k, `} according to the rule

φi (x)φj (y) 7→


{M + 1, j} if i = p+ 1, j < q + 1,

{i,M + 1} if i < p+ 1, j = q + 1,

{M + 1,M + 1} if i = p+ 1, j = q + 1,

{i, j} otherwise.

Associate the function φi (x)φj (y)∈8rs to indices according to the same rule, replac-
ing p by r and q by s. Initialize Apq,M as an (M+1)×(M+1) array of zeros, then
place the functions from8pq into Apq,M according to their index assignment. Define
Ars,M analogously, using functions from 8rs . The set 8pq +8rs is then defined to
be the set of nonzero entries of Apq,M+Ars,M . In practice, this reindexing and sum-
mation procedure is carried out by inserting rows or columns of zeros at appropriate
places into the arrays storing 8pq and 8rs and then adding the arrays together.
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A basis for Sp3
0(�2) can then be written as a linear combination of this addition

operation on some 8rs sets. For p= 1 through p= 6, these linear combinations are

S13
0(�2) basis=811, (14)

S23
0(�2) basis=821+812−811, (15)

S33
0(�2) basis=831+813−811, (16)

S43
0(�2) basis=841+814+822−(821+812), (17)

S53
0(�2) basis=851+815+832+823−(831+813+822), (18)

S63
0(�2) basis=861+816+842+824+833−(841+814+823+832). (19)

The derivation of these linear combinations is given in [Floater and Gillette 2017,
§5] using different notation. The techniques in that paper can produce bases in this
way for Sp3

0(�n) for any p ≥ 1 and n ≥ 1. As an example, in the Appendix, we
provide the two-dimensional serendipity basis functions for p = 1 to 4.

Implementation via Mathematica and MATLAB. We use Mathematica to com-
pute the bases for Q−p30(�2) and Sp3

0(�2) according to the procedure just de-
scribed and the process of basis generation is summarized below. The Mathematica
function InterpolatingPolynomial is used to produce the sets 8p[x] based on
conditions (7)–(13). For example, φ3(x) ∈83[x] should satisfy

φ3(−1)= φ3(0)= φ3(1)= 0,

as well as φ′3(0)= 1. The unique cubic polynomial satisfying these constraints is
computed by the command

InterpolatingPolynomial[{{-1, 0}, {0, 0, 1}, {1, 0}}, x].

We define a function interpolatingList[p] that creates the required inputs
to InterpolatingPolynomial for each φi ∈ 8p[x]. We also define a function
genTable2D[p,q,M] that builds the array Apq,M . Bases for Sp3

0(�2) are con-
structed by simplifying linear combinations of appropriate genTable2D[r,s,M]
arrays according to (14)–(19); the value of M is set to p for each term in the combina-
tion so that the output is a (p+1)×(p+1) array with exactly dimSp3

0(�2) nonzero
entries. The basis for Q−p30(�2) is built by the command genTable2D[p,p,p],
which generates a (p+ 1)× (p+ 1) array with all entries nonzero.

Once the basis functions are created, we pass them to a finite element solver in
MATLAB in order to compute approximate eigenvalues. The resulting finite element
problem is given by

λMv = Lv,
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where M is the mass matrix and L is the stiffness matrix with

M = [Mi, j ] such that Mi, j =

∫
�

ψiψj dA,

L = [L i, j ] such that L i, j =

∫
�

〈∇ψi ,∇ψj 〉 dA,

where ψi , ψj range over a basis for Q−p30(�2) or S−p 30(�2). The finite element
solver takes a local approach, making use of the basis functions defined over a
reference element as above (specifically [−1, 1]2). By calculating the desired
entries of the mass and stiffness matrices over the reference element, scaling, and
assembling on the global square or L-shaped domain, we produce global mass and
stiffness matrices.

Furthermore, in the derivation of the variational form of the problem, the imposi-
tion of the Neumann conditions is encoded by the vanishing of any integrals over
the boundary of the domain. To impose the Dirichlet conditions, it is necessary
to manipulate the equations in the discrete problem that solve for the coefficients
corresponding to boundary nodes. Traditionally, this is realized by setting each of
the coefficients corresponding to value interpolating nodes on the boundary equal
to zero. As the tensor product and serendipity basis functions that we use include
interpolation of some partial derivative values along the boundary, we also set to
zero the coefficients of the basis functions corresponding to those conditions.

4. Numerical experiments and results

Our numerical experiments are characterized by four choices: domain (square
or L-shaped), boundary conditions (Dirichlet or Neumann), eigenvalue λ being
approximated, and refinement strategy (p-refine with h fixed or h-refine with p
fixed). For each choice, we report the error in the numerical approximation of
λ as a function of the number of global degrees of freedom, i.e., the dimension
of Vh,p. Two data series are generated in this fashion: one for tensor product
elements and one for serendipity elements, using p = 1 through 6 for a fixed h
value (p-refinement), or for h = 1, 1

2 , . . . ,
1
5 for a fixed p value (h-refinement). The

results of these experiments are shown in Figures 1–10.

Square domain. Our first comparison of the tensor product and serendipity ele-
ments is on a square domain with Neumann boundary conditions. Figure 1 shows
the error in approximating the eigenvalue 2π2 when we fix h and allow p to vary.
Ignoring for now the outlier corresponding to one of the tensor product solutions,
we see that in nearly every case, using serendipity elements can match the accuracy
of the eigenvalue obtained by tensor product elements with much fewer degrees of
freedom. For example, in Figure 1, h= 1

4 , we see that we can obtain an approximate



670 ANDREW GILLETTE, CRAIG GROSS AND KEN PLACKOWSKI

0 10 20 30 40 50
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Serendipity

Tensor

h = 1

0 20 40 60 80 100 120 140 160 180
10 -8

10 -6

10 -4

10 -2

10 0

10 2

Serendipity

Tensor

h = 1
2

0 50 100 150 200 250 300 350 400
10 -8

10 -6

10 -4

10 -2

10 0

10 2

Serendipity

Tensor

h = 1
3

0 100 200 300 400 500 600 700
10 -8

10 -6

10 -4

10 -2

10 0

10 2

Serendipity

Tensor

h = 1
4

0 200 400 600 800 1000
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Serendipity

Tensor

h = 1
5

Figure 1. Square domain, Neumann conditions, λ = 2π2,
p-refinement experiments.

eigenvalue which differs by about 10−6 from the theoretical using both serendipity
and tensor elements. However, when using the serendipity elements, we see a
reduction in the number of degrees of freedom by approximately half compared to
the tensor product element.

We see similar behavior in the Dirichlet problem, depicted in Figure 2, with the
obvious difference of an overall reduction in the number of degrees of freedom.
Note that since we remove the degrees of freedom corresponding to the boundary,
not discretizing the mesh at all (i.e., when h= 1) results in having too few equations
to properly solve for a nonzero eigenvalue for small p.

When we consider the Neumann problem with p fixed and h varied, we see the
results depicted in Figure 3. In contrast to the previously discussed results, we see
that, in nearly every case, the tensor product elements achieve better accuracy than
serendipity while using fewer degrees of freedom. The only exception is when
p = 4, also depicted in Figure 3. Here, we note a large increase in error when
using tensor product elements. This effect can be seen in nearly every plot for
h-refinements and accounts for the large jumps in the tensor product results where
h is fixed. The reason for this error was undetermined in our experiments, but will
be revisited when the L-shaped results are discussed. We see the same behavior
for the Dirichlet problem in Figure 4. In results not displayed here, we analyze p-
and h-refinements in approximating the nonsimple Neumann eigenvalue 5π2. The
results are qualitatively similar to the previously discussed results.

We also note strange behavior when using elements of order 5 and 6. Exhibited
in the Neumann case on the square in Figure 3, p = 5 and p = 6, we see that as we
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Figure 2. Square domain, Dirichlet conditions, λ = 2π2,
p-refinement experiments.
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Figure 3. Square domain, Neumann conditions, λ = 2π2,
h-refinement experiments.

refine our mesh further, the error increases. The error sometimes increases higher
than lower-order elements solving the same problem, as seen in many of the plots
when h is fixed; the trend in error seems to “flair up” towards the end. The reason
for this behavior is likely due to numerical roundoff errors.

L-shaped domain. On the L-shaped domain, we see in Figures 5–8 nearly the same
patterns described above when approximating the eigenvalue 2π2. We note that
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Figure 4. Square domain, Dirichlet conditions, λ = 2π2,
h-refinement experiments.
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Figure 5. L-shaped domain, Neumann conditions, λ = 2π2,
p-refinement experiments.

when h is fixed, the savings achieved by serendipity elements is increased even
further. For example, with Neumann boundary conditions and h = 1

4 (Figure 5), for
the p = 5 case, both the serendipity and tensor product elements exhibit an error of
about 10−6. The number of degrees of freedom used in the serendipity case however
is less than half of that of the tensor case. With Dirichlet boundary conditions as
seen in Figure 6, h = 1

4 , this savings is further increased, with serendipity elements
using nearly a third of the degrees of freedom used by tensor product elements.
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Figure 6. L-shaped domain, Dirichlet conditions, λ = 2π2,
p-refinement experiments.
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Figure 7. L-shaped domain, Neumann conditions, λ = 2π2,
h-refinement experiments.

In addition to the plots described above, we have also added plots depicting the
results of approximating the Neumann eigenvalue numerically approximated as
1.4756218450. Figure 9 and Figure 10 show that these results mostly correspond
to the previously exhibited behavior with the exception that in Figure 9, the tensor
product elements also achieve better approximations when refining p. We also note
that in Figure 10, p = 4, the order-4 tensor product elements have a large decrease
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Figure 8. L-shaped domain, Dirichlet conditions, λ = 2π2,
h-refinement experiments.
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Figure 9. L-shaped domain, Neumann conditions, λ= 1.4756218450,
p-refinement experiments.

in error. This behavior contrasts the increase we saw when approximating 2π2 with
order-4 tensor product elements over the square and is, again, unexplained.

Spectrum comparison. We also compare the spectrum of eigenvalues that are
computed by the tensor product and serendipity elements on the square versus
the theoretical spectrum. The results are shown in Figure 11. We see that the
eigenvalues calculated by the tensor product and serendipity elements are nearly
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Figure 10. L-shaped domain, Neumann conditions, λ=1.4756218450,
h-refinement experiments.
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the same, and, as expected, as we attempt to approximate larger eigenvalues, the
results become less accurate.

5. Conclusion and future directions

A key takeaway message from our numerical experiments is that when seeking
eigenvalue estimates on a fixed mesh of squares, serendipity elements do appear to
fulfill their promise of producing as accurate a result as tensor product elements, de-
spite having roughly 50% the number of degrees of freedom. Since many application
contexts require a fixed domain mesh, it would be advantageous computationally to
use serendipity elements in such circumstances.
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Various additional experiments are planned. First, there are questions in regards
to differing behavior on the square versus the L-shaped domain, and the Neumann
versus Dirichlet boundary conditions. A study of serendipity elements for the
Poisson equation (i.e., with nonzero boundary conditions) or for more general
eigenvalue problems might help explain our results. A second issue is to resolve the
dramatic aberrations in the results for the case of tensor product basis functions for
the case p = 4. Further investigation into the pattern observed in the convergence
behavior depending on mesh discretization is in progress.

We also plan to investigate the observation that mesh discretization for high
degree polynomial basis functions sometimes results in less accurate approximations.
We suspect that this arises from numerical roundoff errors, as the results became
worse only after reaching a threshold on the order of 10−8.

As discussed in the Mathematica code accompanying this paper, similar con-
structions for serendipity basis functions in three dimensions were also determined.
In future work, we plan to extend the implementation of our finite element solver
to allow for three-dimensional domains, and implement these three-dimensional
serendipity basis functions in order to produce similar analysis and comparisons as
those that we have found for two dimensions.

Appendix: Serendipity basis functions

The following are the serendipity element basis functions in two-dimensions from
order 1 to 4. The basis functions are organized as they are calculated in Mathematica,
i.e., as the sum of reindexed arrays of basis functions as discussed in Section 3.
The Mathematica code that was used to generate these functions is available in the
online supplement:

S13
0(�2) basis=

(
1
4(1− x)(1− y) 1

4(1− x)(y+ 1)
1
4(x + 1)(1− y) 1

4(x + 1)(y+ 1)

)
,

S23
0(�2) basis=−

1
4 (x − 1)(y− 1)(x + y+ 1) 1

2 (x − 1)(y2
− 1) 1

4 (x − 1)(x − y+ 1)(y+ 1)
1
2 (x

2
− 1)(y− 1) 0 −

1
2 (x

2
− 1)(y+ 1)

1
4 (y− 1)(−x2

+ yx + y+ 1) − 1
2 (x + 1)(y2

− 1) 1
4 (x + 1)(y+ 1)(x + y− 1)

 ,
S33

0(�2) basis=
1
4 (x − 1)(y− 1)A3

1
2 (x − 1)(y2

− 1) 1
2 (x − 1)y(y2

− 1) − 1
4 (x − 1)(y+ 1)A3

1
2 (x

2
− 1)(y− 1) 0 0 −

1
2 (x

2
− 1)(y+ 1)

1
2 x(x2

− 1)(y− 1) 0 0 1
2 (x − x3)(y+ 1)

−
1
4 (x + 1)(y− 1)A3 −

1
2 (x + 1)(y2

− 1) 1
2 (x + 1)(y− y3) 1

4 (x + 1)(y+ 1)A3

 ,

http://msp.org/involve/2018/11-4/involve-v11-n4-x08-SerendipityBasisGeneration.nb
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where
A3 = x2

+ y2
− 1;

S43
0(�2) basis=

B11 B12 B13 B14 B15
1
2 (x

2
− 1)(x2

− y)(y− 1) (x2
− 1)(y2

− 1) 0 0 −
1
2 (x

2
− 1)(y+ 1)(x2

+ y)
1
2 x(x2

− 1)(y− 1) 0 0 0 1
2 (x − x3)(y+ 1)

1
4 (x − 1)x2(x + 1)(y− 1) 0 0 0 −

1
4 (x − 1)x2(x + 1)(y+ 1)

B51 B52 B53 B54 B55

 ,

where
B11 =−

1
4(x − 1)(y− 1)(x3

− (y+ 1)x + y(y2
− 1)),

B12 =
1
2(y

2
− 1)(−x2

+ y2x + x − y2),

B13 =
1
2(x − 1)y(y2

− 1),

B14 =
1
4(x − 1)(y− 1)y2(y+ 1),

B15 =
1
4(x − 1)(y+ 1)(x3

+ (y− 1)x − y3
+ y),

B51 =
1
4(x + 1)(y− 1)(−x3

+ yx + x + y3
− y),

B52 =−
1
2(y

2
− 1)(x2

+ y2x + x + y2),

B53 =
1
2(x + 1)(y− y3),

B54 =−
1
4(x + 1)(y− 1)y2(y+ 1),

B55 =
1
4(x + 1)(y+ 1)(x3

+ (y− 1)x + y(y2
− 1)).

Acknowledgements

All authors were supported in part by NSF Award 1522289.

References

[Arnold and Awanou 2011] D. Arnold and G. Awanou, “The serendipity family of finite elements”,
Found. Comput. Math. 11:3 (2011), 337–344. MR Zbl

[Arnold and Logg 2014a] D. Arnold and A. Logg, “Periodic table of the finite elements”, electronic
reference, 2014, available at http://femtable.org.

[Arnold and Logg 2014b] D. Arnold and A. Logg, “Periodic table of the finite elements”, SIAM News
47:9 (2014), 9 pp.

[Arnold et al. 2015] D. Arnold, D. Boffi, and F. Bonizzoni, “Finite element differential forms on
curvilinear cubic meshes and their approximation properties”, Numer. Math. 129:1 (2015), 1–20.
MR Zbl

[Boffi 2010] D. Boffi, “Finite element approximation of eigenvalue problems”, Acta Numer. 19
(2010), 1–120. MR Zbl

[Brenner and Scott 1994] S. C. Brenner and L. R. Scott, The mathematical theory of finite element
methods, Texts in Applied Mathematics 15, Springer, New York, 1994. MR Zbl

http://dx.doi.org/10.1007/s10208-011-9087-3
http://msp.org/idx/mr/2794906
http://msp.org/idx/zbl/1218.65125
http://femtable.org
http://www-users.math.umn.edu/~arnold/papers/periodic-table.pdf
http://dx.doi.org/10.1007/s00211-014-0631-3
http://dx.doi.org/10.1007/s00211-014-0631-3
http://msp.org/idx/mr/3296150
http://msp.org/idx/zbl/1308.65193
http://dx.doi.org/10.1017/S0962492910000012
http://msp.org/idx/mr/2652780
http://msp.org/idx/zbl/1242.65110
http://dx.doi.org/10.1007/978-1-4757-4338-8
http://dx.doi.org/10.1007/978-1-4757-4338-8
http://msp.org/idx/mr/1278258
http://msp.org/idx/zbl/0804.65101


678 ANDREW GILLETTE, CRAIG GROSS AND KEN PLACKOWSKI

[Ciarlet 1978] P. G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics
and its Applications 40, North-Holland, Amsterdam, 1978. MR Zbl

[Dauge 2003] M. Dauge, “Benchmark computations for Maxwell equations for the approximation of
highly singular solutions”, electronic reference, 2003, available at http://tinyurl.com/daugebench.

[Floater and Gillette 2017] M. S. Floater and A. Gillette, “Nodal bases for the serendipity family of
finite elements”, Found. Comput. Math. 17:4 (2017), 879–893. MR

[Hackbusch 1979] W. Hackbusch, “On the computation of approximate eigenvalues and eigenfunc-
tions of elliptic operators by means of a multi-grid method”, SIAM J. Numer. Anal. 16:2 (1979),
201–215. MR Zbl

[Hughes 1987] T. J. R. Hughes, The finite element method, Prentice Hall, Englewood Cliffs, NJ, 1987.
MR Zbl

[Mandel 1990] J. Mandel, “Iterative solvers by substructuring for the p-version finite element
method”, Comput. Methods Appl. Mech. Engrg. 80:1-3 (1990), 117–128. MR Zbl

[Strang and Fix 1973] G. Strang and G. J. Fix, An analysis of the finite element method, Prentice Hall,
Englewood Cliffs, NJ, 1973. MR Zbl

[Szabó and Babuška 1991] B. Szabó and I. Babuška, Finite element analysis, Wiley, New York, 1991.
MR Zbl

[Wang et al. 1996] Y. Wang, P. Monk, and B. Szabó, “Computing cavity modes using the p-version
of the finite element method”, IEEE Trans. Magnetics 32:3 (1996), 1934–1940.

Received: 2017-04-17 Accepted: 2017-07-22

agillette@math.arizona.edu Department of Mathematics, University of Arizona,
Tucson, AZ, United States

grosscra@msu.edu Department of Mathematics, University of Arizona,
Tucson, AZ, United States

plackow1@math.arizona.edu Department of Mathematics, University of Arizona,
Tucson, AZ, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/0520174
http://msp.org/idx/zbl/0383.65058
http://tinyurl.com/daugebench
http://tinyurl.com/daugebench
http://dx.doi.org/10.1007/s10208-016-9305-0
http://dx.doi.org/10.1007/s10208-016-9305-0
http://msp.org/idx/mr/3682215
http://dx.doi.org/10.1137/0716015
http://dx.doi.org/10.1137/0716015
http://msp.org/idx/mr/526484
http://msp.org/idx/zbl/0403.65043
http://msp.org/idx/mr/1008473
http://msp.org/idx/zbl/0634.73056
http://dx.doi.org/10.1016/0045-7825(90)90017-G
http://dx.doi.org/10.1016/0045-7825(90)90017-G
http://msp.org/idx/mr/1067945
http://msp.org/idx/zbl/0754.73086
http://msp.org/idx/mr/0443377
http://msp.org/idx/zbl/0278.65116
http://msp.org/idx/mr/1164869
http://msp.org/idx/zbl/0792.73003
http://dx.doi.org/10.1109/20.492889
http://dx.doi.org/10.1109/20.492889
mailto:agillette@math.arizona.edu
mailto:grosscra@msu.edu
mailto:plackow1@math.arizona.edu
http://msp.org


msp
INVOLVE 11:4 (2018)

dx.doi.org/10.2140/involve.2018.11.679

Connectedness of
two-sided group digraphs and graphs

Patreck Chikwanda, Cathy Kriloff, Yun Teck Lee,
Taylor Sandow, Garrett Smith and Dmytro Yeroshkin

(Communicated by Ann N. Trenk)

Two-sided group digraphs and graphs, introduced by Iradmusa and Praeger,
provide a generalization of Cayley digraphs and graphs in which arcs are deter-
mined by left and right multiplying by elements of two subsets of the group. We
characterize when two-sided group digraphs and graphs are weakly and strongly
connected and count connected components, using both an explicit elementary
perspective and group actions. Our results and examples address four open
problems posed by Iradmusa and Praeger that concern connectedness and valency.
We pose five new open problems.

1. Introduction

Two-sided group digraphs were introduced as a generalization of Cayley digraphs
by Iradmusa and Praeger [2016] and independently in [Anil Kumar 2012]; see
[Iradmusa and Praeger 2016, Remark 1.6]. Given a group G and a subset S of G,
the Cayley digraph Cay(G, S) has the elements of G as vertices and a directed
arc from g to h when gh−1

∈ S. Several authors have generalized this idea by
relaxing the group conditions or the nature of the multiplication; see [Annexstein
et al. 1990; Marušič et al. 1992; Gauyacq 1997; Kelarev and Praeger 2003]. The
two-sided group digraph 2S(G; L , R) also has elements of a group G as vertices,
but two nonempty subsets, L and R, of G are used to define an arc from vertex g to
vertex h in G when h = l−1gr for some l ∈ L and r ∈ R. As with Cayley digraphs,
by definition 2S(G; L , R) does not have multiple arcs between two vertices, even
though it is possible that l−1

1 gr1 = l−1
2 gr2 for l1 6= l2 and r1 6= r2 (see Section 2).

A Cayley digraph is undirected when S = S−1 and the digraph 2S(G; L , R) is
undirected when L−1gR = LgR−1 for all g ∈ G, but we do not assume this.
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It is worth noting that a continuous version of a two-sided group digraph has previ-
ously appeared in the context of Riemannian geometry as the study of biquotients. In-
troduced in [Gromoll and Meyer 1974], biquotients are viewed as the quotient space
of a two-sided Lie group action and have been studied systematically as a source
of manifolds with positive and nonnegative curvature since the work of Eschenburg
[1982; 1984]. We refer to [DeVito 2011] for a broader overview of the topic.

Iradmusa and Praeger explored several properties of two-sided group digraphs
and posed eight open problems. Here we address the first four problems, which
concern valency and connectedness. It would also be of interest to know whether
there exist vertex-transitive two-sided group digraphs that are not isomorphic to
Cayley digraphs since these would have potential applications to routing and com-
munication schemes in interconnection networks. Indeed, the remaining unresolved
questions in [Iradmusa and Praeger 2016] primarily address understanding when two-
sided group digraphs are vertex-transitive and when they are isomorphic to Cayley
digraphs. In addition, we propose five new problems related to our results below.

Our main focus is to generalize [Iradmusa and Praeger 2016, Theorem 1.8], which
gives necessary and sufficient conditions for a two-sided group digraph 2S(G; L , R)
to be connected, assuming that L and R are inverse-closed. Theorem 2.4 solves
Problem 4 in [loc. cit.] by characterizing when 2S(G; L , R) is connected without
the inverse-closed assumption on L and R. Examples 2.5 through 2.8 in Section 2
both illustrate Theorem 2.4 and address Problems 1 and 2 in [loc. cit.] by showing
that it is possible for 2S(G; L , R) to have constant out-valency but not constant
in-valency and to be regular of valency strictly less than |L| · |R|.

In Section 3B, building on results in Section 3A, we use elementary methods
similar to those in our proof of Theorem 2.4 to generalize further. In Theorems 3.13
and 3.16, under the assumption that elements in G can be factored appropriately,
we count weakly and strongly connected components, show such components
must all be of the same size, and characterize their vertices. The result that all
components have the same size addresses Problem 3 of [loc. cit.]. We also show
that the connected components are in fact isomorphic under a condition on the
normalizers of L and R. To illustrate we provide Corollaries 3.15 and 3.17 that give
simple characterizations of weak and strong connectedness and give Example 3.18
in which components are isomorphic and Example 3.19 in which they are not.

In Section 4 we drop the factorization assumptions and note that connected
components are contained within double cosets. Results analogous to those in
Section 3B apply within a given double coset and examples demonstrate that in
different double cosets the sizes of the connected components can differ.

A less explicit but more natural approach to counting strongly connected compo-
nents is to view the components as orbits under a group action and to use a standard
result that counts orbits. This is done in Section 5.
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In Section 6 we prove that when G is a semidirect product, G = H o K, it is
possible to determine whether 2S(G; L , R) is connected by analyzing connectedness
properties related to H in 2S(G; L , R) and a two-sided group digraph on K. We
also generalize this to the case where K is G/H for H a normal subgroup of G.

2. Preliminaries

Following some definitions, we begin with an initial result that characterizes when
a two-sided group digraph is strongly connected. After some examples we compare
Theorem 2.4 to [Iradmusa and Praeger 2016, Theorem 1.8].

Recall the following definition from [loc. cit.].

Definition 2.1. For nonempty subsets L and R of a group G, a two-sided group
digraph 2S(G; L , R) has vertex set G and a directed arc (g, h) from g to h if and
only if h = l−1gr for some l ∈ L and r ∈ R.

The digraph 2S(G; L , R) is undirected when L−1gR = LgR−1 for all g ∈ G,
but we work in the generality of directed graphs and consider this situation to be a
special case.

Definition 2.2. Let S be a nonempty subset of a group G. A word in S of (finite)
length n > 0 is a string s1s2 · · · sn , where s1, s2, . . . , sn ∈ S. In general, we denote a
word in S of length n by wS,n and write W(S) for the set containing all finite-length
words in S.

Note that the factors in a word need not be distinct, a single group element will
have numerous different representations as a word in S, and different words will be
denoted by varying subscripts for the set or length on the letter w.

Definition 2.3. If g and h are vertices in a digraph, then g is strongly connected
to h if there exists a directed path from g to h and a directed path from h to g. A
digraph is strongly connected if every pair of vertices is strongly connected.

Theorem 2.4. The two-sided group digraph 2S(G; L , R) is strongly connected if
and only if G=W(L−1)W(R)=W(L)W(R−1) and the identity element e satisfies
e = wL−1, i+1wR,i = wL−1, jwR, j+1 for some i, j ∈ N.

Proof. Assume that the two-sided group digraph 2S(G; L , R) is strongly connected.
Then given any g ∈ G, there exists a directed path from the identity element e
to g, meaning g = wL−1, newR,n = wL−1, nwR,n . Hence g ∈ W(L−1)W(R) and
G =W(L−1)W(R). Since there also exists a directed path from g to e, we know
e =wL−1,m gwR,m , which implies that g =w−1

L−1,mw
−1
R,m =wL ,mwR−1,m , and hence

G =W(L)W(R−1). In particular there exists a directed path from l−1 to e, where
l ∈ L , and hence e = wL−1, i l−1wR,i = wL−1, i+1wR,i for some i . Similarly, e =
wL−1, jwR, j+1 since there is a directed path from r to e, where r ∈ R.
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Conversely, suppose that G =W(L−1)W(R)=W(L)W(R−1) and the identity
element e satisfies e=wL−1, i+1wR,i =wL−1, jwR, j+1 for some i, j ∈N. It suffices
to show that there is a directed path from e to g and from g to e for all g ∈ G; i.e.,
g = wL−1,mwR,m = wL ,nwR−1,n for some m, n ∈ N.

Since G = W(L−1)W(R), we know g has an L−1 R factorization; i.e., g =
wL−1, awR,b for some a, b ∈ N. If a 6= b, it is possible to adjust the L−1 R factor-
ization of g so that both words have the same length by inserting the appropriate
factorization of e between the words from L−1 and R. For example, if a > b, then
insert e = wL−1, jwR, j+1 to obtain

g = wL−1, awR,b = wL−1, a(wL−1, jwR, j+1)wR,b = wL−1, a+ jwR,b+ j+1.

Repeating this process yields g = wL−1,mwR,m , where m = a+ (a− b) j .
To see that g also has an L R−1 factorization with words of the same length,

note that left and right multiplying by inverses of the words from L−1 and R
respectively converts e = wL−1, i+1wR,i = wL−1, jwR, j+1 into e = wL ,i+1wR−1,i =

wL , jwR−1, j+1. Repeatedly inserting the appropriate L R−1 factorization of e into an
L R−1 factorization of g shows g=wL ,nwR−1,n for any g ∈G. Hence 2S(G; L , R)
is strongly connected. �

The following examples illustrate Theorem 2.4 and also address the first two
problems posed in [Iradmusa and Praeger 2016].

Example 2.5. Consider 0 = 2S(A4; L , R), where A4 is the alternating group
on four elements, L = {e, (243)}, and R = {(234), (12)(34), (132), (14)(23)},
as shown in Figure 1. Since G is generated by words in R or R−1, we have
G =W(L−1)W(R)=W(L)W(R−1). Also e = e3

· [(12)(34)]2 = e · [(12)(34)]2,
so the hypotheses of Theorem 2.4 hold and thus 0 is strongly connected.

e
(123)

(13)(24)

(143)

(134)

(124)

(142)
(243)

(14)(23)

(132)

(12)(34)

(234)

Figure 1. 2S(A4; {e, (243)}, {(234), (12)(34), (132), (14)(23)}).
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g3

g2

g

g4g6

g5

e

Figure 2. 2S(C7; {g2, g3
}, {e, g}).

This example addresses Problem 1 of [Iradmusa and Praeger 2016], which
asks whether or not 2S(G; L , R) can have constant out-valency but not con-
stant in-valency. The digraph 0 has constant out-valency of 7; however the
vertices {(123), (132), (142), (143), (12)(34), (13)(24)} have in-valency 6 and the
vertices {e, (234), (243), (134), (124), (14)(23)} have in-valency 8. Furthermore
2S(A4; L−1, R−1) will have constant in-valency of 7 and out-valency of either 6
or 8 for the same sets as in 2S(G; L , R) because inverting L and R changes the
direction of each edge.

Problem 1. For 2S(G; L , R) with constant out-valency, what are the possible sets
of in-valencies? In particular, how large can they be and how much can they differ
from the out-valency?

Example 2.6. The two-sided group digraph 2S(C7; {g2, g3
}, {e, g}), where C7 is

the cyclic group of order 7 generated by g, satisfies the hypotheses of Theorem 2.4
and is connected. This example also addresses Problem 2 of [Iradmusa and
Praeger 2016], which asks whether or not 2S(G; L , R) can be a regular graph
of valency strictly less than |L| · |R|. Here |L| · |R| = 4, but as seen in Figure 2,
2S(C7; {g2, g3

}, {e, g}) is regular with valency 3. In fact 2S(C7; {g2, g3
}, {e, g})∼=

Cay(C7, {g4, g5, g6
}), with g5 arising in two different ways from the sets L−1 and R,

explaining the valency of 3.

Example 2.7. Consider the dihedral group D6 of order 12, generated by the reflec-
tion τ and the rotation σ of order 6. The undirected graph 2S(D6;{τ,τσ

5
},{τσ,τσ 2

})

is regular of valency 3 and |L| · |R| = 4 as in Example 2.6, but for a nonabelian
group. For any g ∈ D6, the set (L L−1)g ∩ (R R−1) = {e, σ, σ−1

} is of size 3 and
there is a reduction in valency by 1. See Figure 3 in Section 3B.

Example 2.8. The two-sided group digraph 2S(A4; A4, {(243), (12)(34)}) has
|L| · |R| = 24, but is in fact regular with valency 12 and forms a complete undirected
graph with loops. Here (L L−1)g ∩ (R R−1) = {e, (124), (142)} is of size 3 for
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each g, but the reduction in valency is much larger than in the previous examples
because L−1gR, viewed as a multiset, consists of 12 distinct elements, each with
multiplicity 2.

The set (L L−1)g∩(R R−1), where (L L−1)g = g−1L L−1g, is introduced in [Irad-
musa and Praeger 2016, Definition 1.4(3) and Theorem 1.5], and the condition
(L L−1)g ∩ (R R−1) = {e} is shown in Lemma 3.1 of that paper to guarantee the
valency of 2S(G; L , R) is exactly |L| · |R|. In Examples 2.6, 2.7, and 2.8 it is the
failure of this condition which causes a drop in valency. In general, if for h 6= e,
we have h = g−1l1l−1

2 g = r1r−1
2 for some l1, l2 ∈ L and some r1, r2 ∈ R, then

l−1
1 gr1= l−1

2 gr2, which causes a multiplicity greater than 1 in L−1gR considered as
a multiset. Since the elements and their multiplicities in the multiset L−1gR depend
on g, we did not search for necessary and sufficient conditions on L and R for a
two-sided group digraph to have valency strictly less than |L| · |R|, as requested in
Problem 2 of [Iradmusa and Praeger 2016]. Thus this aspect of their Problem 2
remains unresolved.

Theorem 2.4 is a generalization of the first part of the following result in [Iradmusa
and Praeger 2016] and also addresses Problem 4 of that paper.

Theorem 2.9 [Iradmusa and Praeger 2016, Theorem 1.8]. Let L and R be nonempty
inverse-closed subsets of a group G, and let 0 = 2S(G; L , R):

(1) The graph 0 is connected if and only if G = 〈L〉〈R〉 and there exist words in
L and R with lengths of opposite parity whose product is e.

(2) If G=〈L〉〈R〉 and there do not exist words in L and R with lengths of opposite
parity whose product is e then 0 is disconnected with exactly two connected
components.

Theorems 3.13 and 3.16 further generalize [Iradmusa and Praeger 2016, The-
orem 1.8] by providing more general counts and characterizations of connected
components. Theorem 3.13 also answers Problem 3 of that paper, by showing
there cannot exist G, L , and R satisfying the hypotheses of Theorem 2.9 such
that G = 〈L〉〈R〉 but 2S(G; L , R) has connected components of different sizes.
We show more generally that if G =W(L ∪ L−1)W(R ∪ R−1) then all connected
components of 2S(G; L , R) have the same size.

3. General connectedness results

3A. Connection length. In this section we lay the foundation for studying both
weakly and strongly connected components of 2S(G; L , R) in Section 3B.

Definition 3.1. In a digraph, a vertex g is weakly connected to vertex h if there is
a path g0, g1, . . . , gn such that g = g0, h = gn , and either (gi−1, gi ) or (gi , gi−1)
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is an arc of the digraph. A digraph is weakly connected if each pair of its vertices
is weakly connected.

If L and R are nonempty subsets of a group G, we let L = L ∪ L−1 and
R = R ∪ R−1 and use wL,m,a to denote a word that contains m factors from L
and a factors from L−1 in any order. The notation g ∼ h will mean g is weakly
connected to h in 2S(G; L , R), or equivalently h = WL,m,agWR,a,m , where the
capital W indicates that the corresponding factors on either side of g have opposite
signs; i.e., one factor is from L−1 and one is from R, or alternatively, one is from
L and one is from R−1. If computations lead to factorizations that may not involve
opposite signs on corresponding factors then W is changed to w.

We begin with two key results which will allow us to define minimum weak
connection length in Definition 3.4 and which will also be used in the proof of
Theorem 3.13.

Lemma 3.2. In 2S(G; L , R) if g =wL,m,awR,n,b, then g ∼ ld and g ∼ rd, where l
is any element of L , r is any element of R, and d = m+ n− (a+ b).

Proof. Let g = wL,m,awR,n,b for a, b,m, n ∈ N. Then we have for any r ∈ R and
l ∈ L ,

g = wL,m,awR,n,b = wL,m,awR,n,brm−ar−m+a

=WL,m,awR,m+n,a+bWR,a,m

=WL,m,ala+b−(m+n)lm+n−(a+b)wR,m+n,a+bWR,a,m

=WL,m,aWL,a+b,m+nlm+n−(a+b)WR,m+n,a+bWR,a,m .

Corresponding factors can be adjusted to have opposite signs because the repeated
r and r−1 and l and l−1 can be rearranged as needed. A similar construction yields
g ∼ rd. �

The following corollary is stated in terms of L , but an analogous statement in
terms of R also holds.

Corollary 3.3. Let L and R be nonempty subsets of a group G:

(1) In 2S(G; L , R) there exist two words in L of different lengths that are weakly
connected if and only if there is a word in L that is weakly connected to e.

(2) In 2S(G; L , R) there exists a word wL ,n weakly connected to e if and only if
there exists a word wL−1, n weakly connected to e.

Proof. For (1), if wL ,m ∼ wL ,n , assume without loss of generality that m < n, left
multiply by w−1

L ,m , and apply Lemma 3.2 to obtain e ∼ ln−m for l ∈ L . Conversely
if e ∼ wL ,m , left multiply by some l ∈ L and apply Lemma 3.2.

For (2), if e = WL,m,awL ,nWR,a,m then e = w−1
L ,nwL,a,mwR,m,a . Now apply

Lemma 3.2 to obtain e∼ (l−1)n for l ∈ L . The converse is achieved analogously. �
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These results yield that the following notion is well-defined.

Definition 3.4. The minimum weak connection length in G relative to (L , R) is
the minimum length k of a word purely in L , L−1, R, or R−1 that is weakly
connected to e, and is infinite if there is no such minimum. Algebraically this is
equivalent to the minimum length of a word w purely in L , L−1, R, or R−1 such
that e =WL,m,awWR,a,m for some a,m ∈ N.

Here and in the next section we impose the additional assumption that the set of
words in L and the set of words in R are subgroups of G in order to adapt weak
connectedness results to the case of strong connectedness using Proposition 3.7 and
Corollary 3.8. The following proposition provides two further means of verifying
that sets of words are subgroups.

Proposition 3.5. Given any nonempty subset S of a group G, the following are
equivalent:

(1) W(S) is a subgroup of G.

(2) W(S)=W(S−1).

(3) W(S)= 〈S〉.

Proof. Clearly (2) implies (3) and (3) implies (1) so it remains to show that (1)
implies (2). Assume W(S) is a subgroup of G and letw∈W(S). Thenw−1

∈W(S)
by assumption and w−1

= s1s2 · · · sk , where k > 0. Hence w = (s1s2 · · · sk)
−1
=

s−1
k s−1

k−1 · · · s
−1
1 ∈W(S−1).

Now suppose that w ∈W(S−1). Then w = s−1
1 s−1

2 · · · s
−1
k = (sksk−1 · · · s1)

−1
∈

W(S) because W(S) is a subgroup of G. Hence W(S) =W(S−1) and the result
follows. �

Remark 3.6. Notice that if G is a finite group, any subset S of G will satisfy the
statements in Proposition 3.5. The statements will also hold in any group if the
subset S is inverse-closed, as is assumed in places in [Iradmusa and Praeger 2016],
or if all elements of S have finite order.

Proposition 3.7. In the two-sided group digraph 2S(G; L , R), if W(L) and W(R)
are subgroups of G, there is a directed path from g to h if and only if there is a
directed path from h to g.

Proof. Suppose that there is a directed path from g to h in 2S(G; L , R). Then we
have h = wL−1, ngwR,n for some n ∈ N which implies g = w−1

L−1, nhw−1
R,n .

Since W(L−1) and W(R) are both subgroups of G, we know w−1
L−1, n ∈W(L−1)

and w−1
R,n ∈W(R); i.e., inverses can be expressed as words in the original set. It

will be sufficient to show that both of the inverses can be expressed as words in
their respective sets with the same length.
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First suppose that w−1
L−1, n = wL−1, a and w−1

R,n = wR,b for some a, b ∈ N. Then
we have e = wL−1, nwL−1, a and similarly e = wR,nwR,b of total lengths at least 1.
Using that e is the identity, we have

e = wL−1, nwL−1, a(wL−1, nwL−1, a)
n+b−1

= wL−1, nwL−1, awL−1, (n+a)(n+b−1)

= wL−1, nwL−1, a+(n+a)(n+b−1).

This shows thatw−1
L−1, n can be expressed as a word in L−1 of length (n+a)(n+b)−n.

Similarly, we can express w−1
R,n as a word in R of the same length. Therefore there

is a directed path from h to g in 2S(G; L , R). �

Corollary 3.8. In the two-sided group digraph 2S(G; L , R), if W(L) and W(R)
are subgroups of G, then g ∈ G is weakly connected to h ∈ G if and only if g is
strongly connected to h, and hence weakly connected components are identical to
strongly connected components.

Proof. Assume that g is weakly connected to h in 2S(G; L , R). Then there exists a
path g0, g1, . . . , gn with g = g0 and h = gn such that either (gi−1, gi ) or (gi , gi−1)

is an arc for 1≤ i ≤ n. For every arc of the form (gi , gi−1), apply Proposition 3.7.
This generates a new directed path g′0, g′1, . . . , g′m with g = g′0 and h = g′m such
that (g′i−1, g′i ) is an arc for 1≤ i ≤m. Applying Proposition 3.7 again yields that g
is strongly connected to h. �

Under the hypothesis that W(L) and W(R) are subgroups of G, Proposition 3.7
and Corollary 3.8 allow us to convert any statement about weak connectedness into
a corresponding statement about strong connectedness. This leads to the following
results analogous to Lemma 3.2 and Corollary 3.3 and consequently a well-defined
notion of minimum strong connection length.

Lemma 3.9. In 2S(G; L , R) if W(L) and W(R) are subgroups of G and g =
wL−1, awR,n , then g is strongly connected to ld and to rd, where l is any element
of L , r is any element of R, and d = n− a.

Corollary 3.10. Let W(L) and W(R) be subgroups of G:

(1) In 2S(G; L , R) there exist two words in L of different lengths that are strongly
connected if and only if there is a word in L that is strongly connected to e.

(2) In 2S(G; L , R) there exists a word wL ,n strongly connected to e if and only if
there exists a word wL−1, n strongly connected to e.

Definition 3.11. Assuming that W(L) and W(R) are subgroups of G, the minimum
strong connection length in G relative to (L , R) is the minimum length k of a word
purely in L , L−1, R, or R−1 that is strongly connected to e, and is infinite if there
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is no such minimum. Algebraically this is equivalent to the minimum length of a
word v purely in L , L−1, R, or R−1 such that e = wL−1, nvwR,n for some n ∈ N.

Lemma 3.9 and Corollary 4.10 also lead to the following version of Theorem 2.4.

Corollary 3.12. Let W(L) and W(R) be subgroups of G. The two-sided group
digraph 2S(G; L , R) is strongly connected if and only if G = 〈L〉〈R〉 and e =
wL−1, iwR, j , where |i − j | = 1.

3B. Connected components. In this section we count numbers of connected com-
ponents and characterize their vertices, assuming that elements of G factor as a
word in L = L ∪ L−1 times a word in R = R ∪ R−1.

Theorem 3.13. Let L and R be nonempty subsets of a group G. If G=W(L)W(R)
and k is the minimum weak connection length for G relative to (L , R), then the
two-sided group digraph 2S(G; L , R) has exactly k weakly connected components
all of the same size. Moreover, if L ∩ NG(L) 6= ∅ or R ∩ NG(R) 6= ∅, then all
components are isomorphic.

Proof. Assume G =W(L)W(R) and let k be the minimum weak connection length
for G relative to (L , R). If k is infinite, then by Corollary 3.3, any two words in
L of different lengths are not weakly connected to each other and it follows that
2S(G; L , R) will have infinitely many connected components. Otherwise k ∈ N

and by Corollary 3.3, we may assume e =WL,m,alk WR,a,m . For 0≤ i < j < k we
claim that l i

6= l j and there is no path between l i and l j.
If l i
= l j for some 0 ≤ i < j < k, then e = l j−i, contradicting the minimality

of k as the weak connection length for G relative to (L , R). Similarly, if l i
=

WL,m,al j WR,a,m then e= l−i WL,m,al j WR,a,m and Lemma 3.2 yields e∼ l j−i, which
again contradicts the minimality of k. This shows that 2S(G; L , R) has at least
k weakly connected components.

To show that 2S(G; L , R) has exactly k weakly connected components, we first
notice that since G =W(L)W(R), Lemma 3.2 means that for every g ∈ G, we
have g∼ ld for some integer d . Hence it suffices to show that for all d ∈Z, we have
ld
∼ l i for some 0≤ i < k. This statement is true since by Lemma 3.2, e∼ l−k and

e ∼ lk, which allow d to be reduced modulo k.
Fix l ∈ L and let 0i for 0 ≤ i < k be the weakly connected component of

2S(G; L , R) containing l i. Then the 0i are distinct and the union of 00, . . . , 0k−1

is 2S(G; L , R). To see that all of the connected components have the same size,
consider the injective maps φi : 00→ 0i for 1≤ i < k defined by φi (h)= l i h. The
map sending h to l−i h is also injective and is an inverse to φi , showing that φi is
bijective and all connected components have the same size.

Now assume l ∈ L ∩ NG(L) and let 0i and φi be defined as above. The maps φi

will preserve arcs because if (x, y) is an arc in 00 then y = l−1
1 xr1 for some l1 ∈ L
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σ 4

σ 5 σ 2

σ

eσ 3

τσ τσ 5 τσ 3

τ τσ 2 τσ 4

Figure 3. 2S(D6; {τ, τσ
5
}, {τσ, τσ 2

}).

and r1 ∈ R, and, since l ∈ NG(L), for some l2 ∈ L

φi (y)= l i y = l i l−1
1 xr1 = l−1

2 l i xr1 = l−1
2 φi (x)r1.

Similarly, if (φi (x), φi (y)) is an arc in 0i , then (x, y) is an arc in 00. Thus the
disjoint connected components are isomorphic to each other.

For the case when R ∩ NG(R) 6=∅, note that the above proof can be modified
using the set {r i

}
k−1
i=0 to describe the 0i and defining φi (h)= hr i instead. �

Remark 3.14. In Theorem 3.13 if in fact L∩NG(L)= L and R∩NG(R)= R, then
2S(G; L , R) is also vertex-transitive by [Iradmusa and Praeger 2016, Theorem 1.13].

Corollary 3.15. The two-sided group digraph 2S(G; L , R) is weakly connected
if and only if G = W(L)W(R) and there exists some element of L or R that is
weakly connected to e.

Using Proposition 3.7 and Corollary 3.8 as described before Lemma 3.9 yields
the following.

Theorem 3.16. Let W(L) and W(R) be subgroups of G. If G = W(L)W(R)
and k is the minimum strong connection length for G relative to (L , R), then the
two-sided group digraph 2S(G; L , R) has exactly k strongly connected components
all of the same size. Moreover, if L ∩ NG(L) 6= ∅ or R ∩ NG(R) 6= ∅, then all
components are isomorphic.

Corollary 3.17. Let W(L) and W(R) be subgroups of G. Then the two-sided
group digraph 2S(G; L , R) is strongly connected if and only if G =W(L)W(R)
and there exists some element of L or R that is strongly connected to e.

Example 3.18. Consider 2S(D6; {τ, τσ
5
}, {τσ, τσ 2

}) as in Example 2.7. Since
τ ∈ L and σ =(τσ 5)τ ∈W(L), we know D6=W(L)=W(L)W(R). Since e 6∼τ but
e∼ τ 2

= e, the graph, as seen in Figure 3, has two strongly connected components of
the same size, as shown in Theorem 3.16. Notice that ND6(L)= ND6(R)= {e, σ

3
}

does not intersect L or R so the fact that the components are not isomorphic does
not violate Theorem 3.16.

Example 3.19. Consider 2S(D10; {σ }, {τ, σ
3
}). It is clear that D10 = W(R) =

W(L)W(R). Since e 6∼ τ but e ∼ τ 2
= e, the graph, as seen in Figure 4, has two
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τσ 2 τσ 4

τσ 6

τσ 8

σ 8σ 6

σ 4

σ 2

e
τσ

τσ 3

τσ 5

τσ 7 τσ 9

Figure 4. 2S(D10; {σ }, {τ, σ
3
}).

strongly connected components of the same size as shown in Theorem 3.16. Notice
that ND10(L) = 〈σ 〉 so σ ∈ L ∩ ND10(L) and the components are isomorphic by
Theorem 3.16.

4. Double cosets

Recall that for a Cayley digraph Cay(G, S) the coset 〈S〉g is the weakly connected
component of the digraph containing g ∈ G and that if H and K are subgroups
of a group G then the double cosets HgK for g ∈ G partition G into (possibly
different sized) subsets. In the two-sided group digraph 2S(G; L , R) the component
containing g ∈ G need only be contained in the double coset 〈L〉g〈R〉.

Proposition 4.1. The weakly or strongly connected component of 2S(G; L , R)
containing g is a subset of the double coset 〈L〉g〈R〉.

Proof. Let h be weakly connected to g; that is, h is of the form WL,m,agWR,a,m for
some WL,m,a ∈W(L) = 〈L〉 and WR,a,m ∈W(R) = 〈R〉. Then h ∈ 〈L〉g〈R〉 and
the weakly or strongly connected component containing g lies in 〈L〉g〈R〉. �

In Theorem 4.5, without the assumption that G =W(L)W(R), we count con-
nected components within double cosets analogously to Theorem 3.13. Connected
components in a given double coset have the same size, but between different
double cosets the sizes of components can differ. This is illustrated in Figure 5 for
Example 4.8, Figure 7 for Example 4.14, and Figure 8 for Example 4.15.

Let L and R be nonempty subsets of G and fix a set S of double coset represen-
tatives for 〈L〉 and 〈R〉. Each g in G lies in a double coset 〈L〉s〈R〉 for some s ∈ S,
and s will play the role in 〈L〉s〈R〉 that the identity element played in Sections 3A
and 3B.

Lemma 4.2. In 2S(G; L , R) if g = wL,m,aswR,n,b for s ∈ G, then g ∼ lds and
g∼ srd, where l is any element of L , r is any element of R, and d =m+n−(a+b).

Proof. This proof is identical to the proof of Lemma 3.2 with s inserted between
the words from L and words from R. �
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Corollary 4.3. In 2S(G; L , R) the following hold with s ∈ G:

(1) There exist words wL ,m and wL ,n with m 6= n such that wL ,ms ∼ wL ,ns if and
only if there exists wL ,k such that wL ,ks ∼ s. One can take k = |m− n|.

(2) There exists a word wL ,n such that wL ,ns ∼ s if and only if there exists a word
wL−1, n such that wL−1, ns ∼ s.

(3) If g is in 〈L〉s〈R〉 then wL ,k g ∼ g for some wL ,k in W(L) if and only if
w′L ,ks ∼ s for some w′L ,k in W(L).

Proof. The first two parts follow similarly to their analogues in Corollary 3.3.
For (3), by symmetry it is enough to prove one direction. Let g =wL,m,aswR,n,b

and wL ,k g ∼ g. Rewriting wL ,k g ∼ g in terms of s yields wL ,kwL,m,aswR,n,b ∼

wL,m,aswR,n,b. Applying Lemma 4.2 to both sides yields lk+ds ∼ lds. Hence
lks ∼ s by (1). �

By the first two parts of Corollary 4.3, if there exists a minimum length ks of a
word w in L such that ws ∼ s, then it is also the minimum length of such a word
in L−1, and by Corollary 4.3(3) the minimum such length is independent of the
representative of a double coset. Inserting r ks r−ks to the right of s shows that ks

is also the minimum length of a word w in R such that sw ∼ s, and hence, by an
R version of Corollary 4.3, ks is also the minimum such length of a word in R−1.
Thus the following definition for the minimum weak connection length in 〈L〉s〈R〉
is well-defined.

Definition 4.4. The minimum weak connection length in 〈L〉s〈R〉 is the minimum
length ks of a word w purely in L or L−1 such that ws ∼ s in 2S(G; L , R), or the
minimum length ks of a wordw purely in R or R−1 such that sw∼ s in 2S(G; L , R).
Take ks to be infinite if there is no such minimum. Algebraically this is equivalent to
the minimum length of a word w purely in L or L−1 such that s=WL,m,awsWR,a,m
for some a,m ∈ N, or the minimum length of a word w purely in R or R−1 such
that s =WL,m,aswWR,a,m for some a,m ∈ N.

Theorem 4.5. Let L and R be nonempty subsets of a group G. If ks is the mini-
mum weak connection length for 〈L〉s〈R〉, then the double coset 〈L〉s〈R〉 within
2S(G; L , R) consists of exactly ks weakly connected components all of the same
size. Moreover, if L ∩ NG(L) 6=∅ or R ∩ NG(R) 6=∅, then all components within
the same double coset are isomorphic.

Proof. This follows from Lemma 4.2 and Corollary 4.3 exactly as in the proof of
Theorem 3.13. �

Corollary 4.6. In the two-sided group digraph 2S(G; L , R) there are
∑

s∈S ks

weakly connected components, where S is a set of double coset representatives for
G modulo 〈L〉 and 〈R〉 and ks is the minimum weak connection length for 〈L〉s〈R〉.
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σ−2

σ−1

e

σ

σ 2

τσ−2 τσ−1 τ τσ τσ 2

Figure 5. 2S(D∞; {σ a
}, {σ b

}), where a =−1, b = 1.

Remark 4.7. Note that in Theorem 4.5 if in fact L∩NG(L)= L and R∩NG(R)= R,
then by an argument similar to that in [Iradmusa and Praeger 2016, Theorem 1.13]
the subgraph 〈L〉s〈R〉 is vertex-transitive.

Example 4.8. Consider 2S(D∞; {σ a
}, {σ b

}) with gcd(a, b)= 1 and where D∞ is
the group of isometries of Z with the presentation

D∞ = 〈σ, τ | τ 2
= e, σ τ = τσ−1

〉.

We think of σ as right translation and τ as negation. Since 〈L〉 = {σ an
} and 〈R〉 =

{σ bn
} with a, b relatively prime, D∞ has two double cosets, namely 〈L〉〈R〉 = 〈σ 〉

and 〈L〉τ 〈R〉 = τ 〈σ 〉.
It is easy to see that each g ∈ D∞ has exactly one out-neighbor and one

in-neighbor (possibly the same). If g = σ n
∈ 〈L〉〈R〉, then g lies on the arcs

(σ n, σ n+(b−a)) and (σ n−(b−a), σ n). If instead g= τσ n
∈ 〈L〉τ 〈R〉, then g lies on the

arcs (τσ n, τσ n+a+b) and (τσ n−(a+b), τσ n). Therefore, the structure of the graph
depends on b− a and a+ b.

If b− a 6= 0, then the double coset 〈L〉〈R〉 consists of |b− a| weakly connected
components each consisting of σ n with n fixed modulo |b− a|. If b− a = 0, then
the arcs are of the form (σ n, σ n), and the double coset consists of isolated points
linked only to themselves, and so has infinitely many connected components. Both
of these cases illustrate the results of Theorem 4.5.

The value of a + b plays the same role for the structure of the double coset
〈L〉τ 〈R〉. Two example graphs are provided, Figure 5 for a = −1, b = 1 and
Figure 6 for a = 1, b = 2.

Proposition 3.7 and Corollary 3.8 again yield corresponding strongly connected
results.

Lemma 4.9. In 2S(G; L , R) if W(L) and W(R) are subgroups of G and g =
wL−1, aswR,n for s ∈ G, then g is strongly connected to lds and to srd, where l is
any element of L , r is any element of R, and d = n− a.

Corollary 4.10. In 2S(G; L , R) if W(L) and W(R) are subgroups of G, then the
following three properties hold for any s ∈ G:
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σ−2 σ−1 e σ σ 2 σ 3

τσ−2 τσ−1 τ τσ τσ 2 τσ 3

Figure 6. 2S(D∞; {σ a
}, {σ b

}), where a = 1, b = 2.

(1) There exist words wL−1,m and wL−1, n with m 6= n such that wL−1,ms is strongly
connected to wL−1, ns if and only if there exists wL−1, k such that wL−1, ks is
strongly connected to s. In practice, k = |m− n|.

(2) There exists a word wL ,n such that wL ,ns is strongly connected to s if and only
if there exists a word wL−1, n such that wL−1, ns is strongly connected to s.

(3) If g is in 〈L〉s〈R〉 then wL ,k g is strongly connected to g for some wL ,k in
W(L) if and only if w′L ,ks is strongly connected to s for some w′L ,k in W(L).

Definition 4.11. Assuming that W(L) and W(R) are subgroups of G, the minimum
strong connection length in 〈L〉s〈R〉 is the minimum length ks of a word w purely in
L or L−1 such that ws is strongly connected to s in 2S(G; L , R), or the minimum
length ks of a word w purely in R or R−1 such that sw is strongly connected to s
in the two-sided group digraph 2S(G; L , R). Take ks to be infinite if there is no
such minimum. Algebraically this is equivalent to the minimum length of a word v
purely in L or L−1 such that s = wL−1, nvswR,n for some n ∈ N, or the minimum
length of a word v purely in R or R−1 such that s =wL−1, nsvwR,n for some n ∈N.

Theorem 4.12. Let W(L) and W(R) be subgroups of G. If ks is the minimum
strong connection length for 〈L〉s〈R〉 in 2S(G; L , R), then the double coset 〈L〉s〈R〉
consists of exactly ks strongly connected components all of the same size. Moreover,
if L ∩ NG(L) 6=∅ or R∩ NG(R) 6=∅, then all components within the same double
coset are isomorphic.

Problem 2. Theorems 3.13, 3.16, 4.5, and 4.12 provide sufficient conditions for
connected components to be isomorphic. Find necessary and sufficient conditions
for this to occur.

Corollary 4.13. Let W(L) and W(R) be subgroups of G. The two-sided group
digraph 2S(G; L , R) consists of

∑
s∈S ks strongly connected components, where

S is a set of double coset representatives for G modulo 〈L〉 and 〈R〉 and ks is the
minimum strong connection length for 〈L〉s〈R〉.

Example 4.14. The digraph 2S(D3×C3; {(τσ
2, g2)}, {(e, g2), (τ, g2)}) shown in

Figure 7 is an example of Theorem 4.12. The two double cosets in G = D3×C3 are
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(σ, g2)

(e, g2)

(τ, g2)

(τσ 2, g2)

(σ, g) (τ, g)

(e, g) (τσ 2, g)

(σ, e)

(e, e)

(τ, e)

(τσ 2, e)

(τσ, g2) (σ 2, g2) (τσ, g) (σ 2, g) (τσ, e) (σ 2, e)

Figure 7. 2S(D3×C3; {(τσ
2, g2)}, {(e, g2), (τ, g2)}).

〈L〉〈R〉 and 〈L〉(σ 2, e)〈R〉, both of which have minimum strong connection length
of 3. Since L consists of a single element, L ∩ NG(L) 6= ∅ and all components
within each double coset are isomorphic.

Example 4.15. Another example is provided by 2S(A5; {(235)}, {(243), (254)}),
shown in Figure 8. There are three double cosets in A5 modulo 〈L〉 and 〈R〉,
whose representatives are the identity, (123), and (145). The minimum strong
connection length is 3 in the first two double cosets and 1 in the third. The connected
components of 〈L〉〈R〉 have four vertices. All the connected components in the other
two double cosets contain 12 vertices and are isomorphic. That the components
within 〈L〉(123)〈R〉 are isomorphic follows from the fact that L consists of a single
element, so L ∩ NG(L) 6=∅.

Figure 8. 2S(A5; {(235)}, {(243), (254)}).
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5. Orbit counting

Another way to count strongly connected components is to use group actions. We
briefly review necessary background material.

A group G acts (on the right) on a set X if there exists a function α : X×G→ X ,
where (x, g) 7→ x .g such that x .e = x and for all g1, g2 ∈ G and all x ∈ X , we
have x · (g1g2) = (x · g1).g2. If G acts on a set X , then for any x ∈ X , the set
x .G = {x .g | g ∈ G} is the orbit of x under G. It can be shown that X is the
disjoint union of its orbits. If G acts on X , the stabilizer of x ∈ X is the subgroup
Gx = {g | x .g = x} of G and the set fixed by g ∈ G is X g

= {x | x .g = x}. The
following well known results are used to prove Theorem 5.3.

Lemma 5.1. Suppose that a group G acts on a set X. If x ∈ X , then the mapping
φ : Gx\G → x .G defined by φ(Gx g) = x .g is well-defined and bijective. Thus,
|G| = |x .G||Gx |.

Lemma 5.2. Suppose that a group G acts on a set X :

(1) If x ∈ X and g ∈ G, the stabilizer of x .g is Gx .g = g−1Gx g.

(2) If x and y are in the same orbit under G, then |Gx | = |G y|.

Theorem 5.3. Suppose that a group G acts on a set X. The number N of distinct
orbits of G on X satisfies

N · |G| =
∑
g∈G

|X g
|.

Proof. The case where X or G is infinite is trivial so let X and G be finite. Consider
the set Y = {(x, g) | g ∈ G, x ∈ X, x .g = x} ⊂ X ×G. We may count elements
of Y as |Y | =

∑
g∈G |X

g
| =

∑
x∈X |Gx |. Alternatively, consider representatives

x1, x2, x3, . . . , xN from each orbit of X . If x is in the same orbit as xi , then
x .G = xi .G and hence, by Lemma 5.2, |Gx | = |Gxi |. We therefore have, by
Lemma 5.1,∑

g∈G

|X g
| =

N∑
i=1

∑
x∈xi .G

|Gx | =

N∑
i=1

|xi .G||Gxi | =

N∑
i=1

|G| = N · |G|. �

We apply this result to 2S(G; L , R). Define

U = {(wL ,n, wR,n) | wL ,n ∈W(L), wR,n ∈W(R)} ⊆ G×G.

We show that if W(L) and W(R) are subgroups of G then U is a subgroup of
G×G. The set U is clearly closed under multiplication. The fact that U is closed
under inverses follows from the proof of Proposition 3.7. Since U is not empty it
contains an identity and U is a group under composition.



696 P. CHIKWANDA, C. KRILOFF, Y. T. LEE, T. SANDOW, G. SMITH AND D. YEROSHKIN

The action of U on G is induced by the standard action of G × G on G by
g · (g1, g2) = g−1

1 gg2; that is, g · (wL ,n, wR,n) = w
−1
L ,ngwR,n . One can check that

this is in fact a right action. For each element g in G, the orbit g ·U is the strongly
connected component of 2S(G; L , R) containing g.

Corollary 5.4. Let 2S(G; L , R) be a two-sided group digraph where W(L) and
W(R) are subgroups of G and with the group U acting on G as defined above. The
number N of strongly connected components in 2S(G; L , R) satisfies N · |U | =∑

u∈U |G
u
|.

Example 5.5. Let 2S(G; L , R) be a connected digraph and let HN be any group of
order N. Then 2S(G× HN ; L ×{e}, R×{e}) has N connected components. This
shows that the number N of connected components may be arbitrarily large.

Problem 3. For a given group G, how many connected components can 2S(G; L ,R)
have?

Note that if G = 〈L〉〈R〉 then by Theorem 3.13 or Theorem 3.16 the number of
connected components will divide |G|, but Example 4.15 shows this need not hold
in general.

Based on the group action perspective and our observation about the connection
between two-sided group digraphs and biquotients, we pose a question motivated
by a common construction in the biquotient setting. We first define a generalization
of 2S(G; L , R).

Definition 5.6. Let G be a group and U be a nonempty subset of G×G. Define
the digraph 2S(G;U ) to have vertex set G and a directed arc (g, h) from g to h if
and only if h = u−1

l gur for some (ul, ur ) ∈U.

Remark 5.7. Observe that if U = L × R, then 2S(G;U )= 2S(G; L , R).

Motivated by the biquotient literature, we note a correspondence between the
digraphs 2S(G;U ) and 2S(G ×G;1G,U ), where 1G = {(g, g) | g ∈ G} is the
diagonal of G × G. This correspondence is given by the map φ : G × G → G,
φ(g1, g2) = g−1

1 g2. Direct computation shows that the map φ takes arcs of
2S(G × G;1G,U ) to arcs of 2S(G;U ). Additionally, it produces a bijection
between the connected components of 2S(G × G;1G,U ) and the connected
components of 2S(G;U ). This allows the number of connected components of
2S(G;U ) to be counted using our preceding results, especially when one notes that
by Theorems 4.5 and 4.12 the connected components of 2S(G ×G;1G,U ) are
precisely the double cosets.

Problem 4. Under what conditions on U do the connected components of 2S(G;U )
have the same size? Under what conditions are they isomorphic?
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6. Reduction results

In this section we prove Proposition 6.2, which relates connectedness of a two-
sided digraph for a semidirect product group to connectedness properties for the
factors, and pose a final general problem. Remark 6.1 will be useful in the proof of
Proposition 6.2.

Remark 6.1. A group G is said to be a semidirect product of its subgroups H and K,
written G = H o K, if H is a normal subgroup of G, G = H K, and H ∩ K = {e}.
A subgroup K of a group G is a retract of G if there exists a homomorphism
φ : G→ G such that φ(g) ∈ K for all g ∈ G and φ(k)= k for all k ∈ K.

If K is a retract of a group G with retraction map φ, then it is easy to verify that
G = H o K for H = kerφ. Conversely, if G = H o K then the map φ defined by
φ(hk) = k is well-defined because H ∩ K = {e} and is a group homomorphism
because H E G. Hence G = H o K if and only if K is a retract of G with
retraction φ and H = kerφ. Denote φ(L) by Lφ.

Proposition 6.2. Let K be a retract of a group G under the retraction φ. Then
2S(G; L , R) is weakly connected if and only if 2S(K ; Lφ, Rφ) is weakly connected
and kerφ is weakly connected within 2S(G; L , R).

Proof. Assume that 2S(G; L , R) is weakly connected. Then certainly H = kerφ is
weakly connected within 2S(G; L , R). Observe that 2S(K ; Lφ, Rφ) is also weakly
connected because the retraction φ :G→ K sends the arc (g, l−1gr) in 2S(G; L , R)
to the arc

(φ(g), φ(l−1gr))= (φ(g), φ(l)−1φ(g)φ(r))

in 2S(K ; Lφ, Rφ); i.e., φ induces a retraction from 2S(G, L , R) to 2S(K ; Lφ, Rφ).
Conversely, assume that 2S(K ; Lφ, Rφ) is weakly connected and H = kerφ is

weakly connected within 2S(G; L , R). We show that for every g ∈ G there is a
path in 2S(G; L , R) from the identity to g. Write g = hk for h ∈ H and k ∈ K.
Using that there is a path from e to k in 2S(K , Lφ, Rφ), write k =WLφ ,m,aWRφ ,a,m
and then

g = hwLφ ,m,awRφ ,a,m .

For each factor ki ∈ Rφ in wRφ ,a,m , find hi ∈ H so that hi ki ∈ R and insert h−1
i hi

before ki in wRφ ,a,m . Insert similarly appropriate expressions for the identity before
each factor from Lφ in wLφ ,m,a . Then use H E G to rewrite g as

g =WL,m,ah′WR,a,m,

where h′ ∈ H , exhibiting a path from h′ to g. Since there is a path from e to
h′ in 2S(G; L , R), there is also a path from e to g in 2S(G; L , R). This proves
2S(G; L , R) is weakly connected. �
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Problem 5. Develop analogues of earlier results about numbers of connected
components and isomorphisms between them in the setting of semidirect products.

Example 6.3. Consider the digraph 2S(D6; {σ }, {σ
2, τ }), where D6 = 〈σ 〉o 〈τ 〉.

Given σ n
∈ D6, the arc (σ n, σ−1σ nσ 2)= (σ n, σ n+1) shows that 〈σ 〉 is weakly con-

nected in 2S(D6; {σ }, {σ
2, τ }). Furthermore, 2S(〈τ 〉; Lφ, Rφ)=2S(〈τ 〉; {e}, {e, τ })

is connected since the graph consists of two vertices e and τ with arcs between
e and τ and loops at each. Therefore by Proposition 6.2, 2S(D6; {σ }, {σ

2, τ }) is
weakly connected.

Example 6.4. The two-sided group digraph 2S(D6; {τ, τσ
5
}, {τσ, τσ 2

}) from
Example 3.19 is disconnected. Here 2S(K; Lφ, Rφ) consists of isolated vertices e and
τ with a loop at each and H is weakly connected within 2S(D6; {τ, τσ

5
}, {τσ, τσ 2

}).

Using an argument similar to the one in the proof of Proposition 6.2, one can
prove the following.

Corollary 6.5. Given a group G and a normal subgroup N let φ : G→ G/N be
the canonical projection. Then 2S(G; L , R) is weakly connected if and only
if 2S(G/N ; Lφ, Rφ) is weakly connected and N is weakly connected within
2S(G; L , R).

In both Proposition 6.2 and Corollary 6.5 under the further assumption that W(L)
and W(R) are subgroups of G similar conclusions hold for strong connectedness.
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Nonunique factorization over quotients of PIDs
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Joshua M. Covey and James R. Mixco

(Communicated by Vadim Ponomarenko)

We study factorizations of elements in quotients of commutative principal ideal
domains that are endowed with an alternative multiplication. This study general-
izes the study of factorizations both in quotients of PIDs and in rings of single-
valued matrices. We are able to completely describe the sets of factorization
lengths of elements in these rings, as well as compute other finer arithmetical
invariants. In addition, we provide the first example of a finite bifurcus ring.

1. Introduction

Of course every commutative principal ideal domain (PID) is a unique factorization
domain and every nonzero nonunit factors uniquely as a product of irreducible
(prime) elements. It is not surprising that this property of unique factorization
passes, in some sense, to any quotient ring of a PID. However, if D is a PID and n is
the product of two or more primes in D, then D/(n) contains nonzero zerodivisors
that make factorization more interesting. For example, in Z/(900), 30 factors only
as 30= 2·3·5, while 100 factors as 22 ·52 ·46a ·55b for any a, b∈N0. In fact, if D is
a PID and n is the product of at least two primes of D, there are elements in D/(n)
that have unique factorization and others that have infinitely many factorizations —
and of arbitrarily long lengths. A complete characterization of how elements factor
over quotients of PIDs is given in [Baeth et al. 2017] and is summarized here in
Proposition 3.1. The goal of this note is to study factorizations in quotients of PIDs
endowed with an alternative multiplicative structure. The purpose is threefold: First,
by introducing a more general multiplication in a principal ideal ring, we generalize
both the results of [Baeth et al. 2017] (factorization in quotients of PIDs) and of
[Baeth et al. 2011; Jacobson 1965] (factorization in rings of single-valued matrices).
Secondly, we give examples of finite bifurcus rings, thus giving an affirmative
answer to Open Problem 2.1.3 of [Adams et al. 2009]. Finally, we provide an even
larger class of examples of commutative rings R such that every element of R is
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a zerodivisor and such that the set of factorization lengths of each element is a
discrete interval, with many of these intervals being infinite.

We begin by defining, for any commutative ring R, an alternate multiplicative
structure. Let R be a commutative ring and fix an element k ∈ R. We now define
multiplication in Sk(R) which, as an additive abelian group, is equal to R. For
each pair of elements r, s ∈ R, we define the product of the corresponding elements
[r ], [s] ∈ Sk(R) to be [r ][s]= [krs]. The notation is convenient when distinguishing
multiplication in R and in Sk(R) and is motivated by the following (though less
general) formulation of Sk(R). With k a positive integer, we denote by [r ] the
k× k single-valued matrix whose k2 entries all equal r . With Sk(R) the set of all
such matrices over R and viewing R as a Z-algebra so that

k · r = r + · · ·+ r︸ ︷︷ ︸
k

= kr,

we see that if [r ], [s] ∈ Sk(R), then [r ][s] = [krs] as in the original definition. With
R = Z, the ring of integers, and k = 2, this structure was introduced in [Jacobson
1965] to give examples of nonunique factorization of integers. This study was
generalized in [Baeth et al. 2011] to k ≥ 2 where more precise information about
factorizations was gathered. Over the past several decades, factorization theory,
and in particular the study of lengths of factorizations of elements in rings and
semigroups, has become a major area of algebraic and combinatorial research. See,
for example, the recent expository article [Geroldinger 2016] or the comprehensive
text [Geroldinger and Halter-Koch 2006]. We will illustrate, using the structure of
Sk(R) where R is either a PID or the quotient of a PID, the existence of rings for
which the factorization length set of every element is a discrete interval.

If R is a commutative ring, R× denotes the set of units — elements with mul-
tiplicative inverses. Of course if R does not have a multiplicative identity, then
R×=∅. We say that an element [r ] ∈ Sk(R) is irreducible if it is impossible to write
[r ] = [x][y] for any [x], [y] ∈ Sk(R). In the cases of interest (see Setup 3.2) Sk(R)
has no units and this definition coincides with the usual definition of irreducibility
in integral domains and cancellative semigroups and to the definition of very strong
irreducibles as in [Aḡargün et al. 2001; Anderson and Valdes-Leon 1996; 1997] in
rings with zerodivisors. In this note we will first determine the set of irreducible
elements of Sk(R). Then, for each nonirreducible element [r ] ∈ Sk(R), we will
compute its length set

L([r ])= {t : [r ] = [x1] · · · [xt ] with each [xi ] irreducible}.

This invariant is well-studied in the realm of cancellative commutative semigroups,
see [Geroldinger and Halter-Koch 2006; Geroldinger 2016], and was computed for
Sk(Z) in [Baeth et al. 2011]. When R is either a principal ideal domain or a quotient
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of a principal ideal domain, we will show that L([r ]) is always either a singleton
set or an interval of integers. When a, b ∈ Z with a < b, we denote by [a, b] the
discrete interval {a, a+ 1, . . . , b}. Similarly, [a,∞)= {a, a+ 1, . . .}. Throughout,
if D is PID, then for elements x, y ∈ D, we denote by (x, y)= {r x + sy : r, s ∈ R}
the ideal generated by x and y. A greatest common divisor d of x and y is an
element r such that (x, y)= (r). Note that with D× denoting the set of units of D,
(x, y)= (r)= (s) if and only if s = ru for some u ∈ D×.

In the remainder of this section, before turning our attention to proper quotients
of PIDs, we generalize the results of [Baeth et al. 2011]. In Section 2 we give some
preliminary results about the structure of Sk(R) where R is the quotient of a PID.
Our main results are contained in Section 3, where we describe factorizations of
elements in Sk(R) where R is a quotient of a PID.

The following lemma and theorem describe factorization in Sk(D) where D is a
PID. It should not be surprising that the results obtained here are essentially the
same as those obtained in [Baeth et al. 2011], where R = Z (and k is a positive
integer). In fact, the proofs of these results are only slightly modified from those in
that paper and thus we do not include them here.

Lemma 1.1. Let D be a PID, let k ∈ D\(D× ∪ {0}), and let [a] ∈ Sk(D). Then [a]
is irreducible in Sk(D) if and only if k -a.

For a, b ∈ D, we define νb(a) to be the largest integer m such that a is divisible
by bm. Then we have the following classification of length sets in Sk(D) when D
is a PID.

Theorem 1.2. Let D be a PID, let k ∈ D\(D× ∪ {0}), and let [a] ∈ Sk(D).

(1) If k is prime, then |L([a])| = 1.

(2) If k = pm for some prime p, then

L([a])=
[⌈
νp(a)+m

2m− 1

⌉
, νm(a)+ 1

]
.

(3) If k is not the power of a prime, then L([a])= [2, νm(a)+ 1].

We note that if k is prime, then Sk(D) is half-factorial; that is, the length set of
any factorization is a singleton set. When k is not prime, each element has either
a singleton length set or its length set is a discrete interval. When k is not the
power of a prime, Sk(D) is bifurcus; that is, every nonirreducible element can be
represented as the product of two irreducible elements.

2. The structure of Sk(D/(n))

Throughout the next two sections, R = D/(n), where D is a commutative principal
ideal domain and n is a nonzero nonunit nonprime of D. For convenience we use the
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notation x̄ to denote the coset x + (n) in D/(n). Before investigating factorization
in Sk(R) in Section 3, we give some preliminary results and make a few basic
observations about Sk(R). We begin by showing that Sk(R) has no multiplicative
identity except for in the trivial case, where Sk(R)∼= R.

Proposition 2.1. Let R = D/(n), where D is a PID and n ∈ D \ (D× ∪ {0}). The
following statements are equivalent:

(1) 1 is a greatest common divisor of k and n.

(2) Sk(R) has a multiplicative identity.

(3) Sk(R)∼= R.

Proof. If 1 is a greatest common divisor of k and n, there exist x, y ∈ D with
kx + ny = 1. Then, in R, k̄ x̄ = 1̄. For any [ā] ∈ Sk(R), [ā][x̄] = [axk] = [ā]
and [x̄] is the multiplicative identity of Sk(R). Conversely, suppose Sk(n) has a
multiplicative identity [ū]. Then [1̄][ū] = [1̄] and so ūk̄ = 1̄ in D/(n). But then
ku + nv = 1 for some v ∈ D, and so 1 is a greatest common divisor of k and n.
Therefore (1) and (2) are equivalent. The fact that (3) implies (2) is trivial since
R = D/(n) has a multiplicative identity. We now show that (1) implies (3). Since 1
is a greatest common divisor of k and n, we have k−1k̄ = 1̄ for some k−1

∈ D. It is
then trivial to check that the map ϕ : D/(n)→ Sk(R) defined by ϕ(ā)= [k−1a] is
a ring isomorphism. �

Before investigating the multiplicative structure of Sk(R), we note that k need
only be considered modulo n. If k ≡ k ′ mod n with k, k ′ ∈ D, then k̄ = k ′ in R and
the following result is immediate.

Proposition 2.2. Let k ≡ k ′ mod n.

(1) If k ′ = 0, then all nonzero elements of Sk(R) are irreducible.

(2) If k ′ 6= 0, then Sk(R)∼= Sk′(R).

Suppose that Sk(R) 6∼= R. Clearly [0̄] is a zerodivisor of Sk(R). If d 6= 1 is a
greatest common divisor of k and n, then k = dy and n = dz for some y, z ∈ D.
Consider [az] ∈ Sk(R) with a ∈ D. Then

[az][x̄] = [kazx] = [(dy)azx] = [(dz)ayx] = [(n)ayx] = [(0)ayx] = [0̄]

for every [x̄] ∈ Sk(R). Thus we have the following result.

Proposition 2.3. Let D be a PID and let R = D/(n) for some nonzero nonunit n
of D. If 1 is not a greatest common divisor of k and n, then all elements of Sk(R)
are zerodivisors.

Note that what the argument preceding Proposition 2.3 really shows is that for
each a ∈ D, with z = n/d for some greatest common divisor d of k and n, the
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element [az] ∈ Sk(R) annihilates all elements of Sk(R). Moreover, if d 6= 1 is a
greatest common divisor of k and n, then [az] 6= [0̄] for some a ∈ D. That is, an
element of the form [az] is a sort of psuedozero as it annihilates all other elements
of Sk(R). This element z ∈ D has an additional interesting property in terms of
factorizations. Suppose x̄ = az+ c and ȳ = bz+ c for some a, b, c ∈ D. Then for
all [w̄] ∈ Sk(R), we have [x̄][w̄] = [c̄][w̄] = [ȳ][w̄].

3. Length sets in Sk(R)

The goal of this section is to compute the length set L([x̄]) for each [x̄] ∈ Sk(D/(n)).
We will obtain results similar to those in Theorem 1.2 but find that for some [x̄],
L([x̄]) is unbounded, much as is the case for some elements in D/(n). We begin by
recalling the following proposition, [Baeth et al. 2017, Theorem 3.4], that describes
factorization in D/(n) with the usual multiplication.

Proposition 3.1. Let n be a nonzero nonprime element of a PID D and let x̄ ∈D/(n)
with gcd(x, n) = d. If p | (n/d) for every prime divisor p of n, then x̄ factors
uniquely in D/(n) and LD/(n)(x̄)= {t} = LD(d). Otherwise, x̄ has infinitely many
distinct factorizations in D/(n) and LD/(n)(x̄)= [t,∞), where LD(d)= {t}.

Since factorization in D/(n) is already understood, we focus on the case when
Sk(R) 6∼= R. Based on Propositions 2.1 and 2.2 we set some blanket hypotheses for
the remainder of this manuscript.

Setup 3.2. Let D be a PID, let n be a nonzero nonunit of D and let R = D/(n).
Also let k ∈ D be a nonzero nonunit in D with n -k and (n, k)= (d) 6= D.

First we classify the irreducible elements — elements that cannot be represented
as a product of two nonzero elements of Sk(R).

Proposition 3.3. Let the notation be as in Setup 3.2. Then [ā]∈ Sk(R) is irreducible
if and only if d -a in D.

Proof. Suppose that d | a. Then a ∈ (d)= (k, n) in D and so a = kx+ny for some
x, y ∈ D. But then [ā] = [kx + ny] = [kx] = [1̄][x̄] is not irreducible in Sk(R).
Conversely, suppose that [ā] is not irreducible in Sk(R). Then [ā] = [x̄][ȳ] = [kxy]
for some x, y ∈ D. Then ā = kxy in D/(n) and so a = kxy+ nz for some z ∈ D.
Then, since d | k and d | n, we know d | a. �

Now that we have classified the irreducible elements of Sk(R), we work to
compute the length sets of nonzero elements in Sk(R). Throughout we will need the
following definition. For a ∈ D, define ν(n,k)(a), if it exists, to be the smallest posi-
tive integer m such that gcd(km, n) -a. This gives an analog to the valuation νb(a)
which was used in the description of lower bounds of length sets in Theorem 1.2.
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Remark 3.4. Note that if R = D/(n) is the quotient of a PID D and n = pt1
1 · · · p

ts
s

with p1, . . . , ps distinct primes in D and t1, . . . , ts positive integers, then the decom-
position of R by the Chinese remainder theorem immediately gives a decomposition
on Sk(R) as Sk(R) ∼= Sk(D/(p

t1
1 )) × · · · × Sk(D/(p

ts
s )). One could then study

factorization in Sk(R) by piecing together information about factorization in each
Sk(D/(p

ti
i )). Though this simplifies some calculations, it obfuscates exactly how

elements factor in Sk(R). However, this decomposition does clarify the definition
of ν(n,k)(a) since

ν(pt ,k)(a)=min
m≥1

{
m :min{mνp(k), t}> νp(a)

}
=

⌊
νp(a)
νp(k)

+ 1
⌋

if p is a prime in D and k is a positive integer.

In the next proposition we investigate upper bounds on L([ā]).

Proposition 3.5. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(n):

(1) If ν(n,k)(a) exists, then max L([ā])≤ ν(n,k)(a).

(2) If ν(n,k)(a) does not exist, then L([ā]) is unbounded.

Proof. Let [ā]∈ Sk(n) and assume that ν(n,k)(a) exists. Suppose that [ā]=
∏l

j=1[b̄ j ],
where each [b̄ j ] is irreducible. Then a≡ kl−1b1 · · · bl mod n and so gcd(kl−1, n) | a.
Thus l−1<ν(n,k)(a) and so l ≤ ν(n,k)(a). Now assume that ν(n,k)(a) does not exist.
That is, gcd(km, n) | a for all m ≥ 1. For m ≥ 1, set dm to be a greatest common
divisor of km and n. Then dm = km x + ny for some x, y ∈ D. Since dm | a, we
know a = dmb = km xb+ nyb for some b ∈ D. Then [ā] = [1̄]m[xb]. Since [1̄] is
irreducible and since [xb] is either irreducible or can be factored as the product of
irreducibles, [ā] has a factorization of length at least m+1. Since m was arbitrarily
chosen, L([ā]) is unbounded. �

We now show that if ν(n,k)(a) exists, then [ā] has a factorization of length
ν(n,k)(a). First we observe the following fact, which is immediate using the ideal
inclusion (a, b)(am−1, b)⊆ (am, b).

Lemma 3.6. Let D be a PID and let a, b ∈ D. If m is a positive integer, then
gcd(am, b) | gcd(a, b) gcd(am−1, b).

Proposition 3.7. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(R) and assume
that v(n,k)(a) exists. Then v(n,k)(a) ∈ L([ā]).

Proof. Clearly [1̄] is irreducible. We will show that there is [b̄] ∈ Sk(n) such
that [ā] = [b̄][1̄]v(n,k)(a)−1 with [b̄] irreducible. Let d ′ = gcd(kv(n,k)(a)−1, n), k ′ =
kv(n,k)(a)−1/d ′, a′ = a/d ′, and n′ = n/d ′. Then gcd(k ′, n′) = 1 and so there exist
x, y ∈ D such that n′x + k ′y = 1. Let b = a′y. Then

kv(n,k)(a)−1b = d ′k ′a′y = ak ′y = a− xan′ = a− a′xn,
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whence kv(n,k)(a)−1b ≡ a mod n. We now show that [b̄] is irreducible. If d | b, then
since d ′ | kv(n,k)(a)−1, we have dd ′ = gcd(k, n) gcd(kv(n,k)(a)−1, n) | bkv(n,k)(a)−1. Then,
by Lemma 3.6, gcd(kv(n,k)(a), n) | gcd(k, n) gcd(kv(n,k)(a)−1, n). This would imply
gcd(kv(n,k)(a), n) | bkv(n,k)(a)−1 and gcd(kv(n,k)(a), n) | n. But gcd(kv(n,k)(a), n)-a, con-
tradicting a ≡ kv(n,k)(a)−1b mod n. Thus [b̄] is irreducible and v(n,k)(a) ∈ L([ā]). �

Now (1) of Proposition 3.5 becomes: if ν(n,k)(a) exists, then max L([ā]) =
ν(n,k)(a).

For the remainder of this section we consider two cases. Let d be a greatest
common divisor of k and n. First we suppose that d is not the power of a prime. In
this case we show that Sk(R) is bifurcus and hence L([ā])= [2, sup L([ā])] for all
nonirreducibles [ā] ∈ Sk(R). We then consider when d is the power of some prime
in D. In this case we compute the minimum value in L([ā]) and again show that
L([ā])⊆ [min L([ā]), sup L([ā])] with equality if k is also a prime power. In each
case we explicitly give factorizations of [ā] of each possible length. We begin with
the simpler case when d is not a prime power.

Proposition 3.8. Let the notation be as in Setup 3.2. Suppose that d = st for some
relatively prime s, t ∈ D. Then 2∈ L([ā]) for all nonzero nonirreducible [ā] ∈ Sk(R).

Proof. If [ā] is not irreducible, then d | a. Then a ∈ (d)= (n, k) and so a = kx+ny
for some x, y ∈ D. Write x = dr z with r ≥ 0 and d -z. Then, without loss of
generality, s -z. Now

[ā] = [kx] = [kdr z] = [ksr tr z] = [sr ][tr z].

Since d -sr and d -tr z, we have [sr ] and [tr z] are irreducible. �

Since 2 ∈ L([ā]) for all nonzero nonirreducible [ā] ∈ Sk(R), we know Sk(R) is a
finite bifurcus ring. This provides an affirmative answer to Open Problem 2.1.3 of
[Adams et al. 2009].

Note that if l ∈L([ā]) with l> 2, then [ā]= [b̄1] · · · [b̄l] with each [b̄i ] irreducible.
Since Sk(R) is bifurcus, [b̄1][b̄2][b̄3]= [c̄1][c̄2] for some [c̄1], [c̄2] irreducible. Then
[ā] = [c̄1][c̄2][b̄4] · · · [b̄l] is a factorization of [ā] of length l−1. Therefore we have
the following corollary.

Corollary 3.9. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(n). Let d be a
greatest common divisor of k and n and suppose that d is not a prime power in D:

(1) If ν(n,k)(a) exists, then L([ā])= [2, ν(n,k)(a)].

(2) If ν(n,k)(a) does not exist, then L([ā])= [2,∞).

In addition to a complete description of the length sets of elements in Sk(D/(n)),
if gcd(k, n) is not a prime power, then the ring is bifurcus and [Adams et al. 2009,
Theorem 1.1] tells us also the catenary degree is c(Sk(D/(n)))= 3 and the tame
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degree is t(Sk(D/(n)))=∞; see [Geroldinger and Halter-Koch 2006, Chapter 1.6]
for definitions.

We now consider when a greatest common divisor of k and n is a prime power
and set some notation for the remainder of this section. Let n = xpr, k = yps, and
d = pt, where p is a prime in D, p -x, y, and r, s ≥ 1. Then t = min{r, s} ≥ 1.
Moreover, since ȳ ∈ D/(n)×, there is w ∈ D with yw≡ 1 mod n. We will consider
factorizations of [ā] ∈ Sk(n) where a = zpu with p -z. Note that in this setting,
similar to Remark 3.4,

ν(n,k)(a)=min
m≥1

{
m :min{ms, r}> u

}
.

Therefore ν(n,k)(a) exists if and only if r > u. When it does exist, ν(n,k)(a) =
bu/s + 1c. Thus we consider two cases: r > u and r ≤ u. In each case we
suppose that l ∈ L([ā]); i.e., [ā] = [ā1] · · · [āl] with each [āi ] irreducible so that
a ≡ kl−1a1 · · · al mod n and hence ps(l−1)

| a.
First, suppose that u < r . We then consider two subcases determined by the

relation of (l − 1)s to u and r . If u < (l − 1)s, then ps(l−1) -a and so [ā] has no
factorization of length l. Alternatively, (l − 1)s ≤ u < r . Since ps(l−1)

| a and
a = zpu , we know pu−(l−1)s

| a1 · · · al . As each [āi ] is irreducible, pt -ai for each i .
By the pigeonhole principle, d(u − (l − 1)s)/(t − 1)e ≤ l. Conversely, suppose
j = d(u− (l − 1)s)/(t − 1)e ≤ l. Then

[ā] = [pu−(l−1)s−(t−1)( j−1)wl−1z][pt−1] j−1
[1̄]l− j

is a factorization of [ā] of length l. Thus, when u < r , we know [ā] has a fac-
torization of length l if and only if d(u − (l − 1)s)/(t − 1)e ≤ l, equivalently
d(u+ s)/(t + s− 1)e ≤ l ≤ bu/s+ 1c.

Now suppose that r ≤u and consider three subcases. First, suppose that (l−1)s≤
r ≤ u. Then pr−(l−1)s

| a1 · · · al and as in the case above, d(r−(l−1)s)/(t−1)e≤ l.
Conversely, if j = d(r − (l − 1)s)/(t − 1)e ≤ l, then

[ā][pr−(l−1)s−(t−1)( j−1)wl−1 z(pu−r + x)][pt−1] j−1
[1̄]l− j

is a factorization of [ā] of length l. Now suppose that r ≤ (l−1)s < u. Note that if
p | (pu−(l−1)s

+ x+mxpr ) for some m, then p | x . Thus p -(pu−(l−1)s
+ x+mxpr )

for all m ∈ D and so [pu−(l−1)s + x] is irreducible and

[ā] = [pu−(l−1)s + x][wl−1][1̄]l−2

is a factorization of [ā] of length l. Finally, suppose that r ≤ u ≤ (l − 1)s. Since
(p, x)= 1, there is v ∈ D with vp≡ 1 mod x . That is, vp= 1+ xb for some b ∈ D
and so vp · pr

= (1+ xb)pr
= pr

+ nb ≡ pr mod n. In fact, v j p j+r
≡ pr mod n
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for all j ≥ 0. Now, choosing j > (l − 1)s+ r − u,

[v j pr+ j+(u−r)−(l−1)s + x][wl−1z][1̄]l−2

is a factorization of [ā] of length l. Thus, when r≤u, we know [ā] has a factorization
of length l if and only if l≥d(r+s)/(t+s−1)e. In summary, we have the following
proposition.

Proposition 3.10. Let the notation be as in Setup 3.2. Let [ā] ∈ Sk(n). Let n = xpr,
k = yps, d = pt, and a = zpu, where p is a prime in D, p -x, y, z, and r, s ≥ 1:

(1) If ν(n,k)(a) exists, then L([ā])= [d(u+ s)/(t + s− 1)e, ν(n,k)(a)].

(2) If ν(n,k)(a) does not exist, then L([ā])= [d(r + s)/(t + s− 1)e,∞).

Even though Sk(D/(n)) is not bifurcus if gcd(k, n) is a prime power, we can
still bound the catenary degree and compute the tame degree. Since for any
[ā] ∈ Sk(D/(n)), we have min L([ā]) ≤ d(r + s)/(t + s − 1)e, an argument anal-
ogous to that of [Adams et al. 2009, Theorem 1.1] gives that c(Sk(D/(n))) ≤
d(r + s)/(t + s − 1)e. Since there exist elements with arbitrarily long factor-
ization lengths, [Geroldinger and Halter-Koch 2006, Theorem 1.6.6] gives that
t(Sk(D/(n)))≥ ρ(Sk(D/(n))=∞.

In conclusion, whenever [ā] ∈ Sk(R) with (k, n) 6= D, we have L([ā]) =
[min L([ā]), sup L([ā])], with sup L([ā]) = ∞, if and only if ν(n,k)(a) does not
exist. Together, Corollary 3.9 and Proposition 3.10 completely describe the length
sets of elements in the ring Sk(R) subject to the conditions laid out in Setup 3.2.
The remaining cases are either trivial or are dealt with in Theorems 1.2 and 3.1.
Moreover, the catenary degree is always bounded and the tame degree is always
infinite.
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Locating trinomial zeros
Russell Howell and David Kyle

(Communicated by Michael Dorff)

We derive formulas for the number of interior roots (i.e., zeros with modulus less
than 1) and exterior roots (i.e., zeros with modulus greater than 1) for trinomials
of the form zn

+ zk
− 1, where 1 ≤ k ≤ n− 1. Combined with earlier work by

Brilleslyper and Schaubroeck, who focus on unimodular roots (i.e., zeros that
lie on the unit circle), we give a complete count of the location of zeros of these
trinomials.

1. Introduction

The investigation of zeros of analytic functions has a long and rich history, with
many important results focusing on specialized cases. Indeed, the study of zeros of
trinomials dates to the 19th century, and a recent paper by Melman [2012] gives
historical references in addition to providing information on the location of zeros.
Even more recently, [Brilleslyper and Schaubroeck 2014], which won a Pólya
award, investigated trinomials of the form

p(z)= zn
+ zk
− 1 (n ≥ 2, 1≤ k ≤ n− 1). (1)

Their main result characterizes the unimodular roots (i.e., zeros that lie on the unit
circle) of p(z):

Theorem 1. Let p(z)= zn
+ zk
− 1 and let g = gcd(n, k). If 6 divides n/g+ k/g,

then p has exactly 2g unimodular roots, occurring in conjugate pairs zm and z̄m ,
determined by zm = exp[i(π/(3g)+ 2πm/g)], where 0≤ m ≤ g− 1.

In that paper, they called for the discovery of a formula (involving n and k) that
would calculate the number of interior roots (i.e., zeros with modulus less than 1)
of these trinomials. In [Brilleslyper and Schaubroeck ≥ 2018] they developed a
conjecture,

number of interior roots= 2g
⌊n+k−g

6g

⌋
+ g,

and proved it for the special case when k = 1.
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Here we show that their conjecture is correct in general. Specifically we prove,
for 1≤ k ≤ n− 1, the equivalent formula

number of interior roots= 2g
⌈n+k

6g

⌉
− g. (2)

Our proof proceeds in three steps.
First, we show that any interior root must lie in what we call an interior region,

that any such region contains at most one root, and that the maximum number of
these regions matches (2). Next, we show that a similar situation holds for exterior
roots (i.e., zeros with modulus greater than 1) with respect to exterior regions,
where the maximum number of these regions matches (3), given by

number of exterior roots= n− 2g
⌊n+k

6g

⌋
− g. (3)

Finally, we show that adding together the number of unimodular roots (if any), the
maximum number of interior regions, and the maximum number of exterior regions
results in n, the degree of the trinomial, so that these regions contain exactly one root.

We begin by analyzing where interior roots must be located. To do so, we
generally follow the approach in [Brilleslyper and Schaubroeck ≥ 2018], but with
some modifications. Throughout, the term trinomial and the notation p(z) designate
a function as defined in (1).

2. The location of interior roots

In what follows we suppose p(z0)= 0 for some z0 with |z0|< 1.

2.1. Native zones for interior roots. The assumption that p(z0) = 0 leads to the
equation zk

0(z
n−k
0 +1)= 1. Using the additional assumption that |z0|< 1 and taking

the modulus of both sides reveal that |zk
0|< 1 and |zn−k

0 +1|> 1. Thus, zn−k
0 must lie

outside the circle |z+1| = 1, and zk
0 must lie inside the circle |z| = 1. But if |zk

0|< 1,
then |zn−k

0 | < 1 as well, so zn−k
0 must also lie inside the circle |z| = 1. The two

circles intersect at points whose arguments are±2
3π , so Arg(zn−k

0 )∈
(
−

2
3π,

2
3π
)
. It

follows that the point z0 itself must lie inside one of n− k possible disjoint regions,
which we dub native zones:

Nm =

{
reiθ
: θ ∈

(
−

2π
3(n−k)

+m 2π
(n−k)

,
2π

3(n−k)
+m 2π

(n−k)

)}
, (4)

where 0< r < 1 and m ∈ Z.
Although there are only n− k distinct native zones Nm , we allow the index m

to range over the integers. Doing so will assist us later in counting the number of
these zones satisfying certain restrictions.
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z5
+ z− 1 z5

+ z2
− 1

x

y

x

y

z5
+ z4
− 1 z5

+ z3
− 1

Figure 1. The unit disk with native zones (hatched), echo zones
(shaded), and roots (large dots) for the trinomials z5

+zk
−1, where

1≤ k ≤ 4.

2.2. Echo zones for interior roots. We can get further information on the location
of z0 by considering a related polynomial q(z) defined by

q(z)=−zn p(1/z)= zn
− zn−k

− 1.

A straightforward calculation reveals that p(z)= 0 if and only if q(1/z̄)= 0.
Let w0 = 1/z̄0, and note that Arg(z0)= Arg(w0). Thus, z0 and w0 are echos of

each other across the unit circle, and are zeros, respectively, of p(z) and q(z).
Write q(w0)=w0

n
−w0

n−k
−1= 0 as wn−k

0 (w0
k
−1)= 1. Taking the modulus

of both sides reveals that |wn−k
0 |> 1 (because |z0|< 1) and |w0

k
− 1|< 1. Using

an analysis similar to that which led to the definition of native zones enables us to
conclude that Arg(wk

0)= Arg(zk
0) ∈

(
−

1
3π,

1
3π
)
. It follows that the point z0 itself

must lie inside one of k possible disjoint regions E j , which we call echo zones:

E j =

{
reiθ
: θ ∈

(
−
π

3k
+ j 2π

k
,
π

3k
+ j 2π

k

)}
, (5)

where 0< r < 1 and j ∈ Z.
As with the native zones, we allow the index j for the echo zones E j to range

over the integers.
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2.3. Interior regions for interior roots. The preceding analysis shows that any inte-
rior root must lie in a nonempty intersection of a native zone and an echo zone, which
we call an interior region. Figure 1 depicts this result for the trinomials zn

+ zk
−1,

where n= 5 and 1≤ k ≤ 4. Note that every interior root is in an interior region, and,
in the case of Figure 1 (upper-left), there are 2g= 2 unimodular roots as guaranteed
by Theorem 1. Further, extending the radii of native and echo zones indicates that
every exterior root is in neither a native nor an echo zone. The next section shows
more precisely that these roots must be located in what we call exterior regions.

3. The location of exterior roots

Under the hypothesis that p(z0)= 0, where |z0|> 1, the same process for analyzing
interior roots can be used to show that all exterior roots belong to an intersection of
an exterior native zone and an exterior echo zone, defined respectively as

ENm =

{
reiθ
: θ ∈

( 2π
3(n−k)

+m 2π
(n−k)

,
4π

3(n−k)
+m 2π

(n−k)

)}
, (6)

where 1< r <∞, m ∈ Z; and

EE j =

{
reiθ
: θ ∈

(
π

3k
+ j 2π

k
,

5π
3k
+ j 2π

k

)}
, (7)

where 1 < r <∞, j ∈ Z. As with the corresponding native and echo zones, we
allow m and j to range over the integers.

We call any nonempty intersection of (6) and (7) an exterior region.

4. Upper bounds for roots

The last two sections collectively show that every interior root must belong to an
interior region, and every exterior root must belong to an exterior region. In this
section we establish that each such region contains at most one root.

In proving (2) for the case when k = 1, Brilleslyper and Schaubroeck demon-
strated that exactly one root of p(z) resides in each of the disjoint angular regions

Ra =

{
reiθ
: θ ∈

(2aπ
n
−
π

2n
,

2aπ
n
+
π

2n

)}
, (8)

where 0< r < 2 and 0≤ a ≤ n− 1.
They called these regions Rouché sectors [Brilleslyper and Schaubroeck ≥ 2018],

an appropriate choice because their demonstration makes creative use of Rouché’s
theorem, which can be found in almost any standard text for a first course in complex
analysis [Mathews and Howell 2012, pp. 340–341]. For completeness we state the
theorem here.
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x

y

x

y

Figure 2. Native zones (hatched), echo zones (shaded), Rouché
sectors (dotted), and roots (large dots) for z5

+ z − 1 (left) and
z5
+ z4
− 1 (right). The dashed lines are midway between the

Rouché sectors.

Theorem 2 (Rouché’s theorem). Let 0 be a simple closed positively oriented
contour in C, and let f and g be analytic functions in a simply connected domain
that contains 0. If | f (z)− g(z)|< |g(z)| for all z ∈ 0, then f and g have the same
number of zeros inside 0.

The demonstration that p(z) has a zero (henceforth root) in any sector Ra comes
from applying Rouché’s theorem to the functions f (z)= p(z) and g(z)= zn

− 1
evaluated on the boundary of the sector defined in (8). Each sector is centered
around only one n-th root of unity, so g(z) has exactly one root in each. Therefore,
p(z) has exactly one root in each Rouché sector.

Figure 2 illustrates this situation for the trinomials z5
+ z− 1 and z5

+ z4
− 1,

where all interior roots lie in the intersection of an interior region and a Rouché
sector, and all exterior roots lie in the intersection of an exterior region and a Rouché
sector. In each case the number of interior and exterior regions match, respectively,
(2) and (3).

Now, if an interior region contained more than one root, then that region would
have to intersect at least two Rouché sectors, and for some integer a contain one
of the rays {z = reiθa : 0 < r < 1}, where θa = π/n + 2πa/n, which is midway
between the respective Rouché sectors (see Figure 2).

Suppose that some ray z = reiθa were in an interior region. Then, for some
integers m and j , we have reiθa ∈ Nm and reiθa ∈ E j for 0< r < 1. According to
the definitions of Nm and E j , see (4) and (5), we thus get the inequalities

−
2π

3(n−k)
+m 2π

(n−k)
<
π

n
+ a 2π

n
<

2π
3(n−k)

+m 2π
(n−k)

,
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that is,

−
5
3
<−

k
n
+ 2a− a 2k

n
− 2m <−

1
3
, (9)

if θa were in a native zone, and

−
π

3k
+ j 2π

k
<
π

n
+ a 2π

n
<
π

3k
+ j 2π

k
,

that is,

−
1
3
<

k
n
+ a 2k

n
− 2 j < 1

3
, (10)

if θa were in an echo zone. Combining (9) and (10) gives

−2< 2a− 2n− 2 j < 0 or − 1< a− n− j < 0,

which is impossible because j , m, and a are integers.
By the same process we can determine that no ray z = reiθa is in an exterior

region, so that each exterior region has at most one root.
Thus, an upper bound for the number of interior and exterior roots is, respectively,

the number of interior and exterior regions. The next few sections establish that the
maximum number of these regions matches (2) and (3).

5. Counting interior regions

Each native and echo zone has the general form {reiθ
: α < θ < β, 0< r < 1}. To

simplify language we will call the ray z= reiβ , where 0< r < 1, the right border of
the given zone. (For exterior zones, of course, 1< r <∞.) With this understanding,
we proceed to count how many interior regions there are for a given trinomial p(z),
where a working assumption will be gcd(n, k) = 1. In a subsequent section we
show how to extend this assumption to the case when gcd(n, k)= g > 1.

Recall that an interior region consists of a nonempty intersection Nm ∩ E j of
a native and echo zone. Figure 3 illustrates that there are three cases to consider
for such an intersection: the right border of an echo zone belongs to a native zone
(Figure 3, left), the right border of a native zone belongs to an echo zone (Figure 3,
center) or their right borders coalign (Figure 3, right). Our task is to count the
interior regions in each case.

Case 1: The right border of an echo zone belongs to a native zone (Figure 3, left).
Then, by (4) and (5), for some j, m ∈ Z,

−
2π

3(n−k)
+m 2π

(n−k)
<
π

3k
+ j 2π

k
<

2π
3(n−k)

+m 2π
(n−k)

or

−
n+k

6
< j (n− k)−mk < 3k−n

6
.

(11)
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x

y

x

y

x

y

z2
+ z− 1 z4

+ z− 1 z3
+ z− 1

Figure 3. Trinomials illustrating that either the right border of an
echo zone belongs to a native zone (left), the right border of a
native zone belongs to an echo zone (center), or their right borders
coalign (right).

To count the interior regions in this category, we first determine all values of
m and j satisfying (11). By a standard result in number theory (see, for example,
[Uspensky and Heaslet 1939, pp. 54–57]) we know that, because gcd(n− k, k)= 1,
the Diophantine equation j (n− k)−mk = c has a solution jc,mc for any integer
c ∈

(
−

1
6(n+ k), 1

6(3k− n)
)
. Furthermore, the set of all solutions is given by

j = jc+ kt and m = mc+ (n− k)t for t ∈ Z. (12)

According to (4) and (5), E jc = E jc+kt and Nmc = Nmc+(n−k)t for all t ∈Z. Hence,
from solution set (12), we see that to every integer c∈

(
−

1
6(n+ k), 1

6(n− 3k)
)

there
corresponds exactly one interior region Nmc ∩ E jc . In other words, the maximum
number of interior regions in this category — and thus the maximum number of
interior roots — is the number of integers between −1

6(n+ k) and 1
6(3k− n). The

number of integers in an open interval (a, b) for a, b ∈ R is the difference between
the last integer and first integer plus 1, that is, (dbe−1)−(bac+1)+1. Combining
that fact with the result that, for x ∈ R, b−xc = −dxe, yields a formula for the
number of integers in the interval

(
−

1
6(n+ k), 1

6(3k− n)
)
, and thus the maximum

number of interior regions for Case 1:(⌈3k−n
6

⌉
− 1

)
−

(⌊
−

n+k
6

⌋
+ 1

)
+ 1=

⌈3k−n
6

⌉
+

⌈n+k
6

⌉
− 1. (13)

Cases 2 and 3: The right border of a native zone belongs to an echo zone, or their
right borders coalign (Figure 3, center and right, respectively).

Then, for some j,m ∈ Z,

−
π

3k
+ j 2π

k
<

2π
3(n−k)

+m 2π
(n−k)

≤
π

3k
+ j 2π

k
or

−
n+k

6
< mk− j (n− k)≤ n−3k

6
.

(14)
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By using (14) and the same analysis as in Case 1, we find that there is exactly
one interior region for each integer in the interval

(
−

1
6(n + k), 1

6(n − 3k)
]
. The

last integer in this interval is
⌊ 1

6(n− 3k)
⌋

and the first integer is
⌊
−

1
6(n+ k)

⌋
+ 1.

Therefore, the number of integers in the interval
(
−

1
6(n+ k), 1

6(n− 3k)
]
, and thus

the maximum number of interior regions in this category, is⌊n−3k
6

⌋
−

(⌊
−

n+k
6

⌋
+ 1

)
+ 1=−

⌈3k−n
6

⌉
+

⌈n+k
6

⌉
. (15)

Combining the cases: Adding together (13) and (15) gives the desired formula for
the maximum number of interior regions, and therefore the maximum number of
interior roots when gcd(n, k)= 1:

2
⌈n+k

6

⌉
− 1. (16)

6. Counting exterior regions

Again using the assumption that gcd(n, k)= 1, we now obtain counts for exterior
regions. As with interior regions, we have three cases to consider: the right border of
an exterior echo zone (7) belongs to an exterior native zone (6), the right border of an
exterior native zone belongs to an exterior echo zone, or their right borders coalign.

With the same techniques used in the previous section, we find that, in the first
case, we must count the integers in the interval(n+k

6
− n+ k, n+3k

6
− n+ k

)
.

The identities bx+nc = bxc+n and dx+ne = dxe+n (valid for n ∈ Z and x ∈R)

assist in obtaining the following count:(⌈n+3k
6
− n+ k

⌉
− 1

)
−

(⌊n+k
6
− n+ k

⌋
+ 1

)
+ 1

=

⌈n+3k
6

⌉
−

⌊n+k
6

⌋
− 1. (17)

For the last two cases combined we must count the integers in the interval(n+k
6
− k,−n+3k

6
+ n− k

]
.

Floor and ceiling function identities then assist in yielding the following amount:⌊
−

n+3k
6
+ n− k

⌋
−

(⌊n+k
6
− k

⌋
+ 1

)
+ 1=−

⌈n+3k
6

⌉
+ n−

⌊n+k
6

⌋
. (18)

Adding together the counts described in (17) and (18) reveals that the maximum
number of exterior regions is

n− 2
⌊n+k

6

⌋
− 1, (19)
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which is thus an upper bound for the maximum number of exterior roots when
gcd(n, k)= 1.

7. Verifying the general formulas

For the interior roots of p(z)= zn
+ zk
− 1, where gcd(n, k)= g > 1, we appeal to

the related polynomial p̃(z)= zn/g
+ zk/g

−1. From [Brilleslyper and Schaubroeck
2014, Lemma 2], we know that the roots of p(z) are in g-to-one correspondence
with the roots of p̃(z), and this correspondence does not disrupt the classification of
roots into interior, unimodular, or exterior categories. Since gcd(n/g, k/g)= 1, we
can use n/g and n/k, respectively, in place of n and k in (16) to get the maximum
number of interior roots for p̃(z):

2
⌈n/g+k/g

6

⌉
− 1= 2

⌈n+k
6g

⌉
− 1.

The maximum number of interior roots for p(z), then, is 2gd(n+ k)/(6g)e− g,
which is exactly (2).

Using the same procedure, it can be shown that, when gcd(n, k)= g > 1, (19)
morphs to give n−2gb(n+k)/(6g)c−g as the maximum number of exterior roots
for p(z), which is exactly (3).

To complete our analysis we note that, when there are no unimodular roots, (2)
and (3), when added together, give the maximum number of roots for p(z):(

2g
⌈n+k

6g

⌉
− g

)
+

(
n− 2g

⌊n+k
6g

⌋
− g

)
. (20)

When p(z) has unimodular roots, Theorem 1 guarantees that the maximum
number of roots it has is

2g+
(

2g
⌈n+k

6g

⌉
− g

)
+

(
n− 2g

⌊n+k
6g

⌋
− g

)
. (21)

But according to Theorem 1, unimodular roots occur precisely when 6g divides
n+ k. Thus, d(n+ k)/(6g)e = b(n+ k)/(6g)c+ 1 in (20), and d(n+ k)/(6g)e =
b(n+ k)/(6g)c in (21). In both cases, then, the expressions sum to n, which equals
the total number of roots for p(z). Because interior and exterior regions are the
only possible locations for interior and exterior roots, the maximum numbers of
interior and exterior roots as expressed in (2) and (3) must be attained.

The enumeration of interior, exterior, and unimodular roots of trinomials p(z) is
now complete. For convenience, we summarize the results.

Theorem 3. For n ≥ 2, 1 ≤ k ≤ n− 1, and g = gcd(n, k), the trinomial p(z) =
zn
+ zk
− 1 has 2gd(n + k)/(6g)e − g interior roots, n − 2gb(n + k)/(6g)c − g

exterior roots, and, when 6g divides n+ k, it has 2g unimodular roots.
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