Vol. 11, No. 4, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 2, 181–360
Issue 1, 1–180

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Ethics Statement
Editorial Login
Author Index
Coming Soon
Contacts
 
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Finiteness of homological filling functions

Joshua W. Fleming and Eduardo Martínez-Pedroza

Vol. 11 (2018), No. 4, 569–583
Abstract

Let G be a group. For any G-module M and any integer d > 0, we define a function FVMd+1 : {} generalizing the notion of (d+1)-dimensional filling function of a group. We prove that this function takes only finite values if M is of type FPd+1 and d > 0, and remark that the asymptotic growth class of this function is an invariant of M. In the particular case that G is a group of type FPd+1, our main result implies that its (d+1)-dimensional homological filling function takes only finite values.

Keywords
Dehn functions, homological filling function, isoperimetric inequalities, finiteness properties of groups
Mathematical Subject Classification 2010
Primary: 20F65, 20J05
Secondary: 16P99, 28A75, 57M07
Milestones
Received: 15 September 2016
Accepted: 22 July 2017
Published: 15 January 2018

Communicated by Kenneth S. Berenhaut
Authors
Joshua W. Fleming
Memorial University of Newfoundland
St. John’s, NL
Canada
Eduardo Martínez-Pedroza
Memorial University of Newfoundland
St. John’s, NL
Canada