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We study the action of the Weyl group of type Bn acting as permutations on the
set of weights of the minuscule representation of type Bn (also known as the spin
representation). Motivated by a previous work, we seek to determine when cycle
structures alone reveal the irreducibility of these minuscule representations. After
deriving formulas for the simple reflections viewed as permutations, we perform
a series of computer-aided calculations in GAP. We are then able to establish
that, for certain ranks, the irreducibility of the minuscule representation cannot
be detected by cycle structures alone.

1. Introduction

The original motivation for this project was to extend results found in [Cook et al.
2005]. In that paper the authors present a constructive method for solving the inverse
problem in differential Galois theory. This problem seeks to determine if certain
groups can appear as differential Galois groups of systems of linear differential
equations and, if so, given that group, determine such a system of equations.

In [Cook et al. 2005] the authors present a construction which relies on the
existence of minuscule modules whose irreducibility can be detected by examining
the cycle structures of the corresponding Weyl group viewed as permutations of
weights. While each simple Lie algebra has infinitely many isomorphism classes
of finite-dimensional irreducible representations, not every simple Lie algebra
possesses a minuscule representation. Those which do, have only a handful.

Minuscule representations have the interesting property that all of their weights
lie in a single Weyl group orbit. This then implies that all of the weight spaces are
1-dimensional. The irreducibility of such a module is guaranteed by the transitive
action of the Weyl group. We set out to find when this transitivity (and thus
irreducibility) can be seen from the cycle structures of the Weyl group elements
(viewed as permutations) alone.
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The authors in [Cook et al. 2005] were able to show that each algebra of type An

(n ≥ 1), Cn (n ≥ 3), Dn (n ≥ 4), E6, or E7 possesses a minuscule representation
having the desired property. Since E8, F4, and G2 have no minuscule representations
at all, these cases must be discarded. This leaves type Bn as the final case to be
considered. Using calculations performed in Maple (a computer algebra system),
the authors were able to show that B2, B3, B5, and B7 have a conforming minuscule
representation. They also showed that B4’s irreducibility cannot be seen from cycle
structures alone. The status of the other type-Bn cases were left open.

In this paper, we focus on simple Lie algebras of type Bn . Such algebras have
only one minuscule representation which is also known as the spin representation.
After some introductory material, we explicitly determine the action of the Weyl
group of type Bn on the weights of its minuscule representation. We then produce
results obtained from calculations performed in [GAP 2017]; our code can be
found in the online supplement. We are able to show that the irreducibility of
the minuscule representation of type Bn can be detected by cycle structures alone
when n = 1, 2, 3, 5, and 7 and that irreducibility cannot be detected when n =
4, 6, 8, 9, . . . , 14. We conjecture that this continues to be true for all higher ranks
as well.

2. Simple Lie algebras

We give a brief account of the background needed to discuss minuscule represen-
tations. We recommend [Erdmann and Wildon 2006] for a gentle introduction to
this material or the texts [Humphreys 1972] and [Carter 2005] for more complete
discussions.

A Lie algebra is a vector space g (over C) equipped with a bilinear multiplication
[ · , · ] : g×g→ g, called the Lie bracket, which is alternating, i.e., [x, x] = 0 for all
x ∈ g, and satisfies the Jacobi identity [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for
all x, y, z ∈ g. For each g ∈ g we define ad(g) : g→ g to be left multiplication by g:
ad(g)(x)= [g, x]. A subalgebra h of g is a subspace of g which is closed under the
Lie bracket; i.e., h⊆ g such that for all x, y ∈ h we have [x, y] ∈ h. An ideal i of g
is a subspace of g which absorbs multiplication by elements of g; i.e., i⊆ g such
that for all x ∈ i and g ∈ g we have [g, x] ∈ i. We call g abelian if [x, y] = 0 for all
x, y ∈ g. A nonabelian Lie algebra with no proper nontrivial ideals is called simple.
This means that g is simple if [g, g] 6= 0 and if i is an ideal of g, then i= 0 or g.

As an example, R3 equipped with the familiar cross product is a 3-dimensional
simple Lie algebra (over the field of real numbers R). If we let gln denote the n×n
complex matrices, then gln becomes the general linear Lie algebra when given the
commutator bracket [A, B] = AB− B A. The set of all trace-zero n× n complex
matrices is called the special linear Lie algebra sln . It is a subalgebra of gln and
turns out to be simple when n ≥ 2.

http://msp.org/involve/2018/11-5/involve-v11-n5-x01-gap_code.pdf
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Let ϕ : g1 → g2 be a linear map between two Lie algebras. We call ϕ a ho-
momorphism if ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g1. Of course, a bijective
homomorphism is an isomorphism.

One of the early triumphs of Lie theory was Killing and Cartan’s classification
of all finite-dimensional simple Lie algebras (over C). Killing and Cartan were able
to show that each finite-dimensional simple Lie algebra was isomorphic to one of
the algebras on their list:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4),

E6, E7, E8, F4, and G2.

Algebras of types A through D are called classical algebras. Those of types E , F,
and G are called exceptional algebras. We refer the reader to [Erdmann and Wildon
2006] for an accessible introduction to this classification.

A Cartan subalgebra h of a simple Lie algebra g is a subalgebra which is
nilpotent, i.e.,

[[· · · [[h, h], h], . . . ], h]︸ ︷︷ ︸
k−times

= 0

for some integer k > 0, and self-normalizing, i.e., if x ∈ g, y ∈ h, and [x, y] ∈ h
then x ∈ h. Equivalently, a Cartan subalgebra is a maximal toral subalgebra (a
toral subalgebra is a subalgebra h such that for all h ∈ h, the linear endomorphism
ad(h) : g→ g is diagonalizable). Every Cartan subalgebra of a finite-dimensional
simple Lie algebra g has the same dimension. This dimension is called the rank of
the simple Lie algebra.

Since all toral subalgebras h are abelian, we have that for all x, y ∈ h, the
maps ad(x) and ad(y) commute and so the space of endomorphisms ad(h) can be
simultaneously diagonalized. Thus g decomposes into a collection of simultaneous
eigenspaces for ad(h) for any toral subalgebra h. By choosing h to be maximal
toral, our eigenspaces are in some sense maximally refined.

For what follows, let g be a simple Lie algebra and let h be a Cartan subalgebra
of g. Let n= dim(h) be the rank of g. Since ad(h) is simultaneously diagonalizable,
g =

∏
α∈h∗ gα, where h∗ = { f : g→ C | f is linear} is the dual space of h and

gα = {g ∈ g | [h, g] = α(h)g for all h ∈ h} when α ∈ h∗. When nontrivial, gα is
a simultaneous eigenspace corresponding to the eigenvalue α(h) for each h ∈ h.
Since h is abelian and self-normalizing, g0 = h. If 0 6= α ∈ h∗ and gα 6= 0, we call
α a root and gα a root space of g. Let 1⊂ h∗ be the set of roots of g.

Given a set of roots 1, there exists a subset 5⊆1 such that each root can be
expressed as a nonpositive or nonnegative integral linear combination of elements
of 5. In this case we call the elements of 5 simple roots. A root system may have
many equivalent collections of simple roots. The cardinality of a set of simple roots
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is exactly the rank of g (i.e., the dimension of h). Let us fix such a set of simple
roots 5 = {α1, . . . , αn} ⊆1. So for each α ∈1 there exists c1, . . . , cn ∈ Z such
that α = c1α1+ · · · + c`αn with either all ci ≥ 0 (for a positive root) or all ci ≤ 0
(for a negative root).

3. The Weyl group and irreducible modules

The simple roots, 5= {α1, . . . , αn}, form a basis for h∗. The fundamental weights
{λ1, λ2, . . . , λn} form another important basis for h∗. The root and weight bases are
related by the Cartan matrix of g. In particular, if A = (ai j )1≤i, j≤n is the Cartan
matrix, then αi = ai1λ1+ ai2λ2+ · · ·+ ainλn for 1≤ i ≤ n.

For each 1 ≤ i ≤ n, we define σi : h
∗
→ h∗ by σi (λj ) = λj − δi jαi and extend

linearly (where δi j is the Kronecker delta). The map σi is called the simple reflection
associated with the simple root αi . Let W(g) = 〈σ1, σ2, . . . , σn〉 be the group
generated by the simple reflections (generated as a subgroup of, for example,
GL(h∗)). This is called the Weyl group of g.

A (finite-dimensional) vector space M (over C) equipped with a bilinear g-action
(g, v) 7→ g · v is a g-module if [x, y] · v = x · (y · v)− y · (x · v) for all x, y ∈ g

and v ∈ M. A homomorphism ϕ : g→ gl(M) (where gl(M) is equipped with the
commutator bracket) is called a representation. It is not hard to show that every
module gives rise to a representation and vice versa. Specifically, given a module
action or representation, one can define the other structure as x ·v = (ϕ(x))(v). For
what follows, we will treat the words “module” and “representation” as synonyms.

Let ϕ : M1→ M2 be a linear map between two g-modules. If ϕ(g · v)= g ·ϕ(v)
for all g ∈ g and v ∈ M1, then ϕ is a g-module map. A bijective module map is
called a (g-module) isomorphism.

A subspace closed under the action of g is called a submodule. A nontrivial
module (M 6= 0) which has no nontrivial proper submodules (if N is a submodule,
then N = 0 or N = M) is called an irreducible module. If M is a g-module and
λ ∈ h∗, we define Mλ = {v ∈ M | h · v = λ(h)v for all h ∈ h}. If Mλ 6= 0, we say
that Mλ is a weight space (whose elements are weight vectors) with weight λ. Just
as g is a direct sum of root spaces, g-modules are direct sums of weight spaces:
M =

∏
λ∈h∗ Mλ.

Let M be an irreducible g-module. There exists a (unique) weight λ ∈ h∗ of M
such that given any other weight µ ∈ h∗ we have µ= λ−

∑n
i=1 biαi , where bi ∈ Z

and bi ≥ 0. So every other weight is obtained by subtracting certain collections of
positive roots from this weight. Such a weight, λ, is unique and is called the highest
weight of M. If λ ∈ h∗ and there exists ci ∈ Z, ci ≥ 0 such that λ=

∑n
i=1 ciλi (the

λi ’s are the fundamental weights), then λ is a dominant integral weight.
Highest weights of finite-dimensional irreducible modules are dominant inte-

gral. Conversely, each dominant integral weight is the highest weight of some



ON THE MINUSCULE REPRESENTATION OF TYPE Bn 725

finite-dimensional irreducible module. Two irreducible modules with the same
highest weight are isomorphic, so we have a bijection between the set of dominant
integral weights and the isomorphism classes of finite-dimensional irreducible
modules.

Let λ be a dominant integral weight for some simple Lie algebra of type Xn .
We denote the irreducible highest-weight Xn-module with highest weight λ by
L(Xn, λ) or just L(λ) when the algebra is understood.

4. Minuscule representations

There are many equivalent ways of defining minuscule weights. In fact, six equiv-
alent conditions are given in [Bourbaki 2005, Chapter VIII, Section 7.3]. The
following definition best fits our purposes:

Definition 4.1. Suppose L(λ) is an irreducible finite-dimensional g-module with
nonzero highest weight λ∈h∗. Then λ is a minuscule weight and L(λ) is a minuscule
module if the Weyl group W(g) acts transitively on the set of weights of L(λ), i.e.,
W(g) · λ is the set of all weights of L(λ).

Given a g-module M, we know M decomposes into weight spaces Mλ for λ ∈ h∗.
The dimension of a weight space Mλ is called the multiplicity of the weight λ.

If µ = w · λ for µ, λ ∈ h∗ and w ∈ W(g), then Mµ and Mλ have the same
dimension. Therefore, weights lying in an orbit of the Weyl group all have the
same multiplicity. Thus since the weights of a minuscule module all lie in a single
Weyl group orbit, the weight spaces in a minuscule module must all have the same
multiplicity as the highest weight. But the highest-weight space for an irreducible
module is always 1-dimensional. Therefore, all the weight spaces in a minuscule
module are 1-dimensional and the dimension of a minuscule module is the same as
the number of its weights.

Both [Humphreys 1972, Section 13, p. 72, Exercise 13] and [Bourbaki 2005,
Chapter VIII, Section 7.3, p. 132] give the following table of minuscule weights
for finite-dimensional simple Lie algebras:

type An Bn Cn Dn E6 E7

minuscule weights λ1, . . . , λn λn λ1 λ1, λn−1, λn λ1, λ6 λ7

Note that algebras of types F4, E8, and G2 have no minuscule representations.
For further information about minuscule representations we direct the reader to

either [Bourbaki 2005, Chapter VII, Section 7.3] or the book [Green 2013], which
is entirely devoted to the study of minuscule representations and contains a wealth
of information about them.
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5. Strictly transitive sets

Recall that the original motivation for this project was to extend results found in
[Cook et al. 2005]. Following that paper, let us denote the conjugacy class of a
permutation σ by σ̄ . We say a collection of conjugacy classes, {C1, . . . ,C`} of the
symmetric group Sm is strictly transitive if for any choice of τi ∈Ci (i=1, . . . , `) the
subgroup generated by τ1, . . . , τ` acts transitively. Lemma 3.7 in [Cook et al. 2005]
states that {C1, . . . ,C`} is strictly transitive if and only if for some (and therefore
any) set of representatives {τ1, . . . , τ`} (with τi ∈ Ci ) and for any 1 ≤ j ≤ m− 1,
there is an element τk leaving no set of cardinality j invariant.

As an example, working in S4, {(1234)} is strictly transitive by itself (leaving
only the empty set and {1, 2, 3, 4} invariant). Also, {(123), (12)(34)} is strictly
transitive since an element from (123) only allows invariant sets of cardinalities
0, 1, 3, and 4 whereas elements in (12)(34) only allow invariant sets of sizes 0, 2,
and 4. So putting these two criteria together, cardinalities 1, 2, and 3 are ruled
out. On the other hand, {(1), (12), (12)(34)} is not strictly transitive since selecting
the permutations (1), (12), and (12)(34) allows the set {1, 2} (of cardinality 2) to
remain invariant.

Recall that the Weyl group permutes the weights of a representation. Thus if g is
a simple Lie algebra and M is a g-module with dim(M) = m, then W(g) can be
viewed as a subgroup of the symmetric group Sm , say

W(g)∼=W ⊆ Sm .

For the construction in [Cook et al. 2005] to work for a Lie group with corresponding
Lie algebra g, the authors needed an irreducible representation where the conjugacy
classes of the corresponding permutation representation of the Weyl group form a
strictly transitive set.

To have any hope of W having a strictly transitive set of conjugacy classes we
must have that the weights of M lie in a single orbit of W(g)∼=W. This means that
the construction cannot go through unless M is a minuscule representation. This in
turn implies that the construction cannot work for algebras of type E8, F4, or G2

(where there are not minuscule representations).
Now let M (with dim(M) = m) be a minuscule g-module with corresponding

Weyl group W (viewed as permutations of the weights of M). The conjugacy
classes of W form a strictly transitive set if and only if the cycle structures in W do
not allow invariant sets of cardinality j for 1≤ j ≤ m− 1. Essentially this means
that the conjugacy classes of W form a strictly transitive set only if the irreducibility
of M is visible directly from the cycle structures of W. So for the construction in
[Cook et al. 2005] to go through we need a representation whose irreducibility can
be established by examining the cycle structures of the Weyl group elements acting
as permutations on the weights of this representation.
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6. Seeing irreducibility from cycle structures

The problem of identifying a minuscule representation with corresponding Weyl
group action possessing a strictly transitive set of conjugacy classes was solved in
[Cook et al. 2005] for a simple Lie algebra of type An , Cn , Dn , E6, or E7. Again,
algebras of types F4, E8, and G2 have no minuscule representations so there are no
strictly transitive sets associated with representations there. We will briefly review
the results found in [Cook et al. 2005]. For more detail we refer the reader to
Section 4 of that paper.

Recall that L(An, λi ) (where n = 1, 2, . . . ) is minuscule for all i = 1, . . . , n.
Focusing on i = 1, the minuscule module L(An, λ1) (where n = 1, 2, . . . ) is
(n+1)-dimensional. It turns out that the Coxeter element (i.e., the product of all of
the simple reflections) of the Weyl group is represented by an (n+1)-cycle, since
such a cycle leaves only sets of cardinalities 0 and n+ 1 invariant. Thus we have a
strictly transitive set, and so the irreducibility of L(An, λ1) is visible from cycle
structures alone.

For type Cn (where n = 3, 4, . . . ), the only minuscule module is the (2n)-
dimensional representation L(Cn, λ1). As with type An , it turns out that the
Coxeter element is represented by a (2n)-cycle. This means that the irreducibility
of L(Cn, λ1) is visible from cycle structures alone.

Each algebra of type Dn (where n = 4, 5, . . . ) possesses three minuscule mod-
ules: L(Dn, λ1), L(Dn, λn−1), and L(Dn, λn). The first of these, L(Dn, λ1), is
(2n)-dimensional. If the weights are suitably labeled by 1, 2, . . . , 2n, it turns
out that the product of the first n − 1 simple reflections yields the permutation
τ1 = (1, 2, . . . , n)(n+ 1, . . . , 2n) and the Coxeter element is τ2 = (1, . . . , n− 1,
n+1, . . . , 2n−1)(n, 2n). Representatives from the class τ̄1 leave sets of cardinalities
0, n, and 2n invariant whereas representatives from τ̄2 leave sets of cardinalities
0, 2, 2n− 2, and 2n invariant. Since n ≥ 4, intersecting these two criteria leaves
just 0 and 2n. Therefore, {τ̄1, τ̄2} is a strictly transitive set and so the irreducibility
of L(Dn, λ1) is visible from cycle structures alone.

The algebra of type E6 possess two minuscule modules: L(E6, λ1) and L(E6, λ6).
These are both 27-dimensional. The corresponding permutation representations
of the Weyl group possess elements τ1 and τ2 with respective cycle structures
12+ 12+ 3 (two 12-cycles and a 3-cycle) and 9+ 9+ 9 (three 9-cycles). This
means that elements from τ̄2 only allow invariant sets of cardinality 0, 9, 18, and 27.
Notice that cardinalities 9 and 18 are not allowed by elements of τ̄1. Therefore,
{τ̄1, τ̄2} is a strictly transitive set.

The only minuscule module of E7 is the 56-dimensional representation L(E7, λ7).
The corresponding permutation representation of the Weyl group possesses elements
τ1 and τ2 with respective cycle structures 18+ 18+ 18+ 2 (three 18-cycles and a
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transposition) and 14+ 14+ 14+ 14 (four 14-cycles). This means that elements
from τ̄2 only allow invariant sets of cardinality 0, 14, 28, 42 and 56. Notice that
cardinalities 14, 28 and 42 are not allowed by elements of τ̄1. Therefore, {τ̄1, τ̄2} is
a strictly transitive set.

Finally, algebras of type Bn (where n = 2, 3, . . . ) only have one minuscule
representation: L(Bn, λn). This is a 2n-dimensional representation and the focus
of this project. In [Cook et al. 2005], it is stated that when n = 2, 3, 5, and 7 the
Weyl group corresponding to the minuscule module L(Bn, λn) possesses a strictly
transitive set. However, the Weyl group in the case n = 4 does not. For other ranks
the problem is left open.

7. The action of W(Bn) on the minuscule representation

We now focus on simple Lie algebras of type Bn (where n = 2, 3, . . . ). Algebras of
type Bn can be realized as the special orthogonal Lie algebras so2n+1. Specifically,
letting In denote the n× n identity matrix, we have that the special orthogonal Lie
algebra is the following set of (2n+ 1)× (2n+ 1) complex matrices:

so2n+1 =

X ∈ gl2n+1

∣∣∣∣∣ X T

1 0 0
0 0 In

0 −In 0

=−
1 0 0

0 0 In

0 −In 0

 X

 .
This is a (2n2

+n)-dimensional simple Lie algebra of rank n. Let us fix a
collection of simple roots5={α1, . . . , αn} and corresponding fundamental weights
3= {λ1, . . . , λn} for this algebra. We have that the Cartan matrix (the change of
basis matrix from 3 to 5) is

A =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 2 −2
0 0 0 · · · −1 2


with corresponding Dynkin diagram

t t t t tp p p @@
��1 2 n−2 n−1 n

Explicitly we have the following relationships between our fundamental weights
and simple roots:

α1= 2λ1−λ2, α2=−λ1+2λ2−λ3, . . . ,

αn−2=−λn−3+2λn−2−λn−1, αn−1=−λn−2+2λn−1−2λn, αn=−λn−1+2λn.
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Let ε1, . . . , εn be the standard basis for Rn. In addition, consider αi = 4(εi−εi+1)

for i =1, . . . , n−1 and αn=4εn . By Lemma 5.1 in [Green 2008],5={α1, . . . , αn}

is a set of simple roots for a root system of type Bn .
Recall, see [Humphreys 1972, Section 13.2, Table 1, p. 69], that for type Bn ,

λi =α1+2α2+·· ·+(i−1)αi−1+i(αi+·· ·+αn−1+αn) for i = 1, . . . ,n−1,

λn =
1
2(α1+2α2+·· ·+nαn).

In terms of the standard basis we have that λi = 4(ε1+· · ·+εi ) for i = 1, . . . , n−1
and λn = 2(ε1+· · ·+ εn). This in turn implies ε1 =

1
4λ1, εj =

1
4λj −

1
4λj−1 (where

j = 2, . . . , n− 1), and εn =
1
2λn −

1
4λn−1.

Recall that the Weyl group is generated by the simple reflections: σi (λj ) =

λj − δi jαi (i = 1, . . . , n). Notice that εj only involves λj−1 and λj for j = 2, . . . , n
and ε1 only involves λ1. Therefore, since σi (λk)= λk for k 6= i , we have σi (εj )= εj

if j 6= i or i + 1.
For 1< i < n,

σi (εi )= σi
( 1

4λi −
1
4λi−1

)
=

1
4σi (λi )−

1
4σi (λi−1)

=
1
4λi −

1
4αi −

1
4λi−1 = εi −

1
4αi = εi − (εi − εi+1)= εi+1.

Likewise, σi (εi+1)= εi . Therefore, for i = 2, . . . , n− 1, we see σi switches εi and
εi+1 and leaves the other εj fixed. A similar calculation shows that σ1 switches ε1

and ε2 leaving the other basis vectors fixed.
Notice σn(εj )= εj for j = 1, . . . , n− 1. Finally, consider

σn(εn)= σn
( 1

2λn −
1
4λn−1

)
=

1
2σn(λn)−

1
4σn(λn−1)

=
1
2λn −

1
2αn −

1
4λn−1 = εn −

1
2αn = εn − 2εn =−εn.

Thus σn leaves all but the last basis vector fixed and switches the sign of the final
basis vector.

If we label ε1, . . . , εn by 1, . . . , n, then we have that the Weyl group is acting as
signed permutations on {±1, . . . ,±n}. In fact, the permutation representation of
the Weyl group W(Cn) acting on the weights of the minuscule L(Cn, λ1) can be
realized in this way. This is part of the reason it was relatively easy for the authors
of [Cook et al. 2005] to resolve the type Cn case.

Even though types Bn and Cn have isomorphic Weyl groups (both groups are iso-
morphic to the group of signed permutations on {1, . . . , n}), the permutation repre-
sentation of W(Bn) acting on the weights of the minuscule representation L(Bn, λn)

is much more complicated than W(Cn) acting on the weights of L(Cn, λ1).
Let 9 be the set of 2n vectors of the form (±2, . . . ,±2). By Proposition 5.2 in

[Green 2008], 9 is a set of roots for L(Bn, λn). Notice that

λn = 2(ε1+ · · ·+ εn)= (2, . . . , 2)
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is the highest weight. We know that W(Bn) permutes the elements of 9. Consider
the signs of the coordinates of an element of 9. We can treat these like reversed
binary digits (interpret + as 0 and − as 1) then add 1 to this number. For example:
(−2,+2,+2) is interpreted as 0012 + 1 = 2 and (+2,−2,−2) is interpreted as
1102+ 1= 7.

Then σi for i = 1, . . . , n− 1 has the effect (after adjusting for the addition of 1)
of switching the j and ( j+1)-th digits of the reversed binary number and σn has
the effect of flipping the final digit of the reversed binary number. This gives us the
following:

Theorem 7.1. The simple reflections of the Weyl group W(Bn) acting on the weights
of the minuscule representation L(Bn, λn) can be represented by the permutations

σj =

2(n− j−1)
−1∏

p=0

2 j−1∏
k=1

(p2 j+1
+ 2 j−1

+ k, p2 j+1
+ 2 j
+ k), 1≤ j ≤ n− 1,

σn =

2n−1∏
k=1

(k, 2n−1
+ k).

8. Experimental results for type Bn

Using Theorem 7.1 and [GAP 2017], for n ≤ 14, we were able to find complete
lists of cycle structures for the elements in W(Bn) viewed as permutations of
weights of the minuscule module. (Our GAP code can be found in the online
supplement.) These lists allowed us to conclude that the cycle structures for types
Bn when n = 1, 2, 3, 5, and 7 yield strictly transitive sets. Thus the irreducibility of
L(Bn, λn) can be seen from cycle structure alone when n = 1, 2, 3, 5, and 7.

The same cannot be concluded for other values of n. Below we elaborate on our
method for determining irreducibility from cycle structures by examining the cycle
structures of Bn for the ranks n = 1, 2, 3, 4, and 5.

Note that, viewed as permutations, W(B1)= {(1), (12)}. For our purposes we
describe the cycle structures in this group by 1+ 1 for the identity (two 1-cycles)
and 2 for the transposition (12) (a single 2-cycle). This identification allows us
to read off the possible dimensions of invariant subspaces allowed by each cycle
structure. If we can find a cycle structure (or a collection of cycle structures) that
only allows for dimensions of 0 and 2n we know we can conclude irreducibility
from the cycle structures alone. In this case, the 2-cycle structure guarantees the
irreducibility of our minuscule representation. We will understand why after the
following examples.

When n = 2, we have W(B2)= 〈(23), (13)(24)〉 with cycle structures

1+ 1+ 1+ 1 = 1+ 1+ 2 = 2+ 2 = 4.

http://msp.org/involve/2018/11-5/involve-v11-n5-x01-gap_code.pdf
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So every element in W(B2) viewed as a permutation is of the form four 1-cycles,
two 1-cycles and a 2-cycle, two 2-cycles or a 4-cycle. Any partial sum of a type of
cycle structure is a possible dimension for an invariant subspace of our minuscule
representation allowed by that cycle structure. So the cycle structure 1+ 1+ 2
allows for possible dimensions of 0, 1, 2, 3= 1+2 and 4= 1+1+2. However, the
pair of cycles 2+ 2 only allows dimensions 0, 2, and 4= 2+ 2. Critically, we also
have that the cycle structure 4 (a 4-cycle) allows for dimensions of only 0 and 4.
Hence, we conclude that any invariant subspace of our minuscule representation
must be of dimension 0 or 4. So irreducibility of our minuscule representation is
visible from examining cycle structures alone.

Next W(B3)= 〈(23)(67), (35)(46), (15)(26)(37)(48)〉 and has cycle structures

1+ 1+ · · ·+ 1 = 1+ 1+ 1+ 1+ 2+ 2 = 1+ 1+ 3+ 3
= 2+ 2+ 2+ 2 = 2+ 6 = 4+ 4.

In this case there is no structure of the form 23
= 8 to guarantee irreducibility.

Instead we may consider the structures 2+6 and 4+4 simultaneously: 2+6 allows
for the possible dimensions 0, 2, 6, and 8, while 4+ 4 allows for 0, 4, and 8. These
lists of possible dimensions of invariant subspaces intersect at just 0 and 8. Hence,
irreducibility follows from cycle structures.

The first case in which this method fails is that of n = 4:

W(B4)=
〈
(2, 3)(6, 7)(10, 11)(14, 15), (3, 5)(4, 6)(11, 13)(12, 14),

(5, 9)(6, 10)(7, 11)(8, 12), (1, 9)(2, 10) · · · (8, 16)
〉
.

In this realization of W(B4) we find the cycle structures

1+ 1+ · · ·+ 1 = 1+ 1+ · · ·+ 1+ 2+ 2+ 2+ 2
= 1+ 1+ 2+ 4+ 4+ 4 = 1+ 1+ 1+ 1+ 3+ 3+ 3+ 3
= 2+ 2+ · · ·+ 2 = 1+ 1+ 1+ 1+ 2+ 2+ · · ·+ 2
= 2+ 2+ 6+ 6 = 4+ 4+ 4+ 4 = 8+ 8.

Each of these cycle structures allows for an invariant subspace of dimension 8. So
even though B4’s minuscule module is irreducible, cycle structures alone will not
reveal this to us.

For B5, we have that W(B5) has cycles structures of the forms 8+8+8+8 and
2+10+10+10. The form 8+8+8+8 only allows for submodules of dimensions
0, 8, 16, 24, and 32, whereas 2+ 10+ 10+ 10 only allows for submodules of
dimensions 0, 2, 10, 12, 20, 22, 30, and 32. Thus, only 0 and 32 are allowed, so
irreducibility follows.

Table 1 sums up the results for ranks 6≤ n ≤ 12. We see that the cycle structures
for B7 imply the irreducibility of its minuscule representation.
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rank invariant subspace dimensions allowed by cycle structures

6 0, 24, 40, 64

7 0, 128

8 0, 16, 32, 112, 128, 144, 224, 240, 256

9 0, 144, 224, 288, 368, 512

10 0, 64, 144, 224, 240, 320, 400, 464, 480, 544, 560, 624, 704, 784, 800, 880,
960, 1024

11 0, 288, 464, 528, 640, 704, 1344, 1408, 1520, 1584, 1760, 2048

12 0, 48, 112, 176, 224, 288, 352, 400, 464, 528, 576, 640, 704, 752, 816, 880,
928, 992, 1056, 1104, 1168, 1232, 1280, 1344, 1408, 1456, 1520, 1584, 1632,
1696, 1760, 1808, 1872, 1936, 1984, 2048, 2112, 2160, 2224, 2288, 2336,
2400, 2464, 2512, 2576, 2640, 2688, 2752, 2816, 2864, 2928, 2992, 3040,
3104, 3168, 3216, 3280, 3344, 3392, 3456, 3520, 3568, 3632, 3696, 3744,
3808, 3872, 3920, 3984, 4048, 4096

13 0, 624, 704, 1328, 1456, 2160, 2288, 2912, 2992, 3616, 3744, 4448, 4576,
5280, 5904, 6032, 6736, 6864, 7488, 7568, 8192

14 0, 368, 704, 1456, 2160, 2912, 3616, 3696, 4368, 5072, 5152, 5824, 6528,
5200, 6608, 6864, 8064, 8320, 9520, 9776, 9856, 10560, 11232, 11312,
12016, 12688, 12768, 13472, 14224, 14928, 15680, 16016, 16384

Table 1. Summary of results for Bn , where 6≤ n ≤ 12.

We were not able to get GAP to complete calculations for any higher-rank cases.
The problem is that Weyl groups grow very fast as rank is increased. In fact W(Bn)

is isomorphic to a semidirect product of Sn and (Z2)
n , so |W(Bn)| = 2n

· n! . Even
at rank 14 we have a group of order 214

·14! acting on a set of 214
= 16384 weights!

However, by randomly sampling W(Bn) for ranks of up to n = 23, we obtained
strong evidence that the number of allowed invariant subspace dimensions blows
up as rank is increased. We conjecture that the irreducibility of the minuscule
representation cannot be seen from cycle structures alone after rank 7. We found
this quite surprising given the nature of the minuscule representations for the other
types of algebras.
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