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In classical Euclidean geometry, there are several equivalent definitions of conic
sections. We show that in the hyperbolic plane, the analogues of these same
definitions still make sense, but are no longer equivalent, and we discuss the
relationships among them.

1. Introduction

Throughout this paper, En will denote Euclidean n-space and Hn will denote hyper-
bolic n-space. Recall that (up to isometry) these are the unique complete simply
connected Riemannian n-manifolds with constant curvature 0 and −1, respectively.
We will use d(x, y) for the Riemannian distance between points x and y in either
of these geometries. We will sometimes identify En with affine n-space An(R) over
the reals, which can then be embedded as usual in projective n-space Pn(R) (the set
of lines through the origin in An+1(R)). While this paper is about 2-dimensional
geometry, we will sometimes need to consider the case n = 3 as well as n = 2.

1.1. Hyperbolic geometry. Hyperbolic geometry is a form of non-Euclidean ge-
ometry, which modifies Euclid’s fifth axiom, the parallel postulate. The parallel
postulate has an equivalent statement, known as Playfair’s axiom.

Definition 1 (Playfair’s axiom). Given a line l and a point p not on l, there exists
only one line through p parallel to l.

In hyperbolic geometry, this is modified by allowing an infinite number of lines
through p parallel to l. This has interesting effects, resulting in the angles in a
triangle adding up to less than π radians, and a relation between the area of the
triangle and the angular defect, the difference between π and the sum of the angles.
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Hyperbolic geometry may also be considered to be the Riemannian geometry of a
surface of constant negative curvature. When this curvature is normalized to −1,
there are especially nice formulas, such as the fact that the area of a triangle is equal
to the angular defect.

However, since a surface of negative curvature cannot be embedded in a surface
of zero curvature, hyperbolic geometry requires “models” to represent hyperbolic
space on a flat sheet of paper. There are many such models, including the Poincaré
disk and the Poincaré upper half-plane model. These all have varying metrics and
methods of representing lines (i.e., geodesics) and shapes.

In the Poincaré disk model of H2, {z ∈ R2
: |z|< 1}, geodesics are either circular

arcs orthogonal to the unit circle or else lines through the origin. The metric is
defined as

(ds)2 =
(dx)2+ (dy)2

(1− x2− y2)2
.

In the upper half-plane model of H2, {(x, y) ∈ R2
: y > 0}, geodesics are either

lines orthogonal to the x-axis or else circular arcs orthogonal to the x-axis. The
metric is defined as

(ds)2 =
(dx)2+ (dy)2

y2 .

In the Klein disk model or Beltrami–Klein model of H2, the points in the model
are the points of the open unit disk in the Euclidean plane, and the geodesics are
the intersections with the open disk of chords joining two points on the unit circle.
The formula for the metric in this model is rather complicated:

(ds)2 =
(dx)2+ (dy)2

1− x2− y2 +
(x dx + y dy)2

(1− x2− y2)2
.

1.2. Conics.

Definition 2. One of the oldest notions in geometry, going all the way back to
Apollonius, is that of conic sections in E2. There are at least four equivalent
definitions of a conic section C :

(1) A smooth irreducible algebraic curve in A2(R) of degree 2.

(2) The intersection of a right circular cone in E3 (with vertex at the origin, say)
with a plane not passing through the origin, this plane in turn identified with E2.

(3) The two focus definition: Fix two points a1, a2 ∈ E2. An ellipse C is the locus of
points x ∈ E2 such that d(x, a1)+d(x, a2)= c, where c> 0 is a fixed constant. Sim-
ilarly, a hyperbola C is the locus of points x ∈ E2 such that |d(x, a1)−d(x, a2)| = c,
where c> 0 is a fixed constant. The points a1 and a2 are called the foci of the conic,
and the line joining them (assuming a1 6= a2) is called the major axis. A circle is
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the special case of an ellipse where a1 = a2. A parabola is the limiting case of a
one-parameter family of ellipses Ct(a1, a2, ct), where a1 is fixed and we let a2 run
off to infinity along the major axis keeping ct − d(a1, a2) fixed.

(4) The focus/directrix definition: Fix a point a1 ∈ E2, called the focus, and a line `
not passing through a1, called the directrix. A conic C is the locus of points with
d(x, a1)= εd(x, `), where ε > 0 is a constant called the eccentricity. If ε < 1 the
conic is called an ellipse; if ε = 1 the conic is called a parabola; if ε > 1 the conic
is called a hyperbola. A circle is the limiting case of an ellipse obtained by fixing
a1 and sending ε→ 0 and d(a1, `)→∞ while keeping r = εd(a1, `) fixed.

Note that these definitions come from totally different realms. Definition 2(1)
is from algebraic geometry. Definition 2(2) uses a totally geodesic embedding of
E2 into E3. Definitions 2(3) and 2(4) use only the metric geometry of E2.

Since Definition 2(1) is phrased in terms of algebraic geometry, it naturally
leads to a definition of a conic in P2(R) as a smooth irreducible algebraic curve
of degree 2. Such a curve must be given (in homogeneous coordinates) by a
homogeneous quadratic equation Q(x)= 0, where Q is a nondegenerate indefinite
quadratic form on R3. This is the equation of a cone, and intersecting the cone with
an affine plane not passing through the origin (the vertex of the cone) gives us back
Definition 2(2).

1.3. Contents of this paper. The topic of this paper is studying what happens to
Definitions 2(1)–(4) when we replace E2 by H2. This is an old problem, and is
discussed for example in [Story 1882; Coxeter 1998; Fladt 1958; 1964; Molnár
1978]. However, as we will demonstrate, the analogues of Definitions 2(1)–(4)
are no longer equivalent in H2. Thus there is some confusion in the literature, and
those who talk about conic sections in H2 (as recently as [Csima and Szirmai 2014;
2015]) do not always all mean the same thing. Our main results are Theorems 11,
13, 14, and 15 in Section 3, which clarify the relationships among these definitions
(especially the two-focus and focus-directrix definitions) in H2. The following
summarizes our results:
• Circles: Definition 3 ⇔ Definition 7. Definitions 3 and 7 are included in

Definitions 4 and 6. Definitions 3 and 7⇔/ Definition 8.

• Horocycles (paracycles), hypercycles: These are included in Definitions 5
and 6, and not included in Definitions 7 and 8.

• Ellipses: Definition 7⇔/ Definition 8. But when Definition 8 gives a closed
curve, it is included in Definition 7.

• Hyperbolas: Definition 7 $ Definition 8.

• Parabolas: Definition 7 ⇔/ Definition 8. Neither kind of parabola is ever
closed.
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2. Other Axiomatizations

Before discussing conics in H2, we first explain still another definition of conic
sections in P2(R), which is the definition found in [Coxeter 1998, Chapter III]
and with a slight variation in [Story 1882]. This definition uses the notion of
a polarity p in P2(R). This is a particular type of mapping of points to lines
and lines to points preserving the incidence relations of projective geometry (or
in the language of [Coxeter 1998, §3.1], a correlation). It can be explained in
terms of algebraic geometry as follows. If Q is a nondegenerate quadratic form
on R3, then there is an associated nondegenerate symmetric bilinear form defined
by B(x, y)= 1

2(Q(x + y)− Q(x)− Q(y)), and if V is a linear subspace of R3 of
dimension d = 1 or 2, then the orthogonal complement V⊥,B of V with respect to
B is a linear subspace of dimension 3−d . Thus the process p of taking orthogonal
complements with respect to B sends points in P2(R), which are 1-dimensional
linear subspaces of R3, to lines (copies of P1(R)), which are 2-dimensional linear
subspaces of R3, and vice versa. Given a polarity p, the associated conic is the set C
of points x ∈ P2(R) such that x lies on the line p(x), i.e., the set of 1-dimensional
linear subspaces V of R3 for which V ⊂ V⊥,B, or in other words, for which V
is B-isotropic. Thus if we identify the point x ∈ P2(R) with its homogeneous
coordinates, or with a basis vector for V up to rescaling, this becomes the condition
B(x, x)= 0, or Q(x)= 0, which is just Definition 2(1). (Note that if Q is definite,
the conic is empty, so we are forced to take Q to be indefinite in order to get
anything interesting.) Conversely, it is well known [Coxeter 1998, §4.72] that
every polarity arises from a nonsingular symmetric matrix or equivalently from a
nondegenerate quadratic form Q, so the polarity definition of conics in [Coxeter
1998, Chapter III] is equivalent to Definition 2(1).

We now introduce several possible definitions of conic sections in H2.

Definition 3 (a metric circle). A circle C in H2 is the locus of points a fixed distance
r > 0 from a center x1 ∈ H2; i.e., C = {x ∈ H2

: d(x, x1)= r}.

Definition 4 (analogue of Definition 2(2)). A right circular cone in H3 is defined
as follows. Fix a point x0 ∈H3 (say the origin, if we are using the standard unit ball
in R3 as our model of H3) and fix a plane P in H3 (a totally geodesic copy of H2)
not passing through x0. There is a unique ray starting at x0 and intersecting P
perpendicularly. Let x1 be the intersection point (the closest point on P to x0), and
fix a radius r > 0. We then have the circle C in P centered at x1 with radius r . The
cone c(x0,C) through x0 and C is then the union of the lines (geodesics) through
x0 passing through a point of C . The point x0 is called the vertex of the cone. A
conic section (in the literal sense!) in H2 is then the intersection of a plane P ′ in
H3 (not passing through x0) with c(x0,C).
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Since we can take P ′ = P in the above definition, it is obvious that a circle (as
in Definition 3) is a special case of a conic section in the sense of Definition 4.

In the Poincaré ball model of H3 with x0 the origin, geodesics through x0 are
just straight lines for the Euclidean metric, so it’s easy to see that a right circular
cone with vertex x0 is also a right circular cone in the Euclidean sense in R3. On the
other hand, planes in H3 not passing through x0 correspond to Euclidean spheres
perpendicular to the unit sphere (the boundary of the model of H3). Thus a conic
section in the sense of Definition 4 is the intersection of a right circular cone with
a sphere, and is thus (in terms of the algebraic geometry of A3(R)) an algebraic
curve of degree ≤ 4. To view this conic in the usual Poincaré disk model of H2, we
apply an isometry (stereographic projection) from P to the unit disk in C. Since
this is a rational map, we see that any conic section in the sense of Definition 4 is
an algebraic curve (in fact of degree ≤ 4) when viewed in the disk model of H2.
Alternatively, if we use the Klein ball model of H3 with x0 the origin, then a right
circular cone with vertex x0 will again look like a Euclidean right circular cone,
while a 2-plane in H3 will be the intersection of the ball with a Euclidean 2-plane,
and any conic section in the sense of Definition 4 will also be a conic section in the
Euclidean sense of Definition 2. Thus Definition 4 is equivalent to the following:

Definition 5 (analogue of Definition 2(1)). A conic in H2 in the algebraic sense is
the intersection of a smooth irreducible algebraic curve of degree 2 in A2(R) with
the open unit disk, viewed as the Klein disk model for H2. (This is a nonconformal
model in which points of H2 are points of the open unit disk, and the straight lines
are intersections with the open disk of straight lines in the plane.) Such a conic is
closed (compact) if and only if it is a circle or ellipse not intersecting the unit circle
(the absolute in the terminology of [Story 1882] and [Coxeter 1998]).

Definition 5 is the definition of conics used in [Story 1882; Coxeter 1998].
Still another approach to defining conics may be found in [Molnár 1978], based

on the axiom system for E2 and H2 developed in [Bachmann 1973]. First we need to
discuss Bachmann’s approach to metric geometry. Bachmann observes that in either
E2 and H2, there is a unique isometry which is reflection in a given line a or around
a given point A. Thus we can identify lines and points with certain distinguished
involutory elements S (the reflections in lines) and P (the reflections around points)
of the isometry group G. More is true: every element of G is a product of at
most three elements of S. Elements of S are orientation-reversing; elements of P
are orientation-preserving. The product of two elements a, b ∈ S is a nontrivial
involution if and only if a 6= b and ab = ba; in this case, the lines associated to a
and b are perpendicular (we write a ⊥ b) and ab ∈ P is the reflection around the
unique intersection point of a and b. Furthermore, every element of G of order 2
belongs to S or to P , but not to both. A point A ∈ P lies on a line a ∈ S exactly
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when there exists b ∈ S commuting with a such that A = ab. Thus a metric plane
M can be identified with a group G together with a distinguished generating set S
consisting of involutions and the set P of nontrivial products of commuting elements
of S, satisfying certain axioms. We won’t need the axioms here, since they will be
evident in the cases we are interested in. In the case of E2, G =R2oO(2), the usual
Euclidean motion group, and in the case of H2, G=PGL(2,R)∼=O+(2, 1). If

(a
c

b
d

)
has determinant +1, then it operates on the upper half-plane by linear fractional
transformations, which are orientation-preserving, and if it has determinant −1,
then it operates on the upper half-plane by

z 7→
az̄+ b
cz̄+ d

,

and this conjugate-linear map is an orientation-reversing isometry of H2.
Bachmann also points out that the metric plane (M,S,P) corresponding to E2

or H2 can be embedded naturally in a projective-metric plane (PM,S ′,P ′), in such
a way that S ⊆ S ′ and P ⊆ P ′. In the case of E2, this is just the usual embedding
of A2(R) in P2(R) by adjoining a copy of P1(R) at∞, and the associated group
is PGL(3,R). In the case of H2, PM is again a copy of P2(R), but its points and
lines consist of ideal points and ideal lines of H2. A simple way to visualize the
embedding of H2 in P2(R) is to use the (nonconformal) Klein model of H2, in which
points are points in the interior of the unit disk in R2, and lines are the intersections
of ordinary straight lines in A2(R) with the unit disk. Then each point or line of
H2 obviously corresponds to a unique point or line of P2(R). When viewed as
PM in this way, P2(R) carries a canonical polarity, namely the one associated to
the unit circle in A2(R), viewed as a conic in the sense of the polarity definition
at the beginning of this section. When we embed A2(R) in P2(R) as usual via
(x, y) 7→ [x, y, 1] (homogeneous coordinates denoted by square brackets), this
polarity is associated to the quadratic form Q : (x, y, z) 7→ x2

+ y2
− z2, since

Q(cos θ, sin θ, 1)= 0 for any real angle θ .

Definition 6 [Molnár 1978, Definition 4.1]. A conic C in the sense of Molnár,
with foci A, B ∈ P2(R), is defined by choosing a line x1 in P2(R) which is not
a boundary line (i.e., x1 is not tangent to the unit circle) and not passing through
either A or B, and with A and B not each other’s reflections across x1. Then C
consists of points X11 and X chosen as follows. X11 is the intersection of the lines
a11 through A and Bx1 (the reflection of B across x1) and b11 through B and Ax1.
(The line x1 is chosen so that a11 and b11 are not boundary lines.) The other points
X are defined by fixing a point Y on x1 and taking the lines a through Y and A
and b though Y and B, and then if neither a nor b is a boundary line, letting X
be the intersection of aa

11 and bb
11 (the reflections of a11 and b11 across a and b,

respectively). Appropriate modifications are made if a or b is a boundary line.
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Ax1 Bx1
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B X

YX11
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b11
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bb
11
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11

Figure 1. Molnár’s construction of a conic.

As is quite evident, Molnár’s definition is quite complicated but results in a
conic section in H2 being the intersection of a conic in P2(R) with the unit disk
(in the Klein model). We will not consider this definition further, but it’s closely
related to Definition 5. A picture of the construction with A = (0, 0), B = (0.5, 0),
x1 = {y = 0.5} is shown in Figure 1.

3. Main results

Definition 7 (analogue of Definition 2(3)). The definition of two focus conics in
Definition 2(3) immediately goes over to H2, simply by replacing the Euclidean
distance by the hyperbolic distance. Note that the case of a circle was already
mentioned in Definition 3.

The last definition is the only one that is not immediately obvious. However, if
we were to carry Definition 2(4) over to H2 without change, then since in the upper
half-plane or disk models of H2, the distance function is the log of an algebraic
expression, in the case of irrational eccentricity ε we would effectively get the
equation

(algebraic expression)= (algebraic expression)ε,

which is a transcendental equation, and could not possibly agree with the other
definitions of conic sections. This explains the modification made in [Story 1882].
The use of the hyperbolic sine comes from its role in hyperbolic geometry via the
solution of the Jacobi equation.

Definition 8 (analogue of Definition 2(4)). Fix a point a1 ∈ H2, called the focus,
and a line (geodesic) ` not passing through a1, called the directrix. A conic C is the
locus of points x ∈H2 with sinh d(x, a1)= ε sinh d(x, `), where ε > 0 is a constant
called the eccentricity. If ε < 1 the conic is called an ellipse; if ε = 1 the conic is
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called a parabola; if ε > 1 the conic is called a hyperbola. (Note: in the case of
the parabola, but only in this case, the hyperbolic sines cancel and can be removed
from the definition.) A circle is the limiting case of an ellipse obtained by fixing a1

and sending ε→ 0 and d(a1, `)→∞ while keeping r = ε sinh d(a1, `) fixed.

3.1. Circles. We begin now to compare the various definitions. We start with
the circle, which is the most straightforward. Definition 3 clearly coincides with
Definition 4, in the sense that if we intersect a right circular cone with a plane
perpendicular to the axis, the result is a circle in the sense of Definition 3. We also
have the following.

Proposition 9. Definition 3 coincides with the case of circles in Definition 5, but
with the Klein model replaced by the Poincaré model. In other words, an ordinary
circle in A2(R), contained in the open unit disk, when viewed as a curve in the
Poincaré disk model of H2 is a metric circle in H2, and vice versa. Similarly, an
ordinary circle contained in the upper half-plane, when viewed as a curve in the
Poincaré upper half-plane model of H2, is a metric circle in H2, and vice versa.

Proof. First consider the disk model. If the center is the origin, this is clear since
the hyperbolic distance from 0 to z in {z : |z|< 1} in C is a (nonlinear) function

tanh−1(|z|)= 1
2 log

(
1+ |z|
1− |z|

)
of the Euclidean distance |z| from 0 to z, so that each Euclidean circle centered
at 0 is also a hyperbolic circle (of a different radius), and vice versa. However, any
circle in H2 can be mapped to a circle centered at 0 via an isometry of H2, and since
linear fractional transformations send circles to circles [Ahlfors 1978, Chapter 3,
§3.2, Theorem 14], the general case follows. The case of the half-plane model also
follows since there is a linear fractional transformation relating this model to the
disk model. �

Remark 10. However, one should note that the center of a circle in the unit disk
or the upper half-plane may differ, depending on whether one considers it as a
Euclidean circle or a metric circle in H2. For example, the metric circle in H2 (in
the upper half-plane model) around the point i with hyperbolic metric radius log 2
has Euclidean equation

|z−i |
|z+i |

= tanh
( 1

2 log 2
)
=

1
3 or

∣∣z− 5
4 i
∣∣= 3

4 ,

so its center as a Euclidean circle is 5
4 i .

Metric circles in H2, when drawn in the Klein disk model, only appear to be
circles when centered at the origin. Otherwise, they are ellipses.

However, the focus/directrix definition of circles is quite different.
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Theorem 11. The definition of circle in Definition 8 does not agree with the defini-
tion of circle in Definitions 3, 4, 5, and 7.

Proof. Consider a circle in the sense of Definition 8. Without loss of generality, we
work in the upper half-plane model of H2 and set a1 = i , ` = {z ∈ H2

: |z| = R},
where we let R → +∞. In this case d(a1, `) = log R and we want to keep
r = ε sinh(log R)= ε(R2

− 1)/(2R) constant, so we take ε = 2r R/(R2
− 1). For

z ∈ H2,

d(z, `)= 1
2 d(z, w), where w = R2/z̄ = reflection of z across `.

Then the equation sinh d(z, a1)= ε sinh d(z, `) becomes

sinh
(

2 tanh−1
∣∣∣∣ z− i
z+ i

∣∣∣∣)= 2r R
R2− 1

sinh
(

tanh−1
∣∣∣∣ z− R2/z̄
z− R2/z

∣∣∣∣).
The left-hand side simplifies to

2|z+ i | |z− i |
|z+ i |2− |z− i |2

=
|z2
+ 1|

2 Im z
.

On the right-hand side,∣∣∣∣ z− R2/z̄
z− R2/z

∣∣∣∣= R2
− |z|2∣∣R2− |z|2z/z̄

∣∣ = R2
− a

√
R4+ a2− 2R2a cos θ

,

where a = |z|2 and θ = 2 arg z. Then

lim
R→∞

2r R
R2− 1

sinh
(

tanh−1
(

R2
− a

√
R4+ a2− 2R2 cos θ

))
=

√
2r

|z|
√

1− cos θ
.

Thus Definition 8 gives for our circle the equation

|z2
+ 1|

2 Im z
=

√
2r

|z|
√

1− cos θ
=

r
|z|

csc
( 1

2θ
)
=

r
|z|
|z|

Im z
=

r
Im z

or
|z2
+ 1| = 2r (1)

in the upper half-plane. This is an algebraic curve but not a metric circle. Figure 2
shows the case of r = 0.25 (in solid color) as drawn with Mathematica. This
curve passes through the points i

√
3/2, i

√
1/2, and i ±

√

(
√

17− 4)/2; the circle
centered on the imaginary axis tangent to it at i

√
3/2 and i

√
1/2 is shown with a

dashed line in the same figure. The curves are close but do not coincide. �

Aside from circles, there are various other circle-like curves that play a role in
hyperbolic geometry. These may be considered to be conics according to certain
definitions. Note also that they are distinct from the circles of Definition 8.
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- 0.4 - 0.2 0.0 0.2 0.4

0.6

0.8

1.0

1.2

Figure 2. A “circle” with focus i and r = 0.25 (solid color) and a
tangent metric circle (dashed) in the upper half-plane.

x0 ... `

Figure 3. Left: a horocycle (solid red) as a limit of circles (black)
through x0 with radii going to infinity. Right: a hypercycle (solid
blue) and a straight line ` (orange) with the same ideal limits at
infinity.

Definition 12. A horocycle (occasionally called a paracycle) in the Poincaré disk
model of H2 is the intersection of the disk with a circle tangent to the unit circle
(and lying inside the circle). A hypercycle in the Poincaré disk model of H2 is the
intersection of the disk with a circle meeting the unit circle in exactly two points.
These have well-known intrinsic definitions. A horocycle is the limit of a sequence
of circles Cn (in the sense of Definition 3) all passing through a fixed point x0, with
centers xn all lying on a fixed ray through x0 and with radii d(xn, x0)= rn→∞.
See Figure 3, left. A hypercycle is a curve on one side of a given line ` whose
points all have the same orthogonal distance from `. See Figure 3, right. Note that
horocycles and hypercycles are clearly conics in the sense of Definition 5. But they
are not covered by Definitions 7 and 8. Molnár [1978] observed that metric circles
(Definition 3), horocycles, and hypercycles are all special cases of Definition 6
when the two foci coincide.
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- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4. Two-focus ellipses in the upper half-plane with foci at i
and 3

4 i , as drawn with Mathematica.

3.2. Ellipses. Next, we consider the case of the (noncircular) ellipse. There are
two main competing definitions: Definition 7 and Definition 8.

Theorem 13. The definition of ellipse in Definition 8 does not always agree with the
definition of ellipse in Definition 7. However, there are cases where they coincide.
More precisely, when Definition 8 gives a closed curve in H2, this curve is also a
two-focus ellipse.

Proof. We will work in the upper half-plane model of H2 and, without loss of
generality, put one focus at i and let the imaginary axis be an axis of the ellipse. For
an ellipse with the “two-focus definition” and foci at i and bi , b> 0, the equation is

2 tanh−1
(
|z− i |
|z+ i |

)
+ 2 tanh−1

(
|z− bi |
|z+ bi |

)
= c,

which can be rewritten as the algebraic equation

(x2
+ y2
+ 1+

√
(x2
− y2
+ 1)2+ 4x2 y2)

×(x2
+ y2
+ b2
+

√
(x2
− y2
+ b2)2+ 4x2 y2)= 4bec y2 (2)

with c> 0. Plots of this equation for b= 3
4 and for various values of c are shown in

Figure 4. The minimal value of c to have the foci inside the ellipse is the hyperbolic
distance between the foci, or |log b|. As c increases, the curves get bigger and
bigger and look more like circles. Now that since (2) implies that d(z, i)≤ c, any
ellipse in the sense of Definition 7 is automatically compact (closed) in H2.

Now consider the focus-directrix definition for an ellipse in the upper half-plane,
with a focus at i and directrix |z| = r , r > 1 (this choice makes the imaginary axis
an axis of the ellipse). The distance from z to the directrix is half the distance to
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Figure 5. Focus/directrix ellipses in the upper half-plane with
focus at i and directrix |z| = 2, as drawn with Mathematica. On
the left, cases with ε ≤ 0.5. The case ε = 0.5 is a lemniscate. On
the right, cases with ε from 0.6 to 0.9.

the reflection of z across the directrix, which is r2/z̄. Thus the equation becomes

sinh
(

2 tanh−1
(
|z− i |
|z+ i |

))
= ε sinh

(
tanh−1

(
|z− r2/z̄|
|z− r2/z|

))
,

which simplifies (after squaring both sides) to

r2(1+ x4
+ y4
+ 2y2(−1+ ε2)+ 2x2(1+ y2

+ ε2)
)
= ε2(r4

+ (x2
+ y2)2). (3)

This is a relatively simple quartic equation in x and y, basically the Cassini oval
equation, and has some interesting features. For example, if one sets ε = 1/r , this
reduces to a lemniscate passing through (0, 0) (an ideal boundary point of H2).
When ε > 1/r , the curve (viewed in H2) is not closed and approaches two distinct
ideal boundary points. Pictures of this behavior appear in Figure 5. As a check that
having two distinct ideal boundary points is not just an artifact of the calculation,
one can check that upon substituting r = 3 and ε = 1

2 into (3), one gets two points
with y = 0, namely x =±

√
3/7.

To illustrate another difference between the two definitions, consider the case of
the two-focus definition when the foci coincide, i.e., b=1 in (2). Then (2) reduces to

x2
+ y2
+ 1+

√
(x2
− y2
+ 1)2+ 4x2 y2

= 2ec/2 y

or
(x2
− y2
+ 1)2+ 4x2 y2

− (2ec/2 y− x2
− y2
− 1)2 = 0,

which simplifies to the equation of a circle:

x2
+
(
y− cosh

( 1
2 c
))2
= sinh2( 1

2 c
)
. (4)

However, the focus/directrix equation (3) never reduces to a circle.
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However, perhaps rather surprisingly, focus/directrix ellipses with ε < 1/r (this
is the case where the curve is closed) turn out to be special cases of two-focus
ellipses. A rather horrendous calculation with Mathematica or MuPAD shows for
example that (2) with b = 2 and c = log

( 5
2

)
is equivalent to (3) with

ε =

√
209
21

, r =

√
11
19
.

To see this, rewrite (3) in the form

x2
+y2
+1+

√
(x2
−y2
+1)2+4x2 y2

=
20y2

x2+y2+4+
√
(x2−y2+4)2+4x2 y2

=
20y2(x2

+y2
+4−

√
(x2−y2+4)2+4x2 y2)

(x2+y2+4)2−((x2−y2+4)2+4x2 y2)
,

simplify, and rewrite in the form E +
√

B = F
√

D, where

B = (x2
− y2
+ 1)2+ 4x2 y2 and D = (x2

− y2
+ 4)2+ 4x2 y2.

Square both sides, again simplify and regroup to get the term with
√

B by itself, and
finally square again. After factoring out y2, one finally ends up with the equation

20x4
+ 40x2 y2

+ 325x2
+ 20y4

− 116y2
+ 80= 0,

which is equivalent to (3) for the given parameters. Other values of r and ε (with
rε < 1) can be handled similarly; one just needs to solve for the values of b and
c giving the same y-intercepts. �

3.3. Parabolas. Next, we consider the case of the parabola. Here the result is
rather simple.

Theorem 14. The definitions of parabolas in Definition 8 and in Definition 7 never
agree. In all cases, however, a parabola in H2 is not closed.

Proof. Without loss of generality, we can again use the Poincaré upper half-plane
model of H2 and put one focus at i and take the axis of the parabola to be the
imaginary axis. The two-focus definition of Definition 7 is the limiting case of (2) as
we keep bec

=
1
2C fixed and let b→0+. (This is because d(i, ib)=|log b|=− log b

for 0< b < 1 and we want c− d(i, ib)= c+ log b to be held constant.) Then (2)
reduces to

(x2
+ y2
+ 1+

√
(x2
− y2
+ 1)2+ 4x2 y2)(x2

+ y2)= Cy2, (5)

or equivalently (after regrouping and squaring to get rid of the radical, then factoring
out a y2)

2(C − 2)(x2
+ y2)2+ 2C(x2

+ y2)−C2 y2
= 0. (6)
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Figure 6. Focus/directrix parabolas in the upper half-plane with
focus at i and directrix |z| = r , as drawn with Mathematica. On the
left, cases with r < 1. These are Cassini ovals. On the right, cases
with r > 1. Of course, if one were wearing “hyperbolic glasses”,
all would look roughly the same.

Figure 7. Two-focus parabolas in the upper half-plane with focus
at i , as drawn with Mathematica. Note the lemniscate shape.

This is the equation of a lemniscate through the origin. (Remember that 0, however,
is only an ideal boundary point of H2.) Definition 8 simply gives (3) with ε = 1,
which reduces to

1− r2
+ 4x2

+ (1− 1/r2)(x2
+ y2)2 = 0, (7)

which is a Cassini oval equation. Note that (6) and (7) never agree, since for
r 6= 1 (we don’t want the directrix of the parabola to pass through the focus), the
curve given by (7) doesn’t pass through the origin. Pictures of the various kinds of
parabolas, plotted by Mathematica, are shown in Figures 6 and 7. �

3.4. Hyperbolas. Finally, we consider the case of the hyperbola.

Theorem 15. The definition of hyperbola in Definition 8 does not always agree
with the definition of hyperbola in Definition 7. However, the two-focus hyperbola
from Definition 7 is a special case of the focus-directrix hyperbola of Definition 8.

Proof. Consider the two-focus hyperbola. Fix c > 0. (When c = 0, the definition
degenerates to the bisector of the line segment joining the two foci, which is a
straight line i.e., a geodesic.) We will work in the upper half-plane model of H2

and, without loss of generality, put one focus at i and the other focus at ib, b > 1.
The equation of the two-focus hyperbola is then

2 tanh−1
(
|z− i |
|z+ i |

)
− 2 tanh−1

(
|z− bi |
|z+ bi |

)
=±c,
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Figure 8. A hyperbola in the upper half-plane with foci at i and 2i ,
c = log

( 3
2

)
, as drawn with Mathematica.

which can be rewritten as the algebraic equation

b2
+ x2
+ y2
+

√
b4
+ 2b2(x2

− y2)+ (x2
+ y2)2

= be±c(1+ x2
+ y2
+

√
1+ 2(x2

− y2)+ (x2
+ y2)2) (8)

with c > 0. Note that the hyperbola should intersect its axis (here the imaginary
axis) at two points of the form iy, 1 < y < b, so we want 0 < c < log b, and
the two y-intercepts are at i

√
be±c. Comparing this with the y-intercepts for the

focus-directrix hyperbola (3) (the equation is the same as for the ellipse — the
only difference is the value of the eccentricity ε), we see that this agrees with a
focus-directrix hyperbola with parameters satisfying

√
r + r2ε
√

r + ε
=

√
b

ec/2 ,

√
r − r2ε
√

r − ε
=
√

bec/2

or

r =

√
−b+ 2b2ec− be2c

b− 2ec+ be2c , ε =

√
b(−1+ 2bec− e2c)(b− 2ec+ be2c)

b(e2c− 1)
. (9)

Note that since c < log b, the value of ε is > 1. Just as an example, if b = 2
and c = log

( 3
2

)
, after removing some superfluous factors, equation (8) reduces to

24+6x4
−26y2

+6y4
+3x2(−17+4y2)= 0, which agrees with the focus-directrix

hyperbola with focus i , directrix |z| =
√

11/7, and eccentricity ε=
√

77/5. A graph
of this hyperbola, drawn with Mathematica, appears in Figure 8.

So this analysis shows that every two-focus hyperbola is also a focus-directrix
hyperbola. The converse fails, however. Indeed, one can see from (3) that the
focus-directrix hyperbola with r = ε > 1 degenerates to the equation

(r2
+ 1)x2

+ (r2
− 1)y2

=
r4
−1
2

,

which, surprisingly, is an ellipse in Cartesian coordinates. This has only one y-
intercept in the upper half-plane, at the point i

√
(r2+ 1)/2. So this “hyperbola” has

only one vertex, the other vertex having gone to +∞i , and this cannot be written
as a two-focus hyperbola. �
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