
inv lve
a journal of mathematics

msp

The Fibonacci sequence under a modulus: computing all
moduli that produce a given period

Alex Dishong and Marc S. Renault

2018 vol. 11, no. 5



msp
INVOLVE 11:5 (2018)

dx.doi.org/10.2140/involve.2018.11.769

The Fibonacci sequence under a modulus:
computing all moduli that produce a given period

Alex Dishong and Marc S. Renault

(Communicated by Kenneth S. Berenhaut)

The Fibonacci sequence F = 0, 1, 1, 2, 3, 5, 8, 13, . . . , when reduced modulo m
is periodic. For example, F mod 4= 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, . . . . The period of
F mod m is denoted by π(m), so π(4)= 6. In this paper we present an algorithm
that, given a period k, produces all m such that π(m) = k. For efficiency, the
algorithm employs key ideas from a 1963 paper by John Vinson on the period of the
Fibonacci sequence. We present output from the algorithm and discuss the results.

1. The problem

Consider the usual Fibonacci sequence F = 0, 1, 1, 2, 3, 5, 8, . . . , with F0 = 0,
F1 = 1, and Fn = Fn−1+ Fn−2. When reduced modulo m, the Fibonacci sequence
is periodic. For example, F mod 4 = 0, 1, 1, 2, 3, 1, 0, 1, 1, . . . . The period of
F mod m is denoted by π(m), so we see that π(4) = 6. The properties of π(m)
have been studied extensively; see, e.g., [Gupta et al. 2012; Robinson 1963; Vinson
1963; Wall 1960]. One might ask, of course, if there are any other values of m such
that π(m) = 6. The answer is no (you can verify this by hand), but it turns out
that there are 10 different moduli m such that π(m)= 24 (namely, 6, 9, 12, 16, 18,
24, 36, 48, 72, 144). Our goal is to construct an efficient algorithm that, given a
period k, produces all m such that π(m)= k.

It is instructive to first consider how one might solve the problem by brute force.
If π(m)= k, then Fk ≡ 0 (mod m) and Fk+1 ≡ 1 (mod m). That is, m divides both
Fk and Fk+1 − 1. For brute force, we fix k, find all common divisors of Fk and
Fk+1−1, and then apply the π function to these divisors to see which ones produce
the desired value of k. Computing π(m) is not difficult but it requires factoring m
as a product of primes, then factoring p± 1 for each prime p that divides m. See
[Wall 1960] for theorems on π(m) and [Flanagan et al. 2015] for an algorithm for
π(m) (as well as many other facts about the Fibonacci sequence under a modulus).
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By employing key ideas from a 1963 paper by John Vinson on the period
of the Fibonacci sequence, we were able to produce an algorithm that does not
require computing π(m). Instead, the moduli we seek can be produced with simple
divisibility tests.

2. The algorithm

In this section we present Theorem 2.1 on which our algorithm is based, pseudo-
code for the algorithm, and some output. In the next section we provide a proof of
Theorem 2.1.

First, we note that π(2) = 3 but it is known that for m > 2, π(m) must be
even. By inspecting a few small cases, it is easy to see that no moduli produce a
period of 4, and the smallest even period is 6. Let L = 2, 1, 3, 4, 7, . . . denote the
Lucas sequence: L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2. It is well-known that
Ln = F2n/Fn = Fn−1+ Fn+1.

Theorem 2.1. Given any even k ≥ 6:

(1) If k ≡ 2 (mod 4), then π(m)= k if and only if m | Lk/2, and m - Fq for all q
such that q | k and q 6= k.

(2) If k ≡ 4 (mod 8), then π(m) = k if and only if m | Fk/2, and m - Lk/4, and
m - Fq for all q such that q | k

2 and q 6= k
2 or k

4 .

(3) If k ≡ 0 (mod 8), then π(m)= k if and only if m | Fk/2, and m - Fq for all q
such that q | k

2 and q 6= k
2 .

The algorithm follows immediately from the theorem.

Algorithm 2.2. Given an integer k ≥ 2, to produce the set of all m such that
π(m)= k:

Input: an integer k ≥ 2
If k = 3, then return {2}.
If k ∈ {2, 4} or if k is odd, then return {}.
If k mod 4= 2:

Let M= {m : m | Lk/2}.
Let F = {Fq : q | k and q 6= k}.

If k mod 8= 4:
Let M= {m : m | Fk/2 and m - Lk/4}.
Let F =

{
Fq : q | k

2 and q 6= k
2 and q 6= k

4

}
.

If k mod 8= 0:
Let M= {m : m | Fk/2}.
Let F =

{
Fq : q | k

2 and q 6= k
2

}
.

Return {m ∈M : m - f for all f ∈ F}
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Figure 1. The number of m such that π(m)= k for a given k.

Figure 1 shows the results when the algorithm is run on all even k from 6 to 700
and the size of the output set is calculated. The value of k appears on the horizontal
axis, and the number of moduli m such that π(m)= k is expressed on the vertical
axis.

What surprised us most in this study was the incredible number of moduli that
can produce a given period. For example, π(m) = 600 for 1,466,812 different
values of m.

Moreover, the algorithm above has much greater speed than simple brute force.
When we computed the moduli for all even periods k from 6 to 300, the brute
force algorithm took 180.28 seconds, whereas Algorithm 2.2 completed the task in
0.62 seconds. We used the online Sage computer algebra system for our computa-
tions [Stein et al. 2016].

3. Proof of Theorem 2.1

The zeros in F mod m are evenly spaced. For example, consider F mod 5:

F mod 5= 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, . . . .

(To see why the zeros are evenly spaced, we can use the identities

Fs+t = Fs−1 Ft + Fs Ft+1,

Fs−t = (−1)t(Fs Ft+1− Fs+1 Ft).

If Fs ≡ Ft ≡ 0, then Fs+t ≡ 0 and Fs−t ≡ 0.)
The rank of F mod m, denoted by α(m), is the least index i > 0 such that

Fi ≡ 0 (mod m). We can deduce, for example, that if m | Fi , then α(m) | i . The
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order of F mod m, denoted by ω(m), is π(m)/α(m) (which is an integer since the
zeros are evenly spaced). We see above that π(5)= 20, α(5)= 5, and ω(5)= 4.

It turns out that π(2)= 3, but for all m > 2, π(m) must be even. As we see in
the mod 5 example, α(m) need not be even. It is a remarkable fact that for any m,
ω(m)= 1, 2, or 4; this is proven in [Vinson 1963]. In that paper, Vinson studies
the relationship between the period, rank, and order. Based on the Vinson paper,
Renault was able find several other consequences, and the following theorem is a
direct result of Theorem 3.35 and Corollary 3.38 in [Renault 1996].

Theorem 3.1. For any modulus m > 2:

(1) π(m)≡ 2 (mod 4) if and only if ω(m)= 1. In this case, α(m)≡ 2 (mod 4).

(2) If π(m)≡ 4 (mod 8), then ω(m)= 2 or 4. In this case, α(m)≡ 2 (mod 4) or
α(m) is odd, respectively.

(3) If π(m)≡ 0 (mod 8), then ω(m)= 2. In this case, α(m)≡ 0 (mod 4).

Since π(m) is even for m > 2, the above theorem describes all possible cases
for π(m). Also, even though the “in this case” portions follow obviously from their
preceding statements, we can use them to draw conclusions. For example, we can
see from the theorem that α(m)≡ 0 (mod 4) if and only if π(m)≡ 0 (mod 8). We
proceed now to the proof of Theorem 2.1.

Proof of Theorem 2.1(1). (⇒) Assume k ≡ 2 (mod 4) and π(m) = k. Since
k ≡ 2 (mod 4), Theorem 3.1 tells us that ω(m) = 1. Thus, m - Fq for all q such
that 1≤ q < k. In particular, m - Fq for any q such that q | k and q 6= k.

It remains to show that m | Lk/2. By the fact that π(m) = k and the identity
F−n = (−1)n+1 Fn , we see that Fk−n ≡ F−n ≡ (−1)n+1 Fn (mod m). Then, since k

2
is odd,

Fk/2−1 = Fk−(k/2+1) ≡−Fk/2+1 (mod m).

Consequently, m | Fk/2−1+ Fk/2+1. But by the identity Ln = Fn−1+ Fn+1, this is
exactly m | Lk/2, as required.

(⇐) Assume k ≡ 2 (mod 4) and (a) m | Lk/2 and (b) m - Fq for any q such that
q | k and q 6= k. We must show that π(m)= k.

By (a), m | Fk , so α(m) | k. By (b) we find that in fact, α(m)= k. Thus, π(m)= k,
2k, or 4k.

If π(m)= 4k, then ω(m)= 4 and by Theorem 3.1, α(m) must be odd. However,
α(m)≡ 2 (mod 4), so this can’t be the case.

If π(m) = 2k, then π(m) ≡ 4 (mod 8), and so Theorem 2.1(2)(⇒) implies
m - Lπ(m)/4; that is, m - Lk/2. But this contradicts our hypothesis (a) that m | Lk/2,
and so π(m) 6= 2k.

We must conclude that π(m)= k and the proof is complete. �
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Proof of Theorem 2.1(2). (⇒) Assume k≡ 4 (mod 8) and π(m)= k. Since π(m)≡
4 (mod 8), by Theorem 3.1 we know that ω(m)= 2 or 4. In either case, m | Fk/2

and m - Fq where q | k
2 and q 6= k

2 ,
k
4 . Thus, it only remains to prove that m - Lk/4.

For ease of notation, let s = Fk/2+1, let a = Fk/4+1, and observe that s 6≡
1 (mod m).

Claim 1. Fk/4−1 ≡−sa (mod m).

Proof of Claim 1. Modulo m, the Fibonacci sequence starting at Fk/2 is 0, s, s, 2s,
3s, 5s, . . . , and in general, Fk/2+n ≡ s Fn (mod m). In particular, F(3k)/4+1 ≡ sa.
The identity F−n = (−1)n+1 Fn implies Fk−n ≡ F−n ≡ (−1)n+1 Fn (mod m). Since
k
4 is odd, we find,

Fk/4−1 ≡ Fk−((3k)/4+1) ≡−F(3k)/4+1 ≡−sa (mod m).

Claim 2. (a,m)= 1.

Proof of Claim 2. We have (Fk/4−1, Fk/4+1)= F(k/4−1,k/4+1)= F2= 1. So, there ex-
ist integers u and v such that Fk/4−1u+Fk/4+1v=1. Thus,−sau+av≡1 (mod m),
and so a(−su+ v)≡ 1 (mod m) and we find that a is invertible mod m. That is,
(a,m)= 1.

Consider the identity Ln = Fn−1+ Fn+1. For contradiction,

m | Lk/4 =⇒ m | Fk/4−1+ Fk/4+1 =⇒ −sa+ a ≡ 0 (mod m)

=⇒ a(1− s)≡ 0 (mod m) =⇒ s ≡ 1 (mod m).

The last implication is due to the fact that (a,m) = 1, and we’ve arrived at a
contradiction since s 6≡ 1 (mod m). We conclude m - Lk/4, as needed.

(⇐) Assume k ≡ 4 (mod 8), (a) m | Fk/2, (b) m - Lk/4, and (c) m - Fq for all q | k
2

where q 6= k
2 or k

4 . We must prove that π(m)= k. By (a) and (c), α(m)= k
4 or k

2 .
We know that the only possible values for ω(m) are 1, 2, or 4.

Case 1: α(m)= k
4 .

If ω(m)= 2, then π(m)= k
2 ≡ 2 (mod 4). However this contradicts Theorem 3.1

since π(m)≡ 2 (mod 4) if and only if ω(m)= 1.
If ω(m)= 1, then π(m)= k

4 ≡ 1 (mod 2). Again, this contradicts Theorem 3.1
since ω(m)= 1 if and only if π(m)≡ 2 (mod 4).

Thus, in Case 1 we find that ω(m)= 4 and we conclude π(m)= k.

Case 2: α(m)= k
2 .

If ω(m) = 4, then π(m) = 2k ≡ 0 (mod 8). But by Theorem 3.1, if π(m) ≡
0 (mod 8), then ω(m)= 2, a contradiction.

If ω(m)=1, then π(m)= k
2 ≡2 (mod 4). We can now apply Theorem 2.1(1)(⇒),

and we find m | Lπ(m)/2 = Lk/4. However, this contradicts our hypothesis (b).
Thus, in Case 2 we find ω(m)= 2 and we conclude π(m)= k. �
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Proof of Theorem 2.1(3). (⇒) Assume k ≡ 0 (mod 8) and π(m) = k. Since
π(m) ≡ 0 (mod 8), Theorem 3.1 tells us that ω(m) = 2, and so α(m) = k

2 . Thus,
m | Fk/2 and m - Fq for any q such that 1 ≤ q < k

2 . In particular, m - Fq for all q
such that q | k

2 and q 6= k
2 , and this direction of the proof is complete.

(⇐) Assume k ≡ 0 (mod 8), and (a) m | Fk/2, and (b) m - Fq for all q such that
q | k

2 and q 6= k
2 . We must prove that π(m)= k. By (a), we see α(m) | k

2 , and by (b),
we deduce that in fact α(m)= k

2 . Thus α(m)≡ 0 (mod 4). By Theorem 3.1, this
can only happen when ω(m)= 2. Thus π(m)= k. �
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