\bullet

 invelve

 invelve} a journal of mathematics

On the faithfulness of the representation of $\operatorname{GL}(n)$ on the space of curvature tensors

Corey Dunn, Darien Elderfield and Rory Martin-Hagemeyer

On the faithfulness of the representation of GL(n) on the space of curvature tensors

Corey Dunn, Darien Elderfield and Rory Martin-Hagemeyer
(Communicated by Kenneth S. Berenhaut)

Abstract

We prove that the standard representation of $\mathrm{GL}(n)$ on the space of algebraic curvature tensors is almost faithful by showing that the kernel of this representation contains only the identity map and its negative. We additionally show that the standard representation of $\mathrm{GL}(n)$ on the space of algebraic covariant derivative curvature tensors is faithful.

1. Introduction

Let V be a finite-dimensional real vector space. An algebraic curvature tensor on V (or ACT for short) is a multilinear function

$$
R: V \times V \times V \times V \rightarrow \mathbb{R}
$$

that satisfies the following for all $x, y, z, w \in V$:

$$
\begin{gather*}
R(x, y, z, w)=-R(y, x, z, w), \quad R(x, y, z, w)=R(z, w, x, y), \\
0=R(x, y, z, w)+R(z, x, y, w)+R(y, z, x, w) \tag{1-a}
\end{gather*}
$$

The last of these is called the first Bianchi identity. Let $\mathcal{A}(V)$ be the set of all algebraic curvature tensors on V. As a set of real-valued functions, it is easy to check that $\mathcal{A}(V)$ is a vector space under the usual operations of summing the functions and scaling by real numbers; see [Gilkey 2001, p. 23].

There is another multilinear function on V that we study here. An algebraic covariant derivative curvature tensor on V (or ACDCT for short) is a multilinear function

$$
R_{1}: V \times V \times V \times V \times V \rightarrow \mathbb{R}
$$

[^0]that satisfies the following for all $x, y, z, w, v \in V$:
\[

$$
\begin{gather*}
R_{1}(x, y, z, w ; v)=-R_{1}(y, x, z, w ; v) \\
R_{1}(x, y, z, w ; v)=R_{1}(z, w, x, y ; v) \\
0=R_{1}(x, y, z, w ; v)+R_{1}(z, x, y, w ; v)+R_{1}(y, z, x, w ; v), \tag{1-b}\\
0=R_{1}(x, y, z, w ; v)+R_{1}(x, y, v, z ; w)+R_{1}(x, y, w, v ; z)
\end{gather*}
$$
\]

The first three properties of R_{1} are similar to those of R, while the last property is referred to as the second Bianchi identity. Let $\mathcal{A}_{1}(V)$ be the set of ACDCT on V. $\mathcal{A}_{1}(V)$ is similar to $\mathcal{A}(V)$ in that it is a vector space as well; see [Gilkey 2001, p. 26].

These multilinear objects play a central role in the area of differential geometry. If g is a pseudo-Riemannian metric on a manifold M, then the curvature tensor R^{g} and its covariant derivative ∇R^{g} have the same symmetries of R and R_{1}, respectively, upon restriction to a point of the manifold (when one uses the Levi-Civita connection to construct them).

Let the general linear group, denoted $\mathrm{GL}(n)$, be the set of all invertible linear transformations $A: V \rightarrow V$. There is a natural action of $\mathrm{GL}(n)$ on both $\mathcal{A}(V)$ and $\mathcal{A}_{1}(V)$ that defines representations ρ and ρ_{1} of $\operatorname{GL}(n)$ on $\mathcal{A}(V)$ and $\mathcal{A}_{1}(V)$, respectively. Define

$$
\begin{align*}
\rho(A)(R)(x, y, z, w) & =R\left(A^{-1} x, A^{-1} y, A^{-1} z, A^{-1} w\right), \\
\rho_{1}(A)\left(R_{1}\right)(x, y, z, w ; v) & =R_{1}\left(A^{-1} x, A^{-1} y, A^{-1} z, A^{-1} w ; A^{-1} v\right) \tag{1-c}
\end{align*}
$$

For convenience, we simply express these actions of precomposition by the inverse of A by $\rho(A)(R)=A^{*} R$, and $\rho_{1}(A)\left(R_{1}\right)=A^{*} R_{1}$.

These representations have been studied by previous authors. The representation of the orthogonal group on $\mathcal{A}(V)$ decomposes into eight irreducible subspaces, see [Gilkey 2007; Blažić et al. 2006], with geometric significance. For example, one of these irreducible subspaces is the space of Weyl conformal curvature tensors. The action of $\mathrm{GL}(n)$ on the space $\mathcal{A}_{1}(V)$ was studied in [Strichartz 1988].

By definition, if G is a group, W is a vector space, and τ is a representation of G on W (that is, τ is a homomorphism from G to the endomorphisms of W), then τ is a faithful representation if $\operatorname{ker}(\tau)$ is trivial. In addition, τ is almost faithful if $\operatorname{ker}(\tau)$ is a discrete subgroup of G (in the event G is a Lie group, this is equivalent to $\operatorname{ker}(\tau)$ being a zero-dimensional subgroup of G).

It is our goal to investigate the faithfulness of the representations ρ and ρ_{1} described above in (1-c). After establishing some supporting lemmas in Section 2, we establish the following theorem in Section 3:
Theorem 1.1. The representation ρ in (1-c) is almost faithful. In fact, $\operatorname{ker}(\rho)=\{ \pm I\}$.
We go on to prove the following result concerning ρ_{1}.

Theorem 1.2. The representation ρ_{1} in (1-c) is faithful.
We describe an immediate corollary and application to these main results concerning groups of symmetries of curvature tensors. Following [Dunn et al. 2015], we define the structure group G_{T} of an ACT or ACDCT T to be the following subgroup of GL(n):

$$
G_{T}=\left\{A \in \mathrm{GL}(n) \mid A^{*} T=T\right\}
$$

One is interested in any data concerning structure groups for a variety of reasons, although one main purpose would be in constructing invariants - these invariants are then used to study the manifolds that these objects are derived from. See [Dunn 2009; Gilkey 2007] for more on the development of invariants from structure groups.

Corollary 1.3. Let G_{R} be the structure group of the $A C T R$, and $G_{R_{1}}$ be the structure group of the ACDCT R_{1}. If $I: V \rightarrow V$ is the identity map, then

$$
\bigcap_{R \in \mathcal{A}(V)} G_{R}=\{ \pm I\} \quad \text { and } \quad \bigcap_{R_{1} \in \mathcal{A}_{1}(V)} G_{R_{1}}=\{I\}
$$

Put differently, Theorems 1.1 and 1.2 demonstrate in this corollary that with exception to $\pm I$ (and only in the ACT case), there is no subgroup of GL(n) that preserves every ACT or every ACDCT.

2. Preliminary results

There are three preliminary results we shall need to establish our main results. The first two (Lemmas 2.1 and 2.3) concern a construction of ACTs and ACDCTs. The final preliminary result (Theorem 2.7) and a needed corollary (Corollary 2.8) concern the Jordan decomposition of a matrix.

Tensor constructions. Let $S^{k}(V)$ be the (vector) space of k-multilinear functions

$$
\varphi: \times^{k} V \rightarrow \mathbb{R}
$$

that are symmetric in every slot. For example, $S^{2}(V)$ is the set of symmetric bilinear forms, and $S^{3}(V)$ is the set of totally symmetric trilinear forms. If $\varphi \in S^{2}(V)$ and $\psi \in S^{3}(V)$, define

$$
\begin{align*}
& R_{\varphi}(x, y, z, w)=\varphi(x, w) \varphi(y, z)-\varphi(x, z) \varphi(y, w) \\
&\left(R_{1}\right)_{\varphi, \psi}(x, y, z, w ; v)=\varphi(x, w) \psi(y, z, v)+\varphi(y, z) \psi(x, w, v) \tag{2-a}\\
&-\varphi(x, z) \psi(y, w, v)-\varphi(y, w) \psi(x, z, v)
\end{align*}
$$

The R_{φ} and $\left(R_{1}\right)_{\varphi, \psi}$ described in (2-a) are referred to as canonical ACTs or ACDCTs. It can be shown that $R_{\varphi} \in \mathcal{A}(V)$ and $\left(R_{1}\right)_{\varphi, \psi} \in \mathcal{A}_{1}(V)$; see [Gilkey

2007]. In fact, it is known [Gilkey 2007, p. 47] that
$\mathcal{A}(V)=\operatorname{span}\left\{R_{\varphi} \mid \varphi \in S^{2}(V)\right\}, \quad \mathcal{A}_{1}(V)=\operatorname{span}\left\{\left(R_{1}\right)_{\varphi, \psi} \mid \varphi \in S^{2}(V), \psi \in S^{3}(V)\right\}$.
Moreover, these canonical ACTs and ACDCTs have geometric significance since they arise as the curvature tensor and its covariant derivative of a hypersurface embedding [Gilkey 2007].

We use the construction found in (2-a) to produce certain ACTs and CDACTs that will be of use to us.

Lemma 2.1. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for V. Let i, j and k be given distinct indices:
(1) There exists $R \in \mathcal{A}(V)$ such that, up to the symmetries listed in (1-a), the only nonzero term is $R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=1$.
(2) There exists $R \in \mathcal{A}(V)$ such that, up to the symmetries listed in (1-a), the only nonzero term is $R\left(e_{i}, e_{j}, e_{k}, e_{i}\right)=1$.
(3) Given constants $c_{i, j}$ and $c_{i, j, k}$, there exists $R \in \mathcal{A}(V)$ such that, up to the symmetries listed in (1-a), the only nonzero terms of R are

$$
R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=c_{i j} \quad \text { and } \quad R\left(e_{i}, e_{j}, e_{k}, e_{i}\right)=c_{i j k}
$$

Proof. We prove these results by using the construction in (2-a). To prove the first assertion, define $\varphi \in S^{2}(V)$ by setting $\varphi\left(e_{i}, e_{i}\right)=\varphi\left(e_{j}, e_{j}\right)=1$ and all other entries equal to zero. It is a now a routine check that $R_{\varphi}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=1$ and all other curvature entries up to the symmetries listed in (1-a) are zero.

To prove the second assertion, define φ_{1} to have the nonzero entries

$$
\varphi_{1}\left(e_{i}, e_{i}\right)=\varphi_{1}\left(e_{j}, e_{k}\right)=\varphi_{1}\left(e_{k}, e_{j}\right)=1
$$

We now have the following nonzero entries of $R_{\varphi_{1}}$ up to the symmetries listed in (1-a):

$$
R_{\varphi_{1}}\left(e_{i}, e_{j}, e_{k}, e_{i}\right)=1 \quad \text { and } \quad R_{\varphi_{1}}\left(e_{j}, e_{k}, e_{k}, e_{j}\right)=-1
$$

By the first assertion, there exists an ACT \tilde{R} such that the only nonzero entry up to the symmetries listed in (1-a) is $\tilde{R}\left(e_{j}, e_{k}, e_{k}, e_{j}\right)=1$. We now complete the second assertion by defining $R=R_{\varphi_{1}}+\tilde{R}$.

To prove the final assertion, let the constants $c_{i j}$ and $c_{i j k}$ be given, and for every i, j, and k, using the previous assertions define the ACTs $R_{i j}, R_{i j k} \in \mathcal{A}(V)$ such that up to the symmetries listed in (1-a), the only nonzero entries of these ACTs are

$$
R_{i j}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=1 \quad \text { and } \quad R_{i j k}\left(e_{i}, e_{j}, e_{k}, e_{i}\right)=1
$$

We can now define $R=\sum_{i, j} c_{i j} R_{i j}+\sum_{i, j, k} c_{i j k} R_{i j k}$.
Remark 2.2. The notation $R_{i j}$ and $R_{i j k}$ will be used in the proof of Theorem 1.1.

We can prove a similar result concerning the construction of an ACDCT that has certain prescribed entries.

Lemma 2.3. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for V. Let i, j be given distinct indices:
(1) There exists $R_{1} \in \mathcal{A}_{1}(V)$ such that, up to the symmetries listed in (1-a), the only nonzero term is $R_{1}\left(e_{i}, e_{j}, e_{j}, e_{i} ; e_{j}\right)=1$.
(2) Given constants c_{1} and c_{2}, there exists an $R_{1} \in \mathcal{A}_{1}(V)$ such that

$$
R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right)=c_{1} \quad \text { and } \quad R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)=c_{2}
$$

Proof. We use the construction in (2-a). To prove the first assertion, define $\varphi \in S^{2}(V)$ and $\psi \in S^{3}(V)$ by having the nonzero values

$$
\varphi\left(e_{i}, e_{i}\right)=1, \quad \psi\left(e_{j}, e_{j}, e_{j}\right)=1
$$

It is now a routine check that $\left(R_{1}\right)_{\varphi, \psi}\left(e_{i}, e_{j}, e_{j}, e_{i} ; e_{j}\right)=1$ is the only nonzero entry up to the symmetries listed in (1-a):

To prove the second assertion, let ${ }^{1} R_{1},{ }^{2} R_{1} \in \mathcal{A}(V)$ be given such that the only nonzero entries up to the symmetries listed in (1-a) are

$$
{ }^{1} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right)=1 \quad \text { and } \quad{ }^{2} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)=1
$$

We then define $R_{1}=c_{1}\left({ }^{1} R_{1}\right)+c_{2}\left({ }^{2} R_{1}\right)$, which satisfies the given conditions.
Remark 2.4. According to the symmetries in (1-b), we have

$$
R_{1}\left(e_{i}, e_{j}, e_{j}, e_{i} ; e_{j}\right)=R_{1}\left(e_{j}, e_{i}, e_{i}, e_{j} ; e_{j}\right)
$$

So the ACDCT guaranteed to exist from Lemma 2.3 can be chosen to have the final index match the fourth index, or chosen to match the third, provided the first four indices are of the form (i, j, j, i) - or any of the other dependent forms derivable from the symmetries in (1-b).
Remark 2.5. The notation ${ }^{1} R_{1}$ and ${ }^{2} R_{1}$ will be used in the proof of Theorem 1.2.
Jordan normal form. We recall a familiar result from linear algebra concerning the Jordan normal form of a matrix; see [Adkins and Weintraub 1992] for details. To properly state this result, we make the following definitions.
Definition 2.6. Let $\lambda \in \mathbb{R}$, and let $a+b \sqrt{-1} \in \mathbb{C}$ with $a, b \in \mathbb{R}$ and $b>0$. The real Jordan block of size k corresponding to λ is the $k \times k$ matrix $J(\lambda, k)$ of real numbers

$$
J(\lambda, k)=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \\
0 & \lambda & 1 & 0 & \cdots \\
0 & 0 & \lambda & 1 & \\
& \vdots & & & \ddots
\end{array}\right]
$$

The complex Jordan block of size k corresponding to $a+b \sqrt{-1}$ is the $2 k \times 2 k$ matrix $J(a, b, k)$ of real numbers

$$
J(a, b, k)=\left[\begin{array}{rrrrrrr}
a & b & 1 & 0 & 0 & 0 & \\
-b & a & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & a & b & 1 & 0 & \\
0 & 0 & -b & a & 0 & 1 & \\
& \vdots & & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

We briefly recall the direct sum operation on matrices before we state Theorem 2.7. If A and B are matrices of any size, then one may create the new matrix $A \oplus B$ by defining

$$
A \oplus B=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

where the 0 entries above denote the 0 -matrix of appropriate size.
We can now state the famous result concerning the Jordan decomposition of a linear transformation.

Theorem 2.7 (Jordan normal form of a linear transformation). Let $A: V \rightarrow V$ be any linear transformation. There exists a basis \mathcal{B} for V such that the matrix representation $[A]_{\mathcal{B}}$ of A on \mathcal{B} is the direct sum of Jordan blocks corresponding to the eigenvalues of A. Furthermore, the unordered collection of Jordan blocks is uniquely determined by A.

Note that the expression of A into a direct sum of Jordan blocks is referred to as "expressing A in its Jordan normal form". We shall need the following corollary in Section 4.

Corollary 2.8. Let $A: V \rightarrow V$ be any linear transformation. There exists a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for V such that $\operatorname{span}\left\{e_{1}, e_{2}\right\}$ is A-invariant.

Proof. Find a basis for V that expresses A in its Jordan normal form, which is possible by Theorem 2.7. If A has any complex eigenvalues, rearrange this basis so that the corresponding complex Jordan block appears first. The result is now true in this case, since $A e_{1}=a e_{1}-b e_{2}$ and $A e_{2}=b e_{1}+a e_{2}$.

If A has no complex eigenvalues, then the Jordan normal form of A is a direct sum of real Jordan blocks of various sizes, and these real Jordan blocks are all upper triangular. Hence, their direct sum is upper triangular. Now we have

$$
A e_{i} \in \operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}
$$

for every $i \geq 1$. In particular, this holds for $i=2$.

3. The representation on $\mathcal{A}(V)$ is almost faithful

Here, we establish Theorem 1.1. The general method of proof of Theorem 1.1 (and with minor adjustments, Theorem 1.2 in the next section) is as follows. If $A \in \operatorname{GL}(n)$ is given and $A \neq \pm I$, then we produce an ACT R such that $A^{*} R \neq R$. By expressing A^{-1} in its Jordan normal form, this comes down to a number of cases, and in each case we use Lemma 2.1 (or Lemma 2.3 in the next section) to produce the needed ACT (or ACDCT).

Proof of Theorem 1.1. Since any ACT R inputs four entries and is multilinear, we have $(\pm I)^{*} R=R$ for every R. In the language of representations, $\rho(\pm I)$ is the identity map on $\mathcal{A}(V)$; hence $\pm I \in \operatorname{ker} \rho$. We prove that if $A \neq \pm I$, then $A \notin \operatorname{ker}(\rho)$ by finding an ACT R for which $\rho(A)(R) \neq R$, demonstrating that $\rho(A)$ is not the identity on $\mathcal{A}(V)$.

Note that since $A \neq \pm I$ and each of these is self-inverse, $A^{-1} \neq \pm I$. We decompose A^{-1} into its Jordan normal form and proceed by cases depending on the first Jordan block in this form. Recall that since $A \in \mathrm{GL}(n)$, none of its eigenvalues are equal to 0 .
(1) The first Jordan block of $\boldsymbol{A}^{-\mathbf{1}}$ is $\boldsymbol{J}(\boldsymbol{\lambda}, \mathbf{1})$. We break this case into several subcases. ${ }^{1}$ Note that in what follows, $\lambda \in \mathbb{R}$.
(a) The second Jordan block of A^{-1} is $J(\eta, 1)$. Note that $\eta \in \mathbb{R}$. There are now three possibilities for the third Jordan block of A^{-1} :
(i) All other Jordan blocks of A^{-1} are real and of size 1 . Since $A^{-1} \neq \pm I$, not all of the eigenvalues are 1 and not all of the eigenvalues are -1 . Thus there is at least one real eigenvalue γ of A^{-1} that differs from either λ or η. Without loss of generality, suppose $\gamma \neq \lambda$, and $J(\gamma, 1)$ is the third Jordan block of A^{-1}. Then for an arbitrary ACT R, we have

$$
\begin{aligned}
& A^{*} R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)=\lambda^{2} \eta^{2} R\left(e_{1}, e_{2}, e_{2}, e_{1}\right), \\
& A^{*} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)=\lambda^{2} \gamma^{2} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right), \\
& A^{*} R\left(e_{2}, e_{3}, e_{3}, e_{2}\right)=\eta^{2} \gamma^{2} R\left(e_{2}, e_{3}, e_{3}, e_{2}\right), \\
& A^{*} R\left(e_{2}, e_{1}, e_{3}, e_{2}\right)=\eta^{2} \lambda \gamma R\left(e_{2}, e_{1}, e_{3}, e_{2}\right) .
\end{aligned}
$$

Using the notation of Lemma 2.1, choose $R=R_{12}+R_{13}+R_{23}+R_{213}$. Then if $A^{*} R=R$, the above equations results in the system of equations

$$
\lambda^{2} \eta^{2}=\lambda^{2} \gamma^{2}=\eta^{2} \gamma^{2}=\eta^{2} \lambda \gamma=1
$$

[^1]Since these eigenvalues are nonzero, we see from the first three of these that $\lambda^{2}=\eta^{2}=\gamma^{2}$, and so $\lambda^{4}=\eta^{4}=\gamma^{4}=1$. Thus, each of these is either ± 1. But $\lambda \neq \gamma$, so they must be of opposite signs. In this case, $\lambda \gamma=-1$, but then in the final expression above $\eta^{2} \lambda \gamma=-1$, a contradiction.
(ii) In the remaining Jordan blocks, there exists a real Jordan block of size greater than or equal to 2 . Suppose the next Jordan block is $J(\gamma, k)$ for $k \geq 1$. Notice that for any ACT R we would then have

$$
A^{*} R\left(e_{1}, e_{3}, e_{4}, e_{1}\right)=\lambda^{2} \gamma R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)+\lambda^{2} \gamma^{2} R\left(e_{1}, e_{3}, e_{4}, e_{1}\right)
$$

So, if $R=R_{13}$, then $R_{13}\left(e_{1}, e_{3}, e_{4}, e_{1}\right)=0$, while

$$
A^{*} R_{13}\left(e_{1}, e_{3}, e_{4}, e_{1}\right)=\lambda^{2} \gamma \neq 0
$$

a contradiction if $A^{*} R=R$.
(iii) The remaining Jordan blocks of A^{-1} are complex. Suppose the next Jordan block of A^{-1} is $J(a+b \sqrt{-1}, k)$ for $k \geq 1$. If R is an arbitrary ACT, then

$$
\begin{aligned}
& A^{*} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right) \\
& \quad=\lambda^{2} a^{2} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)-2 \lambda^{2} a b R\left(e_{1}, e_{3}, e_{4}, e_{1}\right)+\lambda^{2} b^{2} R\left(e_{1}, e_{4}, e_{4}, e_{1}\right)
\end{aligned}
$$

Then we recall that $b \neq 0$ and notice that if $R=R_{13}+a /(2 b) R_{134}$, then $A^{*} R=R$ implies the left side of this equation is 1 , while the right side is 0 , a contradiction.
(b) The second Jordan block is real and of size at least 2. Suppose the second Jordan block is $J(\eta, k)$ for $k \geq 2$. It will be helpful in comparison to Case (2a) later to note here that our assumptions have

$$
\begin{equation*}
A^{-1}\left(e_{1}\right)=\lambda e_{1}, \quad A^{-1}\left(e_{2}\right)=\eta e_{2}, \quad A^{-1}\left(e_{3}\right)=\eta e_{3}+e_{2} \tag{3-a}
\end{equation*}
$$

Now if R is an arbitrary ACT, we have

$$
\begin{aligned}
& A^{*} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right) \\
& \quad=\lambda^{2} R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)+\lambda^{2} \eta^{2} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)+2 \lambda^{2} \eta R\left(e_{1}, e_{2}, e_{3}, e_{1}\right)
\end{aligned}
$$

So if $R=-\eta^{2} R_{12}+R_{13}$ and $A^{*} R=R$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.
(c) The second Jordan block is complex. Suppose the second Jordan block is $J(a+b \sqrt{-1}, k)$ for $k \geq 1$. Then for an arbitrary ACT R, we have

$$
\begin{aligned}
& A^{*} R\left(e_{1}, e_{2}, e_{2}, e_{1}\right) \\
& \quad=\lambda^{2} a^{2} R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)+\lambda^{2} b^{2} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)+2 \lambda^{2} a b R\left(e_{1}, e_{2}, e_{3}, e_{1}\right)
\end{aligned}
$$

Recalling that $b \neq 0$, if $R=R_{12}+a /(2 b) R_{123}$ and $A^{*} R=R$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.
(2) The first Jordan block of $\boldsymbol{A}^{-\mathbf{1}}$ is $\boldsymbol{J}(\boldsymbol{\lambda}, \mathbf{2})$. There are two cases to consider concerning the second Jordan block:
(a) The remaining Jordan blocks of A^{-1} are all real. If the second Jordan block is $J(\eta, k)$ for $k \geq 1$, then we have

$$
\begin{equation*}
A^{-1}\left(e_{1}\right)=\lambda e_{1}, \quad A^{-1}\left(e_{2}\right)=\lambda e_{2}+e_{1}, \quad A^{-1}\left(e_{3}\right)=\eta e_{3} . \tag{3-b}
\end{equation*}
$$

Comparing (3-b) to (3-a), one sees that under a permutation of the basis vectors, one reproduces the Case (1b) above.
(b) There exists a complex Jordan block in A^{-1}. Suppose the second Jordan block is $J(a+b \sqrt{-1}, k)$ for some k. Then for an arbitrary ACT R, we have

$$
\begin{aligned}
& A^{*} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right) \\
& \quad=\lambda^{2} b^{2} R\left(e_{1}, e_{4}, e_{4}, e_{1}\right)+\lambda^{2} a^{2} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)+2 \lambda^{2} a b R\left(e_{1}, e_{3}, e_{4}, e_{1}\right)
\end{aligned}
$$

Recalling that $b \neq 0$, if $R=R_{13}+a /(2 b) R_{134}$ and $A^{*} R=R$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.
(3) The first Jordan block of $\boldsymbol{A}^{\mathbf{- 1}}$ is $\boldsymbol{J}(\boldsymbol{\lambda}, \boldsymbol{m})$ for $\boldsymbol{m} \geq \mathbf{3}$. For an arbitrary ACT R, we have

$$
A^{*} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)=\lambda^{2} R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)+2 \lambda^{3} R\left(e_{1}, e_{2}, e_{3}, e_{1}\right)+\lambda^{4} R\left(e_{1}, e_{3}, e_{3}, e_{1}\right)
$$

If $R=-\lambda^{2} R_{12}+R_{13}$ and $A^{*} R=R$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.
(4) The first Jordan block of $\boldsymbol{A}^{-\mathbf{1}}$ is $\boldsymbol{J}(\boldsymbol{a}, \boldsymbol{b}, \mathbf{1})$. There are two cases to consider:
(a) All remaining Jordan blocks of A^{-1} are real. Permuting basis vectors only reorders the Jordan blocks in A^{-1}. Thus, if there are other real Jordan blocks after one complex Jordan block, one may reorder the basis vectors to have the real Jordan blocks appear first. Thus, we reproduce one of the previous cases.
(b) There exists another complex Jordan block in A^{-1}. For an arbitrary ACT R, we have

$$
\begin{aligned}
A^{*} R\left(e_{1}, e_{2}, e_{3}, e_{1}\right)= & a c\left(a^{2}+b^{2}\right) R\left(e_{1}, e_{2}, e_{3}, e_{1}\right)+b c\left(a^{2}+b^{2}\right) R\left(e_{2}, e_{1}, e_{3}, e_{2}\right) \\
& -a d\left(a^{2}+b^{2}\right) R\left(e_{1}, e_{2}, e_{4}, e_{1}\right)-b d\left(a^{2}+b^{2}\right) R\left(e_{2}, e_{1}, e_{4}, e_{2}\right) .
\end{aligned}
$$

Recall that b and d are nonzero. If $R=a c /(b d) R_{214}+R_{123}$ and $A^{*} R=R$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.
(5) The first Jordan block of $\boldsymbol{A}^{\mathbf{- 1}}$ is $\boldsymbol{J}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m})$ for $\boldsymbol{m} \geq \mathbf{2}$. For an arbitrary ACT R, we have

$$
\begin{aligned}
A^{*} R\left(e_{1}, e_{2}, e_{3}, e_{1}\right)= & b\left(a^{2}+b^{2}\right) R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)+a^{2}\left(a^{2}+b^{2}\right) R\left(e_{1}, e_{2}, e_{3}, e_{1}\right) \\
& +a b\left(a^{2}+b^{2}\right) R\left(e_{2}, e_{1}, e_{3}, e_{2}\right)-a b\left(a^{2}+b^{2}\right) R\left(e_{1}, e_{2}, e_{4}, e_{1}\right) \\
& -b^{2}\left(a^{2}+b^{2}\right) R\left(e_{2}, e_{1}, e_{4}, e_{2}\right)
\end{aligned}
$$

If $R=\left(a^{2} / b^{2}\right) R_{214}+R_{123}$ and $A^{*} R=R$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.

To summarize, when given any Jordan decomposition of A^{-1} and $A \neq \pm I$, there exists an ACT R for which $A^{*} R \neq R$. Since $(\pm I)^{*} R=R$, the only ACT for which $A^{*} R=R$ for all R is when $A= \pm I$. As a result, $\rho(A)$ is the identity endomorphism on the space of algebraic curvature tensors precisely when $A= \pm I$.

4. The representation on $\mathcal{A}_{1}(V)$ is faithful

We conclude the paper by establishing Theorem 1.2.
Proof of Theorem 1.2. Unlike the proof of Theorem 1.1, by Corollary 2.8 we only need to consider three possible Jordan forms that occupy the upper 2×2 part of the matrix A^{-1}.
(1) There is a complex Jordan block in $\boldsymbol{A}^{-\mathbf{1}}$. Suppose the first Jordan block of A^{-1} is $J(a, b, k)$. For an arbitrary ACDCT R_{1}, we have
$A^{*} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right)=\left(a^{2}+b^{2}\right)^{2}\left(a R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right)-b R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)\right)$.
Recall that $b \neq 0$. Using the notation of Lemma 2.3, if $R_{1}=\left({ }^{1} R_{1}\right)+a / b\left({ }^{2} R_{1}\right)$ and $A^{*} R_{1}=R_{1}$, then the left side of the equation is 1 , while the right side is 0 , a contradiction.
(2) There are only real Jordan blocks, and there is at least one of size 2 or more. Suppose the first Jordan block of A^{-1} is $J(\lambda, k)$ for $k \geq 2$. For an arbitrary ACDCT R_{1}, we have

$$
A^{*} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)=\lambda^{4}\left(R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right)\right)+\lambda^{5}\left(R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)\right)
$$

If $R_{1}=-\lambda\left({ }^{1} R_{1}\right)+\left({ }^{2} R_{1}\right)$ and $A^{*} R_{1}=R_{1}$, then the left side of the equation is 1 , while the right side is 0 , another contradiction.
(3) There are only real Jordan blocks, all of which have size 1. Suppose without loss of generality that the first Jordan block of A^{-1} is $J(\lambda, 1)$. The next Jordan block $J(\eta, 1)$, by assumption, is a real one of size 1 , and hence we have the relations
$A^{-1} e_{1}=\lambda e_{1}$, and $A^{-1} e_{2}=\eta e_{2}$. For an arbitrary CDACT R_{1}, we have

$$
\begin{aligned}
& A^{*} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right)=\lambda^{3} \eta_{2} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{1}\right), \\
& A^{*} R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)=\lambda^{2} \eta_{3}\left(\lambda R_{1}\left(e_{1}, e_{2}, e_{2}, e_{1} ; e_{2}\right)\right) .
\end{aligned}
$$

If $R_{1}=\left({ }^{1} R_{1}\right)$ and $A^{*} R_{1}=R_{1}$, we conclude $\lambda^{3} \eta^{2}=1$. If $R_{1}={ }^{2} R_{1}$, then we conclude $\lambda^{2} \eta^{3}=1$. Since both must happen simultaneously, we have $\lambda=\eta$, and $\lambda^{5}=1$, so $\lambda=\eta=1$. We have shown that for any other real Jordan block $J(\eta, 1)$, for any k, $\eta=\lambda=1$. Thus since there are only real Jordan blocks of size 1 , the only way $A^{*} R_{1}=R_{1}$ for all $R_{1} \in \mathcal{A}(V)$ is if all Jordan blocks of A^{-1} are $J(1,1)$ and as a result $A^{-1}=A=I$.

Acknowledgments

We would like to thank the referee for very helpful suggestions. Additionally, the authors are gratefully supported by NSF grant DMS-1461286 and by California State University, San Bernardino.

References

[Adkins and Weintraub 1992] W. A. Adkins and S. H. Weintraub, Algebra - an approach via module theory, Graduate Texts in Mathematics 136, Springer, 1992. MR Zbl
[Blažić et al. 2006] N. Blažić, P. Gilkey, S. Nikčević, and U. Simon, "Algebraic theory of affine curvature tensors", Arch. Math. (Brno) 42 (2006), 147-168. MR Zbl
[Dunn 2009] C. Dunn, "A new family of curvature homogeneous pseudo-Riemannian manifolds", Rocky Mountain J. Math. 39:5 (2009), 1443-1465. MR Zbl
[Dunn et al. 2015] C. Dunn, C. Franks, and J. Palmer, "On the structure group of a decomposable model space", Beitr. Algebra Geom. 56:1 (2015), 199-216. MR Zbl
[Gilkey 2001] P. B. Gilkey, Geometric properties of natural operators defined by the Riemann curvature tensor, World Scientific, River Edge, NJ, 2001. MR Zbl
[Gilkey 2007] P. B. Gilkey, The geometry of curvature homogeneous pseudo-Riemannian manifolds, ICP Advanced Texts in Mathematics 2, Imperial College Press, London, 2007. MR Zbl
[Strichartz 1988] R. S. Strichartz, "Linear algebra of curvature tensors and their covariant derivatives", Canad. J. Math. 40:5 (1988), 1105-1143. MR Zbl

Received: 2016-08-16 Revised: 2017-08-23 Accepted: 2017-10-29
cmdunn@csusb.edu
dcelderf@ncsu.edu
rory.martinhageme001@umb.edu

Mathematics Department, California State University at San Bernardino, San Bernardino, CA, United States

Mathematics Department, North Carolina State University, Raleigh, NC, United States

Mathematics Department, Rutgers University, Piscataway, NJ, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 / y e a r$ for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
-I mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers
On the minuscule representation of type B_{n} 721William J. Cook and Noah A. Hughes
Pythagorean orthogonality of compact sets 735Pallavi Aggarwal, Steven Schlicker and RyanSwartzentruber
Different definitions of conic sections in hyperbolic geometry 753
Patrick Chao and Jonathan Rosenberg
The Fibonacci sequence under a modulus: computing all moduli that produce a 769
given period
Alex Dishong and Marc S. Renault
On the faithfulness of the representation of $\mathrm{GL}(n)$ on the space of curvature 775tensorsCorey Dunn, Darien Elderfield and Rory Martin-HagemeyerQuasipositive curvature on a biquotient of $\mathrm{Sp}(3)$787
Jason DeVito and Wesley Martin
Symmetric numerical ranges of four-by-four matrices 803Shelby L. Burnett, Ashley Chandler and Linda J. PattonCounting eta-quotients of prime level827Allison Arnold-Roksandich, Kevin James and Rodney Keaton
The k-diameter component edge connectivity parameter 845Nathan Shank and Adam Buzzard
Time stopping for Tsirelson's norm 857
Kevin Beanland, Noah Duncan and Michael HoltEnumeration of stacks of spheres867Lauren Endicott, Russell May and Sienna Shacklette
Rings isomorphic to their nontrivial subrings877
Jacob Lojewski and Greg Oman
On generalized MacDonald codes 885
Padmapani Seneviratne and Lauren Melcher
A simple proof characterizing interval orders with interval lengths between 1 and k 893Simona Boyadzhiyska, Garth Isaak and Ann N. Trenk

1944-4176(2018)11:5;1-4

[^0]: MSC2010: primary 20G05; secondary 15A69.
 Keywords: algebraic covariant derivative curvature tensor, algebraic curvature tensor, representation theory.

[^1]: ${ }^{1}$ It is not surprising that this is the most complicated case: $J(\lambda, 1)$ is a Jordan block of $\pm I$ when $\lambda= \pm 1$ and so further distinguishing features of A^{-1} are needed.

