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Suppose φ3 :Sp(1)→Sp(2) denotes the unique irreducible complex 4-dimensional
representation of Sp(1) = SU(2), and consider the two subgroups Hi ⊆ Sp(3)
with H1={diag(φ3(q1), q1) : q1 ∈Sp(1)} and H2={diag(φ3(q2), 1) : q2 ∈Sp(1)}.
We show that the biquotient H1\Sp(3)/H2 admits a quasipositively curved Rie-
mannian metric.

1. Introduction

Manifolds of positive sectional curvature have been studied extensively. Despite
this, there are very few known examples of positively curved manifolds. In fact,
other than spheres and projective spaces, every known compact simply connected
manifold admitting a metric of positive curvature is diffeomorphic to an Eschenburg
space [Eschenburg 1982; Aloff and Wallach 1975], Eschenburg’s inhomogeneous
flag manifold, the projectivized tangent bundle of KP2 with K∈{C,H,O} [Wallach
1972], a Bazaikin space [Barden 1965], the Berger space [1961], or a certain
cohomogeneity one manifold which is homeomorphic, but not diffeomorphic, to
T 1S4 [Dearricott 2011; Grove et al. 2011].

Because of the difficulty in constructing new examples, attention has turned to
the easier problem of finding examples with quasi- or almost positive curvature.
Recall that a Riemannian manifold is said to be quasipositively curved if it admits
a nonnegatively curved metric with a point p for which the sectional curvatures of
all 2-planes at p are positive. A Riemannian manifold is called almost positively
curved if the set of points for which all 2-planes are positively curved is dense.
Examples of manifolds falling into either of these cases are more abundant. See
[DeVito et al. 2014; Dickinson 2004; Eschenburg and Kerin 2008; Gromoll and
Meyer 1974; Kerin 2011; 2012; Kerr and Tapp 2014; Petersen and Wilhelm 1999;
Tapp 2003; Wilhelm 2001; Wilking 2002].

In [DeVito et al. 2014], the first author, together with DeYeso, Ruddy, and Wesner,
proves that there are precisely 15 biquotients of the form Sp(3)//Sp(1)2 and show
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that eight of them admit quasipositively curved metrics. We show that their methods
can be adapted to work on a ninth example, called N9 in [DeVito et al. 2014]. That
is, we show N9 admits a metric of quasipositive curvature as well.

To describe this example, we first set up notation. Let φ3 : Sp(1) = SU(2)→
Sp(2) denote the unique irreducible complex 4-dimensional representation of Sp(1).
Further, let G = Sp(3), and let H1 = {diag(φ3(q1), q1) ∈ G : q1 ∈ Sp(1) and
H2 = {diag(φ3(q2), 1) ∈ G : q2 ∈ Sp(1)}. Finally, set H = H1× H2 ⊆ G×G.

Theorem 1.1. The biquotient H1\G/H2 admits a metric of quasipositive curvature.

In fact, we show the metric constructed on G in [DeVito et al. 2014] is H
invariant and the induced metric on N9 is quasipositively curved.

Finally, we point out that one of the first steps in the proof, Proposition 2.3,
does not hold for any of the remaining inhomogeneous biquotients of the form
Sp(3)//Sp(1)2. In particular, a new approach is needed to determine whether these
other biquotients admit metrics of quasipositive curvature.

The outline of this paper is as follows. Section 2 will cover the necessary
background, leading to a system of equations parameterized by p ∈ G, which
govern the existence of a zero curvature plane at [p−1

] ∈ G//H . In Section 3, we
find a particular point p ∈ G for which there are no nontrivial solutions to the
system of equations, establishing Theorem 1.1.

2. Background

We will use the setup of [DeVito et al. 2014]. As the calculations will be done on
the Lie algebra level, we now describe all the relevant Lie algebras.

We recall the Lie algebra sp(n) consists of all n×n quaternionic skew-Hermitian
matrices with Lie bracket given by the commutator. That is, sp(n)= {A ∈ Mn(H) :

A+ At
= 0}, where H denotes the skew-field of quaternions, and the Lie bracket is

given by [A, B] = AB− B A. When n = 1, this Lie algebra is simply Im H.
Then the Lie algebra of G = Sp(3), denoted g = sp(3), consists of the 3× 3

skew-Hermitian matrices over H. Further, we set K = Sp(2) × Sp(1), block
diagonally embedded into G via (A, q) 7→ diag(A, q) ∈ G. Then one easily sees
that k= sp(2)⊕ sp(1) is embedded into g via (B, r) 7→ diag(B, r).

We also use the description of φ3 on the Lie algebra level given by [DeVito et al.
2014, Proposition 4.5].

Proposition 2.1. For t = ti + t j + tk ∈ Im H= sp(1),

φ3(t)=
[

3ti
√

3(t j + tk)√
3(t j + tk) 2(tk − t j )− ti

]
defines the unique irreducible 4-dimensional representation of sp(1)= su(2).



QUASIPOSITIVE CURVATURE ON A BIQUOTIENT OF SP(3) 789

It follows that, for H1 = {diag(φ3(q1), q1) : q1 ∈ Sp(1)} ⊆ Sp(3),

h1 =


 3ti

√
3(t j + tk)√

3(t j + tk) 2(tk − t j )− ti
t

 : t ∈ Im H

 .
Likewise, for H2 = {diag(φ3(q2), 1) : q2 ∈ Sp(1)} ⊆ G, we have

h2 =


 3si

√
3(s j + sk)√

3(s j + sk) 2(sk − s j )− si

0

 : s ∈ Im H

 .
The metric we will use is constructed in [DeVito et al. 2014] via a combination of

Cheeger deformations [1973] and Wilking’s doubling trick [2002]. More specifically,
we let g0 denote the bi-invariant metric on G with g0(X, Y ) = −Re Tr(XY ) for
X, Y ∈ g. We let g1 denote the left G-invariant, right K -invariant metric obtained by
Cheeger deforming g0 in the direction of K. That is, g1 is the metric induced on G
by declaring the canonical submersion (G×K , g0+g0|K )→G with (p, k) 7→ pk−1

to be a Riemannian submersion.
We now equip G×G with the metric g1+g1 and consider the isometric action of

G× H1× H2 on G×G given by (p, h1, h2)∗ (p1, p2)= (pp1h−1
1 , pp2h−1

2 ). This
action is free and induces a metric on the orbit space 1G\(G×G)/(H1× H2).

Following Eschenburg [1984], the orbit space1G\(G×G)/(H1×H2) is canoni-
cally diffeomorphic to the biquotient H1\G/H2, which is called N9 in [DeVito et al.
2014]. To see this, one verifies that the map G×G→G, sending (p1, p2) to p−1

1 p2,
descends to a diffeomorphism of the orbit spaces. We use this diffeomorphism to
transport the submersion metric on 1G\(G×G)/(H1× H2) to H1\G/H2 and let
g2 denote this metric on H1\G/H2.

We note that since g0 is bi-invariant, it is nonnegatively curved. It follows from
O’Neill’s formula [1966] that g1 and g2 are nonnegatively curved as well.

We now describe the points having 0-curvature planes in (H1\G/H2, g2). To do
this, we let

p=


 0 0 z1

0 0 z2

−z̄1 −z̄2 0

 : z1, z2 ∈ H

⊆ g

denote the g0-orthogonal complement of k: g= k⊕p. Then, for X ∈ g we can write
it as X = Xk+ Xp, where Xk is the projection of X onto k, and similarly for Xp.
We also let Adp : g→ g denote the adjoint map Adp(X)= pX p−1. Then, as shown
in [DeVito et al. 2014, Corollary 2.8], we have the following description of points
[p−1
] ∈ H1\G/H2 containing 0-curvature planes.
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Theorem 2.2. There is a 0-curvature plane at [p−1
] ∈ (H1\G/H2, g2) if and only

if there are linearly independent vectors X, Y ∈ g satisfying the following equations:

(A) g0(X,Adp h1)= g0(X, h2)= g0(Y,Adp h1)= g0(Y, h2)= 0,

(B) [X, Y ] = [Xk, Yk] = [Xp, Yp] = 0,

(C) [(Adp-1 X)k, (Adp-1 Y )k] = [(Adp-1 X)p, (Adp-1 Y )p] = 0.

It is clear from inspecting these equations that if span{X, Y } = span{X ′, Y ′},
then X and Y satisfy all three conditions if and only if X ′ and Y ′ do.

We also note that there is some redundancy in these equations because (G, K )
is a symmetric pair. Specifically, assuming [X, Y ] = 0, it follows that [Xk, Yk] = 0
if and only if [Xp, Yp] = 0 and also that [(Adp-1 X)k, (Adp-1 Y )k] = 0 if and only if
[(Adp-1 X)p, (Adp-1 Y )p]=0. To see this, we first note that [p, p]⊆ k for a symmetric
pair (G, K ). Using the fact that [k, p] ⊆ p, we see that [X, Y ]k= [Xk, Yk]+[Xp, Yp].
Since condition (B) forces [X, Y ]k = 0, we see that [Xk, Yk] = 0 if and only
if [Xp, Yp] = 0. To get the result for the vectors Adp-1 X and Adp-1 Y , we note
that Adp-1 : g → g is a Lie algebra isomorphism, so [X, Y ] = 0 if and only if
[Adp-1 X,Adp-1 Y ] = 0.

We now show that for many p ∈ Sp(3), if X and Y satisfy conditions (A) and
(B) of Theorem 2.2, then we may replace X and Y with X ′, Y ′ having a nice form.

Proposition 2.3. Let ρ : g→ Im H with ρ(Z)= Z33, the entry of Z in the last row
and last column. Suppose [p−1

] ∈ G//H is a point for which ρ|Adp h1 is surjective.
If X, Y ∈ g satisfy conditions (A) and (B) of Theorem 2.2 at the point [p−1

], then
there are vectors X ′, Y ′ ∈ g with span{X, Y } = span{X ′, Y ′} and X ′p = Y ′sp(2) = 0,
where Y ′sp(2) denotes the projection of Y ′ to sp(2)⊕ 0⊆ k⊆ g.

Proof. We start with the equation [Xp, Yp] = 0 from condition (B). Since we can
identify p with T[eK ]G/K , where G/K = HP2 has positive sectional curvature,
it follows that [Xp, Yp] = 0 if and only if Xp and Yp are dependent. Thus, either
Xp = 0 and X = X ′ or Xp = λYp for some real number λ. Then X ′ = λX − Y has
no p part. We may thus assume without loss of generality that X has no p part.

Since Sp(2)×{I } is an ideal in K = Sp(2)×Sp(1), the condition [Xk, Yk] = 0
implies [Xsp(2), Ysp(2)] = 0. By condition (A), we know g0(X, h2)= g0(Y, h2)= 0,
so we may interpret Xsp(2) and Ysp(2) as tangent vectors on Sp(2)/φ3(Sp(1)). But,
Sp(2)/φ3(Sp(1)) is the Berger space [1961] and is known to admit a normal homo-
geneous metric of positive curvature. So we see that [Xsp(2), Ysp(2)] = 0 if and only
if Xsp(2) and Ysp(2) are linearly dependent.

If Xsp(2)= 0, then the only nonvanishing entry of X is X33. Since, by assumption,
ρ|Adp h1 is surjective, the condition g0(X,Adp h1)= 0 forces X = 0, contradicting
the fact that {X, Y } is linearly independent. Hence, we may assume Xsp(2) 6= 0.
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Then, we may subtract an appropriate multiple of X from Y to obtain a new vector
Y ′ with Y ′sp(2) = 0. �

We now work out conditions (A), (B), and (C) of Theorem 2.2 more explicitly at
a point of the form

p =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .
We will always assume θ ∈

(
0, 1

4π
)
. Also, we will often identify p, consisting of

matrices of the form  0 0 z1

0 0 z2

−z̄1 −z̄2 0

 ,
with H2 via the canonical R-linear isomorphism mapping such a matrix to

[ z1
z2

]
.

We note that for points of this form, ρ|Adp h1 has an image consisting of all
elements of Im H of the form 3 sin2θ ti + cos2θ t for t = ti + t j + tk ∈ Im H. Since
cos2θ 6= 0 because θ ∈

(
0, 1

4π
)
, this map has no kernel, so it is surjective. In

particular, the conditions of Proposition 2.3 are verified at all such p, and thus, we
may assume

X =

 x1 x2 0
−x̄2 x3 0

0 0 x4


with x1, x3, x4 ∈ Im H and x2 ∈ H. Similarly, we may assume

Y =

 0 0 y1

0 0 y2

−ȳ1 −ȳ2 y3


with y1, y2 ∈ H and y3 ∈ Im H

Lemma 2.4. For a point p of the above form and X, Y ∈ g, conditions (A), (B), and
(C) of Theorem 2.2 are equivalent to the following list of conditions:

x1 y1+ x2 y2− y1x4 = 0, (1)

−x̄2 y1+ x3 y2− y2x4 = 0, (2)

{x4, y3} is linearly dependent over R. (3)

For

v =

[
cos θ sin θ(x1− x4)

−sin θ x̄2

]
∈ H2 ∼= p
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and

w =

[
Re(y1)+ (cos2θ − sin2θ) Im(y1)− sin θ cos θ y3

cos θ y2

]
∈ H2 ∼= p,

the following hold:

the set {v,w} is linearly dependent over R, (4)

3(x1)i − (x3)i = 0, (5i )
√

3(x2) j − (x3) j = 0, (5 j )
√

3(x2)k + (x3)k = 0, (5k)

(x1)i (−2 sin2θ)+ (x4)i (1+ 2 sin2θ)= 0, (6i )

(x2) j (cos θ − 1)2
√

3+ (x1) j sin2θ + (x4) j cos2θ = 0, (6 j )

(x2)k(cos θ − 1)2
√

3+ (x1)k sin2θ + (x4)k cos2θ = 0, (6k)

−4 sin θ cos θ (y1)i + (2 sin2θ + 1)(y3)i = 0, (7i )

2 sin θ cos θ (y1) j − 2
√

3 sin θ (y2) j + cos2θ (y3) j = 0, (7 j )

2 sin θ cos θ (y1)k − 2
√

3 sin θ (y2)k + cos2θ (y3)k = 0. (7k)

Proof. We first claim that condition (A) is equivalent to (5i ) through (7k). To begin
with, we note that since Ysp(2)= 0 and h2⊆ sp(2)⊕0⊆ k, the equation g0(Y, h2)= 0
is automatically satisfied.

Now, a calculation shows that for s = si + s j + sk ∈ Im H,

0= g0(X, h2)= 3si x1+ 2
√

3(s j + sk) Im(x2)+ (2(sk − s j )− si )x3.

Then, using each of s = i , s = j , and s = k respectively gives (5i ), (5 j ), (5k) which,
using linearity, are therefore equivalent to the condition that g0(X, h2)= 0.

Further, with t = ti + t j + tk ∈ Im H, we compute

Adp h1 =


3 cos2θ ti + sin2θ t

√
3 cos θ (t j + tk) cos θ sin θ (t − 3ti )√

3 cos θ (t j + tk) 2(tk − t j )− ti −
√

3 sin θ (t j + tk)
cos θ sin θ (t − 3ti ) −

√
3 sin θ (t j + tk) 3 sin2θ ti + cos2θ t

 .
A calculation now shows that the expression g0(X,Adp h1) is given by the expres-
sion

(3 cos2θ ti + sin2θ t)x1+ 2
√

3 cos θ (t j + tk) Im(x2)

+ (2(tk − t j )− ti )x3+ (3 sin2θ ti + cos2θ t)x4.

Substituting each of t = i , t = j , and t = k and using (5i ), (5 j ), and (5k) to eliminate
x3 respectively gives (6i ), (6 j ), and (6k) after using sin2θ + cos2θ = 1.
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Likewise, the equation g0(Y,Adp h1) = 0 is equivalent to the vanishing of the
expression

2 cos θ sin θ(−3ti+ t) Im(y1)−2
√

3 sin θ(t j+ tk) Im(y2)+(3 sin2θ ti+cos2θ t)y3.

Substituting each of t = i , t = j , and t = k respectively gives (7i ), (7 j ), and (7k).
We next claim that (1), (2), and (3) are equivalent to condition (B) of Theorem 2.2.

Computing, we see [X, Y ]= 0 if and only if (1) and (2) are satisfied and [x4, y3]= 0.
But this latter condition is equivalent to (3) since Sp(1)= S3 has positive sectional
curvature. Further, Xp = 0, so [Xp, Yp] = 0 and since Ysp(2) = 0, condition (3) is
satisfied if and only if[Xk, Yk] = 0.

Lastly, we claim that (4) is equivalent to condition (C) of Theorem 2.2. To see
this, first recall that it was shown directly following Theorem 2.2 that the conditions
[(Adp-1 X)k, (Adp-1 Y )k] = 0 and [(Adp-1 X)p, (Adp-1 Y )p] = 0 are equivalent, so we
may focus on only one of these.

A direct calculation shows that v = (Adp-1 X)p and w = (Adp-1 Y )p, so we need
only argue that [v,w] = 0 if and only if v and w are dependent over R. But we
may interpret v,w as elements of T[eK ]G/K where G/K = HP2 has a normal
bi-invariant metric of positive sectional curvature. It follows that the bracket of v
and w vanishes if and only if v and w are linearly dependent. �

3. Quasipositive curvature

In this section, we prove N9 = H1\Sp(3)/H2 is quasipositively curved with the
metric g2 constructed in Section 2. As mentioned above, the metric g2 is nonnega-
tively curved, so it is sufficient to find a single point for which all 2-planes have
nonzero curvature. In fact, we will show the following theorem.

Theorem 3.1. With respect to the metric g2, N9 is positively curved at points of the
form [p−1

] ∈ H1\G/H2 ∼= N9, where

p =

cos θ 0 −sin θ
0 1 0

sin θ 0 cos θ


with θ ∈

(
0, 1

6π
)
.

We will always work with points p of the above form.
Assume [p−1

] ∈ H1\G/H2 is a point for which there is a 0-curvature plane.
Then, using Theorem 2.2 and Proposition 2.3, it follows that there are linearly
independent X, Y ∈ g= sp(3) with

X =

 x1 x2 0
−x̄2 x3 0

0 0 x4

 and Y =

 0 0 y1

0 0 y2

−ȳ1 −ȳ2 y3


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and which satisfy all of the conditions given by Lemma 2.4. By repeatedly applying
the conditions of Lemma 2.4, we will constrain the forms of X and Y until we
finally find that no such X and Y exist. This contradiction will establish that there
are no zero curvature planes at [p]−1, and hence, that N9 is positively curved at
these points.

Proposition 3.2. If θ ∈
(
0, 1

6π
)
, the two vectors

v =

[
cos θ sin θ (x1−x4)

−sin θ x̄2

]
, w =

[
Re(y1)+(cos2θ−sin2θ) Im(y1)−sin θ cos θ y3

cos θ y2

]
are both nonzero.

Proof. Suppose for a contradiction that v = 0. Since 0 < θ < 1
6π , we have that

v = 0 implies x2 = 0 and x1 = x4. Then (6i ), (6 j ), and (6k) imply x1 = x4 = 0.
Then (5i ), (5 j ), and (5k) imply that x3 vanishes as well. Thus, in this case, X = 0,
contradicting the fact that X and Y are linearly independent. Thus, v 6= 0.

Now, suppose w = 0, so y2 = 0, Re(y1)= 0 and

Im(y1)= y1 =
sin θ cos θ

cos2θ − sin2θ
y3 =

1
2 tan(2θ)y3. (8)

This equation implies that the i , j , and k components of y1 and y3 are positive
multiples of each other. However, (7 j ) and (7k) imply that the j and k components
of y1 and y3 are negative multiples of each other. Thus, we must have (y1) j =

(y1)k = (y3) j = (y3)k = 0.
Solving (7i ) for y1= (y1)i and combining with (8), we see that either y1= y3= 0,

or θ must satisfy the equation

sin θ cos θ

cos2θ − sin2θ
=

2 sin2θ + 1
4 sin θ cos θ

.

Clearing denominators and simplifying gives 2 sin2θ cos2θ + 2 sin4 θ + sin2θ =

cos2θ . Factoring sin2θ out of the expression 2 sin2θ cos2θ + 2 sin4 θ , we see
this expression simplifies to 2 sin2θ . Substituting this back in gives the equation
3 sin2θ = cos2θ , which has no solutions in

(
0, 1

6π
)
.

Thus, for θ ∈
(
0, 1

6π
)
, we conclude y1 = y3 = 0, which implies Y = 0, again

contradicting the fact that X and Y are linearly independent. �

Using (4), it follows that by rescaling X , we may thus assume v=w. Further, the
first component of v is purely imaginary, and hence Re(y1)= 0, that is, y1 = Im y1.
Thus, (4) is equivalent to the following two equations:

cos θ sin θ(x1− x4)= (cos2θ − sin2θ)y1− sin θ cos θ y3, (9)

y2 =−tan θ x̄2. (10)



QUASIPOSITIVE CURVATURE ON A BIQUOTIENT OF SP(3) 795

Proposition 3.3. For any θ ∈
(
0, 1

6π
)
, x2, y1, and y2 are all nonzero.

Proof. Assume for a contradiction that y2= 0. Note that, because all the coefficients
in (7i ), (7 j ), (7k) are nonzero, it follows that y1 = 0 if and only if y3 = 0. Because
Y 6= 0, it follows that y1 6= 0.

Rearranging (1) gives x1 y1 = y1x4. Taking lengths, we see that |x1| = |x4|. We
now compare the i , j , and k components of x1 and x4.

For the i component, we rearrange (6i ) to obtain

(x1)i =
1+ 2 sin2θ

2 sin2θ
(x4)i =

(
1+

1

2 sin2θ

)
(x4)i .

Since the sum in the parentheses is positive, we conclude that |(x1)i | ≥ |(x4)i |, with
equality if and only if (x1)i = (x4)i = 0.

For the j component, we first remark that (10) shows that x2 = 0 because y2 = 0.
Then, rearranging (6 j ) gives

(x1) j =−
cos2θ

sin2θ
(x4) j .

Thus, since 0 < θ < 1
6π , we conclude that |(x1) j | ≥ |(x4) j | with equality if and

only if (x1) j = (x4) j = 0. The same argument shows |(x1)k | ≥ |(x4)k | with equality
if and only if (x1)k = (x4)k = 0.

Thus, each component of x1 is at least as large, in magnitude, as the corresponding
component of x4. Hence, since |x1| = |x4|, it follows that each of these inequalities
must be equalities, so x1 = x4 = 0. Since we have already shown x2 = 0, equations
(5i ), (5 j ), and (5k) force x3= 0 as well. That is, X = 0, a contradiction. Thus, y2 6= 0.

Finally, it follows from (10) that x2 6= 0. From (1) and the fact that x2 y2 6= 0,
we see that y1 6= 0. �

Proposition 3.4. For every θ ∈
(
0, 1

6π
)
, x1 6= x4.

Proof. Suppose for a contradiction that x1 = x4. Then (1) takes the form

0= x1 y1− y1x1− tan θ |x2|
2
= [x1, y1] − tan θ |x2|

2.

Since x1, y1 ∈ Im H, we know [x1, y1] ∈ Im H as well, so we conclude that
tan θ |x2|

2
= 0. Since 0< θ < 1

6π , it follows that x2 = 0, a contradiction. �

Our next goal is to demonstrate the following proposition.

Proposition 3.5. For every θ ∈
(
0, 1

6π
)
, dimR spanR{x1, x4, y1, y3} = 1.

Proof. Since, by Proposition 3.3, y1 6= 0, the dimension of this span is at least 1, so
we need only show it is at most one.

We deal first with the case x4 = 0. Then (1) takes the form x1 y1− tan θ |x2|
2
= 0.

In particular, x1 y1 ∈ R. Since x1 and y1 are purely imaginary, this implies {x1, y1}
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is linearly dependent over R. Now (10) implies that y3 = −x1 + 2y1/ tan(2θ),
so {x1, y1, y3} is linearly dependent. Since x4 vanishes, spanR{x1, x4, y1, y3} is
1-dimensional.

We now investigate the case where x4 6= 0. By (3), we may write y3 = λx4 for
some real number λ. Solving (9) for y1 and substituting into (1) gives

0= 1
2 tan(2θ)

(
x1(x1+ (λ− 1)x4)− (x1+ (λ− 1)x4)x4

)
− tan θ |x2|

2. (11)

Recalling that the square of a purely imaginary number is real, the imaginary part
of (11) simplifies to

0= 1
2 tan(2θ)(λ− 2) Im(x1x4).

If λ 6=2, this implies that Im(x1x4)=0, that is, {x1, x4}must be linearly dependent.
Recalling y3 = λx4 and y1 = cos θ sin θ(x1+ (λ− 1)x4), we see that if λ 6= 2, then
dimR spanR{x1, x4, y3, y1} = 1.

We now show λ= 2 cannot occur. Assume for a contradiction that λ= 2. We first
show this implies that the j and k components of x2 and y2 must vanish. We carry
out the proof for the j component, as the proof for the k component is identical.

Given x2 and x4, Equation (6 j ) determines the j component of x1:

(x1) j =−
cos2θ (x4) j + 2

√
3(cos θ − 1)(x2) j

sin2θ
.

Substituting this into (9) and rearranging gives

(y1) j =−
cos θ
sin θ

(x4) j −
2
√

3 cos θ(cos θ − 1)

sin θ(cos2θ − sin2θ)
(x2) j .

Then substituting this into (7 j ), we determine

(y2) j =−
−2 cos2θ(cos θ − 1)

sin θ(cos2θ − sin2θ)
(x2) j .

On the other hand, from (10), y2=− tan θ x̄2, the j component of y2 is determined
in a different way by x2. Thus, either (x2) j = (y2) j or

−
−2 cos2θ(cos θ − 1)

sin θ(cos2θ − sin2θ)
=

sin θ
cos θ

. (12)

By clearing denominators and replacing sin2θ with 1− cos2θ everywhere, (12) is
equivalent to 2 cos3 θ − 3 cos2θ + 1= 0, which factors as

(cos θ − 1)2(2 cos θ + 1)= 0.

But this has no solutions θ ∈
(
0, 1

6π
)
, since 0< cos θ < 1 on that interval. It follows

that if λ= 2, then the j and k components of x2 and y2 vanish.
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Because the j and k components of x2 vanish, the proof of Proposition 3.3 shows
that |x1| ≥ |x4| with equality only if |x1| = |x4| = 0.

Now, (9) gives y1 =
1
2 tan(2θ)(x1+ x4). Substituting this into (1), we get

1
2 tan(2θ)(x2

1 − x2
4)= tan θ |x2|

2.

Because x1 is purely imaginary, x2
1 =−|x1|

2 and similarly for x4, so this equation
is equivalent to

1
2 tan(2θ)(|x4|

2
− |x1|

2)= tan θ |x2|
2. (13)

For θ ∈
(
0, 1

4π
)
, both tangents are positive, and so, by Proposition 3.3, the right

side of (13) is positive.
On the other hand, since |x1|≥ |x4|, the left side is nonpositive. This contradiction

implies λ= 2 cannot occur for any θ ∈
(
0, 1

6π
)
. �

Using Proposition 3.5 and the fact that y1 6= 0, we see that x1, x4, and y3 are real
multiples of y1.

Proposition 3.6. Suppose θ ∈
(
0, 1

6π
)
. Then the i components of x1, x4, y1, y3 and

x3 are all zero.

Proof. If (y1)i = 0, it follows from Proposition 3.5, together with the fact that y1 6= 0
(Proposition 3.3), that the i component of x1, x4, and y3 are all 0 as well. Then (5i )
shows (x3)i = 0 as well. So, we need only show (y1)i = 0 when θ ∈

(
0, 1

6π
)
.

So, assume for a contradiction that (y1)i 6= 0. Solving for y3 in (7i ) and substi-
tuting into (9), we see

cos θ sin θ(x1− x4)=

(
cos2θ − sin2θ − cos θ sin θ

4 cos θ sin θ

2 sin2θ + 1

)
y1.

Since θ ∈
(
0, 1

6π
)
, the coefficient on the right is positive. It follows that x1− x4 is

a positive multiple of y1.
Now, note that (1), rearranged, takes the form (x1− x4)y1 = tan θ |x2|

2. Since
θ ∈

(
0, 1

6π
)
, the right-hand side is positive. But since x1− x4 is a positive multiple

of y1, the left-hand side is a positive multiple of y2
1 . The square of any purely

imaginary number is nonpositive, so we have a contradiction. �

We now show that x3 must be nonzero. Suppose for a contradiction that x3 = 0.
By (5 j ) and (5k), x2 has no j or k component. Since y2 =− tan θ x̄2, the j and k
components of y2 vanish as well.

Now, (7 j ) and (7k) give y3 =−2 tan θ y1. In particular, y3 is a negative multiple
of y1. From (9), we now see cos θ sin θ (x1− x4) is a positive multiple of y1. Then,
just as in the proof of Proposition 3.6, this contradicts (1).

We also find that the j and k components of x2 and y2 are constrained.
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Proposition 3.7. Let x ′2, y′2 denote the projection of x2 and y2 into the jk-plane.
Then dimR spanR{x1, x4, y1, y3, x ′2, y′2} = 1.

Proof. Recalling that x1 and x4 have no i component by Proposition 3.6, we see
that multiplying (6 j ) by j and (6k) by k and adding gives the equation

(x ′2)(cos θ − 1)2
√

3+ x1 sin2θ + x4 cos2θ = 0.

Thus, x ′2 is dependent on x1 and x4. Since y2=− tan θ x̄2, we find that y′2= tan θ x ′2
is also dependent on x ′2. The result follows. �

Proposition 3.8. Either (x2) j = 0 or (x2)k = 0, but not both.

Proof. If both are zero, then (5 j ) and (5k) give x3 = 0, which is not possible. We
now show at least one vanishes.

We begin by rearranging (2) into the form

x̄2(tan θ x4− y1)= tan θ x3 x̄2.

We write x2 = x ′′2 + x ′2 as a decomposition into the complex components, together
with the j and k components. That is, x ′′2 ∈C while x ′2 ∈ span{ j, k}, as before. Then,
the left-hand side can be expanded as x ′′2 (tan θ x4−y1)+x ′2(tan θ x4−y1). Recalling
that the i component of x4 and y1 vanishes by Proposition 3.6, x ′′2 (tan θ x4− y1) ∈

span{ j, k}.
Further, we see x ′2(tan θ x4− y1) ∈ R because x ′2 is dependent on both x4 and y1

by Proposition 3.7. It follows that x2(tan θ x4− y1) has no i component.
Hence, the i component of the right-hand side, tan θ x3 x̄2, must vanish as well.

Since (x3)i = 0 by Proposition 3.6, the i component of x3 x̄2 is given by

0= (x3 x̄2)i i = (x3) j j (x̄2)kk+ (x3)kk(x̄2) j j = (−(x3) j (x2)k + (x3)k(x2) j )i.

Now, using (5 j ) and (5k), we see (x3) j =
√

3(x2) j and (x3)k =−
√

3(x2)k . Substi-
tuting yields 0=−2

√
3(x2) j (x2)k , so at least one of (x2) j and (x2)k vanishes. �

As we have already shown dimR span{x1, x4, y1, y3, x ′2, y′2}=1 (Proposition 3.7),
it follows that either they all only have a k component, or they all only have
a j component. Equations (5 j ) and (5k) show that x3 is also in the span of
{x1, x4, y1, y3, x ′2, y′2}.

Our next proposition will show that all the variables must commute.

Proposition 3.9. (x2)i = (y2)i = 0.

Proof. Since y2 =− tan θ x̄2, it is enough to show that (x2)i = 0.
Equation (2) can be rearranged into the form

tan θ x4− y1 =
tan θ
|x2|2

x2x3 x̄2.
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By Propositions 3.6, 3.7, and 3.8, we see that the left-hand side, x3, and x2 are all
either a real multiple of j or a real multiple of k. For the remainder of the proof, we
assume they are all multiples of j ; the case where they are multiples of k is identical.

The right side is, up to multiple, given by conjugating x3 by the unit quaternion
x2/|x2|. Recall that a unit quaternion can be written as q = (cosφ)q0+ (sinφ)q1,
where q0 is real and q1 is purely imaginary and |q0| = |q1| = 1. Then conjugation
by q, viewed as a map from R3 ∼= Im(H) to itself, is a rotation with axis given by
q1 and with rotation angle given by 2φ.

Since the j-axis is invariant under conjugation by x2, we see one of two things
happen. Either the j -axis is fixed point-wise, in which case Im(x2) has only a j com-
ponent, or the orientation of it is reversed. We now show the latter case cannot occur.

If the orientation is reversed, the rotation axis Im(x2) must be perpendicular to j ,
so Im(x2) ∈ span{i, k}. Because x ′2 has no k part, so it follows that x ′2 = 0. But
then, using (5 j ) and (6 j ), we see that x3 = 0, which is not possible. �

It follows that Im(x2)= x ′2. Summarizing, we have now shown that at a point
containing a 0-curvature plane with θ ∈

(
0, 1

6π
)

that x ′2 = Im(x2), y′2 = Im(y2),
dimR span{x1, x3, x4, y1, y3, x ′2, y′2} = 1 and further, that each element in this set
has vanishing i and j components or vanishing i and k components. In particular,
the variables x1, x2, x3, x4, y1, y2, and y3 all commute. Thus, we may replace (2)
with the linear equation tan θ x4−tan θ x3−y1=0 by substituting y=−tan θ x̄2 and
canceling all occurrences of x̄2. We let `∈ { j, k} and set ε= 1 if `= j and ε=−1 if
`= k. Then, (2)–(7k) are equivalent to the homogeneous system of linear equations

−tan θ (x3)`+tan θ (x4)`−(y1)` = 0,

cos θ sin θ (x1)`−cos θ sin θ (x4)`+(sin2θ−cos2θ) (y1)`+cos θ sin θ (y3)` = 0,

tan θ (x2)`−(y2)` = 0,
√

3(x2)`+ε(x3)` = 0,

sin2θ (x1)`+2
√

3(cos θ−1)(x2)`+cos2θ (x4)` = 0,

2 sin θ cos θ (y1)`−2
√

3 sin θ (y2)`+cos2θ (y3)` = 0.

Then one can easily compute that all solutions are given as real multiples of

(x1)`

(x2)`

(x3)`

(x4)`

(y1)`

(y2)`

(y3)`


=



−3 cos θ((2+ ε) cos2θ − 4 cos θ + 2)
−
√

3 cos θ
3ε cos θ

−3(cos θ − 1)((2+ ε) cos2θ + (ε− 2) cos θ − 2)
−3 tan θ((2+ ε) cos3θ − 4 cos2θ + 2)

−
√

3 sin θ
6 tan2θ((2+ ε) cos3θ − 4 cos2θ + 1)


. (14)
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We now note that (1) is equivalent to y1(x1− x4)= tan θ |x2|
2. In particular, (1)

implies that y1(x1−x4)>0. Thus, if we can show that for θ ∈
(
0, 1

6π
)
, Equation (14)

implies y1(x1− x4) < 0, we will have reached our final contradiction, showing N9

is positively curved at points with θ ∈
(
0, 1

6π
)
.

Proposition 3.10. For θ ∈
(
0, 1

6π
)
, y1(x1− x4) < 0.

Proof. We first note that a simple calculation shows

(x1)`− (x4)` = 6− (6+ 3ε) cos θ.

We first prove y1(x1−x4)< 0 when `= j , that is, ε= 1. In this case, (x1−x4) j =

6−9 cos θ and this is negative so long as cos θ > 2
3 . Of course, since cos

( 1
6π
)
> 2

3 ,
we know that (x1− x4) j < 0 on

(
0, 1

6π
)
.

Further, (y1) j =−3 tan θ (3 cos3θ−4 cos2θ+2). The polynomial 3x3
−4x2

+2
is clearly positive on the interval (

√
3/2, 1), so (y1) j < 0.

It follows that y1(x1− x4)= (y1) j (x1− x4) j j2
=−(y1) j (x1− x4) j < 0.

Finally, we prove y1(x1− x4) < 0 when `= k, that is, ε =−1. Then it is easy
to see that (y1)k is positive since the polynomial x3

− 4x2
+ 1 is negative on the

interval (
√

3/2, 1). Further, if ε =−1, then (x1)k − (x4)k = 6− 3 cos θ > 0.
Thus, y1(x1− x4)= (y1)k(x1− x4)kk2

=−(y1)k(x1− x4)k < 0, as claimed. �
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