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We focus on a network reliability measure based on edge failures and considering
a network operational if there exists a component with diameter k or larger. The
k-diameter component edge connectivity parameter of a graph is the minimum
number of edge failures needed so that no component has diameter k or larger.
This implies each resulting vertex must not have a k-neighbor. We give results for
specific graph classes including path graphs, complete graphs, complete bipartite
graphs, and a surprising result for perfect r -ary trees.

1. Introduction

Network reliability and graph connectivity parameters have been studied for many
years. The network reliability measure can vary greatly based on the type of
application being considered. In particular networks, the vulnerabilities of particular
pieces of the network often influence the parameter used to measure reliability. In
particular cases, nodes or vertices may fail or become inoperable; in other cases,
the edges or connections between vertices may fail or become inoperable and in
some cases both the nodes and the edges may fail. See [Boesch et al. 2009] for a
survey of recent results and techniques.

In general, network reliability measures are driven by two different yet con-
nected concepts. First, we need to know what objects are prone to failure: edges,
vertices, or both. Second, we need to know what the requirements are to make a
network functional. Stated differently, we need to know what objects fail and what
characterizes a failure state for a network.

Vertex connectivity and edge connectivity are two of the original network re-
liability measures which have been studied extensively. The vertex connectivity
parameter is the minimum number of vertices that must be deleted so that the
resulting graph is disconnected. Similarly the edge connectivity parameter measures
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the minimum number of edges that must be deleted so that the resulting graph is
disconnected. These parameters have been generalized to other reliability measures
based on different characterizations of failure states for networks. For example, the
component order vertex connectivity parameter is the minimum number of vertices
that must be deleted so that the resulting graph has all components of order less
than some value k (see [Boesch et al. 1998; 1999] for example). Similarly the
component order edge connectivity parameter is the minimum number of edges
that must be deleted so that the resulting graph has all components of order less
than some value k (see [Boesch et al. 2006; 2007] for example).

Conditional connectivity was studied by Frank Harary [1983]. It requires each
component of a disconnected graph to have a chosen property P. Thus if P is any
property of a graph GD .V ; E/ and S �V .G/, then the P -connectivity of G is the
minimum jS j such that G �S is disconnected and every component of G �S has
property P. Similarly we can define the edge conditional connectivity parameter of
G if we consider edge deletions rather than vertex deletions.

In this paper, we focus our attention on edge failures and consider a graph to be
in a failure state if no vertex has a neighbor of a fixed distance. In other words, we
study the minimum number of edges that can fail in order to produce a graph which
has all components with a diameter less than some fixed value. In this particular
case a network would be operational if there exists a component with a sufficiently
large diameter.

One important application of such a parameter centers around the spread of
disease or genetic traits. If a particular disease or genetic trait only becomes active
after k successive transmissions, then we would want to stop the spread so that
components in the network (tree) have diameter less than k. This will be explored
more in Section 3B.

2. Background and definitions

Throughout this paper, let G D .V ; E/ be a simple graph with vertex set V and
edge set E. For any set A, let jAj denote the cardinality of A. If D �E, let G�D

denote the subgraph of G containing the vertex set V and the edge set E�D. Thus
G �D D .V ; E �D/.

Throughout the paper, unless otherwise specified, we will assume that n, r , l ,
and k are all positive integers. We will also use the conventions of notation adapted
from [West 1996]. A pair of vertices u; v are said to be k-neighbors if the distance
between u and v is k, written as d.u; v/D k.

Definition 2.1. Let GD .V ; E/ be a graph and k be a positive integer. A set D�E

is a k-diameter component edge disconnecting set if G �D has all components of
diameter less than k.
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This means that an edge set D is a k-diameter component edge disconnecting
set if no vertex in G �D has a k-neighbor. If D is a k-diameter component edge
disconnecting set then G �D is said to be a failure state.

Definition 2.2. Given a graph G D .V ; E/ and a positive integer k, the k-diameter
component edge connectivity parameter of G, denoted by CEk.G/, is the size of
the smallest k-diameter component edge disconnecting set.

Thus, the k-diameter component edge connectivity parameter is the size of the
smallest edge set D such that G �D is a failure state.

3. Results

When k D 1, a failure state will occur if no vertex has a 1-neighbor. In order for
this to occur every edge must be removed. Thus CE1.G/D jEj for every graph
G D .V ; E/. Therefore for the remainder of the paper we will assume that k � 2.

In Section 3A we will show some easy results for some simple graph classes, par-
ticularly path graphs, complete graphs, and complete bipartite graphs. In Section 3B1
we will consider perfect r -ary trees.

3A. Simple graphs.

3A1. Path graphs. The first type of graph we will consider is a path on n vertices,
denoted by Pn. We can label the edges consecutively from 1 to n� 1 starting at
a pendant edge. For a component to have a diameter less than k, it can have at
most k � 1 edges. If we delete every edge whose label is a multiple of k, then the
remaining components all have k � 1 edges, except for possibly one component
which could have less than k � 1 edges. Therefore the diameter of each component
will be less than k. Hence we see CEk.Pn/� b.n� 1/=kc.

Since path graphs are trees, every edge deletion creates one new component. Since
we cannot have components of length k in a failure state, we need at least one edge
deletion in every k-edge disjoint connected subpath. Hence CEk.Pn/�b.n�1/=kc.
These two observations imply the following:

Theorem 3.1. For every positive integer n,

CEk.Pn/D
j

n�1

k

k
:

3A2. Complete graphs. Since the diameter of Kn is 1, Kn is already a failure state.
Thus we see the following obvious result:

Theorem 3.2. For every positive integer n,

CEk.Kn/D 0:
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3A3. Complete bipartite Graphs. Consider the complete bipartite graph Ka;b D

.V ; E/ with parts A and B, where V D A[B, A\B D ∅, jAj D a > 0 and
jBj D b > 0. Recall that the diameter of a complete bipartite graph is 2 unless
aD b D 1, in which case the diameter is 1. If k > 2, then Ka;b is already a failure
state. If k D 2, then the size of the largest subgraph in a failure state is the size of
the maximum matching in Ka;b , which is minfa; bg. So the number of edges that
must be deleted to produce a failure state is minfa; bg less than the total number of
edges. Therefore we have the following theorem:

Theorem 3.3. For every pair of positive integers a� b,

CEk.Ka;b/D

�
0 if k > 2;

a.b� 1/ if k D 2:

3B. Trees.

3B1. Perfect r -ary trees. We will now consider perfect r -ary trees.

Definition 3.4. Let Tr;l D .V ; E/ denote a perfect r -ary tree with height l , where

V D fvi;j W 1� i � l C 1; 1� j � r .lC1/�i
g; and

E D f.vi;j ; vi�1;m/ W 2� i � l C 1; 1� j � r .lC1/�i; .j � 1/r C 1�m� j rg:

We will say that vertex vi;h 2 V .Tr;l/ is on level i . Notice we are using the
unconventional notation that the root vertex of the full complete tree is on level lC1

and the leaves are on level 1.

In order to separate the tree into failure states we need to know the distance
between vertices. The following lemma shows a lower bound for the distance
between two vertices in the same level.

Lemma 3.5. Assume Tr;l D .V ; E/ and vi;j ; vi;jCprn�1 2 V for some positive
integers i , j , n, and p. Then

d.vi;j ; vi;jCprn�1/� 2n:

Proof. We will proceed by induction on n. Consider the case when nD 1.
Since vi;j and vi;jCp are both on level i , they are not adjacent. Since any two

vertices of a tree are connected by a path, we conclude d.vi;j ; vi;jCp/� 2.
Assume there exists a positive integer n such that for any pair va;b; va;bCprn�12V,

d.va;b; va;bCprn�1/� 2n:

Consider a pair of vertices, vi;j , vi;jCqrn 2 V for some positive integer q. The
unique path from vi;j to vi;jCqrn must contain vertices

viC1;dj=re and viC1;dj=reCqrn�1 :
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By induction we know

d.viC1;dj=re; viC1;dj=reCqrn�1/� 2n:

Therefore by the uniqueness of paths in trees we see

d.vi;j ; vi;jCqrn/D d.viC1;dj=re; viC1;dj=reCqrn�1/C 2� 2.nC 1/: �

To find CEk.Tr;l/ we will find a set of vertices V 0 � V such that the distance
between any two vertices in V 0 is at least k, therefore finding a lower bound jV 0j
for the number of components in a failure state for Tr;l . We will then show that
you can make Tr;l a failure state by removing jV 0j edges.

The following lemma produces a set V 0 of vertices such that the distance between
any two vertices in V 0 is at least k.

Lemma 3.6. Let k 2 ZC. Suppose Tr;l D .V ; E/ and V 0 � V such that

V 0 D

�
vykC1;1Czrb.k�1/=2c W 0� y �

j
l

k

k
; 0� z �

�
r l�yk

r b.k�1/=2c

�
� 1

�
:

Then for all distinct u; v 2 V 0,

d.u; v/� k:

Proof. Assume u; v 2 V 0. Consider the following two cases:

Case 1: Assume u and v are distinct vertices in the same level of Tr;l . Thus
there exist some integers i , a, and b such that u D ui;1Carb.k�1/=2c and v D

vi;1C.aCb/rb.k�1/=2c . Then, by Lemma 3.5,

d.u; v/D d.ui;1Carb.k�1/=2c ; vi;1C.aCb/rb.k�1/=2c/

D d.ui;1Carb.k�1/=2c ; vi;1Carb.k�1/=2cCbr .b.k�1/=2cC1/�1/

� 2
��

1
2
.k � 1/

˘
C 1

�
� k:

Case 2: Assume uD ui;j and v D vi0;j 0 for some i 6D i 0. Since u; v 2 V 0, we know
ji � i 0j � k. Therefore d.u; v/� k. �

Now that we know the distance between any two vertices in V 0 is at least k, we
need to find jV 0j.

Lemma 3.7. Suppose Tr;l D .V ; E/ and V 0 � V such that

V 0 D

�
vykC1;1Czrb.k�1/=2c W 0� y �

j
l

k

k
; 0� z �

�
r l�yk

r b.k�1/=2c

�
� 1

�
:
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Then,

jV 0j D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1; l �
�

1
2
.k � 1/

˘
;

r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
C 1; nk � l � nkC

�
1
2
.k � 1/

˘
;

r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
; else;

where n is a positive integer.

Proof. Summing over all possible choices for y and z we see

jV 0j D

bl=kcX
yD0

dRye�1X
zD0

1;

where Ry D r l�yk=r b.k�1/=2c. Consider the following three cases:

Case 1: If l �
�

1
2
.k�1/

˘
, then bl=kc D 0 which implies y can only be zero. Thus

dRye� 1D dR0e� 1D 0:

Therefore

jV 0j D

0X
yD0

0X
zD0

1D 1:

Case 2: Assume there exists a positive integer n such that nk� l�nkC
�

1
2
.k � 1/

˘
.

If y D n, then dRye D dRne D 1 since 0� l � nk �
�

1
2
.k � 1/

˘
.

If y < n, then yC1� n, which implies k.yC1/� kn� l . Therefore k � l�yk,
which implies

dRye DRy :

Since bl=kc D n,

jV 0j D

nX
yD0

dRye�1X
zD0

1D

n�1X
yD0

Ry�1X
zD0

1C

dRne�1X
zD0

1

D

� n�1X
yD0

Ry

�
C 1D

r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
C 1:

Case 3: Assume nkC
�

1
2
.k � 1/

˘
C 1 � l � .nC 1/k � 1 for some nonnegative

integer n.
Note that

�
1
2
.k � 1/

˘
� l � nk. Then for all y � n,

dRye DRy :
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Since bl=kc D n,

jV 0j D

nX
yD0

dRye�1X
zD0

1D

nX
yD0

Ry�1X
zD0

1

D

nX
yD0

Ry D
r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
: �

We have now constructed a set of vertices which must be in separate components
in order for Tr;l to be a failure state (Lemma 3.6) and calculated the size of this
vertex set (Lemma 3.7). We will now construct a set of edges that, when deleted,
ensure these vertices are in different components. The idea is not to create perfect
r -ary subtrees as we might expect. Instead we allow a perfect r -ary subtree but
allow its root vertex to have a path up Tr;l until the maximum diameter allowed
is achieved. This propagates up the tree so that we do not have to remove entire
rows of edges very often. This “saves” edges from being deleted by creating failure
components which are larger than a perfect r -ary tree of diameter k � 1.

Lemma 3.8. Fix r , l , and k and suppose Tr;l D .V ; E/. For each integer 0�m�

dl=ke� 1 define the sets

Am D
˚
.vi;j ; viC1;dj=re/ 2E WmkC

�
1
2
.k � 1/

˘
C 1� i � .mC 1/k � 1;

j 6� 1 mod r
	
;

and

Bm D
˚
.v.mC1/k;j ; v.mC1/kC1;dj=re/ 2E W 1� j � r lC1�.mC1/k

	
:

Then

jAmj D r lC1.r�mk�b.k�1/=2c�1
� r�.mC1/k/ and jBmj D r lC1�.mC1/k:

Proof. Fix 0 � m � dl=ke � 1. First notice the number of edges of the form
.vi;a; viC1;da=re/ is the number of vertices in level i , which is r lC1�i.

Now consider Am. The total number of edges of the form .vi;a; viC1;da=re/

is r lC1�i, and of these, r lC1�.iC1/ are of the form .vi;j ; viC1;dj=re/, where j �

1 mod r . Thus

jAmj D

.mC1/k�1X
iDmkCb.k�1/=2cC1

r lC1�i
� r lC1�.iC1/

D r lC1.r�mk�b.k�1/=2c�1
� r�.mC1/k/:

Next consider Bm. The set Bm contains all edges of the form .v.mC1/k;j ;

v.mC1/kC1;dj=re/. Thus
jBmj D r lC1�.mC1/k: �
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Now we are ready to use Am and Bm to find CEk.Tr;l/.

Theorem 3.9. If r , l , and k are positive integers, then

CEk.Tr;l/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0; l �
�

1
2
.k � 1/

˘
;

r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
; nk � l � nkC

�
1
2
.k � 1/

˘
;

r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
� 1; else;

where n is a positive integer.

Proof. Fix r , l , and k. Let Tr;l D .V ; E/. There are three cases to consider:

Case 1: Assume l �
�

1
2
.k � 1/

˘
.

Notice that the diameter of Tr;l is 2l . If l�
�

1
2
.k�1/

˘
, then 2l�2

�
1
2
.k�1/

˘
<k,

and therefore Tr;l is already a failure state. Hence, CEk.Tr;l/D 0.

For the following two cases, consider V 0 � V as defined in Lemma 3.6. As
shown in Lemma 3.6, d.u; v/� k for all u; v 2 V 0. Therefore, to produce a failure
state, no two vertices in V 0 can be in the same component. Since every edge cut in
a tree produces one new component, there must be at least jV 0j � 1 edge cuts to
ensure no two vertices in V 0 are connected. Hence CEk.Tr;l/� jV

0j � 1.

Case 2: Assume nk � l � nkC
�

1
2
.k � 1/

˘
for some positive integer n.

By Lemma 3.7,

jV 0j � 1D
r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
:

Hence,

CEk.Tr;l/�
r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
:

For each integer 0�m� bl=kc� 1, define Am and Bm as in Lemma 3.8.
Let E0 D

Sbl=kc�1
mD0

.Am [Bm/. We will show that G �E0 is a failure state.
Assume by way of contradiction that G�E0 is not a failure state. Thus there exists
a path of length k in G �E0.

Case 2a: Assume there exists a path in G �E0 from a vertex in level i to a vertex
in level i C k. Let P D vi;j0

; viC1;j1
; viC2;j2

; : : : ; 1; viCk;jk
be such a path of

length k in G � E0, where jz D djz�1=re and .m � 1/k < i � mk for some
2�m� n� 1. Then, mk < i C k � .mC 1/k and i �mk < i C k.

Since i � mk < i C k, there exist a vertex of the form vmk;jmk�i
2 P and a

vertex of the form vmkC1;jmk�iC1
2 P which are adjacent. However, .vmk;jmk�i

;
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vmkC1;jmk�iC1
/ 2 Bm�1. Consequently, .vmk;jmk�i

; vmkC1;jmk�iC1
/ 62 G �E0,

so P is not a path in G �E0.

Case 2b: Let P D vi0;j0
; vi1;j1

; : : : ; vik ;jk
be the path of length k in G �E0. By

the definition of Bm, we know there do not exist any edges in G �E0 joining
v.m�1/k;j and v.m�1/kC1;dj=re for any integer m where 2�m� n. Therefore we
can assume there exists an integer 2�m� n such that for all 0� p � k, we have
.m� 1/kC 1 � ip �mk. In other words, all the vertices of path P fall between
level .m� 1/kC 1 and level mk inclusively.

Since there are only k distinct levels between level .m � 1/k C 1 and level
mk and P has k C 1 vertices, this implies there exists a subpath of P of the
form va;b; vaC1;c ; va;b0 , where .c � 1/r C 1 � b, b0 � cr , and b 6D b0. Since P

is of length k, we can assume without loss of generality that d.vi0;j0
; vaC1;c/ ��

1
2
.k � 1/

˘
C 1. This implies that i0C

�
1
2
.k � 1/

˘
C 1� aC 1.

Since .m� 1/kC 1� i0 �mk, we see

.m� 1/kC
�

1
2
.k � 1/

˘
C 1C 1� i0C

�
1
2
.k � 1/

˘
C 1� aC 1;

which implies
.m� 1/kC

�
1
2
.k � 1/

˘
C 1� a:

Also, since a�mk � 1, we can see

.m� 1/kC
�

1
2
.k � 1/

˘
C 1� a�mk � 1:

Since .c�1/rC1�b, b0� cr and b 6Db0, we know b 6�1 mod r or b0 6�1 mod r .
Consequently, .va;b; vaC1;c/ 2 Am�1 or .va;b0 ; vaC1;c/ 2 Am�1, or both are in
Am�1. In either case, path P is not a path in G �E0 since it contains an edge
in Am�1. Hence, G �E0 is a failure state.

By Lemma 3.8,

jE0j D

n�1X
mD0

.jAmjC jBmj/

D

n�1X
mD0

.r lC1.r�mk�b.k�1/=2c�1
� r�.mC1/k/C r lC1�.mC1/k/

D
r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
:

Therefore, since G �E0 is a failure state, we see

CEk.Tr;l/�
r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
:
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Since

CEk.Tr;l/� jV
0
j � 1D

r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
;

we see

CEk.Tr;l/D
r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
:

Case 3: Assume nkC
�

1
2
.k � 1/

˘
C1� l � .nC1/k�1 for some positive integer n.

By Lemma 3.7,

jV 0j � 1D
r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
� 1:

Let An� D
˚
.vi;j ; viC1;dj=re/ W nk C

�
1
2
.k � 1/

˘
C 1 � i � l; j 6� 1 mod r

	
.

Then,

jAn� jD

lX
pDnkCb.k�1/=2cC1

r lC1�p
�r lC1�.pC1/

Dr lC1.r�nk�b.k�1/=2c�1
�r�l�1/:

Let E0 D
Sbl=kc�1

mD0
.Am [Bm/[An� . We will show that Tr;l �E0 is a failure

state.
First, notice G � Tr;.nC1/k . Let Tr;.nC1/k D .V �; E�/. Let E00 �E� such that

E00 D

b.nC1/k=kc�1[
mD0

.Am[Bm/D

bl=kc�1[
0

.Am[Bm/[An[Bn:

As shown above in Case 2, Tr;.nC1/k �E00 is a failure state.
Note that

AnD
˚
.vi;j ; viC1;dj=re/ W nkC

�
1
2
.k � 1/

˘
C1� i � .nC1/k�1; j 6� 1 mod r

	
:

Then, since l � .n C 1/k � 1, we know An� � An. Hence E0 � E00 and
Tr;l�E0�Tr;.nC1/k�E00. If there exists a path of length k in Tr;l�E0, then there
must also exist a path of length k in Tr;.nC1/k �E00. However, Tr;.nC1/k �E00 is
a failure state and therefore has no paths of length k. Therefore Tr;l �E0 has no
paths of length k and is a failure state.

Thus,

jE0j D

n�1X
mD0

.jAmjC jBmj/CjA
�
nj

D
r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
C r lC1.r�nk�b.k�1/=2c�1

� r�l�1/

D
r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
� 1:
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Therefore,

CEk.Tr;l/�
r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
� 1;

which implies

CEk.Tr;l/D
r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
� 1:

Combining all three of these cases, we see that

CEk.Tr;l/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0; l �
�

1
2
.k � 1/

˘
;

r l

r b.k�1/=2c
�
1� .r�k/bl=kc

1� .r�k/
; nk � l � nkC

�
1
2
.k � 1/

˘
;

r l

r b.k�1/=2c
�
1� .r�k/bl=kcC1

1� .r�k/
� 1; else;

where n is a positive integer. �

3B2. General trees. Although finding a solution for general trees is too difficult,
the general principles for perfect r -ary trees will still hold for general trees. Since
each edge removal creates a new component, we need to remove edges that create
components of diameter less than k which have as large an order as possible. Some
bounds could easily be created based on minimum and maximum degree. Other
special trees including caterpillar graphs, lobster graphs, and binary trees could be
computed using the techniques outlined for the perfect r -ary tree.

References

[Boesch et al. 1998] F. Boesch, D. Gross, and C. Suffel, “Component order connectivity”, Congr.
Numer. 131 (1998), 145–155. MR Zbl

[Boesch et al. 1999] F. Boesch, D. Gross, and C. Suffel, “Component order connectivity: a graph
invariant related to operating component reliability”, pp. 109–116 in Combinatorics, graph theory,
and algorithms, I (Kalamazoo, MI, 1996), edited by Y. Alavi et al., New Issues Press, Kalamazoo,
MI, 1999. MR

[Boesch et al. 2006] F. Boesch, D. Gross, L. W. Kazmierczak, C. Suffel, and A. Suhartomo, “Compo-
nent order edge connectivity: an introduction”, Congr. Numer. 178 (2006), 7–14. MR Zbl

[Boesch et al. 2007] F. Boesch, D. Gross, L. W. Kazmierczak, C. Suffel, and A. Suhartomo, “Bounds
for the component order edge connectivity”, Congr. Numer. 185 (2007), 159–171. MR Zbl

[Boesch et al. 2009] F. Boesch, A. Satyanarayana, and C. Suffel, “A survey of some network reliability
analysis and synthesis results”, Networks 54:2 (2009), 99–107. MR Zbl

[Harary 1983] F. Harary, “Conditional connectivity”, Networks 13:3 (1983), 347–357. MR Zbl

[West 1996] D. B. West, Introduction to graph theory, Prentice Hall, Upper Saddle River, NJ, 1996.
MR Zbl

http://msp.org/idx/mr/1676481
http://msp.org/idx/zbl/0951.05064
http://msp.org/idx/mr/1985043
http://msp.org/idx/mr/2310220
http://msp.org/idx/zbl/1112.05058
http://msp.org/idx/mr/2408806
http://msp.org/idx/zbl/1132.05037
http://dx.doi.org/10.1002/net.20300
http://dx.doi.org/10.1002/net.20300
http://msp.org/idx/mr/2548244
http://msp.org/idx/zbl/1200.90057
http://dx.doi.org/10.1002/net.3230130303
http://msp.org/idx/mr/715840
http://msp.org/idx/zbl/0514.05038
http://msp.org/idx/mr/1367739
http://msp.org/idx/zbl/0845.05001


856 NATHAN SHANK AND ADAM BUZZARD

Received: 2017-04-11 Revised: 2017-08-22 Accepted: 2017-08-22

shank@math.moravian.edu Mathematics and Computer Science, Moravian College,
Bethlehem, PA, United States

stawb01@moravian.edu Mathematics and Computer Science, Moravian College,
Bethlehem, PA, United States

mathematical sciences publishers msp

mailto:shank@math.moravian.edu
mailto:stawb01@moravian.edu
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri U of Science and Technology, USA
Nigel Boston University of Wisconsin, USA

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
Pietro Cerone La Trobe University, Australia

Scott Chapman Sam Houston State University, USA
Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE

Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA

Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA

Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA

Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA

Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA

Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA

Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA

Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA

Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA

Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA

James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor

Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA

John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $190/year for the electronic
version, and $250/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2018 vol. 11 no. 5

721On the minuscule representation of type Bn
WILLIAM J. COOK AND NOAH A. HUGHES

735Pythagorean orthogonality of compact sets
PALLAVI AGGARWAL, STEVEN SCHLICKER AND RYAN

SWARTZENTRUBER

753Different definitions of conic sections in hyperbolic geometry
PATRICK CHAO AND JONATHAN ROSENBERG

769The Fibonacci sequence under a modulus: computing all moduli that produce a
given period

ALEX DISHONG AND MARC S. RENAULT

775On the faithfulness of the representation of GL(n) on the space of curvature
tensors

COREY DUNN, DARIEN ELDERFIELD AND RORY MARTIN-HAGEMEYER

787Quasipositive curvature on a biquotient of Sp(3)

JASON DEVITO AND WESLEY MARTIN

803Symmetric numerical ranges of four-by-four matrices
SHELBY L. BURNETT, ASHLEY CHANDLER AND LINDA J. PATTON

827Counting eta-quotients of prime level
ALLISON ARNOLD-ROKSANDICH, KEVIN JAMES AND RODNEY KEATON

845The k-diameter component edge connectivity parameter
NATHAN SHANK AND ADAM BUZZARD

857Time stopping for Tsirelson’s norm
KEVIN BEANLAND, NOAH DUNCAN AND MICHAEL HOLT

867Enumeration of stacks of spheres
LAUREN ENDICOTT, RUSSELL MAY AND SIENNA SHACKLETTE

877Rings isomorphic to their nontrivial subrings
JACOB LOJEWSKI AND GREG OMAN

885On generalized MacDonald codes
PADMAPANI SENEVIRATNE AND LAUREN MELCHER

893A simple proof characterizing interval orders with interval lengths between 1 and k
SIMONA BOYADZHIYSKA, GARTH ISAAK AND ANN N. TRENK

involve
2018

vol.11,
no.5

http://dx.doi.org/10.2140/involve.2018.11.721
http://dx.doi.org/10.2140/involve.2018.11.735
http://dx.doi.org/10.2140/involve.2018.11.753
http://dx.doi.org/10.2140/involve.2018.11.769
http://dx.doi.org/10.2140/involve.2018.11.769
http://dx.doi.org/10.2140/involve.2018.11.775
http://dx.doi.org/10.2140/involve.2018.11.775
http://dx.doi.org/10.2140/involve.2018.11.787
http://dx.doi.org/10.2140/involve.2018.11.803
http://dx.doi.org/10.2140/involve.2018.11.827
http://dx.doi.org/10.2140/involve.2018.11.845
http://dx.doi.org/10.2140/involve.2018.11.857
http://dx.doi.org/10.2140/involve.2018.11.867
http://dx.doi.org/10.2140/involve.2018.11.877
http://dx.doi.org/10.2140/involve.2018.11.885
http://dx.doi.org/10.2140/involve.2018.11.893

	1. Introduction
	2. Background and definitions
	3. Results
	3A. Simple graphs
	3A1. Path graphs
	3A2. Complete graphs
	3A3. Complete bipartite Graphs

	3B. Trees
	3B1. Perfect r-ary trees
	3B2. General trees


	References
	
	

