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Tsirelson’s norm ‖·‖T on c00 is defined as the limit of an increasing sequence
of norms (‖·‖n)

∞

n=1. For each n ∈ N let j (n) be the smallest integer satisfying
‖x‖ j (n) = ‖x‖T for all x with max supp x = n. We show that j (n) is O(n1/2).
This is an improvement of the upper bound of O(n) given by P. Casazza and
T. Shura in their 1989 monograph on Tsirelson’s space.

In 1974 B. Tsirelson [1974] constructed a remarkable reflexive Banach space
not containing an isomorphic copy of `p for any 1 < p < ∞. T. Figiel and
W. B. Johnson [1974] gave an analytic description of the dual Tsirelson’s space
that was subsequently used to discover many new types of Banach spaces and
was very influential in solving many old problems in the isomorphic theory of
Banach spaces. A monograph of P. Casazza and T. Shura [1989] contains a detailed
analysis of many structural properties of Tsirelson’s space and played a critical role
in the developments in the mid-1990s. In the last chapter in that book, the authors
present FORTRAN code that computes the Tsirelson norm of finite length vectors.
In the discussion of this code they state several problems and lines of research
that to our knowledge are still open or unexplored. The authors of the current
paper became interested in these questions since they relate to the well-known open
problem of whether Tsirelson’s space is arbitrarily distortable and the “polymath”
problem [Gowers 2009], which asks whether every “explicitly defined” Banach
space must contain `p or c0. Our main result is the first nontrivial step toward
finding the computational time for computing the Tsireslon’s norm. We should note
that although Casazza and Shura’s book was written almost 30 years ago, there are
still many problems and constructions related to Tsireslon’s space that are currently
attracting attention. For example, the reader should consult the papers [Argyros
et al. 2013; Argyros and Motakis 2014; 2016; Khanaki 2016; Ojeda-Aristizabal
2013; Tan 2012] and the aforementioned blog post of W. T. Gowers.
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The dual of Tsirelson’s space T is the completion of c00, the space of all eventually
zero scalar sequences, with respect to a norm ‖·‖T . This norm is defined as the
supremum of an increasing sequence of recursively defined norms (‖·‖n)∞n=1. We
recall all precise definitions in the next section. Casazza and Shura introduced the
following time-stopping function.

Definition 1. For n a positive integer, let j (n) be the smallest nonnegative integer
such that for all x ∈ c00 with max supp x ≤ n we have ‖x‖ j (n) = ‖x‖T .

In [Casazza and Shura 1989, Problem 2(a)], the authors ask for a “reasonably
tight” upper bound for the quantity j (n) and offer the upper bound

⌊1
2 n
⌋

as a starting
point. Our main theorem is the following improvement on this upper bound.

Theorem A. For each n ∈ N we have j (n)≤ b2
√

n+ 4c. That is, j (n) is O(n1/2).

In a forthcoming paper we provide a lower bound on the order of log2(n). The
upper bound on j (n) determines the computation time of the vector of length n.
Indeed it is shown by Casazza and Shura that the computational time it takes to
go from the n norm to the n + 1 norm is the same for every n. Therefore if t is
that computational time, our theorem shows that the computation time required to
calculate the norm of a vector of length n is bounded above by t

√
n.

1. Main result

Let (ei ) and (e∗i ) both denote the standard unit vectors in c00. For E ⊂ N and
x =

∑
∞

i=1 ai ei ∈ c00 let Ex =
∑

i∈E ai ei . If E, F are subsets of N we write E < F
if max E <min F. A set E ⊂ N is in S1 if min E ≥ |E | (the cardinality of E). If∑
∞

i=1 ai ei ∈ c00 then supp x ={i : ai 6= 0}. For n ∈N we say that a sequence (Ei )
n
i=1

of subsets of N is called admissible if E1 < E2 < · · ·< En and (min Ei )
n
i=1 ∈ S1.

We define the norm of Tsirelson’s space by defining a certain subset of c00 to be the
norming functionals for the space. The set WT is the union of the following subsets
of c00. A sequence ( fi )

d
i=1 ⊂ c00 is called admissible if (supp fi )

d
i=1 is admissible.

Let W0 = {±e∗i : i ∈ N} and for k ≥ 0 let

Wk+1 =Wk ∪

{
1
2

d∑
i=1

E fi : d ∈ N, ( fi )
d
i=1 ⊂Wk is admissible, E ⊂ N

}
.

Then WT =
⋃
∞

k=1 Wk .
The intermediate norms are defined by ‖x‖n = sup{ f (x) : f ∈Wn}. Here f (x)

is the usual inner product of f with x . Tsirelson’s norm is defined by

‖x‖ =max
n
‖x‖n = sup{ f (x) : x ∈WT }.
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Tsirelson’s space is the completion of c00 with respect to the above norm, which
satisfies the following implicit equation for x ∈ c00:

‖x‖ = ‖x‖∞ ∨ sup
{

1
2

n∑
i=1

‖Ei x‖ : n ∈ N, (Ei )
n
i=1 is admissible

}
. (1)

The following remarks follow from the definition of WT .

Remark 1.1. Let f ∈WT . Then f ∈WT \Wn if and only if there is a k ∈ N with
0< | f (ek)| ≤ 1/2n+1.

Remark 1.2. If f ∈WT then either f =±e∗i for some i ∈ N or f ∈Wn \W0 and
there is an admissible sequence ( fi )

d
i=1 ⊂Wn−1 with f = 1

2

∑d
i=1 fi . In particular,

if f ∈WT \W0 then | f (ek)| ≤
1
2 for all k ∈ N.

Based on the above remark it is easy to see that each functional has a decomposi-
tion into a “tree” of functionals. The functionals in the tree are naturally enumerated
by tuples in N. Let N<N

=
⋃
∞

n=1 Nn
∪{∅}. For σ ∈N<N, if σ = (σ (1), . . . , σ (k)),

we set |σ | = k.

Definition 2 (tree index set and decomposition). For each f ∈ WT there is a set
T f ⊆N<N

∪{∅} called the tree index set and a collection of functionals ( fα)α∈T f ⊂

WT called a tree decomposition of f satisfying:

(1) ∅ ∈ T f and f∅ = f .

(2) σ ∈ T f is called a terminal node if σ a 1 6∈ T f . A node σ ∈ T is a terminal if
and only if fσ =±e∗i for some i ∈ N.

(3) If σ ∈ T f is not a terminal node, then

fσ =
1
2

∑
{k:σak∈T f }

fσak,

where {k : σ a k ∈ T f } = {1, . . . , dσ } for some dσ ∈ N. Moreover ( fσak)
dσ
k=1

is admissible.

If σ = (n1, n2, . . . , nk) ∈ T f then β = (n1, n2, . . . , nk−1) is the immediate prede-
cessor of σ and σ is an immediate successor of β. To set notation let Eσ = supp fσ
for each σ ∈ T f .

The fact that each f ∈WT has a (not necessarily unique) tree index set T f and
decomposition follows from the definition of an arbitrary f ∈WT .

Lemma 1.3. Let f ∈WT . Then f ∈Wn if and only if there is a tree decomposition
( fα)α∈T f ⊂WT of f such that |σ | ≤ n for all σ ∈ T f .
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Proof. Let f ∈Wn . If f ∈W0 then any index set contains only the empty set. Thus
we assume f = 1

2

∑d
i=1 fi , where ( fi )

d
i=1 is an admissible block sequence in Wn−1.

Let T fi be the tree index set of fi for each i ∈ {1, . . . , d} such that |σ | ≤ n− 1 for
each σ ∈

⋃d
i=1 T fi . The tree index set of f is defined by

T f =

{
i a σ : i ∈ {1, . . . , d}, σ ∈

d⋃
i=1

T fi

}
∪ {∅}.

Alternatively, we proceed by induction. The base case is trivial and so assume
the claim for some n − 1 ≥ 0. We will establish the claim for n. Suppose there
is a tree decomposition ( fα)α∈T f ⊂ WT of some f ∈ WT so that σ ≤ n for all
σ ∈ T f . Let d ∈ N so that {k : (k) ∈ T f } = {1, . . . , d}. For each 1 ≤ i ≤ d, set
T f(i) = {σ : i a σ ∈ T f } and let {gσ = fiaσ : σ ∈ T f(i)} be a tree decomposition
for f(i). Then for each σ ∈ T f(i) with i ∈ {1, . . . , d} we have |σ | ≤ n − 1. Thus,
f(i) ∈Wn−1 and f ∈Wn as desired. �

The following is a simple but critical definition for our purposes. For a given
x ∈ c00 there may be many functionals in WT that norm x . The support of some
of these functionals may not even be a subset of the support of x , while other
norming functionals may have supports disjoint from one another. Our goal is to
prove an upper bound on j (n) by minimizing the maximum node length of a tree
decomposition for a functional that norms an arbitrary x with max supp x ≤ n. In
order to minimize this quantity, we discard the parts of a functional that are not
required to norm a given vector. To this end, we define for each x ∈ c00 a minimal
set for x and a functional that minimally norms x . We can then restrict our attention
to counting the maximum node length of a tree decomposition for a minimally
norming functional for a given x .

Definition 3. Let x ∈ c00. Then a set E ⊂ N is minimal for x if ‖Ex‖ = ‖x‖ and
for each E ′ ( E , we have ‖E ′x‖< ‖x‖.

Let us note that minimal sets need not be unique.

Lemma 1.4. Suppose f ∈ WT norms x ∈ c00 and supp f ⊂ supp x. Then for all
α ∈ T f , we have fσ norms Eσ x.

Proof. Assume, via contradiction, we can find a minimal length node σ ∈ T f so
that fσ (Eσ x) < ‖Eσ x‖. By assumption σ 6= ∅ (recall that E∅ = supp f ). Find
the unique predecessor β ∈ T f of σ . Let i0 ∈ {1, . . . , dβ} so that σ = β a i0.
Then fβai (Eβai x)≤ ‖Eβai x‖ for i 6= i0 and fβai0(Eβai0 x) < ‖Eβai0 x‖; however,
fβ(Eβx)=‖Eβx‖ by the minimality of σ . This leads to the following contradiction:

‖Eβx‖ = fβ(Eβx)= 1
2

dβ∑
i=1

fβai (Eβai x) <
1
2

dβ∑
i=1

‖Eβai x‖ ≤ ‖Eβx‖.
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The last inequality follows from the implicit equation (1) for the norm, noting that
(Eβai )

dβ
i=1 is admissible. �

Definition 4. Let x ∈ c00. We say that f ∈WT minimally norms x if supp f = E
is minimal for x and f (x)= ‖x‖.

Note that if f minimally norms x then supp f ⊂ supp x . Also, if E is a minimal
set for x there is a f ∈WT that minimally norms x with supp f = E .

Lemma 1.5. Let x ∈ c00 and suppose that f minimally norms x. Then for each
σ ∈ T f , we have Eσ is a minimal set for Eσ x and fσ minimally norms Eσ x.

Proof. Using Lemma 1.4 we know that fσ (Eσ x)= ‖Eσ x‖ for each σ ∈ T f . Find
a minimal length node σ ∈ T f so that Eσ is not a minimal set for Eσ f . Again
it follows from the hypothesis that σ 6= ∅. Let β be the immediate predecessor
of σ and i0 ∈ {1, . . . , dβ} with σ = β a i0. Using our assumption, we can find a
E ′βai0

( Eβai0 with ‖E ′βai0
x‖ = ‖Eβai0 x‖. Let

E ′β =
( dβ⋃

i=1, i 6=i0

Eβai

)
∪ E ′βai0

( Eβ .

We can now show that ‖Eβx‖ ≤ ‖E ′βx‖ as follows:

‖Eβx‖ = fβ(Eβx)= 1
2

dβ∑
i=1

fβai (Eβai x)=
1
2

dβ∑
i=1

‖Eβai x‖

=
1
2

( i0−1∑
i=1

‖Eβai x‖+‖E ′βai0
x‖+

dβ∑
i=i0+1

‖Eβai x‖
)

≤ ‖E ′βx‖. (2)

The last inequality uses that

(Eβa1, Eβa2, . . . , Eβa(i0−1), E ′βai0
, Eβa(i0+1), . . . , Eβadβ )

is admissible. This contradicts the minimality of σ .
Therefore for each σ ∈ T f , we have Eσ is a minimal set for Eσ x . The fact that

fσ minimally norms Eσ x follows from Lemma 1.4. �

Lemma 1.6. Let x ∈ c00 and suppose f ∈WT minimally norms x and supp f ∈ S1.
Then f ∈W1.

Proof. If f ∈ WT \W1 then there is a k ∈ supp f with 0< | f (ek)| ≤
1
4 . However

since supp f ∈ S1, we know that g = 1
2

∑
i∈supp f sign(e∗i (x))e

∗

i ∈W1. But g(x) >
f (x)= ‖x‖. This is a contradiction. �
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Lemma 1.7. Let x ∈ c00 and suppose f ∈ WT minimally norms x. Suppose
further that f ∈ WT \W1. If f = 1

2

∑d
i=1 fi , where ( fi )

d
i=1 is admissible, then

min supp f = d.

Proof. By definition, d ≤min supp f =: m, and so it suffices to show that equality
holds. Suppose towards a contradiction that d <m. Our goal is to build a functional
f ′ ∈WT so that f ′(x) > f (x). This will contradict the assumption that f (x)=‖x‖.
Since f ∈ WT \W1 there is some i0 ∈ {1, . . . , d} with fi0 6∈ W0. By appealing to
Remark 1.1 and Lemma 1.6 we may assume that the supp fi0 has more than one
element. Let k0 =min supp fi0 . Then 0< | f (ek0)| ≤

1
4 . In particular

f (ek0)= sign e∗k0
(x) 1

2n for some n > 1.

Set f 1
i0
= sign(e∗k0

(x))e∗k0
and f 2

i0
= fi0 |[k0+1,∞). Since d < m and f 1

i0
, f 2

i0
∈ WT

are successive with supp f 1
i0
∪ supp f 2

i0
= supp fi0 , we have that

f ′ = 1
2

( i0−1∑
i=1

fi + f 1
i0
+ f 2

i0
+

d∑
i=i0+1

fi

)
∈WT .

The above holds since ( f1, . . . , fi0−1, f 1
i0
, f 2

i0
, fi0+1, . . . , fd) is admissible. How-

ever, f ′ has the same coordinates as f except at the k0 position where

f ′(ek0)= sign e∗k0
(x) 1

2 and f (ek0)= sign e∗k0
(x) 1

2n for n > 1.

Since k0 ∈ supp x we have that f ′(x)− f (x) =
( 1

2 −
1
2n

)
|e∗k0

(x)| > 0. Therefore
f ′(x) > f (x). Since f ′ ∈WT and f (x)= ‖x‖, this is the desired contradiction. �

The next lemma is the critical observation that allows us to prove the main
theorem. It is essentially an averaging argument that allows us to restrict our
attention to a smaller collection of norming functions therefore enabling an upper
bound on j (n).

Lemma 1.8. Let x ∈ c00 and suppose f ∈WT minimally norms x , with supp f = E.
Suppose that ( fσ )σ∈T f is a tree decomposition for f . If σ ∈ T f with |σ | ≥ 2 so that
there is a k with σ(k− 2)= σ(k− 1)= 1 then |σ | ≤ k.

The above lemma roughly states that for any vector x there is a norming functional
f for x so that its tree decomposition has very few consecutive 1s. In particular,
if a node σ has two consecutive 1s then they must be contained in the last three
coordinates of the node.

Proof. Fix x ∈ c00 and fix f ∈WT that minimally norms x , with supp f = E . Let
( fσ )σ∈T f be a tree decomposition for f and fix σ ∈ T f with |σ | ≥ 2 so that there is a
k with σ(k−2)=σ(k−1)= 1. For convenience let g= fσ |k−3 (σ |k−3 is σ restricted
to its first k − 3 coordinates). In the case that k = 3, we have σ |k−3 = ∅. Let
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gi = fσ |k−3ai for i ∈ {1, . . . , dσ |k−3} and g(i, j) = fσ |k−3a(i, j) for i ∈ {1, . . . , dσ |k−3}

and j ∈ {1, . . . , dσ |k−3ai }.
Set m =min supp g. Suppose first that max supp g(1,1) < 2m− 1. This implies

that supp g(1,1) ∈S1. Since f minimally norms x and g(1,1) is a functional in the tree
decomposition of f , Lemma 1.4 yields that g(1,1) norms Eg(1,1)x (where supp g(1,1)=
Eg(1,1)). Applying Lemma 1.6 for g(1,1) and Eg(1,1)x , we conclude that g(1,1) ∈W1.
Therefore |σ | ≤ k. Therefore we may consider the case max supp g(1,1) ≥ 2m− 1.
Set d = dσ |k−3 and r = dσ |k−3a1. Note that d, r ≤ m. Define

h1 :=
1
2(g(1,2)+ · · ·+ g(1,d)+ g(2)+ · · ·+ g(r)),

h2 :=
1
2(g(1,1)+ g(2)+ · · ·+ g(r)).

Observe that h2 ∈WT and since d+ r − 1≤ 2m ≤min supp g1,2 we have h1 ∈WT .
Again, by Lemma 1.4, we have that g(Egx)= ‖Egx‖, where Eg = supp g. Since
f minimally norms x , Lemma 1.5 yields that g minimally norms Egx . Therefore
since supp h1 ( supp g and supp h2 ( supp g, we know that h1(x) < g(x) and
h2(x) < g(x). This implies that

(g(1,2)+ · · ·+ g(1,d))(x) < g(1)(x) and g(1,1)(x) < g(1)(x).

However, by definition, g(1)(x)= 1
2(g(1,1)(x))+

1
2(g(1,2)+ · · ·+ g(1,d))(x). This is

a contradiction. Therefore the case max supp g(1,1) ≥ 2m− 1 is not possible. �

Corollary 1.9. For each x ∈ c00 there is an f ∈ WT that minimally norms x
with a tree decomposition ( fσ )σ∈T f such that for each σ ∈ T f either σ has no
consecutive 1s, the third-to-last and second-to-last coordinates are 1 or the final
two coordinates are 1.

Let Ta be the set of all σ ∈N<N that satisfy the conclusion of Corollary 1.9. For
example σ = (1, 1, 2, 3) 6∈ Ta but (2, 3, 1, 1, 2) ∈ Ta .

Lemma 1.10. For each σ ∈ Ta with |σ | = k ≥ 3,( k−1∑
i=1

[k− i][σ(i)− 1]
)
≥

(
k− 3

2

)2

. (3)

Proof. Suppose |σ | = k = 2d + 1 for d ∈ N. By replacing σ(1) by 1 and σ(2)
by 2, the quantity on the left-hand side of (3) does not increase. This new element
is still in Ta . Continuing in this manner, we see that the above is minimized by
σ = (1, 2, 1, 2, . . . , 2, 1, 1, 1)— that is, d − 2 many 2s. If k = 2d we may do
the same procedure described previously to see that the quantity is minimized by
σ = (1, 2, 1, 2, . . . , 2, 1, 1). Plugging these in the above yields

∑d
i=2 2i = d2

− 1
in the odd case and

∑d−1
i=1 2i + 1= d2

− d . Both of these quantities are larger than
1
4(k− 3)2, as desired. �



864 KEVIN BEANLAND, NOAH DUNCAN AND MICHAEL HOLT

The next corollary follows from combining Corollary 1.9 and Lemma 1.10.

Corollary 1.11. For each x ∈ c00 there is an f ∈WT that minimally norms x having
a tree decomposition ( fσ )σ∈T f such that

min
{|σ |−1∑

i=1

[|σ | − i][σ(i)− 1] : σ ∈ T f

}
≥

(
|σ |−3

2

)2
. (4)

We need one more technical lemma before proceeding to the proof of the main
theorem.

Lemma 1.12. Suppose that f ∈WT and max supp f ≤ n. Suppose further that f
minimally norms x for some x ∈ c00. Then for σ ∈ T f with fσ ∈WT \W1 we have

|supp fσ | ≤ n−
( |σ |−1∑

i=1

[|σ | − i][σ(i)− 1]
)
. (5)

We postpone the proof of Lemma 1.12 to the end of paper. We now recall
Theorem A and give its proof.

Theorem 1.13. For n ∈N and x ∈ c00 with max supp x = n we have ‖x‖b2√n+4c =

‖x‖. That is, j (n) is O(n1/2).

Proof. Let x ∈ c00 with max supp x = n. Suppose further that f minimally norms x .
Suppose that σ ∈ T f with |σ | ≥ b2

√
n+ 3c. If fσ ∈ WT \W1 then by combining

Lemma 1.12 and Corollary 1.11, we know that

| supp fσ | ≤ n−
( |σ |−1∑

i=1

[|σ | − i][σ(i)− 1]
)
≤ n−

(
|σ |−3

2

)2

≤ n−
(

2
√

n+ 3− 3
2

)2

= 0. (6)

Therefore no such σ exists. Thus if |σ | ≥ b2
√

n+ 3c we have fσ ∈W1. Therefore
max{|σ | :σ ∈T f }≤b2

√
n+4c, which implies that f ∈Wb2√n+4c. Since f (x)=‖x‖,

this is the desired result. �

We conclude by proving Lemma 1.12.

Proof. Let x ∈ c00 and suppose f ∈WT minimally norms x with max supp f ≤ n.
Let σ ∈ T f with fσ ∈ WT \W1. Set `=min supp f . We will prove the following
inequality, which is stronger than the desired estimate:

| supp fσ | ≤ n− (|σ | + 1)(`− 1)−
( |σ |−1∑

i=1

[|σ | − i][σ(i)− 1]
)
. (7)



TIME STOPPING FOR TSIRELSON’S NORM 865

First we need the inequality

min supp fσ ≥ `+ s(σ )− |σ |. (8)

Here s(σ )=
∑k

i=1 σ(i) for |σ | = k. To prove (8), we let |σ | = k and use induction
on k. Let σ |k−1 = (n1, . . . , nk−1) if σ = (n1, . . . , nk−1, nk). In the base case of
|σ |=1, we know min supp fσ ≥ `+s(σ )−1, since there are at least (s(σ )−1)-many
values from ` to fσ ’s beginning index (worst case being that all prior functionals
are in W0). Now we assume min supp fσ ≥ `+ s(σ )− |σ | for some |σ | = k ∈ N

and show the same inequality holds for |σ | = k+ 1:

min supp fσ ≥min supp fσ |k + σ(k+ 1)− 1

≥ `+ s(σ |k)− |σ |k | + σ(k+ 1)− 1

= `+ s(σ )− (k+ 1).

The first inequality relies on the fact that fσ can have the same minimum support
value as fσ |k if σ(k+1)=1. The second inequality above follows from the inductive
hypothesis. The lone equality above follows from the facts that s(σ |k)+σ(k+1)=
s(σ ) and |σ |k | = k. Thus, (8) holds.

The proof of the inequality (8) begins with the observation that for all σ with
|σ | = k we have

|supp fσ | ≤ |supp fσ |k−1 | − #{immediate successor of σ |k−1}+ 1.

The fact that f minimally norms x combined with Lemma 1.7 implies that for each
σ ∈ T with fσ ∈ WT \W1, the number of immediate successor nodes of σ |k−1

equals min supp fσ |k−1 . Therefore in this case

|supp fσ | ≤ |supp fσ |k−1 | − (min supp fσ |k−1)+ 1.

Now let |σ | = k and use induction on k. It follows from the induction hypothesis
and rearranging terms that

| supp fσ | ≤ |supp fσ |k−1 |−(min supp fσ |k−1)+1

≤ n−k(`−1)−
( k−2∑

i=1

[(k−1)−i][σ(i)−1]
)
−`−s(σ |k−1)+(k−1)+1

≤ n−(k+1)(`−1)−
( k−2∑

i=1

[(k−1)−i][σ(i)−1]
)
−

k−1∑
i=1

[σ(i)−1]

= n−(k+1)(`−1)−
k−1∑
i=1

[k−i][σ(i)−1].

This is the desired estimate. �



866 KEVIN BEANLAND, NOAH DUNCAN AND MICHAEL HOLT

Acknowledgment

The authors acknowledge Professor Ben Grannan at Furman University for his help
with computations that led the authors to prove Lemma 1.8.

References

[Argyros and Motakis 2014] S. A. Argyros and P. Motakis, “A reflexive hereditarily indecomposable
space with the hereditary invariant subspace property”, Proc. Lond. Math. Soc. (3) 108:6 (2014),
1381–1416. MR Zbl

[Argyros and Motakis 2016] S. A. Argyros and P. Motakis, “A dual method of constructing hereditarily
indecomposable Banach spaces”, Positivity 20:3 (2016), 625–662. MR Zbl

[Argyros et al. 2013] S. A. Argyros, K. Beanland, and P. Motakis, “Strictly singular operators in
Tsirelson like spaces”, Illinois J. Math. 57:4 (2013), 1173–1217. MR Zbl

[Casazza and Shura 1989] P. G. Casazza and T. J. Shura, Tsirelson’s space, Lecture Notes in
Mathematics 1363, Springer, Berlin, 1989. MR Zbl

[Figiel and Johnson 1974] T. Figiel and W. B. Johnson, “A uniformly convex Banach space which
contains no `p”, Compos. Math. 29 (1974), 179–190. MR Zbl

[Gowers 2009] W. T. Gowers, “Must an ‘explicitly defined’ Banach space contain c0 or `P ?”, blog
entry, 2009, available at http://tinyurl.com/gowersmust.

[Khanaki 2016] K. Khanaki, “ℵ0-categorical spaces contain `p or c0”, preprint, 2016. arXiv

[Ojeda-Aristizabal 2013] D. Ojeda-Aristizabal, “A norm for Tsirelson’s Banach space”, Extracta
Math. 28:2 (2013), 235–245. MR Zbl

[Tan 2012] D.-N. Tan, “Isometries of the unit spheres of the Tsirelson space T and the modified
Tsirelson space TM ”, Houston J. Math. 38:2 (2012), 571–581. MR Zbl

[Tsirelson 1974] B. S. Tsirelson, “Not every Banach space contains an imbedding of `p or c0”,
Funkcional. Anal. i Priložen. 8:2 (1974), 57–60. In Russian; translated in Funct. Anal. Appl. 8:2
(1974), 138–141. MR

Received: 2017-04-18 Revised: 2017-07-21 Accepted: 2017-08-14

beanlandk@wlu.edu Department of Mathematics, Washington and Lee University,
Lexington, VA, United States

naduncan16@gmail.com Department of Mathematics, Washington and Lee University,
Lexington, VA, United States

holtm11493@gmail.com Department of Mathematics, Washington and Lee University,
Lexington, VA, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1112/plms/pdt062
http://dx.doi.org/10.1112/plms/pdt062
http://msp.org/idx/mr/3218313
http://msp.org/idx/zbl/1308.46013
http://dx.doi.org/10.1007/s11117-015-0378-9
http://dx.doi.org/10.1007/s11117-015-0378-9
http://msp.org/idx/mr/3540516
http://msp.org/idx/zbl/1361.46008
http://projecteuclid.org/euclid.ijm/1417442566
http://projecteuclid.org/euclid.ijm/1417442566
http://msp.org/idx/mr/3285871
http://msp.org/idx/zbl/1315.46008
http://dx.doi.org/10.1007/BFb0085267
http://msp.org/idx/mr/981801
http://msp.org/idx/zbl/0505.46014
http://eudml.org/doc/89232
http://eudml.org/doc/89232
http://msp.org/idx/mr/0355537
http://msp.org/idx/zbl/0301.46013
http://tinyurl.com/gowersmust
http://msp.org/idx/arx/1603.08134
https://www.eweb.unex.es/eweb/extracta/Vol-28-2/28J2Ojed.pdf
http://msp.org/idx/mr/3185733
http://msp.org/idx/zbl/1308.46014
https://www.math.uh.edu/~hjm/restricted/pdf38(2)/13tan.pdf
https://www.math.uh.edu/~hjm/restricted/pdf38(2)/13tan.pdf
http://msp.org/idx/mr/2954652
http://msp.org/idx/zbl/1254.46015
http://mi.mathnet.ru/eng/faa2331
https://doi.org/10.1007/BF01078599
https://doi.org/10.1007/BF01078599
http://msp.org/idx/mr/0350378
mailto:beanlandk@wlu.edu
mailto:naduncan16@gmail.com
mailto:holtm11493@gmail.com
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri U of Science and Technology, USA
Nigel Boston University of Wisconsin, USA

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
Pietro Cerone La Trobe University, Australia

Scott Chapman Sam Houston State University, USA
Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE

Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA

Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA

Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA

Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA

Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA

Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA

Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA

Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA

Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA

Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA

James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor

Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA

John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $190/year for the electronic
version, and $250/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2018 vol. 11 no. 5

721On the minuscule representation of type Bn
WILLIAM J. COOK AND NOAH A. HUGHES

735Pythagorean orthogonality of compact sets
PALLAVI AGGARWAL, STEVEN SCHLICKER AND RYAN

SWARTZENTRUBER

753Different definitions of conic sections in hyperbolic geometry
PATRICK CHAO AND JONATHAN ROSENBERG

769The Fibonacci sequence under a modulus: computing all moduli that produce a
given period

ALEX DISHONG AND MARC S. RENAULT

775On the faithfulness of the representation of GL(n) on the space of curvature
tensors

COREY DUNN, DARIEN ELDERFIELD AND RORY MARTIN-HAGEMEYER

787Quasipositive curvature on a biquotient of Sp(3)

JASON DEVITO AND WESLEY MARTIN

803Symmetric numerical ranges of four-by-four matrices
SHELBY L. BURNETT, ASHLEY CHANDLER AND LINDA J. PATTON

827Counting eta-quotients of prime level
ALLISON ARNOLD-ROKSANDICH, KEVIN JAMES AND RODNEY KEATON

845The k-diameter component edge connectivity parameter
NATHAN SHANK AND ADAM BUZZARD

857Time stopping for Tsirelson’s norm
KEVIN BEANLAND, NOAH DUNCAN AND MICHAEL HOLT

867Enumeration of stacks of spheres
LAUREN ENDICOTT, RUSSELL MAY AND SIENNA SHACKLETTE

877Rings isomorphic to their nontrivial subrings
JACOB LOJEWSKI AND GREG OMAN

885On generalized MacDonald codes
PADMAPANI SENEVIRATNE AND LAUREN MELCHER

893A simple proof characterizing interval orders with interval lengths between 1 and k
SIMONA BOYADZHIYSKA, GARTH ISAAK AND ANN N. TRENK

involve
2018

vol.11,
no.5

http://dx.doi.org/10.2140/involve.2018.11.721
http://dx.doi.org/10.2140/involve.2018.11.735
http://dx.doi.org/10.2140/involve.2018.11.753
http://dx.doi.org/10.2140/involve.2018.11.769
http://dx.doi.org/10.2140/involve.2018.11.769
http://dx.doi.org/10.2140/involve.2018.11.775
http://dx.doi.org/10.2140/involve.2018.11.775
http://dx.doi.org/10.2140/involve.2018.11.787
http://dx.doi.org/10.2140/involve.2018.11.803
http://dx.doi.org/10.2140/involve.2018.11.827
http://dx.doi.org/10.2140/involve.2018.11.845
http://dx.doi.org/10.2140/involve.2018.11.857
http://dx.doi.org/10.2140/involve.2018.11.867
http://dx.doi.org/10.2140/involve.2018.11.877
http://dx.doi.org/10.2140/involve.2018.11.885
http://dx.doi.org/10.2140/involve.2018.11.893

	1. Main result
	Acknowledgment
	References
	
	

