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As a three-dimensional generalization of fountains of coins, we analyze stacks
of spheres and enumerate two particular classes, so-called “pyramidal” stacks
and “Dominican” stacks. Using the machinery of generating functions, we obtain
exact formulas for these types of stacks in terms of the sizes of their bases.

1. Introduction

Odlyzko and Wilf [1988] analyzed fountains of coins. An (n, k) fountain is an
arrangement of n coins into rows so that the bottom row consists of k contiguous
coins and each coin in higher rows sits on two coins in the row beneath it. Figure 1
shows a (25, 12) fountain. Two fountains are different if in any row and any
position in the row, one fountain has a coin, but the other does not. Their goal was
to enumerate the numbers fn,k of (n, k) fountains, and their main result was that the
bivariate generating function F(x, y)=

∑
n,k fn,k xn yk was the continued fraction

F(x, y)=
1

1−
xy

1−
x2 y

1−
x3 y
. . .

. (1)

If the fountains are enumerated only by the number of coins in the bottom row, gk =∑
n fn,k , then the generating function G(y)=

∑
k gk yk

= F(1, y) is much simpler. It
is straightforward from (1) that the generating function satisfies G(y)− yG2(y)= 1,
and so the gk are the Catalan numbers. Wilf [2006, Example 2.12] also considered
a restricted class of “block” fountains having the property that each row must be
a contiguous block of coins. If bk is the number of block fountains with k coins
in the bottom row, then B(y) =

∑
k bk yk turns out to be (1− 2x)/(1− 3x + x2),

which is the generating function for the Fibonacci numbers with odd indices.
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Figure 1. A (25, 12) fountain of coins with subfountains around
the first missing coin in the second row.

Figure 2. A (148, 7, 10) stack of spheres from oblique and top views.

Figure 3. Models for stacks: Pyramid of the Sun at Teotihuaca,
Mexico (credit: [Lneuw 2006]), and the flag of the Dominican
Republic.

As a three-dimensional variant of fountains of coins, we consider stacks of
spheres. An (`, m, n) stack of spheres is an arrangement of ` spheres into levels
so that the bottom level consists of spheres in an m× n rectangular grid and each
sphere in higher levels sits on four spheres in the level beneath it. Figure 2 shows a
(148, 7, 10) stack of spheres. In grocery stores, fruits like oranges and cantaloupes
are often arranged into such stacks.

Our goal is to analyze two classes of stacks, pyramidal and Dominican, and
obtain generating functions and exact formulas for the number of stacks in terms
of the sizes of their bases. Pyramidal stacks have the property that every level
consists of a single rectangular grid of spheres, much like the Pyramid of the Sun
at Teotihuaca, shown in Figure 3. Dominican stacks are closer in spirit to general
stacks. Their inductive definition closely resembles the color scheme of solid
regions and stripes in the flag of the Dominican Republic, also shown in Figure 3.
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2. Basics of generating functions

Generating functions are a bridge between the discrete world of combinatorics and
the continuous world of calculus and complex analysis. Wilf [2006] embraces a
five-step method for describing sequences with generating functions:

(1) Find a recurrence relation for the sequence.

(2) Define the generating function.

(3) Convert the recurrence relation to a relation about the generating function.

(4) Solve for the generating function.

(5) Extract or approximate the coefficients of the generating function.

We use a handful of well-known generating functions, based on the geometric
series and its derivatives: ∑

n≥0

1xn
=

1
1− x

, (2a)

∑
n≥0

nxn
=

x
(1− x)2 , (2b)

∑
n≥0

(n+k
n

)
xn
=

1
(1− x)1+k . (2c)

We also use the product rule: if f (x)=
∑

n≥0 anxn and g(x)=
∑

n≥0 bnxn , then
f (x) · g(x)=

∑
n≥0 cnxn, where cn =

∑n
k=0 ak ·bn−k . An important special case of

the product rule is the partial sum rule:
∑

n≥0(a0+a1+· · ·+an)xn
= 1/(1−x) f (x).

We also need the bivariate version of the product rule; namely if f (x, y) =∑
m,n≥0 am,nxm yn and g(x, y) =

∑
m,n≥0 bm,nxm yn, then f (x, y) · g(x, y) =∑

m,n≥0 cm,nxm yn, where cm,n =
∑

m′,n′ am′,n′ · bm−m′,n−n′ . Following standard
notation, we define the bivariate coefficient extraction operator as

[xm yn
]

∑
m,n≥0

am,nxm yn
= am,n.

3. Pyramidal stacks of spheres

One of the simplest types of fountains of coins is a block fountain, defined by
the property that each row consists of a single contiguous block of coins. We
define a corresponding three-dimensional variant, a pyramidal stack of spheres,
to be a stack where each level consists of a single rectangular grid of spheres.
An example of a pyramidal stack is depicted in Figure 4. Unlike arbitrary stacks,
pyramidal stacks are constrained to have only a single spire. We would like to
enumerate the pyramidal stacks by the size of their bases. For m, n ≥ 1, let pm,n
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Figure 4. An 8× 7 pyramidal stack of spheres from oblique and top views.

pm,n n=1 2 3 4 5 6 7

m=1 1 1 1 1 1 1 1
2 1 2 4 7 11 16 22
3 1 4 11 24 46 81 134
4 1 7 24 63 143 294 561
5 1 11 46 143 376 881 1894
6 1 16 81 294 881 2317 5534
7 1 22 134 561 1894 5534 14545

Table 1. Values of pm,n for m, n ≤ 7.

m′ spheres m−m′ positions

n′ spheres

n− n′ positions

Figure 5. Possible positions of an m′× n′ pyramid on top of an m× n base.

be the number of pyramidal stacks of spheres whose base consists of an m × n
grid of spheres. For convenience, let pm,0 = p0,n = 0 for all m, n ≥ 0, and note
that by symmetry pm,n = pn,m . Then define the bivariate generating function
P(x, y)=

∑
m,n≥0 pm,nxm yn. By hand calculation and assistance from Maple, we

computed pm,n for m, n≤7, shown in Table 1. A pyramidal stack with an m×n base
can either contain nothing on the second level or support another pyramidal stack
with an m′ × n′ base, where 1 ≤ m′ < m and 1 ≤ n′ < n. If the second level is
nonempty, it can be shifted horizontally to m−m′ positions and vertically to n−n′

positions to form different stacks, as shown in Figure 5. Therefore, we have the
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recurrence relation for pyramidal stacks for m, n ≥ 1, given as

pm,n = 1+
∑

1≤m′≤m−1
1≤n′≤n−1

(m−m′)(n− n′)pm′,n′ = 1+
∑

0≤m′≤m
0≤n′≤n

(m−m′)(n− n′)pm′,n′ .

The bounds on the sum can be extended from 0 to m and n since p0,n = pm,0 = 0
and (m−m′)= (n−n′)= 0 when m′=m and n′= n. Then, by use of the generating
functions in (2a) and (2b) and the product rule we get

P(x, y)=
x

1− x
y

1− y
+ P(x, y)

xy
(1− x)2(1− y)2 .

Solving this equation results in the rational generating function

P(x, y)=
xy(1− x)(1− y)

(1− x)2(1− y)2− xy
. (3)

To obtain an exact expression for pm,n , we first view P(x, y) as a geometric series:

P(x, y)=

xy
(1−x)(1−y)

1− xy
(1−x)2(1−y)2

=

∑
`≥0

x`+1 y`+1

(1− x)1+2`(1− y)1+2`

Then, using (2c),

pm,n = [xm yn
]P(x, y)

=

∑
`≥0

[xm−`−1 yn−`−1
]

1
(1− x)1+2`(1− y)1+2`

=

∑
`≥0

(m+`−1
m−`−1

)(n+`−1
n−`−1

)
.

This exact expression for pm,n is a sum with min(m − 1, n − 1) terms, a signif-
icant improvement over the recursion that requires O(mn) computations. Also,
note that gm , the number of block fountains with m coins in the bottom row, is
equivalent to the (2m+1)-th Fibonacci number, which is also expressible as the
sum

∑
`

(m+`−1
m−`−1

)
. Therefore, pyramidal stacks of spheres can be viewed as a direct

generalization of block fountains of coins.

4. Dominican stacks

Pyramidal stacks, having only a single spire, form an extremely restricted class,
just as block fountains are to general fountains of coins. We would like to analyze
a more robust class that is closer in spirit to general stacks. Dominican stacks are a
three-dimensional generalization of arbitrary two-dimensional fountains of coins.

In order to motivate the definition of Dominican stacks, let’s review general
fountains of coins. A fountain with m coins in the bottom row can be uniquely
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Figure 6. A 9× 10 Dominican stack of spheres from oblique and
top views.

decomposed into two subfountains by locating the first position in the second row,
say at m′, where a coin is missing. For instance, the second row of the fountain in
Figure 1 has its first missing coin in the fifth position. Thus, a general fountain
consists of the subfountain on the left with a base of m′ coins, whose second row
is full and so consists of an even smaller subfountain with a diminished base of
m′− 1 coins, and a subfountain on the right with a base of m−m′ coins. So, the
recurrence relation gm =

∑
m′ gm′−1 · gm−m′ holds for fountains of coins.

We make an analogous definition by induction for stacks of spheres. A Dominican
stack of spheres is defined by the following cases:

Base case: A single level of spheres in a rectangular grid.

Inductive case: A multilevel stack of spheres with an m×n base built from smaller
stacks, as follows. It is required that, when viewed from the top, there exist a
(necessarily unique) column at position m′ and row at position n′ devoid of spheres
so that the following conditions hold:

Bottom left: Every position in the second level above positions [1, . . . , m′] ×
[1, . . . , n′] has a sphere, and the stack with diminished base of size (m′−1)×

(n′− 1) from the second level and above is Dominican.

Top right: The stack above positions [m′+ 1, . . . , m]× [n′+ 1, . . . , n] from the
first level and above is Dominican.

Bottom right and top left: The stacks above positions [m′+1, . . . , m]×[1, . . . , n′]
and [1, . . . , m′]× [n′+1, . . . , n] consist solely of rectangular grids of spheres
on the first level with nothing above.

An example of a Dominican stack is shown in Figure 6. Informally, a stack of
spheres is called Dominican because of its resemblance to the flag of the Dominican
Republic. As a visualization depicted in Figure 7, imagine placing a version of
the Dominican Republic’s flag under a stack of spheres and looking at the stack
from above. On the second level, the white stripes of the flag appear in the row and
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dm,n n=1 2 3 4 5 6 7

m=1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7
3 1 3 7 12 18 25 33
4 1 4 12 28 52 85 128
5 1 5 18 52 122 239 416
6 1 6 25 85 239 564 1147
7 1 7 33 128 416 1147 2723

Table 2. Values of dm,n for m, n ≤ 7.

1 m′ m
1

n′

n

Figure 7. Indexing of a Dominican stack with regions of the bot-
tom layer in red and blue and smaller Dominican stacks in purple.

column which are empty but the red region to the bottom-left is full; the substack
above this red region is a smaller Dominican stack. The portion of the stack on
the top-right above the other red region of the flag also forms a smaller Dominican
stack. The portions of the stack above the blue regions are single layers of spheres.
Note that if the first empty column (m′ = 1 from the definition) in the second level
forms the boundary, then the corresponding row must also be the first (n′ = 1), and
likewise for the converse. Therefore, the emblem of the flag where the white stripes
cross may either be in position [1, 1] of the second level or in a position [m′, n′]
with 2≤ m′ ≤ m and 2≤ n′ ≤ n.

Let dm,n be the number of Dominican stacks with an m×n base. For convenience,
let d0,n = dm,0 = 1 for all m, n ≥ 0, and note that by symmetry dm,n = dn,m . We
define the bivariate generating function D(x, y) =

∑
m,n≥0 dm,nxn yn. By hand

calculation and assistance from Maple, we computed dm,n for m, n ≤ 7, shown in
Table 2. In order to derive an expression for this generating function, we begin with
the recurrence relation for the dm,n that follows immediately from the inductive
definition of Dominican stacks. Equation (4b) is just a reindexing of (4a), and
(4c) accounts for the inclusion of the terms m′ = 0 or n′ = 0 in the sum; see the
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following:

dm+1,n+1 = dm,n +
∑

2≤m′≤m+1
2≤n′≤n+1

dm′−1,n′−1 dm+1−m′,n+1−n′ (m, n ≥ 0) (4a)

= dm,n +
∑

1≤m′≤m
1≤n′≤n

dm′,n′dm−m′,n−n′ (4b)

= 2dm,n +
∑

0≤m′≤m
0≤n′≤n

dm′,n′dm−m′,n−n′ −
∑

0≤m′≤m

dm′,n −
∑

0,≤n′≤n

dm,n′ . (4c)

Using the generating functions in (2a) and (2b), along with the product rule and
the partial sum rule, we obtain the corresponding relation for D(x, y), namely

D(x, y)−
x

1−x
−

y
1−y

− 1

= 2xy D(x, y)+ xy D2(x, y)−
xy

1−x
D(x, y)−

xy
1−y

D(x, y).

This relation is quadratic in D(x, y) with coefficients that are polynomials in x, y.
After some algebra, we get a ratio of polynomials with a radical for the generating
function:

D(x, y)

=
(1−xy)(1−x−y+2xy)−

√
(1−xy)2(1−x−y+2xy)2

−4xy(1−x)(1−y)(1−xy)

2xy(1−x)(1−y)
. (5)

This generating function agrees with the values of dm,n from the recurrence relation.
D(x, y) can be viewed as a generalization of the generating function for the Catalan
numbers. Unfortunately, asymptotic analysis even of rational bivariate generating
functions is difficult, so analysis of this generating function with a radical will
require further investigation.

5. Further problems

Stacking of spheres lends itself to many one-parameter combinatorial classes. For
example, the class of pyramidal stacks can be restricted by the condition that
each level forms a square grid of spheres. If sn is the number of such pyramids
with an n × n base, it follows quickly that the generating function

∑
snxn is

x(1− x)3/(1−4x+2x2
− x3). Many geometrical variants with triangles, hexagons,

etc., can be formed in this manner and result in single-variable generating functions.
Another restriction leading to single-variable generating functions is to fix the

width of the base of a general stack. For each base width m ≥ 1 and length
n ≥ 1, let am,n be the number of general stacks with an m × n base and define
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Am(x)=
∑

n am,n xn. It turns out that

A1(x)=
1

1− x
, A2(x)=

x
1− 2x

, A3(x)=
x(1− x)

1− 5x + 3x2 .

The Am for m ≥ 4 are more difficult to compute, but would surely shed light on the
general case.

However, the main problem of enumerating general stacks of spheres remains
unsolved. While it is hoped that recursive methods similar to the pyramidal and
Dominican cases will ultimately work out, it is entirely possible that altogether
different machinery may be required to enumerate general stacks. The most direct
reason that recursive methods may fail is that partitions of rectangles into collections
of subrectangles are unwieldy. Additionally, since the generating function of a
general fountain of coins (based on the total number of coins) in two dimensions
is already significant in complexity as a continued fraction, one must expect the
generating function of a general stack of spheres in three dimensions to be an order
of difficulty harder.

A more tractable problem may be an asymptotic approximation of the coefficients
of the generating functions in (3) and (5). Recent results in [Pemantle and Wilson
2013] may provide insight.
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