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Let G be a nontrivial group, and assume that G ∼= H for every nontrivial sub-
group H of G. It is a simple matter to prove that G ∼= Z or G ∼= Z/〈p〉 for some
prime p. In this note, we address the analogous (though harder) question for
rings; that is, we find all nontrivial rings R for which R ∼= S for every nontrivial
subring S of R.

1. Introduction

The notion of “same structure” is ubiquitous in mathematics. Indeed, the concept
appears as early as high school geometry, where congruence of angles and similarity
of triangles are studied. One then learns the analogous concept for groups in a first
course on modern algebra, where two groups G and H have the same structure
if there is a bijection f : G → H with the property that f (xy) = f (x) f (y) for
all x, y ∈ G. Such an f is called an isomorphism from G to H ; if such an f
exists, then we say that G and H are isomorphic, and write G ∼= H. There exist
many groups which are isomorphic to a proper subgroup. For example, the group
(Z,+) is isomorphic to (E,+), where E is the subgroup of Z consisting of the
even integers. More generally, since every nontrivial subgroup of an infinite cyclic
group is also infinite cyclic, and since every infinite cyclic group is isomorphic to
(Z,+), it follows that the group (Z,+) is inordinately homogeneous in the sense
that all nontrivial subgroups are isomorphic.

More generally, a mathematical structure M is called κ-homogeneous (κ an
infinite cardinal of size at most |M|) provided any two substructures of cardinality
κ are isomorphic [Droste 1989; Oman 2009; 2011]. A related mathematical object
called a Jónsson group is an infinite group G such that every proper subgroup
of G has smaller cardinality than G; in this case, note that G is |G|-homogeneous.
It is well known, see [Scott 1952], that the only abelian Jónsson groups are the
quasicyclic groups Z(p∞), p a prime, which is isomorphic to the subgroup of
the factor group Q/Z consisting of those elements whose order is a power of p.
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If one does not assume G to be abelian, then the situation becomes much more
complicated. Saharon Shelah was the first to construct an example of a Kurosh
monster, which is a group of size ℵ1 in which all proper subgroups are countable.
It is still an open problem to determine whether a Jónsson group of size ℵω can
be shown to exist in Zermelo–Fraenkel set theory with choice (ZFC); we refer the
reader to the excellent survey [Coleman 1996] for more details.

Laffey [1974] characterized the countably infinite rings R for which every proper
subring of R is finite. An infinite ring R with the property that every proper subring
of R has smaller cardinality than R is called a Jónsson ring. It is known that
any uncountable Jónsson ring is necessarily a noncommutative division ring. The
existence of such a ring has yet to be established [Coleman 1996]. It is apparently
a very difficult problem to classify all rings R for which R ∼= S for every subring S
of size |R|, since doing so would automatically classify the Jónsson rings. In view
of these results, we take a more modest approach in this paper and consider the
problem of classifying those nontrivial rings R for which R∼= S for every nontrivial
subring S of R.

2. Results

We begin by fixing terminology. First, all rings will be assumed to be associative,
but not necessarily commutative or unital. Indeed, commutativity of the rings
studied in this paper can be deduced rather quickly (so it need not be assumed),
and many important and well-studied classes of rings do not contain an identity.
For example, Leavitt path algebras on graphs with infinitely many vertices never
contain an identity; see [Abrams et al. 2017, Lemma 1.2.12(iv)]. If R is a ring,
then a subring of R is a nonempty subset S of R which is closed under addition,
multiplication, and negatives. It is important to note that in this article, we do not
require a subring of a unital ring to contain an identity. For the purposes of this
note, say that a ring R (respectively, group G) is homogeneous if R is nontrivial
and R ∼= S for all nontrivial subrings S of R (respectively, if G is nontrivial and
G ∼= H for every nontrivial subgroup H of G).

We begin our investigation by first classifying the homogeneous groups.

Lemma 1. Let G be a group. Then G is homogeneous if and only if G ∼= Z/〈p〉
for some prime p or G ∼= Z.

Proof. Because (by Lagrange’s theorem) Z/〈p〉 has no proper, nontrivial subgroups
(that is, Z/〈p〉 is simple), we see that Z/〈p〉 is trivially homogeneous. As for the
additive group Z of integers, if H is a nontrivial subgroup of Z, then H is an infinite
cyclic group; hence H ∼= Z. We deduce that Z is a homogeneous group.

Conversely, suppose that G is a homogeneous group. Let g be a nonidentity
element of G. Then G ∼= 〈g〉, and thus G is cyclic. If G is infinite, then G ∼= Z.
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Thus suppose that G is finite. If H is a proper subgroup of G, then |H |< |G|; thus
H � G. As G is homogeneous, it follows that G is simple. It is well known that
the only nontrivial simple abelian groups are the groups Z/〈p〉 where p is a prime.
To keep the paper self-contained, we give the argument. We have already noted
above that for a prime p, the group Z/〈p〉 is simple. Conversely, suppose that G is
simple, and let g ∈ G\{e} be arbitrary. The simplicity of G implies that G = 〈g〉,
and so G is cyclic. Because Z has proper, nontrivial subgroups, we deduce that G
is a finite cyclic group, say of order n > 1. It remains to show that n is prime. If
n = rs for some integers r and s with 1< r, s < n, then 〈gr

〉 is a proper, nontrivial
subgroup of G, contradicting that G is simple. This concludes the proof. �

We arrive at the main result of this note, which classifies the homogeneous rings.
As the reader will see, the argument we give to prove the ring version of Lemma 1
is more complicated than the argument just given above.

Theorem 1. Let R be a ring. Then R is homogeneous if and only if one of the
following holds:

(i) R ∼= Fp, where Fp is the field of p elements and p is a prime number,

(ii) R ∼= Z/〈p〉 with trivial multiplication (that is, xy = 0 for all x and y), or

(iii) R ∼= Z with trivial multiplication.

Proof. Consider first the field Fp, where p is prime. If S is a nontrivial subring of Fp,
then under addition, S is a nontrivial subgroup of (Fp,+). By Lagrange’s theorem,
S = Fp, and thus S ∼= Fp as rings. The same argument shows that Z/〈p〉 with trivial
multiplication is homogeneous. As for (iii), suppose that S is a nontrivial subring
of Z (with trivial multiplication). Then additively, S is a nontrivial subgroup of
(Z,+). By Lemma 1, (S,+)∼= (Z,+); let f : S→ Z be an additive isomorphism.
Because the multiplication on Z is trivial, it follows that f is also a ring isomorphism.
We have verified that the rings in (i)–(iii) are homogeneous.

We now work toward establishing the converse. For m ∈Z, let mZ be the subring
of Z consisting of all integer multiples of m. We claim that

the ring mZ is not homogeneous for any m ∈ Z. (2-1)

If m = 0, then mZ= {0}; thus is not homogeneous by definition. If |m| = 1, then
observe that mZ = Z � 2Z since the ring Z has an identity but the ring 2Z does
not. Now suppose that |m| > 1. Then mZ has a nonzero element α (namely m)
such that α2

= mα, yet the subring m2Z does not possess such an element. To see
this, suppose that β ∈ m2Z\{0} is such that β2

= mβ. We have β = m2n for some
n ∈ Z\{0}. Thus m4n2

= β2
= mβ = m(m2n). But then mn = 1, and m is a unit

of Z, which is impossible because |m| > 1. We conclude that mZ � m2Z. This
completes the verification of (2-1).
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Next, for a nonzero element r of a ring R, let

rZ[r ] := {m1r +m2r2
+ · · ·+mkr k

: k ∈ Z+,mi ∈ Z}

be the subring of R generated by r . If f : rZ[r ] → R is a ring isomorphism, then
one can see that R = f (r)Z[ f (r)]. Hence:

If R is a homogeneous ring, then R = rZ[r ] for some r ∈ R\{0}.
Thus R is commutative.

(2-2)

Now let D be a commutative domain with identity 1 6= 0, and let D[X2, X3
] be

the ring generated by D, X2, and X3, where X is an indeterminate which commutes
with the members of D. Consider the ideal 〈X2, X3

〉 of D[X2, X3
] generated by

X2 and X3. We claim that

〈X2, X3
〉 is not a principal ideal of D[X2, X3

]. (2-3)
Note first that

X /∈ D[X2, X3
], (2-4)

lest X be a unit of D[X ]. Suppose by way of contradiction that 〈X2, X3
〉 = 〈 f (X)〉

for some f (X) ∈ D[X2, X3
]. Then X2

| f (X) and f (X) | X2 in the ring D[X ].
We deduce that f (X) = u X2 for some unit u ∈ D. Because f (X) | X3 in the
ring D[X2, X3

], we have u X2g(X) = X3 for some g(X) ∈ D[X2, X3
]. But then

X = u · g(X) ∈ D[X2, X3
], contradicting (2-4). We have now established (2-3).

Next, let X D[X ] be the subring of D[X ] consisting of all f (X) ∈ D[X ] for which
f (0)= 0. We prove that

X D[X ] is not homogeneous. (2-5)

Suppose otherwise, and let R be the subring of X D[X ] generated by X2 and X3.
Then R is also homogeneous, and by (2-2), there is f (X) ∈ R such that R =
f (X)Z[ f (X)]. Next, let I be the ideal of D[X2, X3

] generated by R. Then it
follows that I = 〈X2, X3

〉 = 〈 f (X)〉, and we have a contradiction to (2-3) above.
Finally, we are ready to classify the homogeneous rings. Toward this end, let R be

an arbitrary homogeneous ring. We shall prove that one of (i)–(iii) holds. Suppose
first that R possesses a nonzero nilpotent element α. Let n > 1 be least such that
αn
= 0. Setting β := αn−1, we have β 6= 0, yet β2

= 0. Let S := {mβ : m ∈ Z}. One
checks at once that S is a nonzero subring of R with trivial multiplication. Because
R is homogeneous, R ∼= S; hence R is a nontrivial ring with trivial multiplication.
But then every subgroup of R is a subring of R. The homogeneity of R gives
H ∼= K for any nontrivial subgroups H and K of (R,+). Applying Lemma 1, we
see that either (ii) or (iii) holds.

Thus we assume that

R is reduced; that is, R has no nonzero nilpotent elements. (2-6)
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Our next assertion is that

R has no nonzero zero divisors. (2-7)

Suppose by way of contradiction that r0 ∈ R\{0} is a zero divisor. Let T1 := r0Z[r0]

and S1 := {r ∈ R : rT1 = {0}}. We have seen that T1 is a nonzero subring of R. As
R is commutative by (2-2) and r0 is a zero divisor, S1 is a nonzero subring of R.
Because R is reduced, it follows immediately that

S1 ∩ T1 = {0}, and xy = 0 for all x ∈ S1 and y ∈ T1. (2-8)

As R is homogeneous, R ∼= S1. We conclude that there exist nonzero subrings
S2 and T2 of S1 such that S2 ∩ T2 = {0} and xy = 0 for all x ∈ S2 and y ∈ T2.
Continuing recursively and setting S0 := T0 := R, we obtain sequences {Sn : n ≥ 0}
and {Tn : n ≥ 0} of nonzero subrings of R such that for every n ≥ 0, Sn+1 and Tn+1

are nonzero subrings of Sn such that Sn+1∩ Tn+1 = {0} and xy = 0 for all x ∈ Sn+1

and y ∈ Tn+1. Next, we establish that for all positive integers k,

if n1, . . . , nk > 0 are distinct, and t1+ · · ·+ tk = 0 with ti ∈ Tni ,

then ti = 0 for i = 1, . . . , k.
(2-9)

To prove this, we induct on k. Note that the base case of the induction is the
assertion that if t1 = 0 and t1 ∈ Tn1 , then t1 = 0, which is true. Suppose that the
claim holds for some k > 0, and let 0 < n1 < n2 < · · · < nk+1 and t1, . . . , tk+1

be such that t1 + · · · + tk+1 = 0 with ti ∈ Tni for all 1 ≤ i ≤ k. One checks that
t2, . . . , tk+1 ∈ Sn1 ; set α := t2+ · · ·+ tk+1. Then t1+α = 0, t1 ∈ Tn1 , and α ∈ Sn1 .
Since Sn1 ∩Tn1 = {0}, it follows that t1 = α = 0. Applying the inductive hypothesis,
we see that t2 = · · · = tk+1 = 0, and (2-9) is verified. We further claim that

if 0< n < m and x ∈ Tn, y ∈ Tm, then xy = 0. (2-10)

This is straightforward: as above, y ∈ Sn , and the result follows. We deduce from
(2-9), (2-10), and the homogeneity of R that R is isomorphic to the internal direct
sum of the rings Tn , n > 0. More compactly,

R ∼=
⊕
n>0

Tn. (2-11)

Thus
⊕

n>0 Tn is homogeneous. By (2-2), there is (rn) := r ∈
⊕

n>0 Tn such that⊕
n>0 Tn = rZ[r ]. Now, ri = 0 for almost all i . Thus there is a k such that if

ri 6= 0, then i ∈ {1, . . . , k}. But then for every (αn) := α ∈ rZ[r ], if αi 6= 0, then
i ∈ {1, . . . , k}. Since

⊕
n>0 Tn = rZ[r ], we deduce that the same is true of every

member of
⊕

n>0 Tn . But of course, this is absurd: recall that each Ti is a nonzero
ring, so for every k ∈ Z+ there exists a sequence (tn : n ∈ N) ∈

⊕
n>0 Tn such that

tk 6= 0. Finally, we have proven (2-7).
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We pause to take inventory of what we have established thus far. By (2-2) and
(2-7), R is a commutative domain, though we have not yet proven that R has a
multiplicative identity. Let

K := {a/b : a ∈ R, b ∈ R\{0}}

be the quotient field of R. It is well known that R embeds into K via the map
r 7→ (rd)/d , where d ∈ R is some fixed nonzero element of R. We identity R with
its image in K. Now let D be the subring of K generated by 1. Fix some nonzero
r ∈ R. One checks at once that r D[r ] is a nonzero subring of R, whence

R ∼= r D[r ]. (2-12)

The map ϕ : X D[X ] → r D[r ] defined by ϕ(Xg(X)) := rg(r) is a surjective ring
map. We apply (2-12) to conclude that r D[r ] is homogeneous. Therefore, (2-5)
implies that the kernel of ϕ is nonzero. Choose a nonzero polynomial X f (X) :=
d1 X +d2 X2

+· · ·+dn Xn
∈ X D[X ] of minimal degree n for which r f (r)= 0. We

claim that
d1 6= 0. (2-13)

If n = 1, this follows since X f (X) 6= 0. Suppose now that n > 1. If d1 = 0, then we
have d2r2

+ · · ·+ dnrn
= 0. Recalling that R is a domain and r 6= 0, this equation

reduces to d2r + · · ·+ dnrn−1
= 0, and this contradicts the minimality of n. So we

have
d1r + d2r2

+ · · ·+ dnrn
= 0 and d1 6= 0. (2-14)

Viewing the above equation in the quotient field K of R, we may divide through
by r to get d1+ d2r + · · ·+ dnrn−1

= 0. Solving the equation for d1, we see that

d1 ∈ R. (2-15)

Recall that d1 ∈ D, the ring generated by 1K (the multiplicative identity of K ).
Thus d1=m ·1K for some m ∈Z. Because K is a field, either D∼=Z or D∼=Z/〈p〉
for some prime p. In the former case, it follows from (2-13), (2-15), and the
homogeneity of R that R ∼= mZ for some m ∈ Z. However, this is precluded by
(2-1). We deduce that D ∼= Fp for some prime p. But then by (2-15), we see that
(up to isomorphism) d1 ∈ (Fp\{0})∩ R. Applying homogeneity a final time, we see
that R is isomorphic to the ring generated by d1. Thus, as d1 6= 0, we have R ∼= Fp,
and the proof is complete. �

We conclude the paper with the following corollary, which characterizes the
fields of order p.

Corollary 1. Let R be a ring with nontrivial multiplication. Then R is a field
with p elements (p a prime) if and only if any two nontrivial subrings of R are
isomorphic.
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