\bullet
 involve

 a journal of mathematicsRings isomorphic to their nontrivial subrings
Jacob Lojewski and Greg Oman

Rings isomorphic to their nontrivial subrings

Jacob Lojewski and Greg Oman
(Communicated by Scott T. Chapman)

Let G be a nontrivial group, and assume that $G \cong H$ for every nontrivial subgroup H of G. It is a simple matter to prove that $G \cong \mathbb{Z}$ or $G \cong \mathbb{Z} /\langle p\rangle$ for some prime p. In this note, we address the analogous (though harder) question for rings; that is, we find all nontrivial rings R for which $R \cong S$ for every nontrivial subring S of R.

1. Introduction

The notion of "same structure" is ubiquitous in mathematics. Indeed, the concept appears as early as high school geometry, where congruence of angles and similarity of triangles are studied. One then learns the analogous concept for groups in a first course on modern algebra, where two groups G and H have the same structure if there is a bijection $f: G \rightarrow H$ with the property that $f(x y)=f(x) f(y)$ for all $x, y \in G$. Such an f is called an isomorphism from G to H; if such an f exists, then we say that G and H are isomorphic, and write $G \cong H$. There exist many groups which are isomorphic to a proper subgroup. For example, the group $(\mathbb{Z},+)$ is isomorphic to $(E,+)$, where E is the subgroup of \mathbb{Z} consisting of the even integers. More generally, since every nontrivial subgroup of an infinite cyclic group is also infinite cyclic, and since every infinite cyclic group is isomorphic to $(\mathbb{Z},+)$, it follows that the group $(\mathbb{Z},+)$ is inordinately homogeneous in the sense that all nontrivial subgroups are isomorphic.

More generally, a mathematical structure \mathfrak{M} is called κ-homogeneous (κ an infinite cardinal of size at most $|\mathfrak{M}|$) provided any two substructures of cardinality κ are isomorphic [Droste 1989; Oman 2009; 2011]. A related mathematical object called a Jónsson group is an infinite group G such that every proper subgroup of G has smaller cardinality than G; in this case, note that G is $|G|$-homogeneous. It is well known, see [Scott 1952], that the only abelian Jónsson groups are the quasicyclic groups $\mathbb{Z}\left(p^{\infty}\right), p$ a prime, which is isomorphic to the subgroup of the factor group \mathbb{Q} / \mathbb{Z} consisting of those elements whose order is a power of p.

[^0]If one does not assume G to be abelian, then the situation becomes much more complicated. Saharon Shelah was the first to construct an example of a Kurosh monster, which is a group of size \aleph_{1} in which all proper subgroups are countable. It is still an open problem to determine whether a Jónsson group of size \aleph_{ω} can be shown to exist in Zermelo-Fraenkel set theory with choice (ZFC); we refer the reader to the excellent survey [Coleman 1996] for more details.

Laffey [1974] characterized the countably infinite rings R for which every proper subring of R is finite. An infinite ring R with the property that every proper subring of R has smaller cardinality than R is called a Jónsson ring. It is known that any uncountable Jónsson ring is necessarily a noncommutative division ring. The existence of such a ring has yet to be established [Coleman 1996]. It is apparently a very difficult problem to classify all rings R for which $R \cong S$ for every subring S of size $|R|$, since doing so would automatically classify the Jónsson rings. In view of these results, we take a more modest approach in this paper and consider the problem of classifying those nontrivial rings R for which $R \cong S$ for every nontrivial subring S of R.

2. Results

We begin by fixing terminology. First, all rings will be assumed to be associative, but not necessarily commutative or unital. Indeed, commutativity of the rings studied in this paper can be deduced rather quickly (so it need not be assumed), and many important and well-studied classes of rings do not contain an identity. For example, Leavitt path algebras on graphs with infinitely many vertices never contain an identity; see [Abrams et al. 2017, Lemma 1.2.12(iv)]. If R is a ring, then a subring of R is a nonempty subset S of R which is closed under addition, multiplication, and negatives. It is important to note that in this article, we do not require a subring of a unital ring to contain an identity. For the purposes of this note, say that a ring R (respectively, group G) is homogeneous if R is nontrivial and $R \cong S$ for all nontrivial subrings S of R (respectively, if G is nontrivial and $G \cong H$ for every nontrivial subgroup H of G).

We begin our investigation by first classifying the homogeneous groups.
Lemma 1. Let G be a group. Then G is homogeneous if and only if $G \cong \mathbb{Z} /\langle p\rangle$ for some prime p or $G \cong \mathbb{Z}$.

Proof. Because (by Lagrange's theorem) $\mathbb{Z} /\langle p\rangle$ has no proper, nontrivial subgroups (that is, $\mathbb{Z} /\langle p\rangle$ is simple), we see that $\mathbb{Z} /\langle p\rangle$ is trivially homogeneous. As for the additive group \mathbb{Z} of integers, if H is a nontrivial subgroup of \mathbb{Z}, then H is an infinite cyclic group; hence $H \cong \mathbb{Z}$. We deduce that \mathbb{Z} is a homogeneous group.

Conversely, suppose that G is a homogeneous group. Let g be a nonidentity element of G. Then $G \cong\langle g\rangle$, and thus G is cyclic. If G is infinite, then $G \cong \mathbb{Z}$.

Thus suppose that G is finite. If H is a proper subgroup of G, then $|H|<|G|$; thus $H \nsupseteq G$. As G is homogeneous, it follows that G is simple. It is well known that the only nontrivial simple abelian groups are the groups $\mathbb{Z} /\langle p\rangle$ where p is a prime. To keep the paper self-contained, we give the argument. We have already noted above that for a prime p, the group $\mathbb{Z} /\langle p\rangle$ is simple. Conversely, suppose that G is simple, and let $g \in G \backslash\{e\}$ be arbitrary. The simplicity of G implies that $G=\langle g\rangle$, and so G is cyclic. Because \mathbb{Z} has proper, nontrivial subgroups, we deduce that G is a finite cyclic group, say of order $n>1$. It remains to show that n is prime. If $n=r s$ for some integers r and s with $1<r, s<n$, then $\left\langle g^{r}\right\rangle$ is a proper, nontrivial subgroup of G, contradicting that G is simple. This concludes the proof.

We arrive at the main result of this note, which classifies the homogeneous rings. As the reader will see, the argument we give to prove the ring version of Lemma 1 is more complicated than the argument just given above.
Theorem 1. Let R be a ring. Then R is homogeneous if and only if one of the following holds:
(i) $R \cong \mathbb{F}_{p}$, where \mathbb{F}_{p} is the field of p elements and p is a prime number,
(ii) $R \cong \mathbb{Z} /\langle p\rangle$ with trivial multiplication (that is, $x y=0$ for all x and y), or
(iii) $R \cong \mathbb{Z}$ with trivial multiplication.

Proof. Consider first the field \mathbb{F}_{p}, where p is prime. If S is a nontrivial subring of \mathbb{F}_{p}, then under addition, S is a nontrivial subgroup of $\left(\mathbb{F}_{p},+\right)$. By Lagrange's theorem, $S=\mathbb{F}_{p}$, and thus $S \cong \mathbb{F}_{p}$ as rings. The same argument shows that $\mathbb{Z} /\langle p\rangle$ with trivial multiplication is homogeneous. As for (iii), suppose that S is a nontrivial subring of \mathbb{Z} (with trivial multiplication). Then additively, S is a nontrivial subgroup of $(\mathbb{Z},+)$. By Lemma $1,(S,+) \cong(\mathbb{Z},+)$; let $f: S \rightarrow \mathbb{Z}$ be an additive isomorphism. Because the multiplication on \mathbb{Z} is trivial, it follows that f is also a ring isomorphism. We have verified that the rings in (i)-(iii) are homogeneous.

We now work toward establishing the converse. For $m \in \mathbb{Z}$, let $m \mathbb{Z}$ be the subring of \mathbb{Z} consisting of all integer multiples of m. We claim that

$$
\begin{equation*}
\text { the ring } m \mathbb{Z} \text { is not homogeneous for any } m \in \mathbb{Z} \text {. } \tag{2-1}
\end{equation*}
$$

If $m=0$, then $m \mathbb{Z}=\{0\}$; thus is not homogeneous by definition. If $|m|=1$, then observe that $m \mathbb{Z}=\mathbb{Z} \not \equiv 2 \mathbb{Z}$ since the ring \mathbb{Z} has an identity but the ring $2 \mathbb{Z}$ does not. Now suppose that $|m|>1$. Then $m \mathbb{Z}$ has a nonzero element α (namely m) such that $\alpha^{2}=m \alpha$, yet the subring $m^{2} \mathbb{Z}$ does not possess such an element. To see this, suppose that $\beta \in m^{2} \mathbb{Z} \backslash\{0\}$ is such that $\beta^{2}=m \beta$. We have $\beta=m^{2} n$ for some $n \in \mathbb{Z} \backslash\{0\}$. Thus $m^{4} n^{2}=\beta^{2}=m \beta=m\left(m^{2} n\right)$. But then $m n=1$, and m is a unit of \mathbb{Z}, which is impossible because $|m|>1$. We conclude that $m \mathbb{Z} \nsubseteq m^{2} \mathbb{Z}$. This completes the verification of (2-1).

Next, for a nonzero element r of a ring R, let

$$
r \mathbb{Z}[r]:=\left\{m_{1} r+m_{2} r^{2}+\cdots+m_{k} r^{k}: k \in \mathbb{Z}^{+}, m_{i} \in \mathbb{Z}\right\}
$$

be the subring of R generated by r. If $f: r \mathbb{Z}[r] \rightarrow R$ is a ring isomorphism, then one can see that $R=f(r) \mathbb{Z}[f(r)]$. Hence:

If R is a homogeneous ring, then $R=r \mathbb{Z}[r]$ for some $r \in R \backslash\{0\}$.
Thus R is commutative.
Now let D be a commutative domain with identity $1 \neq 0$, and let $D\left[X^{2}, X^{3}\right]$ be the ring generated by D, X^{2}, and X^{3}, where X is an indeterminate which commutes with the members of D. Consider the ideal $\left\langle X^{2}, X^{3}\right\rangle$ of $D\left[X^{2}, X^{3}\right]$ generated by X^{2} and X^{3}. We claim that

$$
\begin{equation*}
\left\langle X^{2}, X^{3}\right\rangle \text { is not a principal ideal of } D\left[X^{2}, X^{3}\right] . \tag{2-3}
\end{equation*}
$$

Note first that

$$
\begin{equation*}
X \notin D\left[X^{2}, X^{3}\right], \tag{2-4}
\end{equation*}
$$

lest X be a unit of $D[X]$. Suppose by way of contradiction that $\left\langle X^{2}, X^{3}\right\rangle=\langle f(X)\rangle$ for some $f(X) \in D\left[X^{2}, X^{3}\right]$. Then $X^{2} \mid f(X)$ and $f(X) \mid X^{2}$ in the ring $D[X]$. We deduce that $f(X)=u X^{2}$ for some unit $u \in D$. Because $f(X) \mid X^{3}$ in the ring $D\left[X^{2}, X^{3}\right]$, we have $u X^{2} g(X)=X^{3}$ for some $g(X) \in D\left[X^{2}, X^{3}\right]$. But then $X=u \cdot g(X) \in D\left[X^{2}, X^{3}\right]$, contradicting (2-4). We have now established (2-3). Next, let $X D[X]$ be the subring of $D[X]$ consisting of all $f(X) \in D[X]$ for which $f(0)=0$. We prove that

$$
\begin{equation*}
X D[X] \text { is not homogeneous. } \tag{2-5}
\end{equation*}
$$

Suppose otherwise, and let R be the subring of $X D[X]$ generated by X^{2} and X^{3}. Then R is also homogeneous, and by (2-2), there is $f(X) \in R$ such that $R=$ $f(X) \mathbb{Z}[f(X)]$. Next, let I be the ideal of $D\left[X^{2}, X^{3}\right]$ generated by R. Then it follows that $I=\left\langle X^{2}, X^{3}\right\rangle=\langle f(X)\rangle$, and we have a contradiction to (2-3) above.

Finally, we are ready to classify the homogeneous rings. Toward this end, let R be an arbitrary homogeneous ring. We shall prove that one of (i)-(iii) holds. Suppose first that R possesses a nonzero nilpotent element α. Let $n>1$ be least such that $\alpha^{n}=0$. Setting $\beta:=\alpha^{n-1}$, we have $\beta \neq 0$, yet $\beta^{2}=0$. Let $S:=\{m \beta: m \in \mathbb{Z}\}$. One checks at once that S is a nonzero subring of R with trivial multiplication. Because R is homogeneous, $R \cong S$; hence R is a nontrivial ring with trivial multiplication. But then every subgroup of R is a subring of R. The homogeneity of R gives $H \cong K$ for any nontrivial subgroups H and K of $(R,+)$. Applying Lemma 1, we see that either (ii) or (iii) holds.

Thus we assume that
R is reduced; that is, R has no nonzero nilpotent elements.

Our next assertion is that

$$
\begin{equation*}
R \text { has no nonzero zero divisors. } \tag{2-7}
\end{equation*}
$$

Suppose by way of contradiction that $r_{0} \in R \backslash\{0\}$ is a zero divisor. Let $T_{1}:=r_{0} \mathbb{Z}\left[r_{0}\right]$ and $S_{1}:=\left\{r \in R: r T_{1}=\{0\}\right\}$. We have seen that T_{1} is a nonzero subring of R. As R is commutative by (2-2) and r_{0} is a zero divisor, S_{1} is a nonzero subring of R. Because R is reduced, it follows immediately that

$$
\begin{equation*}
S_{1} \cap T_{1}=\{0\}, \quad \text { and } \quad x y=0 \quad \text { for all } x \in S_{1} \text { and } y \in T_{1} . \tag{2-8}
\end{equation*}
$$

As R is homogeneous, $R \cong S_{1}$. We conclude that there exist nonzero subrings S_{2} and T_{2} of S_{1} such that $S_{2} \cap T_{2}=\{0\}$ and $x y=0$ for all $x \in S_{2}$ and $y \in T_{2}$. Continuing recursively and setting $S_{0}:=T_{0}:=R$, we obtain sequences $\left\{S_{n}: n \geq 0\right\}$ and $\left\{T_{n}: n \geq 0\right\}$ of nonzero subrings of R such that for every $n \geq 0, S_{n+1}$ and T_{n+1} are nonzero subrings of S_{n} such that $S_{n+1} \cap T_{n+1}=\{0\}$ and $x y=0$ for all $x \in S_{n+1}$ and $y \in T_{n+1}$. Next, we establish that for all positive integers k,

$$
\begin{align*}
& \text { if } n_{1}, \ldots, n_{k}>0 \text { are distinct, and } t_{1}+\cdots+t_{k}=0 \text { with } t_{i} \in T_{n_{i}} \text {, } \tag{2-9}\\
& \text { then } t_{i}=0 \text { for } i=1, \ldots, k .
\end{align*}
$$

To prove this, we induct on k. Note that the base case of the induction is the assertion that if $t_{1}=0$ and $t_{1} \in T_{n_{1}}$, then $t_{1}=0$, which is true. Suppose that the claim holds for some $k>0$, and let $0<n_{1}<n_{2}<\cdots<n_{k+1}$ and t_{1}, \ldots, t_{k+1} be such that $t_{1}+\cdots+t_{k+1}=0$ with $t_{i} \in T_{n_{i}}$ for all $1 \leq i \leq k$. One checks that $t_{2}, \ldots, t_{k+1} \in S_{n_{1}}$; set $\alpha:=t_{2}+\cdots+t_{k+1}$. Then $t_{1}+\alpha=0, t_{1} \in T_{n_{1}}$, and $\alpha \in S_{n_{1}}$. Since $S_{n_{1}} \cap T_{n_{1}}=\{0\}$, it follows that $t_{1}=\alpha=0$. Applying the inductive hypothesis, we see that $t_{2}=\cdots=t_{k+1}=0$, and (2-9) is verified. We further claim that

$$
\begin{equation*}
\text { if } 0<n<m \text { and } x \in T_{n}, y \in T_{m} \text {, then } x y=0 \text {. } \tag{2-10}
\end{equation*}
$$

This is straightforward: as above, $y \in S_{n}$, and the result follows. We deduce from (2-9), (2-10), and the homogeneity of R that R is isomorphic to the internal direct sum of the rings $T_{n}, n>0$. More compactly,

$$
\begin{equation*}
R \cong \bigoplus_{n>0} T_{n} \tag{2-11}
\end{equation*}
$$

Thus $\bigoplus_{n>0} T_{n}$ is homogeneous. By (2-2), there is $\left(r_{n}\right):=r \in \bigoplus_{n>0} T_{n}$ such that $\bigoplus_{n>0} T_{n}=r \mathbb{Z}[r]$. Now, $r_{i}=0$ for almost all i. Thus there is a k such that if $r_{i} \neq 0$, then $i \in\{1, \ldots, k\}$. But then for every $\left(\alpha_{n}\right):=\alpha \in r \mathbb{Z}[r]$, if $\alpha_{i} \neq 0$, then $i \in\{1, \ldots, k\}$. Since $\bigoplus_{n>0} T_{n}=r \mathbb{Z}[r]$, we deduce that the same is true of every member of $\bigoplus_{n>0} T_{n}$. But of course, this is absurd: recall that each T_{i} is a nonzero ring, so for every $k \in \mathbb{Z}^{+}$there exists a sequence ($t_{n}: n \in \mathbb{N}$) $\in \bigoplus_{n>0} T_{n}$ such that $t_{k} \neq 0$. Finally, we have proven (2-7).

We pause to take inventory of what we have established thus far. By (2-2) and (2-7), R is a commutative domain, though we have not yet proven that R has a multiplicative identity. Let

$$
K:=\{a / b: a \in R, b \in R \backslash\{0\}\}
$$

be the quotient field of R. It is well known that R embeds into K via the map $r \mapsto(r d) / d$, where $d \in R$ is some fixed nonzero element of R. We identity R with its image in K. Now let D be the subring of K generated by 1 . Fix some nonzero $r \in R$. One checks at once that $r D[r]$ is a nonzero subring of R, whence

$$
\begin{equation*}
R \cong r D[r] . \tag{2-12}
\end{equation*}
$$

The map $\varphi: X D[X] \rightarrow r D[r]$ defined by $\varphi(X g(X)):=r g(r)$ is a surjective ring map. We apply (2-12) to conclude that $r D[r]$ is homogeneous. Therefore, (2-5) implies that the kernel of φ is nonzero. Choose a nonzero polynomial $X f(X):=$ $d_{1} X+d_{2} X^{2}+\cdots+d_{n} X^{n} \in X D[X]$ of minimal degree n for which $r f(r)=0$. We claim that

$$
\begin{equation*}
d_{1} \neq 0 . \tag{2-13}
\end{equation*}
$$

If $n=1$, this follows since $X f(X) \neq 0$. Suppose now that $n>1$. If $d_{1}=0$, then we have $d_{2} r^{2}+\cdots+d_{n} r^{n}=0$. Recalling that R is a domain and $r \neq 0$, this equation reduces to $d_{2} r+\cdots+d_{n} r^{n-1}=0$, and this contradicts the minimality of n. So we have

$$
\begin{equation*}
d_{1} r+d_{2} r^{2}+\cdots+d_{n} r^{n}=0 \quad \text { and } \quad d_{1} \neq 0 \tag{2-14}
\end{equation*}
$$

Viewing the above equation in the quotient field K of R, we may divide through by r to get $d_{1}+d_{2} r+\cdots+d_{n} r^{n-1}=0$. Solving the equation for d_{1}, we see that

$$
\begin{equation*}
d_{1} \in R . \tag{2-15}
\end{equation*}
$$

Recall that $d_{1} \in D$, the ring generated by 1_{K} (the multiplicative identity of K). Thus $d_{1}=m \cdot 1_{K}$ for some $m \in \mathbb{Z}$. Because K is a field, either $D \cong \mathbb{Z}$ or $D \cong \mathbb{Z} /\langle p\rangle$ for some prime p. In the former case, it follows from (2-13), (2-15), and the homogeneity of R that $R \cong m \mathbb{Z}$ for some $m \in \mathbb{Z}$. However, this is precluded by (2-1). We deduce that $D \cong \mathbb{F}_{p}$ for some prime p. But then by (2-15), we see that (up to isomorphism) $d_{1} \in\left(\mathbb{F}_{p} \backslash\{0\}\right) \cap R$. Applying homogeneity a final time, we see that R is isomorphic to the ring generated by d_{1}. Thus, as $d_{1} \neq 0$, we have $R \cong \mathbb{F}_{p}$, and the proof is complete.

We conclude the paper with the following corollary, which characterizes the fields of order p.

Corollary 1. Let R be a ring with nontrivial multiplication. Then R is a field with p elements (p a prime) if and only if any two nontrivial subrings of R are isomorphic.

Acknowledgment

We thank the referee for an extremely thorough reading of our paper and for offering numerous helpful suggestions.

References

[Abrams et al. 2017] G. Abrams, P. Ara, and M. Siles Molina, Leavitt path algebras, Lecture Notes in Mathematics 2191, Springer, 2017. Zbl
[Coleman 1996] E. Coleman, "Jonsson groups, rings and algebras", Irish Math. Soc. Bull. 36 (1996), 34-45. MR Zbl
[Droste 1989] M. Droste, " k-homogeneous relations and tournaments", Quart. J. Math. Oxford Ser.
(2) 40:157 (1989), 1-11. MR Zbl
[Laffey 1974] T. J. Laffey, "Infinite rings with all proper subrings finite", Amer. Math. Monthly 81 (1974), 270-272. MR Zbl
[Oman 2009] G. Oman, "More results on congruent modules", J. Pure Appl. Algebra 213:11 (2009), 2147-2155. MR Zbl
[Oman 2011] G. Oman, "On elementarily κ-homogeneous unary structures", Forum Math. 23:4 (2011), 791-802. MR Zbl
[Scott 1952] W. R. Scott, "Groups and cardinal numbers", Amer. J. Math. 74 (1952), 187-197. MR Zbl

Received: 2017-08-15 Revised: 2017-11-11 Accepted: 2017-11-20
jlojewsk@uccs.edu Department of Mathematics, University of Colorado, Colorado Springs, CO, United States
goman@uccs.edu
Department of Mathematics, University of Colorado, Colorado Springs, CO, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 /$ year for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2018 vol. 11 no. 5

On the minuscule representation of type B_{n} 721
William J. Cook and Noah A. Hughes
Pythagorean orthogonality of compact sets 735
Pallavi Aggarwal, Steven Schlicker and Ryan Swartzentruber
Different definitions of conic sections in hyperbolic geometry 753
Patrick Chao and Jonathan Rosenberg
The Fibonacci sequence under a modulus: computing all moduli that produce a 769
given periodAlex Dishong and Marc S. Renault
On the faithfulness of the representation of $\operatorname{GL}(n)$ on the space of curvature 775
tensors
Corey Dunn, Darien Elderfield and Rory Martin-Hagemeyer
Quasipositive curvature on a biquotient of Sp (3) 787
Jason DeVito and Wesley Martin
Symmetric numerical ranges of four-by-four matrices 803
Shelby L. Burnett, Ashley Chandler and Linda J. Patton
Counting eta-quotients of prime level 827
Allison Arnold-Roksandich, Kevin James and Rodney Keaton
The k-diameter component edge connectivity parameter 845
Nathan Shank and Adam Buzzard
Time stopping for Tsirelson's norm 857Kevin Beanland, Noah Duncan and Michael Holt
Enumeration of stacks of spheres 867
Lauren Endicott, Russell May and Sienna Shacklette
Rings isomorphic to their nontrivial subrings877
Jacob Lojewski and Greg Oman
On generalized MacDonald codes 885
Padmapani Seneviratne and Lauren Melcher
A simple proof characterizing interval orders with interval lengths between 1 and k 893
Simona Boyadzhiyska, Garth Isaak and Ann N. Trenk

[^0]: MSC2010: primary 16B99; secondary 20K99.
 Keywords: direct sum, integral domain, polynomial ring, quotient field, reduced ring, zero divisor.

