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We show that the generalized q-ary MacDonald codes Cn,u,t (q) with parameters[
t
[ n

1

]
−
[ u

1

]
, n, tqn−1

− qu−1
]

are two-weight codes with nonzero weights w1 =

tqn−1, w2 = tqn−1
− qu−1 and determine the complete weight enumerator of

these codes. This leads to a family of strongly regular graphs with parameters
〈qn, qn

−qn−u, qn
−2qn−u, qn

−qn−u
〉. Further, we show that the codes Cn,u,t (q)

satisfy the Griesmer bound and are self-orthogonal for q = 2.

1. Introduction

Two-weight codes are an interesting family of error-correcting codes. They are
closely related to many other areas, including strongly regular graphs, partial
geometries and finite projective spaces. The relationship between two-weight
codes and projective sets was first studied by Delsarte [1972]. Calderbank and
Kantor [1986], and later van Lint and Schrijver [1981], did extensive surveys on
the subject. Most of these constructions used projective spaces and hence the
constructed codes were projective codes. More recently, some cyclic two-weight
codes were constructed in [Vega 2008; Vega and Wolfmann 2007].

The MacDonald codes, introduced in [MacDonald 1960] for binary codes, with
the definition extended for q-ary codes [Bhandari and Durairajan 2003; Patel 1975],
are punctured simplex codes of length (qn

−qu)/(q−1) for any n and 1≤ u≤ n−1.
They have parameters [(qn

− qu)/(q − 1), n, qn−1
− qu−1

]q and are two-weight
codes with nonzero words of weights qn−1

− qu−1 and qn−1. Following [Bhandari
and Durairajan 2003], we denote these codes by Cn,u(q).

The generalized MacDonald codes Cn,u,t(q) were introduced in [Dodunekov
and Simonis 1998] as an example of a projective multiset. The codes Cn,u,t(q) are
a direct sum of t − 1 q-ary simplex codes Cn(q) with a MacDonald code Cn,u(q)
and have parameters

[
t
[ n

1

]
−
[ u

1

]
, n, tqn−1

− qu−1
]
, where

[ n
1

]
= (qn

− 1)/(q − 1)
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is the q-ary Gaussian coefficient. Properties of the codes Cn,u,t(q) were hardly
studied, except for the uniqueness of these codes [Tamari 1984; Dodunekov and
Simonis 1998].

In this article, we find the complete weight enumerator of the codes Cn,u,t(q)
and show that they are two-weight codes. We prove that the codes Cn,u,t(q) are
maximum minimum-distance and hence satisfy the Griesmer bound. Further, we
show that both classes of codes Cn,u(q) and Cn,u,t(q) are self-orthogonal for q = 2.
Later, we extend these codes to Cn,u,s,t(q) codes by taking the direct sum of
t simplex codes with s MacDonald codes.

We describe our notation and provide some background definitions in Section 2
and the prove the results on properties of Cn,u,t(q) codes in Section 3. In Section 4,
we find the parameters of the Cn,u,s,t(q) codes and prove their properties.

2. Background and terminology

Codes. A linear [n, k, d]q code C is a k-dimensional subspace of an n-dimensional
vector space over a finite field Fq , where q = pm and p is a prime. Vectors in C are
called codewords. The weight wt(x) of a vector x in Fn

q is the number of nonzero
entries of x. The distance d(x, y) between two vectors x and y in Fn

q is the number
of entries where x and y differ. Therefore, for a linear code d(x, y)= wt(x− y).
A code C is said to be an [n, k, d]q code if d is the minimum nonzero weight in C.
A code C is said to be t-error correcting if t = b(d − 1)/2c.

For vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Fn
q , the Euclidean

inner product (dot product) is defined to be x · y =
∑n

i=1 xi yi . The dual code C⊥

of C is defined as C⊥ = {x ∈ Fn
q | x · c= 0 for all c ∈ C}. Then C⊥ is an [n, n− k]

linear code over Fq . A code C is called self-orthogonal if C ⊆ C⊥.
The weight enumerator WC(x, y) of C is the polynomial

WC(x, y)=
n∑

i=0

Ai xn−i yi,

where Ai is the number of codewords of weight i . C is called a two-weight code if
all nonzero codewords have weights w1 or w2(w1 <w2) for some w1 and w2. A
linear code C over Fq is called a projective code if any two of its coordinates are
linearly independent, i.e., if the dual code C⊥ has minimum distance ≥ 3.

For a q-ary [n, k, d] code, the Griesmer bound is given by

nq(k, d)≥
k−1∑
i=0

⌈
d
q i

⌉
, (1)

where nq(k, d) denotes the minimum length n for which an [n, k, d] linear code,
over Fq , exists.
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Strongly regular graphs.

Definition 1. A simple, undirected graph 0 is called strongly regular, with parame-
ters v, k, λ, µ, if 0 has v vertices and

(1) 0 is regular with valency k,

(2) if the vertices x and y are adjacent then there are exactly λ vertices adjacent
to both x and y,

(3) if the distinct vertices x and y are not adjacent then there are exactly µ vertices
adjacent to both x and y.

It is easy to verify that the complement of a strongly regular graph is strongly
regular. A graph 0 is described by its (0, 1) adjacency matrix A = (ai, j ) of size v
given by ai, j = 1 if vertices i and j are adjacent and ai, j = 0 if not. We quote the
following theorems about strongly regular graphs.

Theorem 1. If 0 is a graph with v vertices and adjacency matrix A then 0 is
strongly regular if and only if there are numbers k, r, s and µ such that AJ = k J
and (A−r I )(A−s I )=µJ, where J is the v×v matrix of ones and I is the identity
matrix of size v.

Accordingly, it is easy to see that A has eigenvalues k (with a multiplicity of 1),
r and s. We will denote the multiplicities of r and s by f and g, respectively. The
following is an immediate consequence of Theorem 1.

Theorem 2. If 0 is a regular graph with adjacency matrix A and A has only three
eigenvalues then 0 is a strongly regular graph.

The parameters of strongly regular graphs are not independent and are related.

Theorem 3. Let 0 be a strongly regular graph with parameters 〈v, k, λ, µ〉; then

k(k− λ− 1)= (v− k− 1)µ. (2)

3. Cn,u,t(q) codes

The MacDonald codes Cn,u(q) can be considered as punctured simplex codes. The
generator matrix of the Cn,u(q) code can be expressed in the form

Gn,u =

[
Gn \

(
0

Gu

)]
,

where [A\B] denotes the matrix obtained from the matrix A by deleting the columns
of the matrix B and Gi is the generator matrix for the i-dimensional simplex code.

The generalized MacDonald codes Cn,u,t(q) are defined by adding (via direct
sum) t − 1 simplex codes to a MacDonald code. Hence, we can represent the
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generator matrix, Gn,u,t of a generalized MacDonald code by the generator matrix
of a simplex code Gn and generator matrix of a MacDonald code Gn,u . We have

Gn,u,t =
[
Gn | Gn | · · · | Gn︸ ︷︷ ︸

t − 1

| Gn,u
]
.

Theorem 4. The binary MacDonald codes Cn,u(2)= [2n
− 2u, n, 2n−1

− 2u−1
] are

self-orthogonal for 3≤ u ≤ n− 1.

Proof. Let Gn be the matrix consisting of all column vectors of the vector space Fn
2 .

Then Gn is an n× 2n matrix. Let Gu be the matrix consisting of all column vectors
of the vector space Fu

2 . Then Gu is a u× 2u matrix. Let

Gu,0 =

(
0
Gu

)
,

where 0 is the (n− u)× 2u zero matrix with elements in F2. Then the generator
matrix Gn,u of the binary MacDonald code is given by [Gn \Gn,0]. Therefore, we
can write Gn = [Gn,u|Gu,0]. We know that GnGT

n = 0 for n ≥ 3. Now,

GnGT
n = [Gn,u|Gu,0][Gn,u|Gu,0]

T
= [Gn,u|Gu,0]

[
GT

n,u

GT
u,0

]
= Gn,uGT

n,u +Gu,0GT
u,0.

Therefore, we have Gn,uGT
n,u+Gu,0GT

u,0 = 0. Further, Gu,0GT
u,0 = 0 for u ≥ 3. Hence

Gn,uGT
n,u=0 for u≥3. This implies that the binary Cn,u(2) codes are self-orthogonal

for u ≥ 3. �

Similar to MacDonald codes, the generalized MacDonald codes are also self-
orthogonal for 3≤ u ≤ n.

Theorem 5. The generalized MacDonald codes Cn,u,t(q) are self-orthogonal for
3≤ u ≤ n− 1 and q = 2.

Proof. Consider the generator matrix Gn,u,t of the generalized MacDonald code
Cn,u,t(q). Then we have

Gn,u,t =
[
Gn | Gn | · · · | Gn︸ ︷︷ ︸

t − 1

| Gn,u
]
,

where Gn is the generator matrix for a simplex code and Gn,u is the generator
matrix for a MacDonald code. Next, consider matrix product

Gn,u,t GT
n,u,t =

[
Gn | Gn | · · · | Gn︸ ︷︷ ︸

t − 1

| Gn,u
][

Gn | Gn | · · · | Gn︸ ︷︷ ︸
t − 1

| Gn,u
]T

= GnGT
n + · · ·+GnGT

n︸ ︷︷ ︸
t − 1

+Gn,uGT
n,u . (3)

Let Gn be the matrix obtained from the simplex matrix Gn by adding the zero
column vector. That is, Gn = [0 | Gn]. This is the same matrix obtained from
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column vectors of Fn
q . Now, consider

GnGT
n = [0 | Gn][0 | Gn]

T
= 00T

+GnGT
n = 0n +GnGT

n = GnGT
n .

Hence, we can rewrite (3) as

Gn,u,t GT
n,u,t = GnGT

n + · · ·+GnGT
n︸ ︷︷ ︸

t − 1

+Gn,uGT
n,u .

From the proof of Theorem 4, we have GnGT
n = 0 and Gn,uGT

n,u = 0 for 3 ≤
u ≤ n − 1. Therefore, we have Gn,u,t GT

n,u,t = 0 for 3 ≤ u ≤ n − 1. Hence, the
generalized MacDonald codes Cn,u,t(q) are self-orthogonal for 3≤ u ≤ n− 1. �

The complete weight enumerator of q-ary MacDonald codes is known [Calder-
bank and Kantor 1986]. Here we will state the result, as it is essential for Theorem 7.

Theorem 6. The q-ary MacDonald code Cn,u(q) is a [(qn
− qu)/(q − 1), n,

qn−1
− qu−1

] is a two-weight code with nonzero weights w1 = qn−1
− qu−1 and

w2=qn−1 with weight enumerator coefficients Aw1=qn
−qn−u and Aw2=qn−u

−1.

In the following theorem, we show that the generalized MacDonald codes are
also two-weight codes with the same weight enumerator as the MacDonald codes,
but with different weights.

Theorem 7. The generalized MacDonald code Cn,u,t(q) is a
[
t
[ n

1

]
−
[u

1

]
,

tqn−1
−qu−1

]
q code with nonzero weights w1 = tqn−1

−qu−1 and w2 = tqn−1 and
weight enumerator coefficients Aw1 = qn

− qn−u and Aw2 = qn−u
− 1.

Proof. Consider the generator matrix Gn,u,t of the code Cn,u,t(q). We can represent
Gn,u,t by

Gn,u,t =
[
Gn|Gn| · · · |Gn︸ ︷︷ ︸

t − 1

|Gn,u
]
. (4)

The first t − 1 simplex matrices contribute (t − 1)qn−1 weights to a nonzero code-
word and the MacDonald matrix Gn,u contributes qn−1 and qn−1

− qu−1 weights.
Therefore, the weights of Cn,u,t(q) are w1 = tqn−1

− qu−1 and w2 = tqn−1. From
(4), it is easy to see that the number of words of weights w1 and w2 depend only
on the last MacDonald matrix Gn,u . Hence, the weight enumerator of Cn,u,t(q) is
the same as the weight enumerator of Cn,u(q). Therefore, Aw1 = qn

− qn−u and
Aw2 = qn−u

− 1. �

An important property of MacDonald codes is that they are maximum minimum-
distance codes; i.e., they satisfy the Griesmer bound. In the next theorem, we show
that the generalized MacDonald codes are also maximum minimum-distance codes.

Theorem 8. The codes Cn,u,t(q) satisfy the Griesmer bound.
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Proof. Let Cn,u,t(q) be a
[
t
[n

1

]
−
[u

1

]
, tqn−1

−qu−1
]

code. Consider the right-hand
side of the Griesmer bound (1). Then

k−1∑
i=0

⌈
d
q i

⌉
=

k−1∑
i=0

⌈
tqn−1

− qu−1

q i

⌉
=

u−1∑
i=0

⌈
tqn−1

− qu−1

q i

⌉
+

k∑
i=u

⌈
tqn−1

− qu−1

q i

⌉
=
{
dtqn−1

− qu−1
e+ dtqn−2

− qu−2
e+ · · · + dtqn−u

− 1e
}

+

{⌈
tqn−u−1

−
qu−1

qu

⌉
+

⌈
tqn−u−2

−
qu−1

qu+1

⌉
+ · · ·+

⌈
t −

qu−1

qn−1

⌉}
=
{
(tqn−1

− qu−1)+ (tqn−2
− qu−2)+ · · ·+ (tqn−u

− 1)
}

+
{
(tqn−u−1)+ (tqn−u−2)+ · · ·+ (tq0)

}
=
{
t (qn−1

+ qn−2
+ · · ·+ qn−u

+ qn−u−1
+ · · ·+ q0)

}
−
{
qu−1
+ qu−2

+ · · ·+ q0}
= t
(

1− qn

1− q

)
−

(
1− qu

1− q

)
= t
[n

1

]
−

[u
1

]
= nq(k, d). �

We can obtain a strongly regular graph from a two-weight code C with weights
w1 and w2 as follows [Calderbank and Kantor 1986]. Take codewords as vertices
of 0 and join two codewords x and y by an edge if and only if d(x, y)= w1. The
strongly regular graph 0 is said be associated with C .

Theorem 9. Let 0n,u,t be the strongly regular graph associated with the generalized
MacDonald code Cn,u,t(q). Then 0n,u,t has parameters 〈qn, qn

−qn−u, qn
−2qn−u,

qn
− qn−u

〉.

Proof. The number of vertices of 0n,u,t is equal to the number of codewords
of Cn,u,t(q); hence v = qn. Let W1 be the set of codewords of weight w1 =

tqn−1
− qu−1 and W2 be the set of codewords of weight w2 = tqn−1 of Cn,u,t(q).

By the construction, we know 0n,u,t is a regular graph. The zero-vector 0, as a
vertex, has degree |W1|, as d(0, x)=w1 for all x ∈W1. Therefore, from Theorem 7,
we get k = |W1| = qn

− qn−u.
To obtain the value of µ, consider the zero-vector 0. Pick any codeword u

from W2; then d(0, u)= w2, which implies 0 is nonadjacent to all the codewords
in W2. Let v be an arbitrary codeword in W1. Then d(u, v)=w1; otherwise v ∈W2,
which contradicts our assumption that v ∈W1. Since v ∈W1 is arbitrary, u ∈W2

is adjacent to all the codewords in W1. Therefore, the codeword u is adjacent to
|W1| = qn

− qn−u vertices and hence µ= qn
− qn−u.

We will use (2) to determine the value of λ from the other three parameters.
Consider k(k−λ−1)= (v− k−1)µ, but µ= k implies (k−λ−1)= (v− k−1),
and then λ= 2k−v= 2(qn

−qn−u)−qn
= qn
−2qn−u. This leads to 〈v, k, λ, µ〉 =

〈qn, qn
− qn−u, qn

− 2qn−u, qn
− qn−u

〉. �
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4. Cn,u,s,t(q) codes

In this section, we extend the definition of generalized MacDonald codes Cn,u,t(q)
to that of Cn,u,s,t(q) codes. Define Cn,u,s,t(q) codes by adding t simplex codes to
s MacDonald codes.

The generator matrices of Cn,u,s,t(q) codes can be defined similarly to generator
matrices of generalized MacDonald codes Cn,u,t(q). Let Gn,u,s,t be the generator
matrix of the code Cn,u,s,t(q). Then

Gn,u,s,t =
[
Gn | Gn | · · · | Gn︸ ︷︷ ︸

t

| Gn,u | Gn,u | · · · | Gn,u︸ ︷︷ ︸
s

]
,

where Gn and Gn,u are the generator matrices of simplex codes and MacDonald
codes, respectively.

The parameters of the Cn,u,s,t(q) codes can be easily deduced from that of the
codes Cn,u(q) and Cn,u,t(q). By the form of the generator matrix Gn,u,s,t , the
weight enumerator of Cn,u,s,t(q) is the same as that of the MacDonald codes.

Theorem 10. Cn,u,s,t(q) is a
[
(t + s)

[ n
1

]
− s

[ u
1

]
, n, (t + s)qn−1

− squ−1
]

q code
with nonzero weights w1 = (t + s)qn−1

− squ−1 and w2 = (t + s)qn−1 with weight
enumerator coefficients Aw1 = qn

− qn−1 and Aw2 = qn−u
− 1.

Similar to MacDonald and generalized MacDonald codes, the binary codes
Cn,u,s,t(q) are self-orthogonal for u ≥ 3.

Theorem 11. Cn,u,s,t codes are self-orthogonal for q = 2 and 3≤ u ≤ n− 1.

Proof. We will show that Gn,u,s,t GT
n,u,s,t = 0 for 3≤ u ≤ n− 1:

Gn,u,s,t GT
n,u,st =

[
Gn | · · · |Gn︸ ︷︷ ︸

t

|Gn,u | · · · |Gn,u︸ ︷︷ ︸
s

][
Gn | · · · |Gn︸ ︷︷ ︸

t

|Gn,u | · · · |Gn,u︸ ︷︷ ︸
s

]T

=GnGT
n + ·· ·+GnGT

n︸ ︷︷ ︸
t

+Gn,uGT
n,u + ·· ·+Gn,uGT

n,u︸ ︷︷ ︸
s

= tGnGT
n + sGn,uGT

n,u

= tGnGT
n + sGn,uGT

n,u .

For 3≤ u ≤ n− 1, from the proofs of Theorems 4 and 5, we have GnGT
n = 0 and

Gn,uGT
n,u = 0. �

Since these codes have the same weight enumerator as that of MacDonald codes,
parameters of the strongly regular graphs generated by them are the same as the
strongly regular graphs generated by the MacDonald codes.



892 PADMAPANI SENEVIRATNE AND LAUREN MELCHER

5. Conclusion

In this work, we have described the weight enumerators of generalized MacDonald
codes Cn,u,t(q) and the codes Cn,u,s,t(q) and showed that these are two-weight
codes. Further, we have shown that the codes Cn,u(q),Cn,u,t(q) and Cn,u,s,t(q)
are self-orthogonal for 3 ≤ u ≤ n − 1. All three classes have the same weight
enumerator and hence generate the same strongly regular graph.

All the codes in this work were constructed as a direct sum of a one-weight code
(simplex code) with a two-weight code (MacDonald code). It might be interesting
to study other such constructions arising from one- and two-weight codes.
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