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A poset P = (X,≺) has an interval representation if each x ∈ X can be assigned a
real interval Ix so that x ≺ y in P if and only if Ix lies completely to the left of Iy .
Such orders are called interval orders. Fishburn (1983, 1985) proved that for
any positive integer k, an interval order has a representation in which all interval
lengths are between 1 and k if and only if the order does not contain (k+2)+1
as an induced poset. In this paper, we give a simple proof of this result using a
digraph model.

1. Introduction

1.1. Posets and interval orders. A poset P consists of a set X of points and a
relation ≺ that is irreflexive and transitive, and therefore antisymmetric. It is
sometimes convenient to write y� x instead of x ≺ y. If x ≺ y or y≺ x , we say that
x and y are comparable, and otherwise we say they are incomparable, and denote
the incomparability by x ‖ y. An interval representation of a poset P = (X,≺) is
an assignment of a closed real interval Iv to each v ∈ X so that x ≺ y if and only
if Ix is completely to the left of Iy . A poset with such a representation is called
an interval order. It is well known that the classes studied in this paper are the
same if open intervals are used instead of closed intervals; e.g., see Lemma 1.5 in
[Golumbic and Trenk 2004].

The poset 2+2 shown in Figure 1 consists of four elements {a, b, x, y} and
the only comparabilities are a ≺ x and b ≺ y. The following elegant theorem
characterizing interval orders was anticipated by Wiener in 1914, see [Fishburn and
Monjardet 1992], and shown by Fishburn [1970]: poset P is an interval order if
and only if it contains no induced 2+2. Posets that have an interval representation
in which all intervals are the same length are known as unit interval orders or
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Figure 1. The posets 2+2 (left), 3+1 (middle), and 4+1 (right).

semiorders. Scott and Suppes [1958] characterized unit interval orders as those
posets with no induced 2+2 and no induced 3+1. Figure 1 shows the posets 2+2,
3+1, and 4+1. More generally, the poset n+1 consists of a chain of n distinct
elements a1≺a2≺· · ·≺an and an additional element that is incomparable to each ai .

In this paper, we consider an intermediate class between the extremes of interval
orders (no restrictions on interval lengths) and unit interval orders (all intervals
the same length). In particular, we allow interval lengths to range from 1 to k,
where k is a positive integer. Fishburn [1983; 1985] characterized this class as those
posets with no induced 2+2 and no induced (k+2)+1, generalizing the result of
Scott and Suppes. In fact, Fishburn characterized those posets that have an interval
representation by intervals whose lengths are between m and n for any relatively
prime integers m, n in terms of what he calls picycles. Fishburn’s proof uses a set
of inequalities similar to those in our proof of Theorem 4. His proof is technical,
and it does not immediately yield a forbidden poset characterization in the general
case. Doignon [1987; 1988] introduced the idea of using potentials in a digraph
model to solve a related interval representation problem. (Pages 91–93 of [Pirlot
and Vincke 1997] contain an English version of the main result in [Doignon 1988].)

We use a different digraph model, one that appears in [Isaak 2009], to give a
shorter and more accessible proof of Fishburn’s result for the case m = 1, n = k.
This digraph model uses two vertices for each element, one for each of the endpoints
of an interval representing the element. Our digraph model and the equivalence of
statements (1) and (3) in Theorem 4 can easily be extended to general m, n. It is also
natural to consider allowing the interval lengths to vary between 1 and any real value.
Fishburn and Graham [1985] studied the classes C(α) of interval graphs that have a
representation by intervals with lengths between 1 and α for any real α≥ 1, showing
that the points where C(α) expands are the rational values of α. The problem of char-
acterizing posets that have an interval representation in which the possible interval
lengths come from a discrete set (rather than from an interval) is more challenging,
and we consider two variants of this question in [Boyadzhiyska et al. 2017].

1.2. Digraphs and potentials. A directed graph, or digraph, is a pair G = (V, E),
where V is a finite set of vertices, and E is a set of ordered pairs (x, y), with
x, y ∈ V, called arcs. A weighted digraph is a digraph in which each arc (x, y) is
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assigned a real number weight wxy . We sometimes denote the arc (x, y) by x→ y,
and in a weighted digraph by x wxy

−→ y. A potential function p : V → R, defined on
the vertices of a weighted digraph, is a function satisfying p(y)− p(x)≤ wxy for
each arc (x, y). Theorem 1 is a well known result that specifies precisely which
digraphs have potential functions.

A cycle in digraph G is a subgraph with vertex set {x1, x2, x3, . . . , xt } and arc
set {(xi , xi+1) : 1 ≤ i ≤ t − 1} ∪ {(xt , x1)}. In a weighted digraph, the weight of
cycle C, denoted by wgt(C), is the sum of the weights of the arcs of C. A cycle
with negative weight is called a negative cycle. The following theorem is well
known, see Chapter 8 of [Schrijver 2003] for example, and we provide a proof in
[Boyadzhiyska et al. 2017].

Theorem 1. A weighted digraph has a potential function if and only if it contains
no negative cycle.

2. Orders with a [1, k]-interval representation

We say that poset P has an [a, b]-interval representation if it has a representation by
intervals whose lengths are between a and b (inclusive). When a= b> 0, the posets
with such a representation are the unit interval orders. Because representations can
be scaled, for any b > 0, all interval orders have a [0, b]-interval representation.
This motivates us to consider the lower bound a = 1, and in particular, posets that
have a [1, k]-interval representation where k is a positive integer. Fishburn [1983]
characterized this class by showing the equivalence of (1) and (2) in Theorem 4;
however, the proof is quite technical. Using the framework in [Isaak 2009], we
construct a weighted digraph G P,k associated with poset P and show that P has a
[1, k]-interval representation if and only if G P,k has no negative cycle. This allows
for a more accessible proof of Theorem 4. We choose the value of ε appearing as a
weight in G P,k so that 0< ε < 1/(2|X |).

Definition 2. Let P = (X,≺) be a partial order. Define G P,k to be the weighted
digraph with vertices {`x , rx}x∈X and the arcs

• (`y, rx) with weight −ε for all x, y ∈ X with x ≺ y,

• (rx , `y) with weight 0 for all x, y ∈ X with x ||y,

• (rx , `x) with weight −1 for all x ∈ X ,

• (`x , rx) with weight k for all x ∈ X .

It is helpful to think of the arcs of G P,k as coming in two categories: `→ r and
r→ `. We list the arcs by category in Table 1 for easy reference.

Any negative cycle in G P,k with a minimum number of arcs will have at most
2|X | arcs since G P,k has 2|X | vertices. Since ε satisfies 0 < ε < 1/(2|X |), the
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type arc weight (x, y) relation

`→ r (`y, rx) −ε y � x
(`x , rx) k

r→ ` (rx , `y) 0 x ‖ y
(rx , `x) −1

Table 1. The arcs of the weighted digraph G P,k .

arcs of weight −ε will have combined weight w, where −1<w ≤ 0. We record a
consequence of this observation in the following remark.

Remark 3. If C is a negative weight cycle in G P,k containing the minimum number
of arcs, then C contains at least k arcs of weight −1 for every arc of weight k.

Theorem 4. Let P = (X,≺) be a partial order and let k ∈ Z≥1. The following are
equivalent:

(1) P has a [1, k]-interval representation.

(2) P contains no induced 2+2 or (k+2)+1.

(3) The weighted digraph G P,k contains no negative cycle.

Proof. (1) ⇒ (3): Suppose that P has an interval representation I = {Ix}x∈X ,
where Ix = [L(x), R(x)], and for each x ∈ X we have 1 ≤ |Ix | ≤ k. Choose
ε=min{1/(2|X |+1), δ}, where δ is the smallest distance between unequal endpoints
in the representation I. By the definition of an interval representation and the
conditions on the interval lengths, we have

(i) R(x)− L(y)≤−ε for all x, y ∈ X with x ≺ y,

(ii) L(y)− R(x)≤ 0 for all x, y ∈ X with x ||y,

(iii) L(x)− R(x)≤−1 for all x ∈ X ,

(iv) R(x)− L(x)≤ k for all x ∈ X .

Now define the function p on the vertex set of G P,k as follows. For each x ∈ X
let p(rx)= R(x) and p(`x)= L(x). So p satisfies

(a) p(rx)− p(ly)≤−ε for all x, y ∈ X with x ≺ y,

(b) p(ly)− p(rx)≤ 0 for all x, y ∈ X with x ||y,

(c) p(lx)− p(rx)≤−1 for all x ∈ X ,

(d) p(rx)− p(lx)≤ k for all x ∈ X .

Thus, for all (u, v) ∈ E(G P,k), we have p(v) − p(u) ≤ wuv. Hence p is a
potential function on G P,k and by Theorem 1, G P,k has no negative cycle.
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(3)⇒ (1): Given G P,k has no negative cycle, by Theorem 1, there exists a potential
function p on G P,k , and by definition, p satisfies (a), (b), (c), (d). For each
x ∈ X , let L(x)= p(`x) and R(x)= p(rx). By (c) we know L(x)+ 1≤ R(x), so
Ix =[L(x), R(x)] is indeed an interval with |Ix |≥1. By (d), the length of interval Ix

satisfies |Ix | ≤ k, and by (a) and (b), x ≺ y in P if and only if R(x) < L(y). Thus
the set of intervals {Ix}x∈X forms a representation of P in which each interval has
length between 1 and k.

(3)⇒ (2): If P contains an induced 2+2, denoted by (x � a) ‖ (y � b), then

`x
−ε
−→ ra

0
−→ `y

−ε
−→ rb

0
−→ `x

is a cycle in G P,k with weight −2ε. Similarly, if P contains an induced (k+2)+1,
denoted by x ‖ (ak+2 � ak+1 � · · · � a2 � a1), then G P,k contains the cycle

rx
0
−→ `ak+2

−ε
−→ rak+1

−1
−→ `ak+1

−ε
−→ rak

−1
−→ `ak

−ε
−→

· · ·
−ε
−→ ra2

−1
−→ `a2

−ε
−→ ra1

0
−→ lx

k
−→ rx ,

whose weight is (−1)k+ k+ (−ε)(k+ 1) < 0. In either case, we obtain a negative
cycle in P, a contradiction.

(2)⇒ (3): Now assume P contains no induced 2+2 or (k+2)+1. For a contra-
diction, assume that G P,k contains a negative cycle, and let C be a negative cycle
in G P,k containing the minimum number of arcs. By the definition of G P,k , the
arcs in C must alternate between arcs of type `→ r and arcs of type r→ `, thus
C has the form `x1 → rx2 → `x3 → · · · → rxn → `x1 for some x1, x2, . . . , xn ∈ X ,
not necessarily distinct. The cycles in G P,k that contain exactly two arcs have
nonnegative weight; hence n ≥ 4. Furthermore, since vertices of a cycle are distinct,
we know that xi 6= xi+2 for 1≤ i ≤ n, where the indices are taken modulo n.

Next we show wgt(C) ≤ −2ε. Since xi 6= xi+2 for 1 ≤ i ≤ n (indices taken
modulo n), the arcs of C immediately before and after a weight-k arc must have
weight 0. If C has at most one arc of weight −ε, then the remaining `→ r arcs
have weight k, resulting in a positive weight for C, a contradiction. Thus C contains
at least two arcs of weight −ε, and Remark 3 implies that wgt(C)≤−2ε.

We next claim that C does not contain a segment of three consecutive arcs of
weights −ε, 0,−ε. For a contradiction, suppose C contains the segment

S1 : `a
−ε
−→ rb

0
−→ `c

−ε
−→ rd .

Then by the definition of G P,k , we have a � b, b ‖ c, and c � d . If d � a, we get
c�d�a�b, contradicting b‖c. If a ‖d , then the elements a, b, c, d induce in P the
poset 2+2, a contradiction. Otherwise, a � d and we can replace the segment S1 by
`a
−ε
−→rd to yield a shorter cycle C ′ with wgt(C ′)=wgt(C)+ε≤−2ε+ε=−ε < 0.

This contradicts the minimality of C.
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We now consider two cases depending on whether or not C contains an arc of
weight k.

Case 1: C has no arc of weight k. In this case, C alternates between arcs with
weight−ε and arcs with weight in the set {0,−1}. Since C has at least four arcs and
no segment of the form (−ε, 0,−ε), there must be an arc of weight −1. Without
loss of generality, choose a starting point for C so that it begins with the segment

S2 : `x1
−ε
−→ rx2

−1
−→ `x3

−ε
−→ rx4 .

By the definition of G P,k we have x1� x2= x3� x4, so x1� x4. Replace segment S2

by `x1
−ε
−→ rx4 to obtain a cycle C ′ whose weight is also negative since it contains

no arcs of weight k. Since C ′ has fewer arcs than C, this contradicts the minimality
of C.

Case 2: C contains an arc of weight k. By Remark 3, there is a segment of C that
starts with an arc of weight k and has at least k arcs of weight −1 before the next
arc of weight k. Thus this segment of C contains at least 2k arcs. Without loss of
generality, we can choose the starting point of C so that it begins with the segment

`x1
k
−→ rx2 −→ `x3

−ε
−→ rx4 −→ · · ·

−ε
−→ rx2k −→ `x2k+1 .

If the arc (rx2, `x3) has weight −1, then x1 = x2 = x3, a contradiction since x1 6= x3.
Thus, the arc (rx2, `x3) has weight 0 and C begins with the segment

`x1
k
−→ rx2

0
−→ `x3

−ε
−→ rx4 .

If any of the next k arcs of the type r → ` on C had weight 0, then C would
contain a segment of the form (−ε, 0,−ε), contradicting our earlier claim. Thus
each of these arcs has weight −1 and C starts with the segment

`x1
k
−→ rx2

0
−→ `x3

−ε
−→ rx4

−1
−→ `x5

−ε
−→ rx6

−1
−→· · ·

−ε
−→ rx2k+2

−1
−→ `x2k+3 .

Note that the arcs `x2k+1 → rx2k+2 → `x2k+3 are included since there must be k arcs
of weight −1 before the next arc of weight k.

By the definition of G P,k , we have the following relations in P:

x1 = x2 ‖ x3 � x4 = x5 � x6 = x7 � · · · = x2k+1 � x2k+2 = x2k+3.

If x1= x2k+3, then by transitivity, x1 ≺ x3, contradicting the relation x1= x2 ‖ x3.
Thus C contains at least two more arcs (`x2k+3, rx2k+4) and (rx2k+4, `x2k+5). If arc
(`x2k+3, rx2k+4) had weight k, then x2k+2 = x2k+3 = x2k+4, a contradiction since
x2k+2 6= x2k+4. Thus arc (`x2k+3, rx2k+4) has weight −ε, and x2k+3 � x2k+4 in P, and
C starts with the segment

S : `x1
k
−→rx2

0
−→`x3

−ε
−→rx4

−1
−→`x5

−ε
−→rx6

−1
−→· · ·

−ε
−→rx2k+2

−1
−→`x2k+3

−ε
−→rx2k+4 .
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Finally, we consider the relation between x1 and x2k+4 in P. If x1 ≺ x2k+4, then
by transitivity, x1 ≺ x3, a contradiction. If x1 � x2k+4, we can replace segment S by
`x1
−ε
−→ rx2k+4 to obtain a shorter cycle C ′ in G P,k . As noted earlier, the combined

weight of the arcs of C that have weight −ε is strictly greater than −1, so C ′ also
has negative weight, contradicting the minimality of C. Hence x1 ‖ x2k+4 and the
k+ 3 elements in the set {x1, x3, x5, . . . , x2k+3, x2k+4} induce a (k+2)+1 in P, a
contradiction. �

We end by describing an algorithm that constructs a [1, k]-interval representation
of a poset P if one exists and otherwise produces a forbidden poset, either 2+2 or
(k+2)+1. Use a standard shortest-paths algorithm such as the Bellman–Ford or the
matrix multiplication method on G P,k to compute the weight of a minimum-weight
path between each pair of vertices or detect a negative cycle. If there is a negative
cycle, these algorithms detect one with a minimum number of arcs. If such a
negative cycle exists in G P,k , then as in the proof of (2)⇒ (3) of Theorem 4, either
the cycle contains the segment −ε, 0,−ε, and a 2+2 is detected in P, or else as
in Case 2 of that proof, a (k+2)+1 is detected in P. If there is no negative cycle,
Theorem 1 ensures that a potential function p exists for G P,k . Indeed, setting p(v)
to be the minimum weight of a walk ending at v produces a potential function.
As we showed in the proof of (3)⇒ (1), the intervals [p(`x), p(rx)] provide a
[1, k]-interval representation of P. Thus there is a polynomial-time certifying
algorithm.
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