Vol. 11, No. 5, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 2, 181–360
Issue 1, 1–180

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Ethics Statement
Editorial Login
Author Index
Coming Soon
Contacts
 
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
The Fibonacci sequence under a modulus: computing all moduli that produce a given period

Alex Dishong and Marc S. Renault

Vol. 11 (2018), No. 5, 769–774
Abstract

The Fibonacci sequence F = 0,1,1,2,3,5,8,13,, when reduced modulo m is periodic. For example, F mod 4 = 0,1,1,2,3,1,0,1,1,2,. The period of F mod m is denoted by π(m), so π(4) = 6. In this paper we present an algorithm that, given a period k, produces all m such that π(m) = k. For efficiency, the algorithm employs key ideas from a 1963 paper by John Vinson on the period of the Fibonacci sequence. We present output from the algorithm and discuss the results.

Keywords
Fibonacci sequence, period, algorithm
Mathematical Subject Classification 2010
Primary: 11B39, 11B50
Secondary: 11Y55
Milestones
Received: 2 June 2016
Accepted: 9 September 2017
Published: 2 April 2018

Communicated by Kenneth S. Berenhaut
Authors
Alex Dishong
Department of Mathematical Sciences
University of Delaware
Newark, DE
United States
Marc S. Renault
Mathematics Department
Shippensburg University
Shippensburg, PA
United States